JP2017133873A - Flow rate data creation method - Google Patents

Flow rate data creation method Download PDF

Info

Publication number
JP2017133873A
JP2017133873A JP2016012345A JP2016012345A JP2017133873A JP 2017133873 A JP2017133873 A JP 2017133873A JP 2016012345 A JP2016012345 A JP 2016012345A JP 2016012345 A JP2016012345 A JP 2016012345A JP 2017133873 A JP2017133873 A JP 2017133873A
Authority
JP
Japan
Prior art keywords
flow rate
water level
water
locations
rate data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016012345A
Other languages
Japanese (ja)
Inventor
▲清▼ 後藤
Kiyoshi Goto
▲清▼ 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PENTAFU KK
Original Assignee
PENTAFU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PENTAFU KK filed Critical PENTAFU KK
Priority to JP2016012345A priority Critical patent/JP2017133873A/en
Publication of JP2017133873A publication Critical patent/JP2017133873A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a flow rate data creation method with which it is possible to collect flow rate data from many places at low cost and create a flow rate map in order to investigate unidentified water at many places of a sewer pipeline facility.SOLUTION: Provided is a method for creating flow rate data at a plurality of places A(1) to A(N) in order to investigate unidentified water at the plurality of places A(1) to A(N) (for example, 100 places) of a sewer pipeline facility, said method being designed to obtain flow rate data at the plurality of places A(1) to A(N) by using measured data transiently measured by a flowmeter 1 or a velocity meter at each of the plurality of places A(1) to A(N), Manning's formula, and water level data continuously measured by a water level gauge 2 installed at each of the plurality of places A(1) to A(N).SELECTED DRAWING: Figure 1

Description

本発明は、下水管路施設の複数箇所における不明水を調査するために、前記複数箇所での流量データを作成する方法に関するものである。   The present invention relates to a method for creating flow rate data at a plurality of locations in order to investigate unknown water at a plurality of locations in a sewer pipe facility.

下水管路施設の維持管理の重要課題として不明水問題がある。不明水とは、下水処理場へ流入する汚水量と給水(上水)量との差分を意味する。不明水は主として雨天時に流入する雨天時浸入水と、地下水や灌漑用水、海水等が流入する常時浸入水とで構成される。一般的に、下水道使用料は上水道使用料金から算定されるが、不明水が多いと計画以上の処理コストが発生するばかりでなく、処理場の過負荷による公共用水域の汚染や、不明水が管路周囲の土砂を引き込むことにより生じる管路周囲の空洞化や道路陥没、管路施設そのものの短命化を招来するなど、下水維持管理上、不明水は極めて深刻な問題になっている。近年、下水道の普及に伴い、事業が建設中心から、管路施設のストックマネジメント(寿命管理とリスク管理)に変化しているが、対応技術が追い付いていない状況がある。特に、管路施設の健康診断に相当する、スクリーニング(面的簡易調査)技術の最適化は、事業全体の振興に重要な役割を果たすため、重要であると認識され、これまで多くの技術〔例えば、下記に示す(1)従来の一般的な方法、(2)同時多測点流量調査(3)遡流式瞬時流量分布調査、(4)既存データを利用した疫学的な方法、(5)温度分布調査による方法、(6)電気伝導度分布調査による方法〕が発表されてきた。   There is an unknown water problem as an important issue in the maintenance of sewage pipeline facilities. Unknown water means the difference between the amount of sewage flowing into the sewage treatment plant and the amount of water supply (water supply). Unknown water is mainly composed of rainwater intrusion water that flows in rainy weather, and always intrusion water into which groundwater, irrigation water, seawater, etc. flow. In general, the sewerage usage fee is calculated from the water supply usage fee, but if there is a lot of unknown water, not only will the processing costs exceed the plan, but there will be contamination of public water areas due to overloading of the treatment plant, Unknown water has become a very serious problem in terms of sewage maintenance and management, such as hollowing around the pipeline, sinking the road, and shortening the life of the pipeline facility itself. In recent years, with the spread of sewerage, the business has changed from construction center to stock management (life management and risk management) of pipeline facilities, but there are situations where the corresponding technology has not caught up. In particular, the optimization of screening (face-to-face survey) technology, which is equivalent to the health examination of pipeline facilities, is recognized as important because it plays an important role in the promotion of the entire business. For example, the following (1) conventional general method, (2) simultaneous multi-point flow rate survey (3) backward flow instantaneous flow rate distribution survey, (4) epidemiological method using existing data, (5 ) Method by temperature distribution survey, (6) Method by electrical conductivity distribution survey] have been announced.

(1)の従来の一般的な方法としては、流量計を、広域ではない適当な規模で5箇所程度設置して、比較的長期間、不明水を定量する方法がある。これは、雨天時浸入水は晴雨天時の差分流量、常時浸入水は、汚水影響が最も少ないと予想される深夜最小流量や地下水位・用水路水位・潮位等と相関する変化流量部分から定量する方法であるが、費用対効果の点で最小限度の調査しか実施されてこなかった。(2)の同時多測点流量調査は、簡易・短時間に仮設できるタイプの流量計を20〜100箇所程度同時期に仮設し、不明水の分布を定量する方法である。不明水の定量方法は前項と同じで、大幅なコストダウンを図ったが、スクリーニングに必要なレベルのコストまでは下がっていない。(3)の遡流式瞬時流量分布調査は、不明水のうち、常時浸入水の定量を目的とした調査である。これは、主に深夜、マンホールへ流入する瞬時流量を計測する方法で、下流から上流に遡りながら定量する方法である(微量以下の流入経路を省きながら効率よく常時浸入水の分布を調べるもの)。(4)の既存データを利用した疫学的な方法は、雨天時浸入水発生領域の簡易調査法である。これは、3年分の処理場流入下水量とアメダスデータを用いて、アメダスのメッシュ規模で雨天時浸入水の分布を調査するものであるが、メッシュ定量と管網定量との整合性や、洪水時やマンホールポンプなど満管状態になる箇所が多いと誤差を生じることがある。(5)の温度分布調査による方法は、汚水と雨水や地下水の温度差を利用して、晴雨天時や昼夜間の温度差から不明水の分布を調査する方法であるが、温度差が明確でないケースでは誤差を生じることがある。(6)の電気伝導度分布調査による方法は、汚水と雨水や地下水の電気伝導度差を利用して、晴雨天時や昼夜間の電気伝導度差から不明水の分布を調査する方法であるが、電気伝導度差が明確でないケースでは誤差を生じることがある。   As a conventional general method of (1), there is a method of quantifying unknown water for a relatively long period of time by installing about five flow meters at an appropriate scale that is not a wide area. This is quantified from the differential flow rate during rainy weather inflowing in rainy weather, and the constant flow rate that is correlated with the midnight minimum flow rate that is expected to have the least sewage effect and the groundwater level, irrigation channel level, tide level, etc. Although it is a method, only minimal research has been conducted in terms of cost effectiveness. The simultaneous multi-point flow rate survey of (2) is a method of quantifying the distribution of unknown water by temporarily installing approximately 20 to 100 flow meters of the type that can be temporarily set up in a short time. The method for quantifying unknown water was the same as in the previous section, and the cost was significantly reduced, but the cost was not reduced to the level required for screening. The backward flow type instantaneous flow rate distribution survey in (3) is a survey for the purpose of quantifying constantly intruded water out of unknown water. This is a method that mainly measures the instantaneous flow rate flowing into the manhole at midnight, and quantifies it while going back from the downstream to the upstream. . The epidemiological method using the existing data in (4) is a simple survey method for the inundation area in rainy weather. This is to investigate the distribution of rainwater intrusion at the AMeDAS mesh scale using the treatment plant inflow sewage amount and AMeDAS data for 3 years. An error may occur if there are many places such as a flood or manhole pump that are full. The method of temperature distribution survey in (5) is a method of investigating the unknown water distribution from the temperature difference during rainy days and daytime and nighttime using the temperature difference between sewage, rainwater and groundwater, but the temperature difference is clear. In some cases, an error may occur. The method based on the electrical conductivity distribution survey in (6) is a method of investigating the unknown water distribution from the electrical conductivity difference during rainy days or daytime and nighttime using the electrical conductivity difference between sewage, rainwater and groundwater. However, in the case where the difference in electrical conductivity is not clear, an error may occur.

しかしながら、上述した(1)〜(3)の技術は、コスト上の問題から多くても数10箇所程度での計測にとどまり、多数箇所を網羅した流量マップの作成は行われていなかった。又、(4)〜(6)の技術についても、流量精度をもった広域マップ作成は行われていなかった。   However, the above-described techniques (1) to (3) are limited to measurement at several tens of places at most because of cost problems, and a flow rate map that covers many places has not been created. In addition, for the techniques (4) to (6), a wide area map having a flow rate accuracy has not been created.

本発明は、上記課題に鑑みてなしたもので、下水管路施設の多数箇所における不明水を調査するため安価に多数箇所の継続的な流量データを収集して流量マップを作成することのできる流量データ作成方法を提供することである。   The present invention has been made in view of the above problems, and in order to investigate unknown water at a large number of locations in a sewage pipeline facility, it is possible to collect a continuous flow rate data at a large number of locations at low cost and create a flow rate map. It is to provide a flow rate data creation method.

上記目的を達成するために、本発明の流量データ作成方法は、下水管路施設の複数箇所における不明水を調査するために、前記複数箇所での流量データを作成する方法であって、前記複数箇所のそれぞれにおいて流量計又は流速計により一過的に計測された計測データと、マニングの公式と、前記複数箇所のそれぞれに設置された水位計により継続的に計測された水位データとを用いることにより前記複数箇所での流量データを得ることを特徴としている(請求項1)。また、本発明では、前記流量計として面速式流量計を用いる請求項1に記載の流量データ作成方法を提供する(請求項2)。また、本発明では、前記流量計としてフリューム式流量計を用いる請求項1に記載の流量データ作成方法を提供する(請求項3)。   In order to achieve the above object, the flow rate data creation method of the present invention is a method for creating flow rate data at a plurality of locations in order to investigate unknown water at a plurality of locations in a sewage pipeline facility, Use measurement data temporarily measured by flowmeters or velocimeters at each location, Manning's formula, and water level data continuously measured by water level meters installed at each of the plurality of locations. To obtain flow rate data at the plurality of locations (claim 1). Moreover, in this invention, the flow-rate data creation method of Claim 1 which uses a surface velocity type flow meter as said flow meter is provided (Claim 2). According to the present invention, there is provided a flow rate data creation method according to claim 1, wherein a flume type flow meter is used as the flow meter (claim 3).

不明水を調査するために下水管路施設の複数箇所(例えば数10〜数100箇所など)の流量を継続調査するにあたり、本発明に係る流量データ作成方法は、複数の各箇所で例えば面速式流量計やフリューム式流量計又は流速計によりマニングの平均流速公式
m=(1/n)・R2/3・I1/2
〔尚、流量Q=AVmであり、A:流積、Vm:平均流速、n:粗度係数、R:径深(A/P)、I:勾配、P:潤辺(流れが横断壁面に接する長さ)〕
中の平均流速Vmを一過的に求める工程と、水位計(例えばデータロガー付きの水位センサ)を用いて前記複数の各箇所での水位を継続的に計測する工程と、得られた平均流速Vmと得られた水位hに基づいて流量Qの継続的なデータを求める工程とを含んでいる。そのため、本発明では、複数の各箇所での据え付け設置を安価な水位計(例えばデータロガー付きの水位センサ)のみにする一方、高価な例えば面速式流量計やフリューム式流量計は固定設置ではなくそれらの持ち回りでその箇所での平均流速Vmを得るようにすることによって、複数箇所それぞれの平均流速Vmを得るにあたり高価な例えば面速式流量計を複数台用いることを不要にでき(可搬式の例えば一台の面速式流量計を用いて各箇所一回限りの実測で平均流速を求めることができ)るようにするとともに、流量Qを求める際に必要な係数(例えば流積A、径深R)は、水位計(例えばデータロガー付きの水位センサ)により得られる水位の関数であり、これらおよび一回限りの平均流速実測値を用いて下水管路施設の複数箇所の流量Qを全て求めることができるようにする、といった作用効果を奏する。その結果、本発明では、安価に下水管路施設の複数箇所(例えば数10〜数100箇所など)の継続的な流量データを作成することができる。
In continuously investigating the flow rate at a plurality of locations (for example, several 10 to several hundred locations) of a sewer pipe facility in order to investigate unknown water, Manning's average flow rate formula V m = (1 / n) ・ R 2/3・ I 1/2
[Note that the flow rate Q = AV m , A: fluid product, V m : average flow velocity, n: roughness coefficient, R: depth of diameter (A / P), I: gradient, P: Junbe (flow crosses) Length that touches the wall))
The step of obtaining the average flow velocity V m in a transient manner, the step of continuously measuring the water level at each of the plurality of locations using a water level meter (for example, a water level sensor with a data logger), and the average obtained A step of obtaining continuous data of the flow rate Q based on the flow velocity V m and the obtained water level h. Therefore, in the present invention, only a low-priced water level meter (for example, a water level sensor with a data logger) is installed and installed at each of a plurality of locations. On the other hand, an expensive surface speed type flow meter or a flume type flow meter is not fixedly installed. By obtaining the average flow velocity V m at that location by rotating them around, it becomes unnecessary to use a plurality of expensive surface velocity flow meters, for example, to obtain the average flow velocity V m at each of the locations ( A portable type, for example, a single surface velocity type flow meter is used so that the average flow velocity can be obtained by one-time measurement at each location) and a coefficient required for obtaining the flow rate Q (for example, flow product) A, diameter depth R) is a function of the water level obtained by a water level meter (for example, a water level sensor with a data logger), and the flow rate at multiple locations in the sewer line facility using these and one-time measured average flow velocity values. There is an effect that all Q can be obtained. As a result, in the present invention, continuous flow rate data at a plurality of locations (for example, several tens to several hundreds) of the sewage pipeline facility can be created at low cost.

本発明に係る流量データ作成方法を説明するための図であり、一部を拡大して図示している。It is a figure for demonstrating the flow volume data creation method which concerns on this invention, and has expanded and illustrated one part.

以下、本発明の実施の形態を図面に基づいて説明する。なお、それによって本発明は限定されるものではない。図1において、この実施形態における流量データ作成方法は、下水管路施設の複数箇所A(1)〜A(N)(例えば100箇所)における不明水を調査するために、前記複数箇所A(1)〜A(N)での流量データを作成する方法であって、前記複数箇所A(1)〜A(N)のそれぞれにおける流量計1又は流速計により一過的に計測された計測データと、マニングの平均流速公式と、前記複数箇所A(1)〜A(N)のそれぞれに設置された水位計2により継続的に計測された水位データとを用いることにより前記複数箇所A(1)〜A(N)での継続的な流量データを得るようにしている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited thereby. In FIG. 1, the flow rate data creation method according to this embodiment is configured so that the plurality of locations A (1 ) To A (N), which is a method of creating flow rate data, and the measurement data temporarily measured by the flow meter 1 or the velocimeter at each of the plurality of locations A (1) to A (N) By using Manning's average flow rate formula and the water level data continuously measured by the water level gauge 2 installed at each of the plurality of locations A (1) to A (N), the plurality of locations A (1). Continuous flow rate data at ~ A (N) is obtained.

水位計2は、全ての複数箇所A(1)〜A(N)に据え付け設置されている。しかも、この実施形態では、水位計2として、大変安価な(例えば5万円程度の)データロガー付き(記録計、積算計付き)の水位センサを用いている。一方、この実施形態では、流量計1として、下水道の流量計測において頻用されている超音波式の面速式流量計(例えば弊社製あるいはメインストリーム社製)を用いている。この面速式流量計は、ドップラー流速計で計測した平均流速と、水位計測から求めた流水断面積とから流量を演算するものであるが、高価(200〜240万円程度)なもので、これにより平均流速Vmを実測する。なお、流量計1として同じく高価なフリューム式流量計を用いてもよい。なお、流速計により計測データを得ることもできる。そして、本発明では、高価な面速式流量計1を複数台用い複数箇所に据えつけて(固定設置して)流量計算するのではなく、面速式流量計1を固定設置ではなく一台の面速式流量計1を例えば持ち回りすることによって、一過的に(例えば一回だけ)計測するようにしている。そして、面速式流量計1の各箇所A(1)〜A(N)への持ち回り時に同時にその各箇所A(1)〜A(N)に前記水位センサ2を据え付け設置するようにしている。 The water level gauge 2 is installed and installed at all the plurality of locations A (1) to A (N). Moreover, in this embodiment, a water level sensor with a very inexpensive data logger (for example, with a recorder and an accumulator) is used as the water level meter 2. On the other hand, in this embodiment, as the flow meter 1, an ultrasonic surface velocity type flow meter (for example, manufactured by our company or mainstream) frequently used in the flow measurement of sewers is used. This surface velocity type flow meter calculates the flow rate from the average flow velocity measured by the Doppler velocimeter and the cross-sectional area of the flowing water obtained from the water level measurement, but is expensive (about 2 to 2.4 million yen), In this way, the average flow velocity V m is measured. Similarly, an expensive flume type flow meter may be used as the flow meter 1. Measurement data can also be obtained with an anemometer. In the present invention, instead of using a plurality of expensive surface velocity type flow meters 1 to install (fixed installation) at a plurality of locations and calculating the flow rate, one surface velocity type flow meter 1 is not fixed installation but one unit. The surface velocity type flow meter 1 is carried around, for example, so as to be measured temporarily (for example, only once). And the water level sensor 2 is installed and installed at each location A (1) -A (N) at the same time when the surface speed flow meter 1 is carried around to each location A (1) -A (N). .

水位センサ2の据え付けは専用マウントにより短時間で仮設可能としてある。すなわち、小口径の専用マウントの場合はスプリング固定タイプが使用され、マウント自体のスプリング機能を利用して水位センサ2が固定金具により固定される。また、中口径の専用マウントの場合は、ターンバックル固定タイプが使用される。また、センサ固定タイプ(嵌め込み式)も使用可能で、これは、水位センサ2の先端が不明水の流れに向かった状態(前記先端を前記流れの上流側に向ける)で水位センサ2が支持金具と受け金具に嵌め込まれている。また、前記支持金具と前記受け金具は予めマウントに固定されている。さらに、マウント面に、通水孔を設けた水位センサ2嵌め込み設置用のカバーを設け、このカバーで高流速動圧を緩衝するタイプのものも使用可能である。このように、水位センサ2を短時間で仮設できるとともに、不明水中の汚物等の付着・堆積への対応さらには不明水高流速への対応に工夫が施されている。   The water level sensor 2 can be temporarily installed by a dedicated mount in a short time. That is, in the case of a small-diameter dedicated mount, a spring fixing type is used, and the water level sensor 2 is fixed by the fixing bracket using the spring function of the mount itself. In the case of a medium-diameter dedicated mount, a turnbuckle fixed type is used. In addition, a sensor fixed type (insertion type) can also be used. This is because the water level sensor 2 is attached to the support bracket in a state where the tip of the water level sensor 2 faces the unknown water flow (the tip is directed upstream of the flow). And is fitted in the bracket. The support metal fitting and the metal fitting are fixed to the mount in advance. Further, a type of mounting a water level sensor 2 fitted with a water passage hole on the mount surface and buffering high flow dynamic pressure with this cover can be used. In this way, the water level sensor 2 can be temporarily installed in a short time, and measures are taken to cope with adhesion / deposition of filth and the like in unknown water and further to cope with unknown high water flow velocity.

そして、本発明では、絶対圧検出タイプの水位計(例えばデータロガー付水位センサ)2を前記複数箇所A(1)〜A(N)の水位検出位置に仮設し、水位計測値hから流量Qを計算して、不明水の分布を調査するが、絶対圧(水圧)P1だけでは水位(水圧→水の重さ→水深)計測精度を保持できないので、この実施形態では、付近の大気圧P2を計測できる大気圧ロガー(図1における三角形で示す部分)Lを水位検出付近に1〜数箇仮設し、差圧(ゲージ圧)から水位を計算している。尚、ある一定地域S1〜Sn(大気圧はどこでもほぼ同じと見なされる地域内)では、1箇所にのみ大気圧ロガーLを設けるだけでよい(例えば地域S1内ではA(2)にのみ大気圧ロガーLを設ければよい)。なお、図1においては、箇所S1,Snのみ拡大して図示してある。 In the present invention, an absolute pressure detection type water level gauge (for example, a water level sensor with a data logger) 2 is temporarily installed at the water level detection positions at the plurality of locations A (1) to A (N), and the flow rate Q from the water level measurement value h. In this embodiment, the accuracy of measuring the water level (water pressure → water weight → water depth) cannot be maintained with only the absolute pressure (water pressure) P 1. One to several atmospheric pressure loggers (portions indicated by triangles in FIG. 1) L capable of measuring P 2 are temporarily set near the water level detection, and the water level is calculated from the differential pressure (gauge pressure). In a certain area S 1 to S n (in the area where the atmospheric pressure is considered to be almost the same everywhere), it is only necessary to provide the atmospheric pressure logger L at one place (for example, in area S 1 , A (2)). Only the atmospheric pressure logger L may be provided). In FIG. 1, only the portions S 1 and Sn are shown enlarged.

流量計算は、前述したマニングの平均流速公式に拠る。ただし、粗度係数nと勾配Iは、可搬式の例えば面速式流量計1で実測した、水位計設置箇所A(1)〜A(N)の水位と平均流速とから計算される実測値を用いる。
マニング公式
m=(1/n)・R2/3・I1/2
〔尚、流量Q=AVmであり、A:流積(m2)、Vm:平均流速(m/sec)、n:粗度係数、R:径深(A/P)、I:勾配、P:潤辺(流れが横断壁面に接する長さ)(m)〕
なお、マニングの平均流速公式中の径深Rは水路形状と水深から計算されるので、流積Aと平均流速Vmから(1/n)×I1/2を計算できる。
The flow rate calculation is based on the Manning average flow velocity formula described above. However, the roughness coefficient n and the gradient I are actually measured values calculated from the water level and the average flow velocity at the water level meter installation locations A (1) to A (N), which are actually measured with a portable, for example, surface velocity type flow meter 1. Is used.
Manning formula V m = (1 / n) ・ R 2/3・ I 1/2
[Flow rate Q = AV m , A: flow product (m 2 ), V m : average flow velocity (m / sec), n: roughness coefficient, R: depth of depth (A / P), I: gradient , P: Junbe (length that the flow touches the transverse wall) (m)]
Since the diameter depth R in the Manning average flow velocity formula is calculated from the channel shape and water depth, (1 / n) × I 1/2 can be calculated from the product A and the average flow velocity V m .

而して、この実施形態では、まず、面速式流量計1で得た一過的なデータを利用し、後は前記水位計2で例えば1ヶ月間計測した継続的な水位データをマニング公式に代入するだけで前記各複数箇所A(1)〜A(N)における継続的な流量データを得るものである。すなわち、面速式流量計1で計測した平均流速Vm(m/sec)の計測値を例えば10(m/sec)とする。また、(I1/2/n)=Vm/R2/3…(1)であるから、(1)式のVmに計測値の10を代入して、
(I1/2)÷n=10÷R2/3…(1)’になる。
Thus, in this embodiment, first, the transient data obtained by the surface velocity type flow meter 1 is used, and then the continuous water level data measured by the water level meter 2 for, for example, one month is used as the Manning formula. It is possible to obtain continuous flow rate data at the plurality of locations A (1) to A (N) simply by substituting for. That is, the measured value of the average flow velocity V m (m / sec) measured by the surface velocity type flow meter 1 is, for example, 10 (m / sec). Since (I 1/2 / n) = V m / R 2/3 (1), the measured value of 10 is substituted for V m in equation (1),
(I 1/2 ) ÷ n = 10 ÷ R 2/3 (1) ′.

一方、データロガー付水位センサ2で計測した水位(水深)h(m)の計測値を例えば0.5(m)とする。また、マニングの公式中の係数の一つである径深R(=A/P)は水路形状と水深h(m)から計算できる。ここで、円形の下水管路を例にとる。すなわち、下水管路の直径(既知の値)をr(m)とし、θを潤辺Pに対応する円周角とする。
潤辺Pは、P=π×r×(θ/2π)=(r×θ)/2…(2)となる。また、マニングの公式中の係数の一つである
流積Aは、A=(1/8)×r2×(θ−sinθ)…(3)となる。
但し、A=π×(r/2)2×(θ/2π)−(1/2)×〔2×(r/2)×sin(θ/2)×(r/2)×cos(θ/2)〕
=(1/8)×r2×〔θ−2sin(θ/2)×cos(θ/2)〕
=(1/8)×r2×〔θ−(sin(θ)+sin(0)〕である。
そして、
R=A/Pに、(2),(3)式を代入すると、
2R=(1/8)×r2(θ−sinθ)/(r×θ)…(4)となる。
また、
h=r/2−(r/2)cos(θ/2)
であるから、cos(θ/2)=1−(2/r)×hとなる。
よって、θは、水位センサ2から得られる水深h(m)と、水路形状から得られる既知の値(下水管路の直径r)から求めることができる。例えばh=0.5、r=1とする。 つまり、径深Rは、(4)式から、下水管路の直径r(m)(水路形状)と水位センサ2で計測した水位(水深)h(m)から計算される。
故に、(4)式に、h=0.5、r=1を代入して径深Rの値を計算でき、この径深値を(1)’式に代入して(I1/2)÷nを計算できるとともに、
さらに、上述した平均流速Vm(m/sec)の計測値(=10)と、(3)式に示した流積値を乗算して複数箇所A(1)〜A(N)のそれぞれの流量Qを計測することができる。
On the other hand, the measured value of the water level (water depth) h (m) measured by the water level sensor with data logger 2 is, for example, 0.5 (m). Moreover, the diameter depth R (= A / P) which is one of the coefficients in the Manning formula can be calculated from the channel shape and the water depth h (m). Here, a circular sewage pipe is taken as an example. That is, let the diameter (known value) of the sewage pipe line be r (m), and let θ be the circumferential angle corresponding to the wet side P.
The wet side P becomes P = π × r × (θ / 2π) = (r × θ) / 2 (2). The product A, which is one of the coefficients in Manning's formula, is A = (1/8) × r 2 × (θ−sin θ) (3).
However, A = π × (r / 2) 2 × (θ / 2π) − (1/2) × [2 × (r / 2) × sin (θ / 2) × (r / 2) × cos (θ / 2)]
= (1/8) * r < 2 > * [[theta] -2sin ([theta] / 2) * cos ([theta] / 2)]
= (1/8) × r 2 × [θ− (sin (θ) + sin (0)].
And
Substituting the equations (2) and (3) into R = A / P,
2R = (1/8) × r 2 (θ−sin θ) / (r × θ) (4)
Also,
h = r / 2− (r / 2) cos (θ / 2)
Therefore, cos (θ / 2) = 1− (2 / r) × h.
Therefore, θ can be obtained from the water depth h (m) obtained from the water level sensor 2 and a known value (diameter r of the sewer pipe) obtained from the water channel shape. For example, h = 0.5 and r = 1. That is, the diameter depth R is calculated from the diameter r (m) (water channel shape) of the sewer pipe and the water level (water depth) h (m) measured by the water level sensor 2 from the equation (4).
Therefore, it is possible to calculate the value of the diameter depth R by substituting h = 0.5 and r = 1 into the equation (4), and substituting this diameter depth value into the equation (1) ′ (I 1/2 ) ÷ n can be calculated and
Further, the measured value (= 10) of the average flow velocity V m (m / sec) described above is multiplied by the product value shown in the equation (3), so that each of the plurality of locations A (1) to A (N) is multiplied. The flow rate Q can be measured.

この実施形態では、マニングの平均流速公式を用い、面速式流量計1で一過的に実測した平均流速Vm値と、水路形状と水位hとから得られた値と、安価な水位センサ2による各箇所A(1)〜A(N)での継続的な水位データとで各箇所A(1)〜A(N)における継続的な流量データをそれぞれ求めることができる。そして、高価な面速式流量計1は例えば持ち回りするようにしているため、スクリーニングに必要な多数箇所A(1)〜A(N)の調査を安価に実現できる。すなわち、簡易で安価な水位センサ2での水位計測と面速式流量計1のような高価であるが持ち回り可能な流量計での平均流速計測とを得るようにするとともに、マニングの公式中の必要な係数等を知ることができるように工夫し、これにより、各箇所A(1)〜A(N)の流量Qを算出することができる。 In this embodiment, Manning's average flow velocity formula is used, the average flow velocity V m temporarily measured by the surface velocity type flow meter 1, the value obtained from the channel shape and the water level h, and an inexpensive water level sensor. The continuous flow rate data at each location A (1) to A (N) can be obtained from the continuous water level data at each location A (1) to A (N) according to 2. And since the expensive surface velocity type flow meter 1 is carried around, for example, the investigation of a large number of locations A (1) to A (N) necessary for screening can be realized at a low cost. That is, it is possible to obtain a simple and inexpensive water level measurement with the water level sensor 2 and an average flow velocity measurement with an expensive but portable flow meter such as the surface velocity type flow meter 1, and in the Manning formula A device is devised so that necessary coefficients and the like can be known, whereby the flow rate Q of each of the locations A (1) to A (N) can be calculated.

なお、流量計測精度向上のため、必要に応じた、面速式流量計やフリューム式流量計との組み合わせ調査も可能である。また、面速式流量計やフリューム式流量計さらには流速計との組み合わせ調査も可能である。また、雨天時浸入水と常時浸入水量定量精度向上のための、温度や電気伝導度計測値による補正も可能である。そして、本発明は、雨水管理関連の水位流量調査への応用が可能であるとともに、合流改善関連の水位流量調査への応用が可能である。又、この技術の応用として、例えば雨水管理(雨水管の降雨時の水位計測に基づく浸入対策)や、合流改善(合流管の流入管と遮集管の水位計測に基づく放流管理)などへの応用も可能である。   In addition, in order to improve the flow measurement accuracy, it is possible to investigate combinations with surface velocity flow meters and flume flow meters as necessary. It is also possible to investigate combinations with surface velocity flowmeters, flume flowmeters, and velocimeters. It is also possible to make corrections based on measured values of temperature and electrical conductivity in order to improve the accuracy of inundation in rainy weather and constant infiltration water amount. The present invention can be applied to a water level flow rate survey related to rainwater management, and can also be applied to a water level flow rate survey related to confluence improvement. Applications of this technology include, for example, rainwater management (measures for intrusion based on water level measurement during rainfall in rainwater pipes) and merging improvement (discharge management based on water level measurement of inflow pipes and intercepting pipes in confluence pipes). Is also possible.

1 流量計
2 水位計
A(1)〜A(N) 下水管路施設の複数箇所
1 Flow meter 2 Water level meter A (1) to A (N) Multiple locations of sewage pipeline facilities

Claims (3)

下水管路施設の複数箇所における不明水を調査するために、前記複数箇所での流量データを作成する方法であって、前記複数箇所のそれぞれにおいて流量計又は流速計により一過的に計測された計測データと、マニングの公式と、前記複数箇所のそれぞれに設置された水位計により継続的に計測された水位データとを用いることにより前記複数箇所での流量データを得ることを特徴とする流量データ作成方法。   In order to investigate unknown water at a plurality of locations of a sewer pipe facility, a method of creating flow rate data at the plurality of locations, which was temporarily measured by a flow meter or an anemometer at each of the plurality of locations. The flow rate data obtained by using the measurement data, Manning's formula, and the water level data continuously measured by the water level gauges installed at each of the plurality of locations. How to make. 前記流量計として面速式流量計を用いる請求項1に記載の流量データ作成方法。   The flow rate data creation method according to claim 1, wherein a surface velocity type flow meter is used as the flow meter. 前記流量計としてフリューム式流量計を用いる請求項1に記載の流量データ作成方法。
The flow rate data creation method according to claim 1, wherein a flume type flow meter is used as the flow meter.
JP2016012345A 2016-01-26 2016-01-26 Flow rate data creation method Pending JP2017133873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016012345A JP2017133873A (en) 2016-01-26 2016-01-26 Flow rate data creation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016012345A JP2017133873A (en) 2016-01-26 2016-01-26 Flow rate data creation method

Publications (1)

Publication Number Publication Date
JP2017133873A true JP2017133873A (en) 2017-08-03

Family

ID=59504796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016012345A Pending JP2017133873A (en) 2016-01-26 2016-01-26 Flow rate data creation method

Country Status (1)

Country Link
JP (1) JP2017133873A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004245793A (en) * 2003-02-17 2004-09-02 Asahi Chisui Tansa Kk Atmospheric pressure correction system and its method of pressure type water gage
EP2144044A1 (en) * 2008-07-08 2010-01-13 LindCom ApS A system for remote transmission of information indicative of at least one parameter of a fluid contained in at least one reservoir to a remote user location outside the reservoir

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004245793A (en) * 2003-02-17 2004-09-02 Asahi Chisui Tansa Kk Atmospheric pressure correction system and its method of pressure type water gage
EP2144044A1 (en) * 2008-07-08 2010-01-13 LindCom ApS A system for remote transmission of information indicative of at least one parameter of a fluid contained in at least one reservoir to a remote user location outside the reservoir

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J.D.WRIGHT: "Problems in Using the Manning Equation to Measure Sewer Flow", WATER ENVIRONMENT & TECHNOLOGY, vol. 3, no. 9, JPN6019041996, September 1991 (1991-09-01), US, pages 78 - 87, ISSN: 0004457365 *
K.J.LANFEAR AND J.J.COLL: "Modifying Manning's Equation For Flow Rate Estimates", WATER & SEWAGE WORKS, vol. 125, no. 3, JPN6019042000, March 1978 (1978-03-01), US, pages 68 - 69, ISSN: 0004147523 *

Similar Documents

Publication Publication Date Title
Kawanisi et al. High‐frequency streamflow acquisition and bed level/flow angle estimates in a mountainous river using shallow‐water acoustic tomography
Yap et al. Assessment on inflow and infiltration in sewerage systems of Kuantan, Pahang
Bahreinimotlagh et al. Continuous streamflow monitoring in shared watersheds using advanced underwater acoustic tomography system: a case study on Zayanderud River
JP6806357B2 (en) Sewage measurement system
Rubinato et al. Flow exchange, energy losses and pollutant transport in a surcharging manhole linked to street profiles
Koshoeva et al. Arduino-based automated system for determining water flow consumption in open flow
Tan et al. Assessment and pathway determination for rainfall-derived inflow and infiltration in sanitary systems: a case study
KR20070022838A (en) Flow meter system for foul water pipe line
Godley Flow measurement in partially filled closed conduits
US20140216168A1 (en) Flow Meter and Method for Using Same
JP2017133873A (en) Flow rate data creation method
KR102080066B1 (en) System for monitoring illegal waste- water discharge
JP2011058182A (en) Abnormal rainfall detecting method, abnormal rainfall detecting system, and manhole lid
JP2018018413A (en) Sewage unknown water simple evaluation method
JP5842071B1 (en) Sewage pipe flowing water detection device and detection method
Boman et al. Water Measurement for Agricultural Irrigation and Drainage Systems: Circular 1495/CH153, 10/2006
Djalilov et al. Investigation of the error measurement of ultrasonic sensors for measuring water flow in open canals of irrigation systems
Ahm et al. Rainfall measurement based on in-situ storm drainage flow sensors
Ontkean et al. Impact of non-level operation of a circular flume on discharge measurements
Siemers et al. Low cost overflow monitoring techniques and hydraulic modeling of a complex sewer network
Mączałowski Analysis and evaluation of the measurement system based on kama orifices for measuring the flow of sewage in the light of the water law requirements
Aguilar et al. Laboratory evaluation of flow sensor technology for use in storm sewer measurements
Qian et al. Experimental Study on Flow Measurement in Corrugated Metal Pipes Used in Irrigation Turnouts
Newman et al. A Case Study in Developing an Accurate and Defensible Collection-System Model
Ivetić et al. Improved flow measurement using EM flat probes in mixed flow conditions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200713

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210308