JP3546349B2 - Water surface gradient observation system - Google Patents

Water surface gradient observation system Download PDF

Info

Publication number
JP3546349B2
JP3546349B2 JP03333699A JP3333699A JP3546349B2 JP 3546349 B2 JP3546349 B2 JP 3546349B2 JP 03333699 A JP03333699 A JP 03333699A JP 3333699 A JP3333699 A JP 3333699A JP 3546349 B2 JP3546349 B2 JP 3546349B2
Authority
JP
Japan
Prior art keywords
water
water level
potential difference
surface gradient
water surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03333699A
Other languages
Japanese (ja)
Other versions
JP2000230224A (en
Inventor
達雄 大渕
Original Assignee
株式会社宮崎情報処理センター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社宮崎情報処理センター filed Critical 株式会社宮崎情報処理センター
Priority to JP03333699A priority Critical patent/JP3546349B2/en
Publication of JP2000230224A publication Critical patent/JP2000230224A/en
Application granted granted Critical
Publication of JP3546349B2 publication Critical patent/JP3546349B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明が属する技術分野】
本発明は、河川計画・河川管理(主に水防活動)に使用され、河川の水面勾配を連続して自動的に観測する装置に関するものである。
【0002】
【従来の技術】
従来、河川流量を連続・自動的に計測する方法として、水位のみを測定量とするH−Q曲線方式・測水施設方式の他、流速を対象変量とするドップラー方式・水面勾配方式・画像解析方式がある。
現状は、機械的に測定が簡易で、特別な構造物を要しないH−Q曲線方式が主流となっているが、この方式は、水位と流量との間に一意性がある場合にのみ適用可能であり、背水影響を受ける地点では適用出来ないため、氾濫や汚染等の問題を抱える河川では有効な観測値を収集できないという問題があった。
流速測定方法の上記3手法のうち、水面勾配方式は原理的な有効性が認められ、一部の手法は特許が取得されて実河川での実績もある(特許第1448747号)。
【0003】
【発明が解決しようとする課題】
しかしながら、測定方法が河川の縦断方向2地点に導水パイプを敷設し、一箇所に水を集める「水面差再現型」であったため、パイプ接合箇所の水密・気密保持が物理的に困難で、繁雑な保守作業を要するという欠点があった。
【0004】
上記「水面差再現型」測定装置を、実河川に設置して運用した経過では、観測データが安定するまでに、最低1ヶ月、安定後1〜2週間毎の定期保守を継続して得られる正常動作保持期間が平均2〜3ヶ月で、実用上採用し難いものであった。
また、排水機揚・桶門・桶管の水門操作は、本川・支川の水位差(特にその方向である流向)を基準に、本川から支川への逆流を起こさないように操作される必要があるが、現状は操作員の目視による判断によっているのが一般的であり、特に夜間は可視範囲が限られ、人為的操作ミスによる氾濫事故が毎年報告されている。
【0005】
従来の「流向計」は、流水方向を直接検知するセンサー方式と、ボールの動きから方向を判断するボール方式に大別されるが、従来方式の水面勾配計と同じく導水パイプによる「水面差再現型」であり、通水性保持に同様の困難さがある。また、検知された流向は、数値データとして編集・表示してもゲート操作の情報としては判別しずらいという問題があった。
本発明は、上記従来技術の問題点に鑑み、水面の状態には変化を加えず、構造が簡単で安定動作を長期間保つことができると共に、操作員が水位差・流向を容易に判別することができる水面勾配観測システムを提供することを目的とするものである。
【0006】
【課題を解決するための手段】
このため本発明の水面勾配観測システムは、河川の縦断方向2地点に配置した水圧式水位計が検出する水深信号(水位)から、河川管理上必要とされる連続性の保たれた水位差を検知するための電位差に変換する電位差変換部と、前記電位差(水位差)から水面勾配・流向・流量の自動計算を行うデータ処理装置と、得られた電位差信号を回路分岐して、排水機場・樋管のゲート開閉操作上必要となる、流向・水位差の微小な変化を視覚的に表現する表示装置とからなり、データ処理装置は、電位差変換部から入力された電位差信号を検知しゲート開閉検知器が接続された検知入力部と、電位差信号から水面勾配・流向・流量を算出し水文情報に変換するデータ変換部と、各データを数値情報に変換し時間制御を行うデータ制御部とから構成され、水位差は連続アナログ値として観測されるようにしたことを特徴とするものである。
【0008】
【発明の実施の形態】
次に、図面に示す実施例に基づいて本発明の実施の形態を説明する。
本発明では、水圧式水位計の水位と信号電圧関係に高い直線性があることを利用して、水位差を電位差として利用する「電位差変換型」の観測方式を開発した。本方式での検知対象は、河川の自然状態での水深に対応した水圧であり、センサーとして、河川・井戸一般に普及している水圧式水位計を採用しているため、河川流水を人工的に制御する必要がなく、従来方式の水面勾配計で要した保守作業の繁雑さから解放される。
【0009】
【実施例】
図1は本発明に係る水面勾配測定の原理を示す説明図、図2は本発明システムの概要を示すブロック構成図であり、1A及び1Bは河川の縦断方向2地点、すなわち、上流側と下流側に各々設置される水圧式水位計、2は水圧式水位計が検出した水深の信号(水位差の電圧信号)を水面標高差に整合した電位差に変換する電位差変換部である。
【0010】
データ処理装置3は、電位差変換部2から入力された電位差信号を検知する検知入力部4と、得られた電位差信号から水面勾配・流向・流量を自動的に演算して算出し水文情報に変換するデータ変換部5と、各データを数値情報に変換し、記憶すると共に、通信回線の制御・音声変換制御・日付け・時間制御等を行うデータ制御部6とから構成されており、得られた水文情報を電話回線7を通じて受信所8のパソコン9に通信できるようにされている。10はデータ出力用のプリンターである。
【0011】
また、データ処理装置3の検知入力部4には雨量計12及びゲート開閉検知器13が接続されている。ここで、流向は、本川・支川合流の2地点での水位差を検知して求めるが、水位差は連続アナログ値として観測されるので、合流関係の変化が経過的に把握でき、ゲート操作のタイミングが図り易い。しかしながら、検知された流向は、数値データとして編集・表示してもゲート操作の情報としては判別しずらい。そこで、水位差・流向を視覚的に通知する屋外作業員向けの表示方法として、電位差変換部2から信号分岐したライトバー型電光表示板11を設けた。
【0012】
水面勾配Iは、区間距離Lの2断面間で水位差△Hを測定し、I=△H/Lとして求める。水位差を電位差として処理するためには、測量による水面標高差を電位差変換結果として較正する機能を有する変換手段を要するが、2系統の水圧式水位計の電圧信号を入力し、新たな水位差信号として出力する電位差変換部を開発して、水位差信号の零点と最大検知水位差に対応したスパン調整機能をもたせることで解決した。
【0013】
図1に示すように、E・Eは2台の水位計の水面から機械零点までの各々の水深に対応した信号電圧、Sは機械零点の誤差及び水位計零点標高差を調整するための電位シフト値である。ここで、次式(1)
△H=E−(E−S)……(1)
から水位差測定値△Hが得られ、△Hから水面勾配・流向(水面勾配の正負)が計算される。流量は、水位と水面勾配を独立変数とする水理式からの計算結果であり、以上の変換・計算を処理し、観測データとして編集・記憶すると共に、外部受信機器との通信を介してデータを提供するデータ処理装置5によって、一連の動作が制御される(図2参照)。
【0014】
水面勾配I及び下流側水位Hを基準とした断面特性を用いて、次式(2)及び(3)による等流計算によって流量が求まる。
v=1/n*I1/2*R2/3 ……(2)
Q=A*v …………………(3)
水面勾配方式の妥当性を検証するために、直線・同一断面の3面ガラス張で勾配が可動な実験水路に水位計2台を敷設し、流下流量と水面勾配による計算流量との比較を行い、図3のとおり良好な対応関係が求められた。尚、流量は三角堰を設けた水槽からの溢流によって発生させ、水理式により流下流量を把握しながらランダムな時間変化をつけた。
【0015】
水面勾配方式の実河川への応用を検証するために、清武川水系熊野川の直線・整正河道を選定し雨量・水位・水面勾配観測所を新設し、水面勾配を連続・自動計測すると共に、平成10年10月12日及び10月17日の両日に渡り、浮子流過速度測定による通常の洪水流量観測を実施し、水位・水面勾配計測値からの流量計算値との比較を行った。浮子は水位の変動に応じて吃水長30cm・50cmの2種類を使い分けた。観測点数は、1(川幅は約5m)で較正係数は標準値の0.88とした。
上記式(2)における粗度係数nは未知であり、nが確定されれば水位・水面勾配の関数値として流速が計算される。式(2)を変形すると、
n=I1/2*R2/3/v……(4)
となり、計測記録IとHから求められる径深R及びvが与えられれば、粗度係数nが計算される。ここで、vに洪水流量観測時の流速を当てはめるとnが得られる。実測流量Qと計測記録からの粗度係数nの関係を図4に示したが、各流量実測値に対してほぼ理論値に近い数値である0.026を平均的に示しながら安定した分布となっており、熊野川での水面勾配方式の妥当性を認めるに足る結果となった。nの計算結果の平均値をもって熊野川の粗度係数とし、式(2)から改めて計算した流量Qと洪水流量観測結果Qを比較して図5に示すグラフを作成したが、図4のグラフから判るように、先の式(4)で粗度係数の分布が一様であったことを反映して、一致性が高い。
【0016】
水面勾配式による流量観測は、流量が水位(および水位から導かれる断面特性)と水面勾配を独立変数とする関数関係にあることに着眼した手法である。図6は、従来観測成果として報告されることのほとんどなかった水面勾配と、流量との対応を散布図にしたグラフだが、減水期に比べて増水期の勾配が急になる傾向が認められ、水面勾配の流水に対する影響が現れていて本手法の有効性を裏付けている。
【0017】
熊野川に新設した観測所は、オンライン化のための電源・電話引き込み工事を除いては工期が一日で済み、設置後すぐに安定した装置状態が保持された。定常の保守作業は、洪水流量観測のための河道上除草のみで、観測装置本体は、現在まで保守を要することなく稼動中である。
水面勾配方式は、現段階では従来報告されている水面勾配計に比して、設置性・保守性の問題点をある程度解決する方法となり得る。
【0018】
【発明の効果】
以上説明したように、本発明の水面勾配観測システムは以下の優れた効果を有する。
(1)観測・調査費用が確保され難いため、河川計画に必要な観測流量データが絶対的に不足している一方、洪水被害額の構成比でみると、その割合が年々増加している中小河川に対して、導入可能な観測手段の提供が可能となる。
(2)上記(1)の結果、河川計画が理論値のみによって策定されることによる過大工事や流過能力不足を招来しない適正計画の立案が可能となる。
(3)現状の水防活動での河川情報としては、「警戒水位」等、水位を唯一の基準としているが、上流からの急激な流入量増大や、下流側湛水による急激な水位上昇は、水面勾配に現れ、短期的な河川氾濫の危険予測指標となる他、流域の長期的な変化を把握する基礎情報となる。
(4)本方式では、導水管の敷設がないため、測定2地点間の設置関係が自由であり、排水機揚・桶門・桶管等の堤体を跨いだ形態での本川・支川の水位差測定が可能となる。特に支川側への逆流を起こさせないゲート操作のために必要な流向検知が可能となり、操作員の負担を軽減し、誤操作を防ぐことができる。
【図面の簡単な説明】
【図1】本発明に係る水面勾配測定の原理を示す説明図である。
【図2】本発明システムの概要を示すブロック構成図である。
【図3】実験水路における実測流量と水面勾配方式による計算流量との比較を示すグラフである。
【図4】実河川(熊野川)における実測流量と粗度係数の関係を示すグラフである。
【図5】実河川(熊野川)における洪水観測流量と水面勾配方式による計算流量との比較を示すグラフである。
【図6】実河川(熊野川)における水面勾配と流量の関係を示すグラフである。
【図7】ライトバー型電光表示板の一実施例を示す説明図である。
【符号の説明】
1A 水圧式水位計
1B 水圧式水位計
2 電位差変換部
3 データ処理装置
4 検知入力部
5 データ変換部
6 データ制御部
7 電話回線
8 受信所
9 パソコン
10 プリンタ
11 ライトバー型電光表示板
12 雨量計
13 ゲート開閉検知器
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an apparatus used for river planning and river management (mainly flood control activities), and for continuously and automatically observing the water surface gradient of a river.
[0002]
[Prior art]
Conventionally, as a method of continuously and automatically measuring river flow, in addition to the HQ curve method and water measuring facility method using only the water level as a measurement amount, the Doppler method using water velocity as a target variable, water surface gradient method, image analysis There is a method.
At present, the HQ curve method, which is mechanically simple and does not require special structures, is mainly used, but this method is only applicable when there is uniqueness between water level and discharge. Because it is possible and cannot be applied at locations affected by backwater, there is a problem that effective observation values cannot be collected in rivers that have problems such as flooding and pollution.
Among the above three methods of measuring the flow velocity, the water surface gradient method has been found to be effective in principle, and some methods have been patented and have been used in actual rivers (Japanese Patent No. 1448747).
[0003]
[Problems to be solved by the invention]
However, since the measurement method was a “water level difference reproduction type” in which water pipes were laid at two points in the longitudinal direction of the river and water was collected at one point, it was physically difficult to maintain watertightness and airtightness at the joints of the pipes. There is a drawback that it requires complicated maintenance work.
[0004]
In the process of installing and operating the above-mentioned "water level difference reproduction type" measuring device on an actual river, it is possible to obtain regular maintenance at least for one month and 1-2 weeks after stabilization until the observation data becomes stable. The normal operation holding period was an average of 2 to 3 months, which was difficult to employ in practice.
In addition, the drainage operation of the drainage pump / Oke-mon / Oke-pipe is operated based on the water level difference between the Honkawa and tributaries (especially the direction of flow), so as not to cause backflow from the Honkawa to the tributaries. Although it is necessary, the current situation is generally based on the visual judgment of the operator, and especially at night, the visibility range is limited, and flooding accidents due to human error are reported every year.
[0005]
Conventional flow meters are roughly classified into a sensor system that directly detects the direction of flowing water and a ball system that determines the direction based on the movement of the ball. Mold "and has similar difficulties in maintaining water permeability. Further, there is a problem that even if the detected flow direction is edited and displayed as numerical data, it is difficult to determine it as information on the gate operation.
The present invention has been made in view of the above-described problems of the prior art, and does not change the state of the water surface, has a simple structure, can maintain stable operation for a long period of time, and allows an operator to easily determine a water level difference and a flow direction. It is an object of the present invention to provide a water surface gradient observing system capable of performing the above.
[0006]
[Means for Solving the Problems]
For this reason, the water surface gradient observation system of the present invention uses the water depth signal (water level) detected by the water pressure type water level meter arranged at two points in the longitudinal direction of the river to determine the water level difference with continuity required for river management. A potential difference conversion unit for converting into a potential difference for detection, a data processing device for automatically calculating a water surface gradient, a flow direction, and a flow rate from the potential difference (water level difference); and a circuit branching of the obtained potential difference signal. required over the gate opening and closing of the gutter pipe, Ri Do and a display device for visual representation of small changes in the flow direction-level difference, the data processing device detects the potential difference signal input from the potential conversion section gate A detection input unit to which the open / close detector is connected, a data conversion unit that calculates water surface gradient, flow direction, and flow rate from the potential difference signal and converts the data into hydrological information, and a data control unit that converts each data into numerical information and performs time control. Composed of Is the water level difference is characterized in that it has to be observed as a continuous analog value.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described based on examples shown in the drawings.
The present invention has developed a "potential difference conversion type" observation method using a water level difference as a potential difference by utilizing the fact that the water level of the water pressure type water level meter has a high linearity with respect to the signal voltage. The detection target in this method is the water pressure corresponding to the water depth in the natural state of the river.Since the water pressure gauge, which is widely used in rivers and wells, is adopted as a sensor, the river flow is artificially detected. There is no need to control, and the complexity of maintenance work required by the conventional water surface gradiometer is relieved.
[0009]
【Example】
FIG. 1 is an explanatory view showing the principle of the water surface gradient measurement according to the present invention, and FIG. 2 is a block diagram showing the outline of the system of the present invention. 1A and 1B are two points in the longitudinal direction of the river, that is, upstream and downstream. The hydraulic water level gauges 2 installed on each side are a potential difference conversion unit that converts a signal of the water depth (a voltage signal of the water level difference) detected by the water pressure type water gauge into a potential difference matched with the water level elevation difference.
[0010]
The data processing device 3 automatically detects and calculates a water surface gradient, a flow direction, and a flow rate from the obtained potential difference signal and converts the data into hydrological information. The detection input unit 4 detects the potential difference signal input from the potential difference conversion unit 2. And a data control unit 6 for converting each data into numerical information, storing the converted data, and performing communication line control, voice conversion control, date and time control, and the like. The received hydrological information can be communicated to the personal computer 9 of the receiving place 8 through the telephone line 7. Reference numeral 10 denotes a data output printer.
[0011]
A rain gauge 12 and a gate opening / closing detector 13 are connected to the detection input unit 4 of the data processing device 3. Here, the flow direction is obtained by detecting the water level difference at the two points of the confluence of the Honkawa and the tributaries, but since the water level difference is observed as a continuous analog value, the change of the merging relation can be grasped over time, and the gate operation is performed. Timing is easy to achieve. However, even if the detected flow direction is edited and displayed as numerical data, it is difficult to determine it as information on the gate operation. Therefore, as a display method for an outdoor worker who visually notifies the water level difference and the flow direction, a light bar type electronic display panel 11 branched from the potential difference conversion unit 2 is provided.
[0012]
The water surface gradient I is obtained by measuring the water level difference ΔH between two cross sections of the section distance L, and as I = ΔH / L. In order to process the water level difference as a potential difference, a conversion means having a function of calibrating the water level elevation difference by surveying as a potential difference conversion result is required, but a voltage signal of two hydraulic pressure gauges is input and a new water level difference is inputted. The problem was solved by developing a potential difference converter that outputs a signal and providing a span adjustment function corresponding to the zero point of the water level difference signal and the maximum detected water level difference.
[0013]
As shown in FIG. 1, E 1 and E 2 are signal voltages corresponding to the respective water depths from the water level of the two water level gauges to the machine zero point, and S is for adjusting the error of the mechanical zero point and the height difference of the water level gauge zero point. Is the potential shift value. Here, the following equation (1)
ΔH = E 1 − (E 2 −S) (1)
, A water level difference measurement value ΔH is obtained from か ら H, and a water surface gradient / flow direction (positive or negative of the water surface gradient) is calculated from △ H. The discharge is a calculation result from a hydraulic equation that uses the water level and water surface gradient as independent variables.The above conversion and calculation are processed, edited and stored as observation data, and data is transmitted through communication with external receiving equipment. Is controlled by the data processing device 5 that provides the data (see FIG. 2).
[0014]
The water surface gradient I and downstream water level H 2 using a cross-sectional characteristics as the reference, the flow rate is determined by such flow calculation using equation (2) and (3).
v = 1 / n * I 1/2 * R 2/3 (2)
Q = A * v (3)
In order to verify the validity of the water surface gradient method, two water level gauges were laid on a three-sided glass-clad experimental waterway with the same cross section, and the flow rate was compared with the flow rate calculated by the water surface gradient. As shown in FIG. 3, a good correspondence was required. The flow rate was generated by overflow from a water tank provided with a triangular weir, and a random time change was given while grasping the flow rate by a hydraulic equation.
[0015]
In order to verify the application of the water surface gradient method to actual rivers, a straight line and straightening river channel of the Kumano River in the Kiyotake River system were selected, a rainfall, water level, water surface gradient observation station was newly established, and the water surface gradient was continuously and automatically measured. On both October 12 and October 17, 1998, normal flood flow observations were carried out by measuring the overdraft flow velocity, and the results were compared with the calculated flow values from the measured water level and water surface gradient. Two types of floats were used, with draft lengths of 30 cm and 50 cm, depending on the fluctuation of the water level. The number of observation points was 1 (river width was about 5 m), and the calibration coefficient was a standard value of 0.88.
The roughness coefficient n in the above equation (2) is unknown, and if n is determined, the flow velocity is calculated as a function value of the water level / water surface gradient. By transforming equation (2),
n = I 1/2 * R 2/3 / v (4)
And given the diameter depths R and v determined from the measurement records I and H, the roughness coefficient n is calculated. Here, n is obtained by applying the velocity at the time of flood flow observation to v. FIG. 4 shows the relationship between the measured flow rate Q and the roughness coefficient n from the measurement record. The result was sufficient to confirm the validity of the water gradient method in the Kumano River. with a mean value of n calculated results and coefficient of roughness Kumanogawa it has been created to the graph shown in FIG. 5 compares the flow rate Q and flood flow observations Q 0 which is again calculated from equation (2), the graph of FIG. 4 As can be seen from the above, the coincidence is high, reflecting that the distribution of the roughness coefficient was uniform in the above equation (4).
[0016]
The flow rate observation using the water surface gradient formula is a method that focuses on the fact that the flow rate has a functional relationship with the water level (and the cross-sectional characteristics derived from the water level) and the water surface gradient as independent variables. Fig. 6 is a scatter plot of the relationship between water surface gradient and flow rate, which was rarely reported as a result of conventional observation. The effect of the water surface gradient on the flowing water has appeared, confirming the effectiveness of this method.
[0017]
The construction of the new observatory in Kumano River was completed in one day, except for the power supply and telephone plug-in work to go online, and stable equipment status was maintained immediately after installation. The regular maintenance work is only weeding on the river channel for flood flow observation, and the observation device body has been operating without maintenance until now.
At this stage, the water surface gradient method can be a method for solving the problems of installability and maintainability to some extent as compared with the water surface gradiometer that has been reported conventionally.
[0018]
【The invention's effect】
As described above, the water surface gradient observation system of the present invention has the following excellent effects.
(1) Observation and survey costs are difficult to secure, so there is absolutely a shortage of observation flow data required for river planning. On the other hand, the proportion of flood damage amount is increasing every year. Observation means that can be introduced to rivers can be provided.
(2) As a result of the above (1), it is possible to formulate an appropriate plan that does not cause excessive construction or lack of flow capacity due to the river plan being formulated based only on theoretical values.
(3) As the river information in the current flood control activities, the water level is the only criterion such as the "warning water level". However, a sudden increase in the inflow from the upstream and a sudden rise in the water level due to flooding on the downstream side Appearing on the water surface gradient, it serves as a predictor of short-term river inundation risk, and also provides basic information for understanding long-term changes in the basin.
(4) In this method, since there is no laying of water pipes, the installation relationship between the two measurement points is free, and the Honkawa / Shikawa in the form of straddling the embankment such as drainage pump, tub gate, tub pipe, etc. Can be measured. In particular, it is possible to detect a flow direction necessary for a gate operation that does not cause a backflow to the tributary side, thereby reducing a burden on an operator and preventing an erroneous operation.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing the principle of water surface gradient measurement according to the present invention.
FIG. 2 is a block diagram showing the outline of the system of the present invention.
FIG. 3 is a graph showing a comparison between a measured flow rate in an experimental channel and a calculated flow rate by a water surface gradient method.
FIG. 4 is a graph showing a relationship between an actually measured flow rate and a roughness coefficient in an actual river (Kumano River).
FIG. 5 is a graph showing a comparison between a flood observation flow rate in a real river (Kumano River) and a flow rate calculated by a water surface gradient method.
FIG. 6 is a graph showing a relationship between a water surface gradient and a flow rate in an actual river (Kumano River).
FIG. 7 is an explanatory view showing one embodiment of a light bar type electric light display panel.
[Explanation of symbols]
Reference Signs List 1A Water pressure gauge 1B Water pressure gauge 2 Potential difference conversion unit 3 Data processing unit 4 Detection input unit 5 Data conversion unit 6 Data control unit 7 Telephone line 8 Receiving station 9 PC 10 Printer 11 Light bar type electronic display 12 Rain gauge 13 Gate open / close detector

Claims (1)

河川の縦断方向2地点に配置した水圧式水位計が検出する水深信号(水位)から、河川管理上必要とされる連続性の保たれた水位差を検知するための電位差に変換する電位差変換部と、前記電位差(水位差)から水面勾配・流向・流量の自動計算を行うデータ処理装置と、得られた電位差信号を回路分岐して、排水機場・樋管のゲート開閉操作上必要となる、流向・水位差の微小な変化を視覚的に表現する表示装置とからなり、データ処理装置は、電位差変換部から入力された電位差信号を検知しゲート開閉検知器が接続された検知入力部と、電位差信号から水面勾配・流向・流量を算出し水文情報に変換するデータ変換部と、各データを数値情報に変換し時間制御を行うデータ制御部とから構成され、水位差は連続アナログ値として観測されるようにしたことを特徴とする水面勾配観測システム。A potential difference conversion unit that converts a water depth signal (water level) detected by a water pressure type water level meter placed at two points in the longitudinal direction of the river into a potential difference for detecting a water level difference that maintains continuity required for river management. And a data processing device for automatically calculating a water surface gradient, a flow direction, and a flow rate from the potential difference (water level difference), and a circuit branching of the obtained potential difference signal, which is required for gate opening / closing operation of a drainage station / gutter pipe. Ri Do and a display device for visual representation of small changes in the flow direction-level difference, the data processing apparatus includes a detection input unit detects a potential difference signal input from the potential conversion unit gated detector is connected , A data conversion unit that calculates the water surface gradient, flow direction, and flow rate from the potential difference signal and converts it to hydrological information, and a data control unit that converts each data to numerical information and performs time control.The water level difference is a continuous analog value. Observed Water gradient observation system being characterized in that the so that.
JP03333699A 1999-02-10 1999-02-10 Water surface gradient observation system Expired - Lifetime JP3546349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03333699A JP3546349B2 (en) 1999-02-10 1999-02-10 Water surface gradient observation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03333699A JP3546349B2 (en) 1999-02-10 1999-02-10 Water surface gradient observation system

Publications (2)

Publication Number Publication Date
JP2000230224A JP2000230224A (en) 2000-08-22
JP3546349B2 true JP3546349B2 (en) 2004-07-28

Family

ID=12383735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03333699A Expired - Lifetime JP3546349B2 (en) 1999-02-10 1999-02-10 Water surface gradient observation system

Country Status (1)

Country Link
JP (1) JP3546349B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006252529A (en) * 2005-02-09 2006-09-21 Asia Air Survey Co Ltd Planimetric feature environment condition provision method and program thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006252529A (en) * 2005-02-09 2006-09-21 Asia Air Survey Co Ltd Planimetric feature environment condition provision method and program thereof
JP4553826B2 (en) * 2005-02-09 2010-09-29 アジア航測株式会社 Feature environment status providing method and program thereof

Also Published As

Publication number Publication date
JP2000230224A (en) 2000-08-22

Similar Documents

Publication Publication Date Title
Herschy Streamflow measurement
KR100828968B1 (en) Method connected to gis for maintaining and managing sewage pipe and system with function thereof
Larrarte Velocity fields within sewers: An experimental study
KR20050078189A (en) Sewer monitoring and data analyzing method
JP3546349B2 (en) Water surface gradient observation system
Muste et al. Evaluation of the slope-area method for continuous streamflow monitoring
JPS6330564B2 (en)
KR102080066B1 (en) System for monitoring illegal waste- water discharge
KR100791910B1 (en) Method for predicting the amount of deposit in sewage pipe and sewage pipe monitoring system with function thereof
Lashari et al. Hydraulic characteristics of pilot distributaries in the Mirpurkhas, Sanghar and Nawabshah districts, Sindh, Pakistan
CN217637479U (en) Water system of measurationing of channel
Wen Flow Metering: A Powerful Tool to Build Smart Sewer Systems
McMahon et al. Estimating discharge at an ungauged site
Rogers et al. Field data for verifying canal unsteady flow models
Newman et al. A Case Study in Developing an Accurate and Defensible Collection-System Model
JP2018018413A (en) Sewage unknown water simple evaluation method
Smith et al. The acoustic streamflow-measuring system on the Columbia River at The Dalles, Oregon
JP2021047193A (en) Sewage water amount measurement system
Cashman et al. Monitoring of Groundwater Control Systems
Den Herder Accuracy Limitations in Open Channel Flow Monitoring
Wiele et al. Continuous slope-area discharge records in Maricopa County, Arizona, 2004–2012
Lohani Design of Hydro-meteorological Network
Wheeler et al. Seepage investigation on selected reaches of Fish Creek, Teton County, Wyoming, 2004
Graham et al. Computing discharge from large combined sewer overflows
River Flow Summary for Gaging Stations on Selected Tributaries of the

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040331

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term