JP3513564B2 - Roundness measurement method - Google Patents

Roundness measurement method

Info

Publication number
JP3513564B2
JP3513564B2 JP13644894A JP13644894A JP3513564B2 JP 3513564 B2 JP3513564 B2 JP 3513564B2 JP 13644894 A JP13644894 A JP 13644894A JP 13644894 A JP13644894 A JP 13644894A JP 3513564 B2 JP3513564 B2 JP 3513564B2
Authority
JP
Japan
Prior art keywords
value
measured
roundness
center
detectors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13644894A
Other languages
Japanese (ja)
Other versions
JPH07318340A (en
Inventor
武司 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Tosok Corp
Original Assignee
Nidec Tosok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Tosok Corp filed Critical Nidec Tosok Corp
Priority to JP13644894A priority Critical patent/JP3513564B2/en
Publication of JPH07318340A publication Critical patent/JPH07318340A/en
Application granted granted Critical
Publication of JP3513564B2 publication Critical patent/JP3513564B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、測定物を回転させ真円
度を測定する真円度測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a roundness measuring method for rotating a measurement object to measure the roundness.

【0002】[0002]

【従来の技術】従来、真円度を測定する方法としては、
極座標系方式と称するものが知られている。これは、測
定物を回転させ、その回転中心と円周上の距離の変動を
検出器により検出して真円度を得る方法である。すなわ
ち図5に示すように、先ず測定物Wを回転自在に支持す
るとともに、測定物Wの周面に半径r方向の変位を検出
する検出器2を設けておく。次に測定物Wを回転させ、
各回転角度ごとにおける検出器2の検出値Y(θk)・
・・から最小自乗法により正弦曲線である幾何学的真円
曲線Mを求める(図6)。ここで、測定物Wが真円であ
り歪み(真円誤差)を有していない場合には、検出値Y
(θk)・・・は幾何学的真円曲線M上に存在する。し
たがって、各回転角度θkごとに求められる、真円曲線
M上の値Y(θk)と実測値Ykとの差Ekの最大値が
真円度となるのである。
2. Description of the Related Art Conventionally, as a method for measuring the roundness,
A system called a polar coordinate system is known. This is a method of rotating a measurement object and detecting a variation in the distance between the rotation center and the circumference by a detector to obtain the roundness. That is, as shown in FIG. 5, first, the measurement object W is rotatably supported, and a detector 2 for detecting displacement in the radius r direction is provided on the peripheral surface of the measurement object W. Next, rotate the measurement object W,
Detection value Y (θk) of the detector 2 at each rotation angle
The geometric perfect circular curve M, which is a sine curve, is obtained by the method of least squares from ... (FIG. 6). Here, when the measured object W is a perfect circle and has no distortion (perfect circle error), the detected value Y
(Θk) ... Exists on the geometric perfect circular curve M. Therefore, the maximum value of the difference Ek between the value Y (θk) on the perfect circular curve M and the measured value Yk, which is obtained for each rotation angle θk, is the roundness.

【0003】かかる極座標系方式にあっては、測定物の
回転中心に対する円周上の距離の変動から真円度を得る
ため、いわゆる直径法(2点法)や、Vブロック法(3
点法)といった弦長さの変動から真円度を得る方式に比
較し、次の利点がある。すなわち、直径法では測定でき
ない、例えば図7に実線で示したように、その断面形状
は真円ではないが、回転時の直径が真円(破線)と同様
に常に一定となる測定物Wにも有効であり、また、例え
ば測定物の断面形状が多角形状である場合であっても、
同一の装置で安定した検出感度を確保できる。つまりV
ブロック法のように、測定物の断面形状に応じて角度の
異なるVブロックを選択しなければならないといった煩
雑さがない。
In such a polar coordinate system, the so-called diameter method (two-point method) or V-block method (3
Compared to the method of obtaining the roundness from the variation of the chord length such as the point method), it has the following advantages. That is, a measurement object W that cannot be measured by the diameter method, for example, as shown by the solid line in FIG. 7, has a cross-sectional shape that is not a perfect circle, but the diameter during rotation is always the same as a perfect circle (broken line). Is also effective, and even if the cross-sectional shape of the measured object is polygonal,
Stable detection sensitivity can be secured with the same device. That is, V
Unlike the block method, there is no complexity of having to select V blocks having different angles according to the cross-sectional shape of the measurement object.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の方法にあっては、測定物の軸心を水平にした
場合には、測定物には重力が作用するため、重心位置が
変わることによるたわみの変化が実測値に反映され、結
果として測定結果に誤差が生じるという問題があった。
一方、工場内においては、比較的重量が重い長尺状の物
品をライン上で搬送するには、その物品を横倒しの状態
で搬送するのが一般的であるが、かかる物品の真円度を
正確に測定しようとすると、前述した理由から、検査ラ
インに搬送される物品を一旦起立状態にすることが余儀
なくされる。したがって、検査ラインの自動化を阻害す
る要因ともなっていた。
However, in such a conventional method, when the axis of the object to be measured is horizontal, gravity acts on the object to be measured, so that the position of the center of gravity changes. There is a problem that the change in the deflection due to the reflection is reflected in the actual measurement value, resulting in an error in the measurement result.
On the other hand, in a factory, in order to convey a long object having a relatively large weight on a line, it is common to convey the article in a lying state. For accurate measurement, it is unavoidable that the articles conveyed to the inspection line are once erected for the reasons described above. Therefore, it is also a factor that hinders automation of the inspection line.

【0005】本発明は、このような従来の課題に鑑みて
なされたものであり、測定時における測定物の軸心の方
向に関係無く、正確な真円度を測定することが可能な真
円度測定方法を提供することを目的とする。
The present invention has been made in view of the above conventional problems, and is a perfect circle capable of measuring an accurate roundness irrespective of the direction of the axis of the object to be measured at the time of measurement. The purpose is to provide a measuring method.

【0006】[0006]

【課題を解決するための手段】前記課題を解決するため
に本発明にあっては、測定物を回転させ、その回転中心
を通る直線上に位置するとともに互いが離間する方向の
変位を正側の変位とする2つの検出器によって、前記測
定物の円周上の同一測定点における変位を所定の回転角
度ごとにそれぞれ検出し、前記同一測定点における2つ
の検出値を和算した後平均化し、計算後の値から最小自
乗法により幾何学的真円曲線を求め、同一の回転角度に
おける前記幾何学的真円曲線上の値と前記計算後の値と
の差を求め、その最大値と最小値との差を真円度とする
ようにした。また、前記測定物の軸心が水平であると
き、前記2つの検出器が前記回転中心を通る垂線上に位
置することが好ましい。
In order to solve the above-mentioned problems, according to the present invention, the object to be measured is rotated, and the displacements in the directions in which they are located on a straight line passing through the center of rotation and are separated from each other are on the positive side. Displacement at the same measurement point on the circumference of the measured object is detected for each predetermined rotation angle by two detectors whose displacements are equal to, and the two detection values at the same measurement point are summed and then averaged. , The geometric perfect circular curve is obtained from the calculated value by the method of least squares, the difference between the value on the geometric perfect circular curve and the value after the calculation at the same rotation angle is obtained, and the maximum value thereof is obtained. The difference from the minimum value is set as the roundness. Further, when the axis of the measured object is horizontal, it is preferable that the two detectors are located on a perpendicular line passing through the rotation center.

【0007】[0007]

【作用】前記方法において、例えばその軸心を水平にし
て測定物を回転したとき、検出される2つの検出値に
は、測定物の軸心と回転中心との偏心、測定物の歪み
(真円誤差)、測定物の重心位置が変わることによるた
わみの各成分が含まれる。ここで、2つの検出値に含ま
れる偏心及び歪みに起因する変位量は常に同一であり、
また、測定物の重心位置が変わることによるたわみは1
80°を周期としてその方向が逆転する。このため、2
つの検出値を和算した後平均化するとことによって、2
つの検出値から前記たわみ成分が除去される。したがっ
て、上記計算後の値と、その値から最小自乗法により求
められる幾何学的真円曲線とに基づき得られる真円度
は、測定物の重心位置が変わることによるたわみの影響
を受けない。
In the above method, for example, when the measurement object is rotated with its axis being horizontal, the two detected values include the eccentricity between the axis of the measurement object and the rotation center, and the distortion (true value) of the measurement object. (Circle error), each component of the deflection due to the change of the position of the center of gravity of the measured object is included. Here, the displacement amounts due to the eccentricity and the strain included in the two detected values are always the same,
Also, the deflection due to the change of the center of gravity of the measured object is 1
The direction is reversed at a cycle of 80 °. Therefore, 2
Two detection values are summed and then averaged to obtain 2
The flexure component is removed from the one detected value. Therefore, the roundness obtained based on the value after the above calculation and the geometric roundness curve obtained by the least square method from the value is not affected by the deflection due to the change of the center of gravity of the object to be measured.

【0008】[0008]

【実施例】以下、本発明の一実施例を図にしたがって説
明する。すなわち図1は、本発明の方法を示す模式平面
図であって、長尺状の測定物Wは、その軸心が略水平の
状態で相対向するスピンドル1,1間にセットされてい
る。また測定物Wの左右には、スピンドル1,1の回転
中心O、すなわち測定物Wの回転中心を通る直線上に位
置するとともに、互いが離間する方向の変位を正側の変
位とする2つの検出器2,2がセットされている。な
お、スピンドル1,1の回転中心Oと測定物Wの軸心と
は一致しているとは限らず、以下、両者が一致していな
いものとして説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. That is, FIG. 1 is a schematic plan view showing the method of the present invention, in which a long measuring object W is set between spindles 1 and 1 facing each other in a state where the axis thereof is substantially horizontal. Further, to the left and right of the object to be measured W, there are two positions which are located on a straight line passing through the center of rotation O of the spindles 1, 1, that is, the center of rotation of the object to be measured W, and whose displacement in the direction in which they are separated from each other is the positive side displacement. Detectors 2 and 2 are set. It should be noted that the rotation center O of the spindles 1 and 1 and the axis of the measured object W are not always coincident with each other, and in the following description, they are not coincident with each other.

【0009】測定に際しては、先ず前記スピンドル1,
1により測定物Wを回転させ、所定の回転角度(θk)
ごとに、測定物Wの円周上の同一測定点における半径方
向の変位を左右の検出器2,2により検出する。つま
り、左右の検出器2,2によって同一測定点の変位を2
回検出する。次に、前記同一測定点における2つの検出
値を和算した後平均化する。すなわち、右側の検出器2
の検出値をR(θk)、左側の検出器2の検出値をL
(θk)とすると、計算値は(R(θk)+L(θ
k))÷2となる。
In the measurement, first, the spindle 1,
1. Rotate the object to be measured W by 1, and rotate at a predetermined rotation angle (θk)
Each time, the displacement in the radial direction at the same measurement point on the circumference of the measured object W is detected by the left and right detectors 2, 2. That is, the displacements of the same measurement point are 2
Detect times. Next, the two detection values at the same measurement point are summed and then averaged. That is, the detector 2 on the right side
Is the detection value of R (θk), and the detection value of the left detector 2 is L
If (θk), the calculated value is (R (θk) + L (θ
k)) / 2.

【0010】なお、図3は、測定物Wの半径をその半径
とする円Pを基準として、R(θk)の変化(イ)、及
びL(θk)の変化(ロ)をそれぞれ描かせたものであ
り、図4は、同様に前記計算値(R(θk)+L(θ
k))÷2の変化を描かせたものである。
In FIG. 3, a change (a) in R (θk) and a change (b) in L (θk) are drawn with a circle P having the radius of the object W as a reference. FIG. 4 similarly shows the calculated value (R (θk) + L (θ
k)) ÷ 2 changes.

【0011】ここで、左右の検出器2,2における2つ
の検出値には、測定物の軸心と回転中心との偏心、測定
物の歪み(真円誤差)、測定物Wの重心位置が変わるこ
とによるたわみの各成分が含まれている。一方、2つの
検出値に含まれる偏心及び歪みに起因する変位量は常に
同一であり、また、測定物の重心位置が変わることによ
るたわみは180°を周期としてその方向が逆転する。
したがって、上記の偏心成分をA、歪み成分をα、たわ
み成分をβとすれば、 検出値R(θk)はA+α+β 検出値L(θk)はA+α−β で表すことができ、 計算値(R(θk)+L(θk))÷2はA+α と表すことができる。つまり前述した計算により測定物
Wの重心位置が変わることによるたわみ成分(β)が除
去される。
Here, the two detection values of the left and right detectors 2 and 2 include the eccentricity between the axis of the object to be measured and the center of rotation, the distortion (roundness error) of the object to be measured, and the position of the center of gravity of the object to be measured W. Each component of deflection due to change is included. On the other hand, the amount of displacement caused by the eccentricity and the strain included in the two detected values is always the same, and the deflection due to the change of the position of the center of gravity of the measured object is reversed in the direction with a cycle of 180 °.
Therefore, if the eccentricity component is A, the distortion component is α, and the deflection component is β, the detection value R (θk) can be expressed by A + α + β, and the detection value L (θk) can be expressed by A + α−β, and the calculated value (R (Θk) + L (θk)) / 2 can be expressed as A + α. That is, the deflection component (β) due to the change of the position of the center of gravity of the measurement object W is removed by the above calculation.

【0012】そして、図5及び図6により既説した極座
標系方式と同様に、上記計算値に基づき、最小自乗法に
より幾何学的真円曲線を求め、同一の回転角度における
前記幾何学的真円曲線上の値と前記計算値との差α(図
6のEkに相当する)を求め、その最大値(αmax)と最
小値(αmin)との差(αmax−αmin)を真円度とする。
Similar to the polar coordinate system method already described with reference to FIGS. 5 and 6, a geometric perfect circle curve is obtained by the least square method based on the above calculated values, and the geometric true curve at the same rotation angle is obtained. The difference α (corresponding to Ek in FIG. 6) between the value on the circular curve and the calculated value is obtained, and the difference (αmax−αmin) between the maximum value (αmax) and the minimum value (αmin) is defined as the roundness. To do.

【0013】つまり、本発明の方法においては、左右の
検出器2,2における検出値から、測定物Wの重心位置
が変わることによるたわみ成分(β)を除いた後、極座
標系方式により真円度を求めるため、前述したように、
測定時に測定物Wの軸心が略水平状態であったとして
も、測定物Wの重心位置が変わることによるたわみの変
化の影響を受けない真円度を測定することができる。よ
って、測定物の方向に関係無く、正確に真円度を測定す
ることが可能となり、その結果、工場内においては、真
円度の検査ラインを容易に自動化することもできる。
That is, in the method of the present invention, after removing the deflection component (β) due to the change of the center of gravity of the object W from the detection values of the left and right detectors 2 and 2, the true circle is obtained by the polar coordinate system method. To find the degree, as mentioned above,
Even if the axis of the object to be measured W is in a substantially horizontal state at the time of measurement, it is possible to measure the roundness that is not affected by the change in deflection due to the change in the position of the center of gravity of the object to be measured W. Therefore, the roundness can be accurately measured regardless of the direction of the object to be measured, and as a result, the roundness inspection line can be easily automated in the factory.

【0014】なお、本実施例においては、2つの検出器
2,2を水平方向に配置した場合について説明したが、
本実施例のように測定物Wの軸心を略水平方向に延在さ
せる場合には、2つの検出器2,2を上下方向に配置さ
せれば、双方の検出器における検出値のたわみ成分
(β)が大きくなるため、検出器2,2を水平方向に配
置した場合よりも正確な真円度を得ることができる。
In this embodiment, the case where the two detectors 2 and 2 are arranged in the horizontal direction has been described.
When the axis of the object to be measured W is extended in a substantially horizontal direction as in the present embodiment, if the two detectors 2 and 2 are arranged in the vertical direction, the deflection components of the detection values of both detectors will be described. Since (β) becomes large, more accurate roundness can be obtained as compared with the case where the detectors 2 and 2 are arranged in the horizontal direction.

【0015】また、本発明の測定方法は、測定時に測定
物Wの軸心を垂直方向に延在させても、真円度を測定す
ることができる。また、本発明の方法は、結果として測
定物Wの回転中心Oに対する円周上の距離の変動を検出
することによって、真円度を求める方法であるため、図
7に示した、回転時の直径が真円と同様に一定となる測
定物Wについても支障なく真円度を測定することができ
る。
Further, according to the measuring method of the present invention, the roundness can be measured even when the axis of the object to be measured W is extended in the vertical direction at the time of measurement. Further, since the method of the present invention is a method of finding the roundness by detecting the variation in the distance on the circumference of the rotation center O of the measurement object W as a result, the roundness shown in FIG. It is possible to measure the roundness of a measurement object W having a constant diameter like a perfect circle without any trouble.

【0016】[0016]

【発明の効果】以上説明したように本発明によれば、測
定物の重心位置が変わることによるたわみの変化の影響
を受けない真円度を得ることができるため、測定時にお
ける測定物の軸心の方向に関係無く、より正確に真円度
を測定することが可能となる。その結果、工場内におい
ては、真円度の検査ラインを容易に自動化することもで
きる。
As described above, according to the present invention, it is possible to obtain the roundness which is not affected by the change in the deflection due to the change of the position of the center of gravity of the object to be measured. The roundness can be measured more accurately regardless of the direction of the heart. As a result, the roundness inspection line can be easily automated in the factory.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における測定方法を示す模式
平面図である。
FIG. 1 is a schematic plan view showing a measuring method according to an embodiment of the present invention.

【図2】同実施例の模式側面図である。FIG. 2 is a schematic side view of the embodiment.

【図3】測定時における検出値の変化を示す図であっ
て、(イ)は右側の検出器における検出値の変化を示す
図、(ロ)は左側の検出器における検出値の変化を示す
図である。
3A and 3B are diagrams showing changes in the detected value at the time of measurement, wherein FIG. 3A shows a change in the detected value at the right detector, and FIG. 3B shows a change in the detected value at the left detector. It is a figure.

【図4】計算値の変化を示す図である。FIG. 4 is a diagram showing changes in calculated values.

【図5】極座標系方式の測定方法を示す模式図である。FIG. 5 is a schematic diagram showing a polar coordinate system measuring method.

【図6】同極座標系方式の説明図である。FIG. 6 is an explanatory diagram of a homopolar coordinate system method.

【図7】回転時の直径が真円と同様に一定となる測定物
の一例を示す図である。
FIG. 7 is a diagram showing an example of a measured object in which the diameter when rotated is constant like a perfect circle.

【符号の説明】[Explanation of symbols]

1 スピンドル 2 検出器 W 測定物 O 回転中心 1 spindle 2 detector W measurement object O rotation center

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01B 21/30 G01B 5/28 G01B 7/34 G01B 11/30 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) G01B 21/30 G01B 5/28 G01B 7/34 G01B 11/30

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 測定物を回転させ、その回転中心を通る
直線上に位置するとともに互いが離間する方向の変位を
正側の変位とする2つの検出器によって、前記測定物の
円周上の同一測定点における変位を所定の回転角度ごと
にそれぞれ検出し、前記同一測定点における2つの検出
値を和算した後平均化し、計算後の値から最小自乗法に
より幾何学的真円曲線を求め、同一の回転角度における
前記幾何学的真円曲線上の値と前記計算後の値との差を
求め、その最大値と最小値との差を真円度とすることを
特徴とする真円度測定方法。
1. A measuring object is rotated on a circumference of the measuring object by two detectors which are located on a straight line passing through the center of rotation and whose displacement in a direction in which they are separated from each other are positive displacements. The displacement at the same measurement point is detected for each predetermined rotation angle, the two detection values at the same measurement point are summed, then averaged, and the geometric perfect circular curve is obtained from the calculated value by the least square method. , A perfect circle, wherein the difference between the value on the geometrically perfect circular curve and the value after the calculation at the same rotation angle is obtained, and the difference between the maximum value and the minimum value is the roundness. Degree measuring method.
【請求項2】 前記測定物の軸心が水平であるとき、前
記2つの検出器が前記回転中心を通る垂線上に位置する
ことを特徴とする請求項1記載の真円度測定方法。
2. The roundness measuring method according to claim 1, wherein the two detectors are located on a perpendicular line passing through the center of rotation when the axis of the object to be measured is horizontal.
JP13644894A 1994-05-26 1994-05-26 Roundness measurement method Expired - Fee Related JP3513564B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13644894A JP3513564B2 (en) 1994-05-26 1994-05-26 Roundness measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13644894A JP3513564B2 (en) 1994-05-26 1994-05-26 Roundness measurement method

Publications (2)

Publication Number Publication Date
JPH07318340A JPH07318340A (en) 1995-12-08
JP3513564B2 true JP3513564B2 (en) 2004-03-31

Family

ID=15175352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13644894A Expired - Fee Related JP3513564B2 (en) 1994-05-26 1994-05-26 Roundness measurement method

Country Status (1)

Country Link
JP (1) JP3513564B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106767325A (en) * 2016-11-29 2017-05-31 天津大学 Conduit profile instrument and lining instrument

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103791801A (en) * 2014-02-28 2014-05-14 三星高新电机(天津)有限公司 Measuring tool for roundness of glass circular disk and measuring method thereof
CN105783805B (en) * 2015-12-25 2018-09-25 烟台市特种设备检验研究院 Welding point size and cylinder roundness testing instruments

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106767325A (en) * 2016-11-29 2017-05-31 天津大学 Conduit profile instrument and lining instrument

Also Published As

Publication number Publication date
JPH07318340A (en) 1995-12-08

Similar Documents

Publication Publication Date Title
JPS6238642B2 (en)
CN107560585B (en) The detection method of large scale correction-plate surface shape error in ring throwing
JP3513564B2 (en) Roundness measurement method
US4625429A (en) Apparatus for checking the roundness of rotating parts
JPS6073413A (en) Measuring method of roundness
CN106949855A (en) A kind of rotating shaft angular travel measurement apparatus
CN206618368U (en) A kind of roundness measuring device
JPS5952764B2 (en) Three-point roundness measurement method
JPH05272958A (en) Automatic detection method and detector for rotation center position by flat substrate and three sensors
CN108827214A (en) A kind of detection device and method of super large type bearing ring outer diameter
JP3546599B2 (en) Two-dimensional displacement sensor and two-dimensional displacement measuring device using the same
JP2001091244A (en) Roundness measuring method and device
JPH0387606A (en) Method and device for measuring automatically tubular article
JPS59100809A (en) Device for measuring out-of-roundness
JPS59208414A (en) Method and apparatus for measuring accuracy of gear
JPH02162241A (en) Method for measuring friction coefficient of bearing
JP3168899B2 (en) Method and apparatus for measuring bending angle of long material
JPS6334405B2 (en)
JP2754128B2 (en) Cylindricity measuring device and measuring method
JPH076786B2 (en) Non-contact rotation accuracy measurement method
JPH01161156A (en) Measuring method for rotary motion accuracy
CN215572702U (en) Detection device for geometric error of opening of cylinder
JPH01232203A (en) Shape measuring instrument for tube body
JPS632325B2 (en)
JPS6057207A (en) Method for measuring shaft diameter and roundness of cylindrical member having recessed groove

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031217

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100123

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100123

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110123

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees