JP2018018413A - Sewage unknown water simple evaluation method - Google Patents

Sewage unknown water simple evaluation method Download PDF

Info

Publication number
JP2018018413A
JP2018018413A JP2016150036A JP2016150036A JP2018018413A JP 2018018413 A JP2018018413 A JP 2018018413A JP 2016150036 A JP2016150036 A JP 2016150036A JP 2016150036 A JP2016150036 A JP 2016150036A JP 2018018413 A JP2018018413 A JP 2018018413A
Authority
JP
Japan
Prior art keywords
sewage
water
water level
unknown
evaluation method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016150036A
Other languages
Japanese (ja)
Inventor
▲清▼ 後藤
Kiyoshi Goto
▲清▼ 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PENTAFU KK
Original Assignee
PENTAFU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PENTAFU KK filed Critical PENTAFU KK
Priority to JP2016150036A priority Critical patent/JP2018018413A/en
Publication of JP2018018413A publication Critical patent/JP2018018413A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a sewage unknown water simple evaluation method that contributes to understanding of the actual state of a wide-ranging unknown water problem by enabling unknown water to be evaluated at low cost.SOLUTION: Provided is a sewage unknown water simple evaluation method that calculates the water level of sewage on the basis of a measurement value of a first pressure gauge installed in a sewage pipeline facility so as to measure pressure corresponding to the water-level of the sewage and a measurement value of a second pressure gauge installed in a place opened to the atmosphere so as to measure atmospheric pressure applied on the water surface of the sewage, and evaluates the unknown water on the basis of the calculated water level. The evaluation is executed by carrying out measurements by the first and second pressure gauges for each prescribed time, generating date data by dividing the water level of each measurement time based on the obtained measurement values by dates, and diving the date data into data obtained on a target rainy day when a precipitation amount per day is equal to or lager than a fixed amount, and data obtained on rainfall influence days within a predetermined number of days from the target rainy day, data obtained on fine days which are not rainfall influence days, and data other than these.SELECTED DRAWING: Figure 1

Description

本発明は、例えば、下水管路施設における不明水の調査に利用可能な下水不明水の簡易評価法に関する。   The present invention relates to a simple evaluation method of unknown sewage water that can be used for investigation of unknown water in a sewage pipeline facility, for example.

下水管路施設の維持管理の重要課題として不明水問題がある。不明水とは、下水処理場へ流入する汚水量と給水(上水)量との差分を意味する。不明水は主として雨天時に下水管路施設に直接流入する雨天時浸入水(直接浸入水)と、降雨が地面に浸透後、下水管路施設に浸入する雨天時浸入水(浸透浸入水)と、地下水や灌漑用水、海水等が流入する常時浸入水とで構成される。一般的に、下水道使用料は上水道使用料金から算定されるが、不明水が多いと計画以上の処理コストが発生するばかりでなく、処理場の過負荷による公共用水域の汚染や、不明水が管路周囲の土砂を引き込むことにより生じる管路周囲の空洞化や道路陥没、管路施設そのものの短命化を招来するなど、下水維持管理上、不明水は極めて深刻な問題になっている。   There is an unknown water problem as an important issue in the maintenance of sewage pipeline facilities. Unknown water means the difference between the amount of sewage flowing into the sewage treatment plant and the amount of water supply (water supply). Unidentified water mainly includes rainwater intrusion water (direct infiltration water) that flows directly into the sewer pipe facility during rainy weather, rainwater intrusion water (penetration infiltration water) that enters the sewer pipe facility after the rain penetrates the ground, It consists of groundwater, irrigation water, and constantly intruded water into which seawater flows. In general, the sewerage usage fee is calculated from the water supply usage fee, but if there is a lot of unknown water, not only will the processing costs exceed the plan, but there will be contamination of public water areas due to overloading of the treatment plant, Unknown water has become a very serious problem in terms of sewage maintenance and management, such as hollowing around the pipeline, sinking the road, and shortening the life of the pipeline facility itself.

しかし、現時点では、全国的な規模での不明水問題の実態は全く把握されておらず、この把握の端緒となる、下水道インフラのストックマネジメント(寿命管理とリスク管理)に必要なスクリーニング調査(面的簡易調査)への展開を可能とする技術は、未だ実現化されていない状況にある。   However, at present, the actual situation of unknown water problems on a nationwide scale has not been grasped at all, and a screening survey (surface) necessary for sewerage infrastructure stock management (lifetime management and risk management) is the beginning of this understanding. The technology that enables the development of a simple survey has not yet been realized.

本発明は上述の事柄に留意してなされたもので、その目的は、低コストで不明水の評価を可能とし、広範囲にわたる不明水問題の実態の把握に資する下水不明水の簡易評価法を提供することにある。   The present invention has been made in consideration of the above-mentioned matters, and the purpose thereof is to provide a simple evaluation method for unknown water that enables evaluation of unknown water at a low cost and contributes to grasping the actual situation of a wide range of unknown water problems. There is to do.

上記目的を達成するために、本発明に係る下水不明水の簡易評価法は、下水の水位に対応する圧力を計測するために下水管路施設に設置された第1の圧力計の計測値と、前記下水の水面に作用している大気圧を計測するために大気に開放された箇所に設置された第2の圧力計の計測値とに基づいて前記下水の水位を求め、求めた水位に基づいて不明水を評価する下水不明水の簡易評価法であって、各前記圧力計は所定時間毎に計測を行い、得られた計測値に基づく計測時刻毎の水位を日付で区切って日付データとし、当該日付データを、日降水量が一定以上の対象降雨日に得られたものと、対象降雨日から所定日数日以内の降雨影響日に得られたものと、前記降雨影響日に該当しない晴天日に得られたものと、これら以外のものとに区分した上で前記評価を行う(請求項1)。   In order to achieve the above-mentioned object, the simplified evaluation method of unknown sewage water according to the present invention includes a measurement value of a first pressure gauge installed in a sewage pipeline facility to measure a pressure corresponding to a sewage water level. The water level of the sewage is determined based on the measured value of the second pressure gauge installed at a location open to the atmosphere to measure the atmospheric pressure acting on the water surface of the sewage, and the obtained water level It is a simple evaluation method of unknown sewage water that evaluates unknown water on the basis of each of the pressure gauges measuring at a predetermined time, and dividing the water level at each measurement time based on the obtained measurement value by date to obtain date data The date data is obtained on the target rainy day when the daily precipitation is above a certain level, the data obtained on the rainy effect day within the specified number of days from the target rainy day, and the rainy effect date is not applicable. It was divided into those obtained on a clear day and those other than these. In performing the evaluation (claim 1).

上記下水不明水の簡易評価法において、前記日付データのうち、欠測部分のあるものを除外し、また、前記晴天日に得られた前記日付データについては、水位が経時的に急変した部分及び所定時間以上にわたって変化しない部分のあるものを除外して前記評価を行ってもよい(請求項2)。   In the simple evaluation method of the sewage unknown water, excluding the date data that has a missing part, and for the date data obtained on the clear day, the part where the water level changed suddenly over time and The evaluation may be performed by excluding a part that does not change over a predetermined time (Claim 2).

上記下水不明水の簡易評価法において、流量計又は流速計により前記下水管路施設において一過的に計測された計測データと、継続的に求めた前記水位と、マニングの公式とを用いて継続的な流量データを得てもよい(請求項3)。   In the above simple evaluation method of unknown sewage water, continued using measurement data temporarily measured by the flowmeter or velocimeter at the sewage pipeline facility, the water level obtained continuously, and Manning's formula Flow rate data may be obtained (claim 3).

上記下水不明水の簡易評価法において、前記第1の圧力計に温度計測機能を持たせるか、又は前記下水の温度を計測する温度計測手段を設け、得られた下水の温度の計測値と前記流量データとに基づいて常時浸入水の流量を評価してもよい(請求項4)。   In the simple evaluation method of sewage unknown water, the first pressure gauge has a temperature measurement function, or provided with a temperature measurement means for measuring the temperature of the sewage, and the measured value of the obtained sewage temperature and the You may evaluate the flow volume of always intrusion water based on flow volume data (Claim 4).

本願発明では、低コストで不明水の評価を可能とし、広範囲にわたる不明水問題の実態の把握に資する下水不明水の簡易評価法が得られる。   In the present invention, it is possible to evaluate unknown water at a low cost, and a simple evaluation method for unknown sewage water that contributes to grasping the actual situation of unknown water problems over a wide range is obtained.

すなわち、本願の各請求項に係る発明の下水不明水の簡易評価法では、安価な圧力計を用いることができるので、不明水の評価を低コストで行え、低コストである分、広範囲にわたって不明水問題の実態把握にも利用することができる。   That is, in the simple evaluation method of sewage unknown water according to the claims of the present application, since an inexpensive pressure gauge can be used, the unknown water can be evaluated at low cost, and since it is low cost, it is unknown over a wide range. It can also be used to understand the actual situation of water problems.

請求項2に係る発明の下水不明水の簡易評価法では、評価の簡便化及び精度向上を図ることができる。   In the simple evaluation method of sewage unknown water according to the second aspect of the invention, the evaluation can be simplified and the accuracy can be improved.

請求項3に係る発明の下水不明水の簡易評価法では、下水流量の簡易計算に基づく定量評価が可能となる。   In the simple evaluation method of sewage unknown water according to the third aspect of the invention, quantitative evaluation based on simple calculation of the sewage flow rate is possible.

請求項4に係る発明の下水不明水の簡易評価法では、常時浸入水の簡易定量や事業排水の有無の判別等を行うことが可能となる。   In the simple evaluation method of sewage unknown water according to the invention of claim 4, it is possible to perform simple quantitative determination of always intruded water, determination of the presence or absence of business wastewater, and the like.

本発明の一実施の形態に係る下水不明水の簡易評価法の構成を概略的に示す説明図であり、一部を拡大して図示している。It is explanatory drawing which shows roughly the structure of the simple evaluation method of sewage unknown water which concerns on one embodiment of this invention, and has expanded and illustrated one part. 下水管路の半径r及び水位hから流積A、潤辺S及び径深Rを求めるための方法を示す説明図である。It is explanatory drawing which shows the method for calculating | requiring the flow product A, the wet edge S, and the diameter depth R from the radius r and the water level h of a sewer pipe. (A)は前記下水不明水の簡易評価法によって得られる時刻毎の水位及び雨量を示すチャート、(B)は断絶パターン及び無変化パターンを含んだチャートである。(A) is a chart showing the water level and the amount of rainfall at each time obtained by the simple evaluation method of unknown sewage water, and (B) is a chart including a disconnection pattern and an unchanged pattern.

本発明の実施の形態について図面を参照しながら以下に説明する。   Embodiments of the present invention will be described below with reference to the drawings.

本実施の形態に係る下水不明水の簡易評価法は、下水管路施設における不明水を評価する方法であって、下水管路施設における下水の水位に対応する圧力を計測するために下水管路施設の複数個所A(1)〜A(N)(例えば100箇所)にそれぞれ設置された第1の圧力計(水位計)1を用いる(図1参照)。   The simple evaluation method for unknown sewage water according to the present embodiment is a method for evaluating unknown water in a sewage pipeline facility, in order to measure the pressure corresponding to the water level in the sewage pipeline facility. A first pressure gauge (water level gauge) 1 installed at each of a plurality of locations A (1) to A (N) (for example, 100 locations) of the facility is used (see FIG. 1).

本実施形態の第1の圧力計1には、専用マウントにより短時間で下水管路施設に据え付け(仮設)可能であり、データロガー付き(記録計、積算計付き)で絶対圧検出タイプの水位センサを用いることができる。斯かる水位センサは例えば5万円程度で安価に入手可能である。通常、このような水位センサは、圧力補償のために温度センサを備えている。   The first pressure gauge 1 of the present embodiment can be installed (temporary) in a sewage pipe facility in a short time by a dedicated mount, and has a data logger (with a recording meter and an integrating meter) and an absolute pressure detection type water level. A sensor can be used. Such a water level sensor is available at a low price of, for example, about 50,000 yen. Normally, such a water level sensor is provided with a temperature sensor for pressure compensation.

また、第1の圧力計1によって得られる絶対圧(水圧)のみでは水位の計測精度が保証されないため、本実施形態では、下水管路施設を流れる下水の水面に作用している大気圧を計測するために大気に開放された箇所に設置された第2の圧力計(大気圧ロガー)2も用いる(図1参照)。なお、第2の圧力計2には、第1の圧力計1と同一のものを使用可能である。但し、第1の圧力計1を複数箇所A(1)〜A(N)に設置する場合、必ずしも第2の圧力計2を第1の圧力計1と1対1で対応するように設置する必要はなく、大気圧を同一視できる域B(B〜B)内であれば、その域B内に複数の第1の圧力計1を設ける場合でも、第2の圧力計2は少なくとも一つ設置してあればよい。なお、図1では、域B、Bのみ拡大して図示してある。 In addition, since the measurement accuracy of the water level is not guaranteed only by the absolute pressure (water pressure) obtained by the first pressure gauge 1, in this embodiment, the atmospheric pressure acting on the water surface of the sewage flowing through the sewage pipeline facility is measured. For this purpose, a second pressure gauge (atmospheric pressure logger) 2 installed at a location open to the atmosphere is also used (see FIG. 1). As the second pressure gauge 2, the same one as the first pressure gauge 1 can be used. However, when the first pressure gauge 1 is installed at a plurality of locations A (1) to A (N), the second pressure gauge 2 is necessarily installed to correspond to the first pressure gauge 1 on a one-to-one basis. There is no need, and if it is in the area B (B 1 to B n ) where the atmospheric pressure can be identified, even if a plurality of first pressure gauges 1 are provided in the area B, the second pressure gauge 2 is at least You only need to install one. In FIG. 1, only the areas B 1 and B n are shown enlarged.

そして、各圧力計1,2で得られた計測値は、例えば図外の情報機器(情報端末)に送られ、両圧力計1,2で得られた絶対圧の差(差圧)に基づいて下水の水位が計算され、この水位に基づいて不明水を評価する。この評価法について、以下に詳述する。   And the measured value obtained with each pressure gauge 1 and 2 is sent to information equipment (information terminal) outside a figure, for example, and based on the difference (differential pressure) of the absolute pressure obtained with both pressure gauges 1 and 2 The sewage water level is calculated, and unknown water is evaluated based on this water level. This evaluation method will be described in detail below.

まず、各圧力計1,2は所定時間(例えば1〜5分)毎に計測を行い、情報機器において連続的に得られた両計測値に基づく計測時刻毎の水位(収集データ)は日付(例えば午前0時から翌午前0時まで)で区切られて日付データ(一次加工データ)とされる。なお、各圧力計1,2が計測を行う時間間隔は、計測値の変化度合いによって適宜調整すればよい。また、本例では、日付データには、例えば、計測時刻毎の水位のみではなく、時間値(1時間毎の水位の平均値)、各日の時間値の最大値(時間最大水位)、最小値(時間最小水位)、平均値(時間平均値)、圧力計1,2が1分毎に計測する場合には5分平均値(チャート用)等を含ませてある。   First, each of the pressure gauges 1 and 2 performs measurement every predetermined time (for example, 1 to 5 minutes), and the water level (collected data) at each measurement time based on both measurement values continuously obtained in the information equipment is the date ( For example, date data (primary processed data) is divided by midnight to midnight. In addition, what is necessary is just to adjust suitably the time interval which each pressure gauge 1, 2 measures according to the change degree of a measured value. In this example, the date data includes, for example, not only the water level at each measurement time but also the time value (average value of the water level every hour), the maximum value of the time value of each day (maximum time water level), the minimum When a value (time minimum water level), an average value (time average value), and the pressure gauges 1 and 2 measure every minute, a 5-minute average value (for charts) and the like are included.

そして、複数の日付データに基づいて下水の不明水を評価するのであるが、下水の水位は降雨(降雪も含む)により影響を受けるため、本実施形態では、日付データを、日降水量が一定(予め設定した基準値であり、例えば10mm)以上の対象降雨日に得られた降雨日データと、対象降雨日から所定日数日以内の晴天日である降雨影響日(例えば対象降雨日の翌日のみ、又は翌日及び翌々日の両日など)に得られた影響日データと、降雨影響日に該当しない晴天日に得られた晴天日データと、これら以外の除外日(例えば降雨日ではあるが日降水量が前記基準値より少ない日)に得られたものとに区分し、除外日の日付データを評価対象(解析対象)から外した上で、それぞれの区分日別に評価を行う。   Then, unknown sewage water is evaluated based on a plurality of date data. However, since the water level of sewage is affected by rainfall (including snowfall), in this embodiment, the daily precipitation is constant. (Preliminary reference value, for example, 10 mm) The rainy day data obtained on the target rainy day or more and the rainy effect day that is a clear day within a predetermined number of days from the target rainy day (for example, only the day after the target rainy day) , Or the next day and the day after the next day, etc.), clear day data obtained on a clear day that does not fall on a rainy influence day, and other excluded days (for example, rainy days but daily precipitation) Are obtained on the day less than the reference value), and the date data of the exclusion date is excluded from the evaluation target (analysis target), and then the evaluation is performed for each classification date.

ここで、降雨日を対象降雨日と除外日とに分けるのは、降雨影響が顕著な日を対象降雨日として抽出し、降雨影響が顕著でない日を抽出しないことにより、評価の簡便化及び精度向上を図るためである。また、降雨影響日を抽出するのは、浸透浸入水を評価するためである。   Here, the rainy day is divided into the target rain day and the excluded rain day by extracting the days with significant rainfall effects as the target rain days and not extracting the days with no significant rain effects. This is for improvement. The reason for extracting rain-affected days is to evaluate the infiltration water.

また、各日付データのうち、24時間の間に欠測部分がある日付データは評価対象から除外する(図3(A)の例では8/25(火),9/28(月)のデータ)。さらに、晴天日に得られた日付データについては、水位が経時的に急変した部分(図3(B)に示すような断絶パターンXを形成する部分)及び所定時間(例えば10分〜1時間)以上にわたって変化しない部分(図3(B)に示すような無変化パターンYを形成する部分)のあるものは、評価対象から除外する。なお、断絶パターンXの有無の判定は、例えば、時刻毎に許容する水位の変化量又は変化率の範囲を設定し、この設定範囲内に収まっているか否かを基準として行うことが考えられる。   In addition, among the date data, date data having a missing part in 24 hours is excluded from the evaluation target (in the example of FIG. 3A, data of 8/25 (Tuesday), 9/28 (Month). ). Furthermore, for date data obtained on a clear day, a portion where the water level has changed abruptly over time (portion forming a break pattern X as shown in FIG. 3B) and a predetermined time (for example, 10 minutes to 1 hour) Those having a portion that does not change over the above (portion that forms the unchanged pattern Y as shown in FIG. 3B) are excluded from the evaluation target. The determination of the presence / absence of the disconnection pattern X may be performed based on, for example, setting a range of change or rate of change in the water level that is allowed for each time and whether or not it is within the set range.

本実施形態では、各箇所Aにおいて複数日にわたる所定期間中(例えば4週間以上)に得られた日付データは上記のように降雨日データ、影響日データ及び晴天日データに区分され、区分日別に、所定期間中(例えば4週間以上)の時間値の最大値(期間最大水位)・最小値(期間最小水位)・平均値(期間平均水位)等が求められ、各箇所Aの下水管路施設の管径も考慮して以下のような評価方法によって自動評価される。   In the present embodiment, the date data obtained in a predetermined period (for example, 4 weeks or more) over a plurality of days at each location A is divided into rainy day data, influence date data, and clear day data as described above. The maximum value (maximum period water level), minimum value (minimum period water level), average value (period average water level), etc. of the time value during a predetermined period (for example, 4 weeks or more) are obtained. In consideration of the tube diameter, it is automatically evaluated by the following evaluation method.

すなわち、まず、下水管路においては雨天時に下水の水位が上昇する傾向があり、雨天時における下水の最大水位が、下水管路の管径からみて余裕の見込める範囲内に収まっていれば、その下水管路を流れる不明水を詳細に評価する必要性に乏しい。そこで、最初に、不明水の評価の必要性の有無を判断する。具体的には、降雨対象日の期間最大水位(又は例えば50mm等特定の日降水量の降雨対象日のみについての期間最大水位)が、下水管路の管径から余裕率(例えば20%)相当分を差し引いて求まる水位を超えるか否かを基準とし、超えなければ不明水の評価は不要と判断し、超えたもののみを評価対象とする。   That is, first, in the sewer pipe, the sewage water level tends to rise during rainy weather, and if the maximum sewage water level during rainy weather is within the range that can be afforded from the pipe diameter of the sewer pipe, There is little need for detailed evaluation of unknown water flowing through sewer pipes. Therefore, first, it is determined whether or not the unknown water needs to be evaluated. Specifically, the period maximum water level on the rain target day (or the maximum period water level only for the rain target day with a specific daily precipitation such as 50 mm) corresponds to a margin rate (for example, 20%) from the pipe diameter of the sewer pipe. Based on whether or not it exceeds the water level obtained by subtracting the minute, if it does not exceed, it is judged that the evaluation of unknown water is unnecessary, and only the water exceeding it is evaluated.

そして、不明水のうち、直接流入水は、例えば晴天日データの期間平均水位に対する降雨日データ(あるいは例えば30mm等特定の日降水量の降雨対象日のみに得られた日付データ)の期間最大水位及び/又は期間平均水位の比率によってその多少を評価することができる。   Of the unknown water, the directly influent water is, for example, the maximum water level of the rainy day data (or date data obtained only on the rainy target day of a specific daily precipitation such as 30 mm) with respect to the average water level of the sunny day data. The degree can be evaluated by the ratio of the average water level during the period.

不明水のうち、浸透侵入水は、例えば晴天日データの期間平均水位に対する影響日データ(あるいは例えば30mm等特定の日降水量の降雨対象日のみに得られた日付データ)の期間平均水位及び/又は期間最大水位の比率によってその多少を評価することができる。   Among the unknown water, the infiltration intrusion water is, for example, the period average water level of the influence date data on the period average water level of clear day data (or date data obtained only on the rain target day of a specific daily precipitation such as 30 mm) and / or Alternatively, the amount can be evaluated by the ratio of the period maximum water level.

不明水のうち、常時浸入水は、例えば晴天日データの期間最小水位によってその多少を評価することができる。   Of the unknown water, the amount of constantly intruded water can be evaluated, for example, by the minimum water level for the period of sunny day data.

以上のように行う本実施形態の下水の簡易評価法によれば、低コストで不明水の評価を可能とし、広範囲にわたる不明水問題の実態の把握に資することができる。   According to the simple evaluation method of sewage of this embodiment performed as described above, it is possible to evaluate unknown water at a low cost, and it is possible to contribute to grasping the actual state of a wide range of unknown water problems.

なお、本発明は、上記の実施の形態に何ら限定されず、本発明の要旨を逸脱しない範囲において種々に変形して実施し得ることは勿論である。例えば、以下のような変形例を挙げることができる。   In addition, this invention is not limited to said embodiment at all, Of course, it can change and implement variously in the range which does not deviate from the summary of this invention. For example, the following modifications can be given.

上記実施の形態は、下水の水位と流量との相関性・相似性を利用して下水の簡易的・相対的・定性的な自動評価を可能とし、取捨選択及び区分した下水の水位に基づくデータを利用することにより、迅速性と経済性を高め、下水道インフラのストックマネジメントに必要なスクリーニング調査への展開を容易にするものであるが、下水流量の簡易計算に基づく定量評価にも応用可能である。   The above embodiment enables simple, relative and qualitative automatic evaluation of sewage by utilizing the correlation and similarity between the sewage water level and the flow rate, and is based on the segregated and separated sewage water level. Is used to improve the speed and economy and facilitate the development of screening surveys necessary for sewer infrastructure stock management, but it can also be applied to quantitative evaluation based on simple calculation of sewage flow rate. is there.

具体的には、流量計3(図1参照)又は流速計により下水管路施設において一過的に計測された計測データと、圧力計1,2により継続的に求めた水位(計測値)と、マニングの公式(平均流速公式)とを用いて例えば前記情報機器において演算を行うことにより、継続的な流量データを簡易的に得ることができ、この流量データにより下水の定量評価を行える。   Specifically, the measurement data temporarily measured in the sewage pipeline facility by the flow meter 3 (see FIG. 1) or the velocimeter, and the water level (measured value) obtained continuously by the pressure gauges 1 and 2 By using the Manning formula (average flow rate formula), for example, in the information device, continuous flow rate data can be easily obtained, and quantitative evaluation of sewage can be performed using this flow rate data.

すなわち、まず、マニングの平均流速公式は、
=(1/n)・R2/3・I1/2 …(1)
で表される。
ここで、
:平均流速(m/sec)
n :マニングの粗度係数
R :径深(m)
I :勾配
である。
That is, first, Manning's average flow rate formula is
V m = (1 / n) · R 2/3 · I 1/2 (1)
It is represented by
here,
V m : Average flow velocity (m / sec)
n: Manning roughness coefficient R: Diameter depth (m)
I: gradient.

式(1)における径深R(m)は、流積A(m)を潤辺(流れが横断壁面に接する長さ)S(m)で除することにより求まる。すなわち、
R=A/S …(2)
The diameter depth R (m) in the equation (1) is obtained by dividing the flow product A (m 2 ) by the wet side (length in which the flow contacts the transverse wall surface) S (m). That is,
R = A / S (2)

また、流量Qは、
Q=A・V …(3)
によって得られる。
The flow rate Q is
Q = A · V m (3)
Obtained by.

上記式(1)は下水管路を流れる下水の流速に適用することができ、この際、式(1)の右辺における(1/n)・I1/2を下水管路固有の定数として捉えると、平均流速Vは径深Rの関数であるといえる。また、横断面形状が円形である下水管路の場合、この下水管路を流れる下水の水位から流積A、潤辺Sひいては径深Rを求めることができる(この求め方については後述する)。従って、実測した平均流速V(この平均流速Vは、流量計3又は流速計により直接実測したものでもよいし、流量計3により実測した流量Qを上記式(3)に代入して得たものでもよい)と、圧力計1,2から算出した下水の水位から導出される径深Rとを式(1)に代入することにより、上記定数(1/n)・I1/2を求めることができ、以後は、式(1)に下水の水位から算出した径深Rの値を代入することにより、平均流速Vさらには流量Qを簡易的・近似的に求めることができるのであるから、下水の水位を継続的に計測するだけで継続的な流量データが得られることになる。なお、厳密には、式(1)において径深R(下水の水位)が変われば粗度係数nも変化することになるが、この変化量は限られており、流量Qを簡易的に評価する場面において深刻な問題にはならないと考えられる。 The above formula (1) can be applied to the flow rate of sewage flowing through the sewage pipeline, and at this time, (1 / n) · I 1/2 on the right side of the formula (1) is regarded as a constant specific to the sewage pipeline. It can be said that the average flow velocity V m is a function of the diameter depth R. Further, in the case of a sewage pipe having a circular cross-sectional shape, the flow A, the wetted edge S, and the diameter depth R can be obtained from the water level of the sewage flowing through the sewage pipe (this method will be described later). . Accordingly, the measured average flow velocity V m (this average flow velocity V m may be directly measured by the flow meter 3 or the flow meter, or obtained by substituting the flow rate Q measured by the flow meter 3 into the above equation (3). And the above constant (1 / n) · I 1/2 is obtained by substituting into the formula (1) the diameter depth R derived from the sewage water level calculated from the pressure gauges 1 and 2 . Thereafter, by substituting the value of the diameter depth R calculated from the water level of the sewage into the equation (1), the average flow velocity V m and further the flow rate Q can be obtained simply and approximately. Therefore, continuous flow rate data can be obtained simply by continuously measuring the sewage water level. Strictly speaking, if the diameter depth R (sewage water level) changes in the equation (1), the roughness coefficient n also changes. However, the amount of change is limited, and the flow rate Q is simply evaluated. It will not be a serious problem in the scene.

ここで、流量計3としては、下水道の流量計測において頻用されている超音波式の面速式流量計(例えばペンタフ株式会社製あるいはメインストリーム社製)を用いることができる。この面速式流量計は、ドップラー流速計で計測した平均流速と、水位計測から求めた流水断面積とから流量を演算するものであるが、一般に高価(200〜240万円程度)なもので、これにより平均流速Vを実測することができる。そして、高価な面速式流量計3を複数台用い複数箇所に据えつける(固定設置する)のではなく、例えば一台の面速式流量計3を持ち回りし、一過的に(例えば一回だけ)平均流速V又は流量Qを計測するようにすることにより、評価を低コストで行うことができる。この際、面速式流量計3の各箇所A(1)〜A(N)への持ち回り時に同時にその各箇所A(1)〜A(N)に第1の圧力計(水位センサ)1を据え付け設置するようにしてもよい。なお、流量計3として、面速式流量計と同じく高価なフリューム式流量計を用いてもよく、この場合、水位計により計測データを得ることもでき、また、流量計3により流量又は流速を測定する替わりに流速計により流速を測定するようにしてもよい。 Here, as the flow meter 3, an ultrasonic surface velocity type flow meter (for example, manufactured by PENTAF Corporation or Mainstream Corporation) frequently used in the flow measurement of sewers can be used. This surface velocity type flow meter calculates the flow rate from the average flow velocity measured by the Doppler velocimeter and the flowing water cross section obtained from the water level measurement, but is generally expensive (about 2 to 2.4 million yen). Thus, the average flow velocity V m can be measured. Then, instead of installing a plurality of expensive surface velocity type flow meters 3 at a plurality of locations (fixed installation), for example, one surface velocity type flow meter 3 is carried around and temporarily (for example, once) Only) By measuring the average flow velocity V m or the flow rate Q, the evaluation can be performed at low cost. At this time, the first pressure gauge (water level sensor) 1 is attached to each of the locations A (1) to A (N) at the same time when the surface velocity type flow meter 3 is carried to the locations A (1) to A (N). You may make it install. As the flow meter 3, an expensive flume flow meter may be used as in the surface velocity type flow meter. In this case, measurement data can be obtained by a water level meter, and the flow rate or flow velocity can be obtained by the flow meter 3. Instead of measuring, the flow velocity may be measured by an anemometer.

また、図2に示すように、横断面形状が半径rの円形である下水管路を流れる下水の水位をhとすると、以下のようにして、この水位hから流積A、潤辺Sひいては径深Rを求めることができる。   Further, as shown in FIG. 2, when the water level of the sewage flowing through the sewage pipe having a circular cross section having a radius r is h, the flow product A, the plume S and by extension from the water level h as follows: The diameter depth R can be obtained.

まず、図2において、点oは管路の横断面の中心、点a、点bはそれぞれ管路の横断面における下水の水面と管壁内面との接点、点cは点oを通る鉛直線と直線abとの交点、点dは点oを通る鉛直線と管壁内面との接点であり管壁内面において最も低い位置にある箇所を指す。このとき、水位hは直線cdの長さで表される。   First, in FIG. 2, point o is the center of the cross section of the pipe, points a and b are the contact points between the sewage water surface and the pipe wall inner surface, and point c is a vertical line passing through the point o. The point d is the point of contact between the vertical line passing through the point o and the inner surface of the tube wall and the lowest point on the inner surface of the tube wall. At this time, the water level h is represented by the length of the straight line cd.

また、図2において、潤辺Pは弧abの長さで表される。そこで、弧abに対応する円周角(=∠aob)をθ(rad)とすると、潤辺Sは、
P=rθ …(4)
となる。
In FIG. 2, the wet side P is represented by the length of the arc ab. Therefore, when the circumferential angle (= ∠aob) corresponding to the arc ab is θ (rad),
P = rθ (4)
It becomes.

一方、図2において、流積Aは弧abと直線abとで囲まれた部分の面積であり、扇oabの面積から三角形oabの面積を引いたものに等しい。すなわち、流積Aは、
A=(扇oabの面積)―(三角形oabの面積)
=πr×(θ/(2π))
−(1/2)×〔2×r×sin(θ/2)×r×cos(θ/2)〕
=r×θ/2―r×sin(θ/2)×cos(θ/2)
=r×θ/2―r×((1/2)×(sin(θ)+sin(0))
=(1/2)×r×(θ―sin(θ)―sin(0))
=(1/2)×r×(θ―sin(θ)) …(5)
となる。
On the other hand, in FIG. 2, the flow product A is an area of a portion surrounded by the arc ab and the straight line ab, and is equal to the area of the fan oab minus the area of the triangle oab. That is, the product A is
A = (area of fan oab) − (area of triangle oab)
= Πr 2 × (θ / (2π))
− (1/2) × [2 × r × sin (θ / 2) × r × cos (θ / 2)]
= R 2 × θ / 2−r 2 × sin (θ / 2) × cos (θ / 2)
= R 2 × θ / 2−r 2 × ((1/2) × (sin (θ) + sin (0))
= (1/2) × r 2 × (θ−sin (θ) −sin (0))
= (1/2) × r 2 × (θ−sin (θ)) (5)
It becomes.

式(4)、(5)を式(2)に代入すると、
R=A/S
=(1/2)×r×(θ―sin(θ))/(rθ)
=r×(θ―sin(θ))/(2θ) …(6)
となる。
Substituting Equations (4) and (5) into Equation (2),
R = A / S
= (1/2) × r 2 × (θ−sin (θ)) / (rθ)
= R × (θ−sin (θ)) / (2θ) (6)
It becomes.

式(4)、(5)、(6)に示すように、流積A、潤辺S及び径深Rは、半径r及び円周角θによって求めることができる。このうち、半径rは既知の値であり、円周角θは、この半径rと水位hとによって定まる。すなわち、
h=直線cd
=直線od−直線oc
=r−r×cos(θ/2)
であり、この式を変形すると、
cos(θ/2)=1−(h/r)
となる。従って、既知の値である半径rと、圧力計1,2によって得られる水位hとを用いることによって、円周角θひいては流積A、潤辺S及び径深Rを求めることができる。
As shown in the equations (4), (5), and (6), the flow product A, the wetted edge S, and the diameter depth R can be obtained from the radius r and the circumferential angle θ. Of these, the radius r is a known value, and the circumferential angle θ is determined by the radius r and the water level h. That is,
h = straight line cd
= Line od-Line oc
= R-r * cos (θ / 2)
And transforming this equation,
cos (θ / 2) = 1− (h / r)
It becomes. Therefore, by using the radius r, which is a known value, and the water level h obtained by the pressure gauges 1 and 2, the circumferential angle θ and consequently the flow product A, the wetness S and the diameter depth R can be obtained.

例えば汚水管に流入する常時浸入水が比較的多いと見込まれる地域においては、マニングの公式を用いて得られる上述の流量データと、下水の測温結果と、想定される汚水温度及び常時浸入水温度とを用い、下水に含まれる常時侵入水比を計算することにより、汚水管を流れる常時浸入水を簡易定量することも可能である。   For example, in an area where normal infiltration water flowing into the sewage pipe is expected to be relatively large, the above-mentioned flow rate data obtained using the Manning formula, sewage temperature measurement results, expected sewage temperature and normal infiltration water By using the temperature and calculating the ratio of the constantly intruding water contained in the sewage, it is possible to simply determine the constantly invading water flowing through the sewage pipe.

すなわち、まず、マニングの公式を用いて求めた下水量をQ、計測した下水温度をT、汚水量をQ、代表的な平均値として想定される汚水温度(例えば25℃)をT、常時浸入水量をQ、代表的な平均値として想定される常時浸入水の温度(例えば18℃)をTとする。 That is, first, the amount of sewage obtained using Manning's formula is Q 0 , the measured sewage temperature is T 0 , the amount of sewage is Q s , and the sewage temperature assumed as a typical average value (for example, 25 ° C.) is T s, constantly entering water Q w, typical assumed as the average value is constantly entering water temperature (for example 18 ° C.) and T w.

下水量Qは、汚水量Qと常時浸入水量Qとの合計と考えられるので、
=Q+Q
であり、この式を変形すると、
=Q―Q …(7)
となる。
The amount of sewage Q 0 is considered to be the sum of the amount of sewage Q s and the amount of constant infiltration water Q w
Q 0 = Q s + Q w
And transforming this equation,
Q s = Q 0 -Q w (7)
It becomes.

また、下水が有する熱量(熱負荷量)は、汚水が有する熱量と常時浸入水が有する熱量との合計と考えられるので、
=Q+Q …(8)
である。
In addition, since the amount of heat (heat load amount) of sewage is considered to be the sum of the amount of heat of sewage and the amount of heat of constantly intruded water,
Q 0 T 0 = Q s T s + Q w T w ... (8)
It is.

式(7)を式(8)に代入・変形すると、
=(Q―Q)T+Q
=Q―Q+Q
―Q=Q―Q
(T―T)=Q(T―T
=Q(T―T)/(T―T
となり、常時浸入水量Qが得られる。ただし、T≧Tのときは、Q=Qとなる。なお、一般に、常時浸入水の温度Tは1年中殆ど変化しないが、汚水温度Tは季節等によって変動するため、例えば季節等の期間ごとに用いる汚水温度Tを異ならせてもよい。
Substituting and transforming equation (7) into equation (8),
Q 0 T 0 = (Q 0 -Q w ) T s + Q w T w
Q 0 T 0 = Q 0 T s -Q w T s + Q w T w
Q w T s -Q w T w = Q 0 T s -Q 0 T 0
Q w (T s −T w ) = Q 0 (T s −T 0 )
Q w = Q 0 (T s −T 0 ) / (T s −T w )
Thus, a constant intrusion water amount Qw is obtained. However, when the T wT 0, the Q w = Q 0. In general, the temperature T w of constantly entering water does not change almost 1 year, sewage temperature T s in order to vary with the seasons, etc., for example it may be different sewage temperature T s to be used for each period of seasons such as .

ここで、下水温度の計測は、第1の圧力計1が通常有しているに温度計測機能(温度センサ)を用いて行うことができるが、下水温度の計測のために温度計測手段を別途設けてもよい。   Here, the measurement of the sewage temperature can be performed using the temperature measurement function (temperature sensor) that the first pressure gauge 1 normally has, but a temperature measurement means is separately provided for the measurement of the sewage temperature. It may be provided.

さらなる応用例として、事業排水と一般下水との温度差を利用できる場合には、事業排水先に例えば温度センサ付きの第1の圧力センサ1を設置することにより、事業排水の有無や事業排水量を確認・定量することができる。   As a further application example, when the temperature difference between business wastewater and general sewage can be used, the presence or absence of business wastewater and the amount of business wastewater can be determined by installing, for example, the first pressure sensor 1 with a temperature sensor at the business wastewater destination. Can be confirmed and quantified.

また、常時浸入水量の定量に加えて、例えば下水マンホール内に地下水位計測装置を設け、地下水位の計測結果を用いることにより、地下水位の等高線と常時浸入水量の相関分析を行うことができる。   Further, in addition to the determination of the constantly inflowing water amount, for example, a groundwater level measuring device is provided in the sewage manhole, and by using the measurement result of the groundwater level, it is possible to perform a correlation analysis between the contour line of the groundwater level and the inflowing water amount.

上記実施の形態において実施する対象降雨日の最高水位の管径比(すなわち満管余裕率)の評価は、そのまま雨水管理(浸水対策)の評価として利用することができる。   The evaluation of the pipe diameter ratio (that is, the full pipe margin ratio) of the highest water level performed in the above embodiment can be used as it is for the evaluation of rainwater management (inundation countermeasures).

下水熱利用は、通年で安定した温度と流量が見込まれる下水の熱負荷量を省エネに利用するもので、下水管周囲に張り巡らせた熱交換器としての通水媒体管と温冷風器、ヒートポンプ等が用いられる。そして、この設計に下水量と下水温度の実測値を反映させることにより、下水熱利用の精度向上等が見込まれるのであり、上記実施の形態の下水の簡易評価法を応用することが可能である。   Sewage heat is used to save energy in the heat load of sewage, which is expected to have a stable temperature and flow rate throughout the year. The water flow medium pipe, hot / cold air blower, and heat pump are used as heat exchangers around the sewage pipe. Etc. are used. And by reflecting the actual measurement values of the sewage amount and the sewage temperature in this design, it is expected to improve the accuracy of sewage heat utilization, and the simple evaluation method of sewage in the above embodiment can be applied. .

合流式下水道においては、分水渠越流堰上流側にて上記実施形態の下水の簡易評価法を実施することにより、水位観測を簡単に行える。広頂せきかつ、斜めまたは横越流であるため精度は見込めないが、越流水深から簡易に流量計算が可能で、降雨量や降雨強度と越流開始の関係の実測に利用することが考えられる。   In the combined sewer system, the water level observation can be easily performed by carrying out the simple evaluation method of the sewage in the above embodiment on the upstream side of the diversion basin overflow weir. The accuracy is not expected due to the wide crest and slant or crossover, but it is possible to calculate the flow rate easily from the overflow depth, and it can be used to measure the amount of rainfall and the relationship between rainfall intensity and the start of overflow. .

上記実施形態において得られる晴天日最高水位と、上述した流速実測及びマニング公式を組み合わせた下水量の簡易計算の結果とを、管更正工事の環境調査、工事の可否や水替えポンプの選定に利用することができる。   The highest clear water level in the above-mentioned embodiment and the result of simple calculation of sewage amount combined with the above-mentioned flow velocity measurement and Manning formula are used for environmental investigation of pipe correction work, construction availability and selection of water change pump can do.

なお、上記変形例どうしを適宜組み合わせてもよいことはいうまでもない。   Needless to say, the above modifications may be combined as appropriate.

1 第1の圧力計
2 第2の圧力計
3 流量計
A 下水管路施設の複数個所
B 域
1 1st pressure gauge 2 2nd pressure gauge 3 Flowmeter A Multiple locations of sewage pipeline facilities B area

Claims (4)

下水の水位に対応する圧力を計測するために下水管路施設に設置された第1の圧力計の計測値と、前記下水の水面に作用している大気圧を計測するために大気に開放された箇所に設置された第2の圧力計の計測値とに基づいて前記下水の水位を求め、求めた水位に基づいて不明水を評価する下水不明水の簡易評価法であって、
各前記圧力計は所定時間毎に計測を行い、得られた計測値に基づく計測時刻毎の水位を日付で区切って日付データとし、当該日付データを、日降水量が一定以上の対象降雨日に得られたものと、対象降雨日から所定日数日以内の降雨影響日に得られたものと、前記降雨影響日に該当しない晴天日に得られたものと、これら以外のものとに区分した上で前記評価を行うことを特徴とする下水不明水の簡易評価法。
In order to measure the pressure corresponding to the water level of the sewage, the first pressure gauge installed in the sewage pipe facility and the atmospheric pressure acting on the water surface of the sewage are opened to the atmosphere. It is a simple evaluation method of sewage unknown water that determines the water level of the sewage based on the measured value of the second pressure gauge installed at the location, and evaluates the unknown water based on the determined water level,
Each of the pressure gauges measures at a predetermined time, and the water level at each measurement time based on the obtained measurement value is divided into dates to obtain date data. It is classified into those obtained, those obtained on rainy-affected days within a specified number of days from the target rainy day, those obtained on a clear day that does not correspond to the rain-affected days, and those other than these. The simple evaluation method of the sewage unknown water characterized by performing said evaluation by.
前記日付データのうち、欠測部分のあるものを除外し、また、前記晴天日に得られた前記日付データについては、水位が経時的に急変した部分及び所定時間以上にわたって変化しない部分のあるものを除外して前記評価を行う請求項1に記載の下水不明水の簡易評価法。   Of the date data, those with missing parts are excluded, and the date data obtained on the clear day has parts where the water level has changed suddenly over time and parts that have not changed over a predetermined time. The simple evaluation method of sewage unknown water according to claim 1, wherein the evaluation is performed by removing the sewage. 流量計又は流速計により前記下水管路施設において一過的に計測された計測データと、継続的に求めた前記水位と、マニングの公式とを用いて継続的な流量データを得る請求項1又は2に記載の下水不明水の簡易評価法。   The continuous flow rate data is obtained by using the measurement data temporarily measured in the sewage pipeline facility by the flow meter or the flow meter, the water level obtained continuously, and the Manning formula. 2. Simple evaluation method of sewage unknown water described in 2. 前記第1の圧力計に温度計測機能を持たせるか、又は前記下水の温度を計測する温度計測手段を設け、得られた下水の温度の計測値と前記流量データとに基づいて常時浸入水の流量を評価する請求項3に記載の下水不明水の簡易評価法。   The first pressure gauge is provided with a temperature measuring function or provided with a temperature measuring means for measuring the temperature of the sewage, and the constantly intruded water is based on the obtained measured value of the sewage temperature and the flow rate data. The simple evaluation method of the sewage unknown water of Claim 3 which evaluates a flow volume.
JP2016150036A 2016-07-29 2016-07-29 Sewage unknown water simple evaluation method Pending JP2018018413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016150036A JP2018018413A (en) 2016-07-29 2016-07-29 Sewage unknown water simple evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016150036A JP2018018413A (en) 2016-07-29 2016-07-29 Sewage unknown water simple evaluation method

Publications (1)

Publication Number Publication Date
JP2018018413A true JP2018018413A (en) 2018-02-01

Family

ID=61076257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016150036A Pending JP2018018413A (en) 2016-07-29 2016-07-29 Sewage unknown water simple evaluation method

Country Status (1)

Country Link
JP (1) JP2018018413A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109165247A (en) * 2018-09-30 2019-01-08 中冶华天工程技术有限公司 Sewage measurement data intelligence preprocess method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109165247A (en) * 2018-09-30 2019-01-08 中冶华天工程技术有限公司 Sewage measurement data intelligence preprocess method
CN109165247B (en) * 2018-09-30 2021-07-23 中冶华天工程技术有限公司 Intelligent pretreatment method for sewage measurement data

Similar Documents

Publication Publication Date Title
CN102103787B (en) Debris flow early warning method
US9068866B2 (en) Micromonitoring apparatus and method
JP2007146638A (en) Rainwater storage facility
Francy et al. Developing and implementing the use of predictive models for estimating water quality at Great Lakes beaches
CN114511990B (en) Debris flow probability measuring and calculating method and debris flow multi-element collaborative monitoring and early warning method
Yap et al. Assessment on inflow and infiltration in sewerage systems of Kuantan, Pahang
JP6806357B2 (en) Sewage measurement system
Heiderscheidt et al. Stable water isotopes as a tool for assessing groundwater infiltration in sewage networks in cold climate conditions
JP2018018413A (en) Sewage unknown water simple evaluation method
CN211236898U (en) Monitoring system for sponge city construction project
Mulvihill et al. Regionalized equations for bankfull-discharge and channel characteristics of streams in New York State—Hydrologic Region 6 in the Southern Tier of New York
Bailey Estimation of flood-frequency characteristics and the effects of urbanization for streams in the Philadelphia, Pennsylvania area
KR102080066B1 (en) System for monitoring illegal waste- water discharge
JP2008203080A (en) Accuracy correction system for rainfall radar, and accuracy correction method of rainfall radar
MAZ et al. A study on the selection of suitable sites for integrated smart trapper system installation (InSmarts)
Neshaei et al. Estimating groundwater and rainfall infiltration into sewerage
JP7018670B2 (en) Sewage volume measurement system
Adam et al. Evaluating subdivisions for identifying extraneous flow in separate sanitary sewer systems
KR102443689B1 (en) Combined conduit design method considering the flow force on clear sky
JP2017133873A (en) Flow rate data creation method
Darner et al. Hydrologic characteristics of low-impact stormwater control measures at two sites in northeastern Ohio, 2008-13
Yap et al. Preliminary inflow and infiltration study of sewerage systems from two residential areas in Kuantan, Pahang
Mączałowski Analysis and evaluation of the measurement system based on kama orifices for measuring the flow of sewage in the light of the water law requirements
Sarma Estimation of Soil Loss and Sediment Yield Using Universal Soil Loss Equation in Jiadhal Basin of Dhemaji District, Assam
Murray Infiltration and inflow as a component of the urban water cycle: Inter-watershed comparison of magnitude and correlative watershed attributes