JP3546599B2 - Two-dimensional displacement sensor and two-dimensional displacement measuring device using the same - Google Patents

Two-dimensional displacement sensor and two-dimensional displacement measuring device using the same Download PDF

Info

Publication number
JP3546599B2
JP3546599B2 JP15027496A JP15027496A JP3546599B2 JP 3546599 B2 JP3546599 B2 JP 3546599B2 JP 15027496 A JP15027496 A JP 15027496A JP 15027496 A JP15027496 A JP 15027496A JP 3546599 B2 JP3546599 B2 JP 3546599B2
Authority
JP
Japan
Prior art keywords
dimensional displacement
post
link
displacement sensor
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15027496A
Other languages
Japanese (ja)
Other versions
JPH09311006A (en
Inventor
知弘 望月
和広 須賀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP15027496A priority Critical patent/JP3546599B2/en
Publication of JPH09311006A publication Critical patent/JPH09311006A/en
Application granted granted Critical
Publication of JP3546599B2 publication Critical patent/JP3546599B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/25Stroke; Height; Displacement
    • B60G2400/252Stroke; Height; Displacement vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2401/00Indexing codes relating to the type of sensors based on the principle of their operation

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、二つの物体間の面差や隙間などの二次元変位を自動的に測定することができる二次元変位センサ、及びこれを用いた二次元変位測定装置に関する。
【0002】
【従来の技術】
バンパーなどの自動車用外装樹脂部品は、極高温又は極低温などの使用環境によっては熱変形が生じるおそれがあることから、開発段階等において、耐熱耐寒試験による品質評価が行われている。この種の耐熱耐寒試験は、外装樹脂部品が装着された実車を例えば−40℃〜90℃の恒温室に入れ、極恒温及び極低温における車体との面差や隙間寸法の変化状況を測定し、外装樹脂部品の品質評価の一項目としている。
【0003】
【発明が解決しようとする課題】
ところが、従来の耐熱耐寒試験における面差や隙間は、測定者がゲージを用いて直接測定していたので、−40℃前後の極低温や90℃前後の極温の恒温室に測定者が入室しなければならなかった。かかる恒温室内に長時間入室していることはきわめて困難であるため、測定に要する時間は極力短時間とする必要があり、このため、測定部位を多くすることや、慎重に測定して測定精度を高めることに制約が生じていた。また、この種の耐熱耐寒試験は、極恒温や極低温環境下で長時間行われ経時的な変化も測定する必要があるが、恒温室への入室間隔も制約されるので、精度の高い経時変化データを得ることが困難であった。
【0004】
本発明は、このような従来技術の問題点に鑑みてなされたものであり、二次元変位を自動的に測定できる二次元変位センサを提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するために、請求項1記載の本発明の二次元変位センサは、二つの物体の任意断面における二次元変位を検出する二次元変位センサであって、測定すべき二次元変位の前記一方の物体の被測定面に固定される第1の測定基準部を有する第1のポストと、前記測定すべき二次元変位の前記他方の物体の被測定面に固定される第2の測定基準部を有する第2のポストと、一端が、前記任意断面の垂直軸廻りに相対的に回動可能となるように、前記第1のポストに軸着された第1のリンクと、一端が、前記任意断面の垂直軸廻りに相対的に回動可能となるように、前記第2のポストに軸着され、他端が、前記任意断面の垂直軸廻りに相対的に回動可能となるように前記第1のリンクに軸着された第2のリンクと、前記第1のポストと前記第1のリンクとの回動軸、前記第2のポストと前記第2のリンクとの回動軸、及び前記第1のリンクと前記第2のリンクとの回動軸のうち少なくとも2つの回動軸の回動角をそれぞれ検出する第1の角度検出手段及び第2の角度検出手段とを備え、
前記第1のポスト及び前記第1のリンクの回動軸と、前記第2のポスト及び前記第2のリンクの回動軸とは、前記測定すべき二次元変位の各方向に沿って、それぞれ離隔させて設けられていることを特徴とする
【0006】
この請求項1記載の二次元変位センサでは、第1のポストの第1の測定基準部を一方の物体の被測定面に、第2のポストの第2の測定基準部を他方の物体の被測定面に固定し、このとき、第1のポストと第1のリンクとの回動軸(以下Pともいう)、第2のポストと第2のリンクとの回動軸(以下Pともいう)、及び第1のリンクと第2のリンクとの回動軸(以下Pともいう)の3点で形成される三角形の幾何学的性質を利用することにより、二つの物体の任意断面における二次元変位を検出する。
【0007】
すなわち、測定すべき二つの物体の任意断面における二次元変位は、その任意断面のX−Y平面における2つの回動軸P,Pの座標で置き換えることができる。また、第1のリンク及び第2のリンクの長さ、つまり三角形の2辺の長さはそれぞれ既知であり、第1の角度検出手段及び第2の角度検出手段により三角形の2つの内角が求められるので、幾何学的計算により2つの回動軸P,Pの点座標を求めることができる。したがって、本発明の二次元変位センサを用いれば、測定すべき二次元変位を自動的に測定することができる。
【0008】
請求項1記載の二次元変位センサにおいて、3つの回動軸P,P,Pで形成される三角形がどのような三角形であっても、幾何学的計算により二次元変位を求めることができるが、請求項2記載の二次元変位センサは、前記第1のポスト及び前記第1のリンクの回動軸と、前記第2のポスト及び前記第2のリンクの回動軸とが、前記測定すべき二次元変位方向に対して非同一直線上に設けられていることを特徴とする。
【0009】
測定すべき二次元変位によっては、三角形の幾何学的な性質上、二次元変位が三角形の内角の変化に大きく反映されないことも生じ得る。つまり、3つの回動軸P ,P ,P で形成される三角形の形状によっては、二次元変位センサの感度が鈍くなることもあるが、この請求項1記載の二次元変位センサでは、感度が鈍くなる範囲を避けて構成されているので、測定精度が著しく向上することになる。
【0010】
また、上記目的を達成するために、請求項2記載の二次元変位測定装置は、請求項1記載の二次元変位センサと、前記二次元変位センサの第1の角度検出手段及び第2の角度検出手段からの出力信号に基づいて、前記測定すべき二次元変位を演算する演算手段と、を備えたことを特徴とする。
【0011】
この請求項2記載の二次元変位測定装置では、上述した請求項1記載の二次元変位センサを備え、しかもこの二次元変位センサからの出力信号を演算処理する演算手段をも備えているので、二次元変位の測定を自動的に行うことができる。
【0012】
【発明の効果】
請求項1記載の二次元変位センサによれば、三角形の幾何学的性質を利用して計算により簡単に二次元変位を求めることができるので、測定者による誤差がなくなり測定精度が向上する。また、第1の角度検出手段及び第2の角度検出手段からの出力により計算できるので、測定者が接近し難い環境であっても二次元変位を容易に測定することができる。
【0013】
請求項2記載の二次元変位センサによれば、上述した請求項1記載の二次元変位センサの効果に加え、測定感度が高くなり、測定精度が向上する。
【0014】
請求項3記載の二次元変位測定装置によれば、二次元変位センサからの出力に対して幾何学的計算も自動的に行うので、測定部位を多くしたり、測定間隔を短く設定することが可能となり、測定精度をより高めることができる。
【0015】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。
図1は本発明の二次元変位センサの実施形態を示す斜視図、図2は同じく使用状態を示す斜視図、図3及び図4は同じく二次元変位センサの測定原理を説明するための正面図である。
【0016】
図1に示すように、本実施形態の二次元変位センサ100は、第1のポスト10及び第2のポスト20、これらを接続する第1のリンク30及び第2のリンク40から構成されている。
【0017】
第1のポスト10は、測定すべき物体の一方に固定される部材であって、第2のポスト20は測定すべき物体の他方に固定される部材である。例えば、図4に示すように、車体VとバンパBとの面差Mと隙間Sを測定する場合には、第1のポスト10は、当該第1のポスト10の測定基準部である底面12を例えば車体Vの平面部V1に当接させ、もう一つの測定基準部である側面14を車体Vの垂直部V2に揃えて固定する。また、第2のポスト20は、同図に示すように、当該第2のポスト20の測定基準部である底面22を例えばバンパBの平面部B1に当接させ、もう一つの測定基準部である側面24をバンパBの垂直部B2に揃えて固定する。
【0018】
このように、第1のポスト10及び第2のポスト20は、測定すべき面差M及び隙間Sの被測定面V1,V2,B1,B2に、直接的又は間接的に当接可能な測定基準部12,14,22,24を有しており、本実施形態では、それぞれの底面12,22が被測定面V1,B1に直接的に当接される測定基準部であり、それぞれの側面14,24が被測定面V2,B2に間接的に当接される測定基準部である。
【0019】
第1のポスト10には、第1のリンク30の一端が回動軸P を中心に回動可能に接続されている。また、第2のポスト20には、第2のリンク40の一端が回動軸P を中心に回動可能に接続されている。さらに、第1のリンク30の他端と第2のリンク40の他端も、それぞれの一端から等しい距離R(図4参照)で、回動軸Pを中心に回動可能に接続されている。これら3つの回動軸P,P,Pは、全て平行に設けられており、これにより第1のポスト10、第2のポスト20、第1のリンク30及び第2のリンク40の4つの部材は、これら回動軸P,P,Pに垂直な平面PLに平行に移動することとなり、この平面PLが測定すべき任意断面となって、この平面PL内のX方向の変位とY方向の変位とが求められる。
【0020】
また、本実施形態の二次元変位センサ100は、図3に示すように、第1のポスト10と第2のポスト20のそれぞれの測定基準面12,14,22,24を互いに揃えたときに、回動軸P及びPが測定変位方向、すなわち同図に示すX−Y方向に沿う直線上に位置しないように形成されている。これは測定感度をより高めるためであり、その原理は後述する。
【0021】
第2のポスト20と第2のリンク40との回動軸P2には、この回動軸廻りの回動角ωを測定するために、第1の角度測定手段であるポテンショメータ50が設けられており、第1のリンク30と第2のリンク40との回動軸Pにも、この回動軸廻りの回動角ψを測定するための第2の角度測定手段であるポテンショメータ60が設けられている。これらのポテンショメータ50,60は、回転角ω,ψが電圧差で出力されるものであり、それぞれの出力信号は、図2に示すようにデータ収集器70を介してパーソナルコンピュータ80に入力される。
【0022】
なお、本実施形態では、第1の角度検出手段であるポテンショメータ50を第2のポスト20と第2のリンク40との回動軸Pに設けたが、この回動軸Pに設ける代わりに第1のポスト10と第1のリンク30との回動軸Pに設けても良い。また、第2の角度検出手段であるポテンショメータ60も第1のリンク30と第2のリンク40との回動軸Pにのみ限定されず、要するに、3つの回動軸P,P,Pのうち少なくとも2つの回動軸にポテンショメータ50,60が設けられれば良い。
【0023】
次に測定原理及び使用方法を説明する。
図4に示すように、車体VとバンパBとの面差M及び隙間Sを測定する場合について考える。回動軸P,Pを結ぶ直線を斜辺とする直角三角形P Aを想定し、斜辺の長さをL、角度PAをθ、PAの長さをM、PAの長さをSとすると、
【数1】
M=Lsinθ …(1)
S=Lcosθ …(2)
となる。
【0024】
この長さMは、図3に示す基本状態における長さMに求めるべき面差Mを加えた値であり、長さSは、図3に示す基本状態における長さSに求めるべき隙間Sを加えた値である。したがって、上記(1)及び(2)式からM,Sが求められれば、M,Sは既知であるので、目的とする面差M及び隙間Sが求められる。
【数2】
=M−M …(3)
=S−S …(4)
【0025】
図4に示すように、第1の角度検出手段であるポテンショメータ50により回動軸P廻りの回動角ωが検出され、第2の角度検出手段であるポテンショメータ60により回動軸P廻りの回動角ψが検出される。また、回動軸P,P間の距離Rと回動軸P,P間の距離Rは等しいので、△P は常に二等辺三角形となる。したがって、回動軸P ,P 間の距離Lは、二等辺三角形の頂角ψと等辺の長さRとを用いて、下記(5)式により求められる。また、角度θをωとψで表すと、幾何学的関係より下記(6)式のようになる。
【数3】
L=2Rsin(ψ/2) …(5)
θ=ω−(π−ψ)/2 …(6)
【0026】
これら(5)式及び(6)式に、既知の長さRと、ポテンショメータ50,60による測定値を代入すると、L及びθが求められ、これらL及びθを(1)式及び(2)式に代入することにより、M及びSが求められる。そして、これらM及びSを(3)式及び(4)式に代入することにより目的とする面差Mと、隙間Sとが求められる。
【0027】
以上が本実施形態の二次元変位センサ100の測定原理であるが、この二次元変位センサ100は、熱変形などの経時変化を測定する場合に用いて好ましい。例えば、極低温や極高温によるバンパの歪みを測定する場合、図2に示すように、車体VとバンパBとの間に本実施形態の二次元変位センサ100を複数取り付け、それぞれの二次元変位センサ100のポテンショメータ50,60からの出力信号をデータ収集器70で収集する。このデータ収集器70で集められたデータは、これに接続されたパーソナルコンピュータ80に入力され、上述した計算が瞬時に実行される。これにより、作業環境の悪い恒温室に測定者が入室する必要がなくなり、測定部位を多くしたり、或いは、極恒温や極低温環境下での長時間にわたる経時的変化も測定することができ、精度の高いデータを得ることができる。
【0028】
次に、本実施形態の二次元変位センサ100の感度について説明する。
上述した(1)〜(6)式より、ポテンショメータ50にて測定される角度ωと、ポテンショメータ60にて測定される角度ψは、面差M、隙間S及びリンク長さRを用いて下記のように表される。
【数4】
ψ=2sin−1{(M+S1/2/2R}
2tan−1{(M+S)/(4R−M−S)}1/2 …(7)
ω=tan−1(M/S)+(π−ψ)/2
=tan−1(M/S)+π/2−sin−1{(M+S1/2/2R}
…(8)
【0029】
面差Mによる角度ψの変化度合い、すなわち感度は、ψをMで偏微分することで求められる。
【数5】
δψ/δM
=[{1−(M+S)/4R}{(M+S)/4R}]1/2・M/2R
…(9)
【0030】
同様にして、隙間Sによる角度ψの感度は、ψをSで偏微分することにより求められる。
【数6】
δψ/δS
=[{1−(M+S)/4R}{(M+S)/4R}]1/2・S/2R
…(10)
【0031】
上記(9)及び(10)式において、δψ/δM、δψ/δSの値が0近傍のときは、面差M及び隙間Sが大きくても角度ψの変化は小さく、つまり感度が鈍い。(9)式の両辺が0となるのは、1−(M+S)/4R=0又は M=0又はS=0の場合が考えられる。
【0032】
1−(M+S)/4R=0のとき、すなわちM+S=(2R)のときは、M=S=0の点を中心とした半径2Rの円周上を表しているが、半径が2Rであるので第1及び第2のリンク30,40が伸びきってψ=πとなる条件であり、実際の使用時においては設計上使用できない状態である。したがって、感度が鈍い領域を避けることができる。
【0033】
また、M=0のときも角度ψの感度が鈍いが、本実施形態の二次元変位センサ100では、上述したようにM=0となる領域を避け、予めM0の値を与えているので、最も感度が鈍い領域での測定が行われることがない。つまり、第2のポスト20を第1のポスト10に対して面差が下側になる物体に装着する限り、M=0となることはないので、感度が鈍くなることはない。
【0034】
さらに、S=0のときも角度ψの感度が鈍くなるが、図3に示すように、第1のポスト10と第2のポスト20の厚さがある限り、実際的にS=0となる場合はなく、したがって、感度が鈍くなることはない。
【0035】
このように、本実施形態の二次元変位センサ100では、ポテンショメータ50,60の感度をも考慮しているので、面差Mや隙間Sに対する応答性が良く、測定精度が著しく向上することになる。
【0036】
なお、以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。
【図面の簡単な説明】
【図1】本発明の二次元変位センサの実施形態を示す斜視図である。
【図2】本発明の二次元変位センサ及び二次元変位測定装置の使用状態を示す斜視図である。
【図3】図1の二次元変位センサを示す正面図である。
【図4】図1の二次元変位センサの測定原理を説明するための正面図である。
【符号の説明】
10…第1のポスト
12…測定基準部
14…測定基準部
20…第2のポスト
22…測定基準部
23…測定基準部
30…第1のリンク
40…第2のリンク
50…ポテンショメータ(第1の角度検出手段)
60…ポテンショメータ(第2の角度検出手段)
,P ,P …回動軸
PL…断面
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a two-dimensional displacement sensor capable of automatically measuring a two-dimensional displacement such as a surface difference or a gap between two objects, and a two-dimensional displacement measuring device using the same.
[0002]
[Prior art]
Automotive exterior resin parts such as bumpers may undergo thermal deformation depending on the usage environment such as extremely high temperature or extremely low temperature. Therefore, quality evaluation is performed by a heat and cold resistance test in a development stage or the like. This kind of heat and cold resistance test is to put the actual vehicle with the exterior resin parts installed in a constant temperature room of, for example, -40 ° C to 90 ° C, and measure the surface difference and the change in the gap size from the vehicle body at extremely constant temperature and extremely low temperature. It is one item of quality evaluation of exterior resin parts.
[0003]
[Problems to be solved by the invention]
However, the surface difference or gap in the conventional heat-resistant cold test, since measurer was measured directly using a gauge, measuring person in a thermostatic chamber of before and after cryogenic and 90 ° C. pole high temperature before and after -40 ℃ is I had to enter the room. Since it is extremely difficult to stay in such a constant temperature chamber for a long time, the time required for measurement must be as short as possible. There was a restriction on raising In addition, this type of heat and cold resistance test is performed for a long time in an extremely constant temperature or extremely low temperature environment, and it is necessary to measure the change over time. It was difficult to obtain change data.
[0004]
The present invention has been made in view of such problems of the related art, and has as its object to provide a two-dimensional displacement sensor that can automatically measure two-dimensional displacement.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, a two-dimensional displacement sensor according to the present invention described in claim 1 is a two-dimensional displacement sensor that detects a two-dimensional displacement in an arbitrary cross section of two objects. A first post having a first measurement reference portion fixed to the measurement surface of the one object, and a second measurement fixed to the measurement surface of the other object of the two-dimensional displacement to be measured; A second post having a reference portion, a first link pivotally mounted on the first post such that one end is relatively rotatable about a vertical axis of the arbitrary cross section, and one end The second post is pivotally mounted so as to be relatively rotatable about the vertical axis of the arbitrary cross section, and the other end is relatively rotatable about the vertical axis of the arbitrary cross section. A second link pivotally mounted on the first link and the first post At least two of a rotation axis between the first link, a rotation axis between the second post and the second link, and a rotation axis between the first link and the second link. A first angle detection unit and a second angle detection unit that respectively detect a rotation angle of the rotation shaft ;
The rotation axis of the first post and the first link, and the rotation axis of the second post and the second link, respectively, along each direction of the two-dimensional displacement to be measured It is characterized by being provided at a distance .
[0006]
In the two-dimensional displacement sensor according to the present invention, the first measurement reference portion of the first post is provided on the measurement surface of one object, and the second measurement reference portion of the second post is provided on the measurement surface of the other object. fixed to the measurement surface, this time, (hereinafter also referred to as P 1) rotation axis of the first post and the first link, the rotary shaft of the second post and a second link (hereinafter P 2 both say), and the first link and by utilizing the geometric properties of the triangle formed by three points of pivot axis between the second link (hereinafter referred to as P 3), any cross-section of two objects The two-dimensional displacement at is detected.
[0007]
In other words, the two-dimensional displacement of the two objects to be measured in an arbitrary cross section can be replaced by the coordinates of the two rotation axes P 1 and P 2 on the XY plane of the arbitrary cross section. Further, the lengths of the first link and the second link, that is, the lengths of the two sides of the triangle are already known, and two interior angles of the triangle are obtained by the first angle detecting means and the second angle detecting means. Therefore, the point coordinates of the two rotation axes P 1 and P 2 can be obtained by geometric calculation. Therefore, by using the two-dimensional displacement sensor of the present invention, the two-dimensional displacement to be measured can be automatically measured.
[0008]
In the two-dimensional displacement sensor according to claim 1, whatever the triangle triangle formed by the three pivot axes P 1, P 2, P 3, to obtain the two-dimensional displacement by geometric calculation The two-dimensional displacement sensor according to claim 2, wherein the rotation axis of the first post and the first link, and the rotation axis of the second post and the second link, It is provided on a non-collinear line with respect to the two-dimensional displacement direction to be measured.
[0009]
Depending on the two-dimensional displacement to be measured, the two-dimensional displacement may not be greatly reflected in the change in the internal angle of the triangle due to the geometrical properties of the triangle. That is, the shape of the triangle formed by the three pivot axes P 1, P 2, P 3 is sometimes sensitivity of the two-dimensional displacement sensor becomes dull, a two-dimensional displacement sensor of claim 1, wherein the Since the configuration is made so as to avoid the range where the sensitivity becomes dull, the measurement accuracy is remarkably improved.
[0010]
In order to achieve the above object, the two-dimensional displacement measuring device according to claim 2, the two-dimensional displacement sensor according to claim 1, wherein the first angle detecting means and the second angle of the two-dimensional displacement sensor Calculating means for calculating the two-dimensional displacement to be measured based on an output signal from the detecting means.
[0011]
In the two-dimensional displacement measuring apparatus of the second aspect, it comprises a two-dimensional displacement sensor according to claim 1, wherein the above, and since also comprises a calculating means for arithmetically processing the output signal from the two-dimensional displacement sensor, Measurement of two-dimensional displacement can be performed automatically.
[0012]
【The invention's effect】
According to the two-dimensional displacement sensor of the first aspect, the two-dimensional displacement can be easily obtained by calculation using the geometrical properties of the triangle, so that there is no error by the operator and the measurement accuracy is improved. Further, since the calculation can be performed based on the outputs from the first angle detecting means and the second angle detecting means, the two-dimensional displacement can be easily measured even in an environment where the measurer is difficult to approach.
[0013]
According to the two-dimensional displacement sensor of the second aspect, in addition to the effect of the two-dimensional displacement sensor of the first aspect, the measurement sensitivity is increased and the measurement accuracy is improved.
[0014]
According to the two-dimensional displacement measuring device of the third aspect, since the geometric calculation is also automatically performed on the output from the two-dimensional displacement sensor, it is possible to increase the number of measurement sites or set the measurement interval short. This makes it possible to further improve the measurement accuracy.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a perspective view showing an embodiment of the two-dimensional displacement sensor of the present invention, FIG. 2 is a perspective view showing the same use state, and FIGS. 3 and 4 are front views for explaining the measurement principle of the two-dimensional displacement sensor. It is.
[0016]
As shown in FIG. 1, the two-dimensional displacement sensor 100 according to the present embodiment includes a first post 10 and a second post 20, and a first link 30 and a second link 40 connecting the first and second posts 20 and 20. .
[0017]
The first post 10 is a member fixed to one of the objects to be measured, and the second post 20 is a member fixed to the other of the objects to be measured. For example, as shown in FIG. 4, when measuring the surface difference M and the gap S between the vehicle body V and the bumper B, the first post 10 is connected to the bottom surface 12 which is a measurement reference portion of the first post 10. Is brought into contact with, for example, the flat portion V1 of the vehicle body V, and the side surface 14 as another measurement reference portion is aligned and fixed to the vertical portion V2 of the vehicle body V. Further, as shown in the figure, the second post 20 has a bottom surface 22 which is a measurement reference portion of the second post 20 abutted on, for example, the flat portion B1 of the bumper B, and has another measurement reference portion. A certain side surface 24 is aligned and fixed to the vertical portion B2 of the bumper B.
[0018]
As described above, the first post 10 and the second post 20 can be directly or indirectly contacted with the measured surfaces V1, V2, B1, and B2 of the gap M and the gap S to be measured. In the present embodiment, each of the bottom surfaces 12 and 22 is a measurement reference portion that directly abuts against the surface to be measured V1, B1, and has a side surface. Reference numerals 14 and 24 are measurement reference portions that are indirectly abutted on the surfaces to be measured V2 and B2.
[0019]
The first post 10, one end of the first link 30 is pivotally connected about a pivot axis P 1. The second post 20, one end of the second link 40 is pivotally connected about a pivot axis P 2. The other end and the other end of the second link 40 of the first link 30 is also at equal distance from one end of each of R (see FIG. 4), it is pivotally connected about a pivot axis P 3 I have. These three rotation axes P 1 , P 2 , P 3 are all provided in parallel, so that the first post 10, the second post 20, the first link 30, and the second link 40 The four members move parallel to a plane PL perpendicular to the rotation axes P 1 , P 2 , and P 3 , and the plane PL becomes an arbitrary cross section to be measured, and is an X direction in the plane PL. And the displacement in the Y direction are obtained.
[0020]
In addition, the two-dimensional displacement sensor 100 according to the present embodiment, as shown in FIG. 3, has the first post 10 and the second post 20 when the respective measurement reference surfaces 12, 14, 22, 24 are aligned with each other. turning shaft P 1 and P 2 are measured displacement direction, that is, formed so as not located on a straight line along an X-Y direction shown in FIG. This is to further increase the measurement sensitivity, and its principle will be described later.
[0021]
A potentiometer 50, which is first angle measuring means, is provided on a pivot axis P2 between the second post 20 and the second link 40 to measure a pivot angle ω about the pivot axis. cage, the first link 30 to pivot axis P 3 of the second link 40, the potentiometer 60 is provided a second angle measuring means for measuring the rotation angle ψ of the rotating shaft around Have been. These potentiometers 50 and 60 output rotation angles ω and ψ as voltage differences, and output signals of the potentiometers 50 and 60 are input to a personal computer 80 via a data collector 70 as shown in FIG. .
[0022]
In the present embodiment, is provided with the potentiometers 50 a first angle detecting means to the rotation axis P 2 of the second post 20 and the second link 40, provided on the pivot shaft P 2 instead to be provided with first posts 10 to pivot axis P 1 of the first link 30. Also, the potentiometer 60 is a second angle detecting means is not limited only to the pivot axis P 3 of the first link 30 and second link 40, in short, the three pivot axes P 1, P 2, potentiometers 50 and 60 in at least two pivot axes of the P 3 may as long provided.
[0023]
Next, the measurement principle and usage will be described.
As shown in FIG. 4, consider the case of measuring the surface difference M 1 and the gap S 1 between the vehicle body V and the bumper B. Assuming a right triangle P 1 P 2 A having a straight line connecting the rotation axes P 1 and P 2 as the hypotenuse, the length of the hypotenuse is L, the angle P 1 P 2 A is θ, and the length of P 1 A is M , P 2 A is S,
(Equation 1)
M = Lsin θ (1)
S = Lcos θ (2)
It becomes.
[0024]
The length M is a value obtained by adding a surface difference M 1 to be obtained to the length M 0 in the basic state shown in FIG. 3, the length S is to be determined on the length S 0 in the basic state shown in FIG. 3 is a value obtained by adding the gap S 1. Therefore, if M and S are obtained from the above equations (1) and (2), M 0 and S 0 are known, and the target surface difference M 1 and gap S 1 are obtained.
(Equation 2)
M 1 = M−M 0 … (3)
S 1 = S−S 0 (4)
[0025]
As shown in FIG. 4, the first angle detecting means rotation angle of the rotation shaft P 2 around the potentiometer 50 omega is is detected, pivot shaft P 3 around the potentiometer 60 is a second angle detecting means Is detected. Further, since the distance R is equal between the pivot axis P 1, the distance between P 3 R and the pivot axis P 2, P 3, △ P 1 P 2 P 3 is always an isosceles triangle. Therefore, the distance L between the rotation axes P 1 and P 2 can be obtained by the following equation (5) using the vertex angle の and the length R of the isosceles triangle. When the angle θ is represented by ω and ψ, the following equation (6) is obtained from the geometric relationship.
[Equation 3]
L = 2Rsin (ψ / 2) (5)
θ = ω− (π−ψ) / 2 (6)
[0026]
By substituting the known length R and the values measured by the potentiometers 50 and 60 into these equations (5) and (6), L and θ are obtained, and these L and θ are calculated by equations (1) and (2). By substituting into the equation, M and S are obtained. Then, the surface difference M 1 of interest by substituting these M and S (3) and (4), is determined and the clearance S 1.
[0027]
The above is the measurement principle of the two-dimensional displacement sensor 100 of the present embodiment. The two-dimensional displacement sensor 100 is preferably used when measuring a change with time such as thermal deformation. For example, when measuring the distortion of the bumper due to extremely low temperature or extremely high temperature, a plurality of two-dimensional displacement sensors 100 of the present embodiment are mounted between the vehicle body V and the bumper B, as shown in FIG. Output signals from the potentiometers 50 and 60 of the sensor 100 are collected by a data collector 70. The data collected by the data collector 70 is input to a personal computer 80 connected thereto, and the above-described calculation is executed instantaneously. This eliminates the need for the measurer to enter a constant temperature room with a poor working environment, increases the number of measurement sites, or can measure long-term changes over time in extremely constant temperature or extremely low temperature environments, Highly accurate data can be obtained.
[0028]
Next, the sensitivity of the two-dimensional displacement sensor 100 of the present embodiment will be described.
From the above equations (1) to (6), the angle ω measured by the potentiometer 50 and the angle ψ measured by the potentiometer 60 are calculated using the surface difference M, the gap S, and the link length R as follows. Is represented as
(Equation 4)
{= 2 sin -1 {(M 2 + S 2 ) 1/2 / 2R}
2tan -1 {(M 2 + S 2 ) / (4R 2 −M 2 −S 2 )} 1/2 (7)
ω = tan −1 (M / S) + (π−ψ) / 2
= Tan -1 (M / S) + π / 2-sin -1 {(M 2 + S 2 ) 1/2 / 2R}
… (8)
[0029]
The degree of change of the angle ψ due to the surface difference M, that is, the sensitivity, is obtained by partially differentiating ψ with M.
(Equation 5)
δψ / δM
= [{1- (M 2 + S 2 ) / 4R 2 } (M 2 + S 2 ) / 4R 2 }] 1/2 · M / 2R 2
… (9)
[0030]
Similarly, the sensitivity of the angle に よ る due to the gap S is obtained by partially differentiating ψ with S.
(Equation 6)
δψ / δS
= [{1- (M 2 + S 2 ) / 4R 2 } (M 2 + S 2 ) / 4R 2 }] 1/2 · S / 2R 2
… (10)
[0031]
In the above equations (9) and (10), when the values of δψ / δM and δψ / δS are close to 0, the change in the angle ψ is small even if the surface difference M and the gap S are large, that is, the sensitivity is low. It is considered that both sides of the expression (9) become 0 when 1− (M 2 + S 2 ) / 4R 2 = 0 or M = 0 or S = 0.
[0032]
When 1− (M 2 + S 2 ) / 4R 2 = 0, that is, when M 2 + S 2 = (2R) 2 , it represents on the circumference of radius 2R centering on the point of M = S = 0. However, since the radius is 2R, the first and second links 30 and 40 are fully extended, and the condition is that ψ = π, which is a state that cannot be used due to design during actual use. Therefore, a region where the sensitivity is low can be avoided.
[0033]
When M = 0, the sensitivity of the angle ψ is weak. However, in the two-dimensional displacement sensor 100 of the present embodiment, the value of M0 is given in advance, avoiding the region where M = 0 as described above. Measurement is not performed in the region with the lowest sensitivity. That is, as long as the second post 20 is attached to an object having a lower surface difference with respect to the first post 10, M = 0 does not occur, so that the sensitivity does not decrease.
[0034]
Further, the sensitivity of the angle ψ also becomes weak when S = 0, but as shown in FIG. 3, as long as the first post 10 and the second post 20 have a thickness, S = 0 actually. There is no case, and therefore, the sensitivity does not decrease.
[0035]
As described above, in the two-dimensional displacement sensor 100 of the present embodiment, since the sensitivity of the potentiometers 50 and 60 is also taken into account, the responsiveness to the surface difference M and the gap S is good, and the measurement accuracy is significantly improved. .
[0036]
The embodiments described above are described for facilitating the understanding of the present invention, and are not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an embodiment of a two-dimensional displacement sensor of the present invention.
FIG. 2 is a perspective view showing a use state of the two-dimensional displacement sensor and the two-dimensional displacement measuring device of the present invention.
FIG. 3 is a front view showing the two-dimensional displacement sensor of FIG. 1;
FIG. 4 is a front view for explaining a measurement principle of the two-dimensional displacement sensor of FIG. 1;
[Explanation of symbols]
10 First Post 12 Measurement Reference Unit 14 Measurement Reference Unit 20 Second Post 22 Measurement Reference Unit 23 Measurement Reference Unit 30 First Link 40 Second Link 50 Potentiometer (First Angle detection means)
60 Potentiometer (second angle detecting means)
P 1 , P 2 , P 3 ... rotating axis PL ... cross section

Claims (2)

二つの物体の任意断面における二次元変位を検出する二次元変位センサであって、
測定すべき二次元変位の前記一方の物体の被測定面に固定される第1の測定基準部を有する第1のポストと、
前記測定すべき二次元変位の前記他方の物体の被測定面に固定される第2の測定基準部を有する第2のポストと、
一端が、前記任意断面の垂直軸廻りに相対的に回動可能となるように、前記第1のポストに軸着された第1のリンクと、
一端が、前記任意断面の垂直軸廻りに相対的に回動可能となるように、前記第2のポストに軸着され、他端が、前記任意断面の垂直軸廻りに相対的に回動可能となるように前記第1のリンクに軸着された第2のリンクと、
前記第1のポストと前記第1のリンクとの回動軸、前記第2のポストと前記第2のリンクとの回動軸、及び前記第1のリンクと前記第2のリンクとの回動軸のうち少なくとも2つの回動軸の回動角をそれぞれ検出する第1の角度検出手段及び第2の角度検出手段と、を備え、
前記第1のポスト及び前記第1のリンクの回動軸と、前記第2のポスト及び前記第2のリンクの回動軸とは、前記測定すべき二次元変位の各方向に沿って、それぞれ離隔させて設けられていることを特徴とする二次元変位センサ。
A two-dimensional displacement sensor that detects a two-dimensional displacement in an arbitrary cross section of two objects,
A first post having a first measurement reference portion fixed to a measurement surface of the one object of the two-dimensional displacement to be measured;
A second post having a second measurement reference portion fixed to the measured surface of the other object of the two-dimensional displacement to be measured;
A first link pivotally mounted on the first post such that one end is relatively rotatable about a vertical axis of the arbitrary cross section;
One end is pivotally mounted on the second post such that it is relatively rotatable about the vertical axis of the arbitrary cross section, and the other end is rotatable relatively about the vertical axis of the arbitrary cross section. A second link pivotally attached to the first link so that
A rotation axis between the first post and the first link, a rotation axis between the second post and the second link, and a rotation between the first link and the second link. First angle detection means and second angle detection means for respectively detecting the rotation angles of at least two of the rotation axes ,
The rotation axis of the first post and the first link, and the rotation axis of the second post and the second link, respectively, along each direction of the two-dimensional displacement to be measured A two-dimensional displacement sensor which is provided at a distance.
請求項1記載の二次元変位センサと、
前記二次元変位センサの第1の角度検出手段及び第2の角度検出手段からの出力信号に基づいて、前記測定すべき二次元変位を演算する演算手段と、を備えたことを特徴とする二次元変位測定装置。
A two-dimensional displacement sensor according to claim 1 ,
Calculating means for calculating the two-dimensional displacement to be measured based on output signals from the first angle detecting means and the second angle detecting means of the two-dimensional displacement sensor. Dimensional displacement measuring device.
JP15027496A 1996-05-22 1996-05-22 Two-dimensional displacement sensor and two-dimensional displacement measuring device using the same Expired - Fee Related JP3546599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15027496A JP3546599B2 (en) 1996-05-22 1996-05-22 Two-dimensional displacement sensor and two-dimensional displacement measuring device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15027496A JP3546599B2 (en) 1996-05-22 1996-05-22 Two-dimensional displacement sensor and two-dimensional displacement measuring device using the same

Publications (2)

Publication Number Publication Date
JPH09311006A JPH09311006A (en) 1997-12-02
JP3546599B2 true JP3546599B2 (en) 2004-07-28

Family

ID=15493383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15027496A Expired - Fee Related JP3546599B2 (en) 1996-05-22 1996-05-22 Two-dimensional displacement sensor and two-dimensional displacement measuring device using the same

Country Status (1)

Country Link
JP (1) JP3546599B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107462143A (en) * 2017-06-20 2017-12-12 昆明理工大学 A kind of Bidirectional displacement meter
KR20200041400A (en) * 2018-10-11 2020-04-22 주식회사 경호엔지니어링 종합건축사사무소 Measuring Apparatus of Displacement Using Incline Angle and Method for Measuring Displacement Using The Same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109307490A (en) * 2017-07-27 2019-02-05 余姚市韩慧自动化设备有限公司 A kind of cubing data intelligence measuring system
KR102033477B1 (en) * 2019-02-15 2019-11-08 주식회사 동서기술 A device for measuring a joint clearance of a civil engineering construction or building construction for safety diagnosis
KR102193963B1 (en) * 2019-04-15 2020-12-22 고려대학교 산학협력단 Deflection measuring apparatus
KR102382454B1 (en) * 2020-05-22 2022-04-04 한양대학교 산학협력단 Displacement measuring device of moving objects
CN113847878B (en) * 2021-10-18 2024-04-19 徐州徐工挖掘机械有限公司 Surface difference measuring equipment and measuring method for appearance part of excavator
CN114451888A (en) * 2022-02-15 2022-05-10 广州桦联电子有限公司 Finger joint data acquisition method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107462143A (en) * 2017-06-20 2017-12-12 昆明理工大学 A kind of Bidirectional displacement meter
KR20200041400A (en) * 2018-10-11 2020-04-22 주식회사 경호엔지니어링 종합건축사사무소 Measuring Apparatus of Displacement Using Incline Angle and Method for Measuring Displacement Using The Same
KR102149499B1 (en) 2018-10-11 2020-08-31 주식회사 경호엔지니어링 종합건축사사무소 Measuring Apparatus of Displacement Using Incline Angle and Method for Measuring Displacement Using The Same

Also Published As

Publication number Publication date
JPH09311006A (en) 1997-12-02

Similar Documents

Publication Publication Date Title
CN109141225B (en) Method and system for measuring five and six-degree-of-freedom errors of shafting based on circular grating
JP3546599B2 (en) Two-dimensional displacement sensor and two-dimensional displacement measuring device using the same
EP0597899A1 (en) Angle of attack sensor using inverted ratio of pressure differentials.
US7589824B2 (en) Surface curvature measurement tool
CN109923393A (en) The grounding characteristics measuring method and measurement device of tire
JP7200780B2 (en) Information processing device, information processing method, and information processing system
KR20190051905A (en) Angle measuring apparatus having multi-link
JP2746511B2 (en) Method for measuring orientation flat width of single crystal ingot
JP2000019195A (en) Wind direction and wind speed measuring device
CN1067961A (en) The hole is to the detection method of plane verticality
JP3118144B2 (en) Hub bolt phase detection method and apparatus
JP2579726B2 (en) Contact probe
JP2504561B2 (en) Shape measuring device
JP3513564B2 (en) Roundness measurement method
JPS59220649A (en) Three-dimensional wind direction detector
TWM545243U (en) Optical rotation axis multi-freedom degree error inspection device
JPH01218904A (en) Device for detecting hub face angle
JP2522610Y2 (en) Angle detector
JPS63175716A (en) Measuring instrument for tooth profile error
JPH04340406A (en) Measurement of aspherical surface
JP2000002713A (en) Three-dimensional flow analytical device
Tovkach Method of measuring linear displacements and twist angle by means of a linear array of photodetectors
JPH01263503A (en) Touch probe for measuring three-dimensional shape
JPS6110166Y2 (en)
JP2964682B2 (en) Surface profile measuring device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040405

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees