JP5842071B1 - Sewage pipe flowing water detection device and detection method - Google Patents

Sewage pipe flowing water detection device and detection method Download PDF

Info

Publication number
JP5842071B1
JP5842071B1 JP2015033471A JP2015033471A JP5842071B1 JP 5842071 B1 JP5842071 B1 JP 5842071B1 JP 2015033471 A JP2015033471 A JP 2015033471A JP 2015033471 A JP2015033471 A JP 2015033471A JP 5842071 B1 JP5842071 B1 JP 5842071B1
Authority
JP
Japan
Prior art keywords
detection
water
sewage
unit
water pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015033471A
Other languages
Japanese (ja)
Other versions
JP2016156158A (en
Inventor
不二夫 仙波
不二夫 仙波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Haneda Zenith Co Ltd
Original Assignee
Haneda Zenith Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haneda Zenith Co Ltd filed Critical Haneda Zenith Co Ltd
Priority to JP2015033471A priority Critical patent/JP5842071B1/en
Application granted granted Critical
Publication of JP5842071B1 publication Critical patent/JP5842071B1/en
Publication of JP2016156158A publication Critical patent/JP2016156158A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】下水管路における異常水の浸入場所を特定する際の精度を向上させる。【解決手段】下水管路1の流水を検出する装置であって、温度検出部7、水圧検出部8、制御部11、温度及び水圧の検出値を同時に所定の時間間隔で複数記憶する記憶部12、送受信部13および水密性の検出ボックス6を備え、検出ボックスの内部に温度検出部、水圧検出部、制御部、送受信部および記憶部が設けられ、検出ボックス6を下水管路1に設置した際、該検出ボックス6の下流側の側面6dに水圧検出部8の検出面8aが設けられ、その検出面8aで下流側の水圧変化を検出することにより流水の水位変化を検出できるように構成されている。【選択図】 図1An object of the present invention is to improve the accuracy in specifying the location of abnormal water intrusion in a sewer pipe. An apparatus for detecting flowing water in a sewage pipeline, a temperature detection unit, a water pressure detection unit, a control unit, and a storage unit for simultaneously storing a plurality of detected values of temperature and water pressure at predetermined time intervals. 12, a transmission / reception unit 13 and a watertight detection box 6 are provided, and a temperature detection unit, a water pressure detection unit, a control unit, a transmission / reception unit, and a storage unit are provided inside the detection box, and the detection box 6 is installed in the sewer pipe 1 In this case, the detection surface 8a of the water pressure detection unit 8 is provided on the downstream side surface 6d of the detection box 6, and the detection surface 8a detects the downstream water pressure change so that the change in the water level can be detected. It is configured. [Selection] Figure 1

Description

本発明は都市部などで敷設される家庭やビル、工場等の施設から排出する生活汚水などを下水処理場まで流下させる汚水用の下水管路や、道路などの雨水を集めて河川湖沼に流下させる雨水用の下水管路等において、下水管路内に通常流れる下水とは異なる異常水が浸入した場合、その異常水の浸入場所特定に利用するための下水管路における流水状態の検出装置および検出方法に関する。   The present invention collects rainwater from sewage sewage pipes and roads that drain domestic sewage discharged from facilities such as homes, buildings, and factories laid in urban areas, etc. to rivers and lakes. When abnormal water that is different from sewage that normally flows in the sewage pipe enters the sewage pipe for rainwater, etc., the detection device of the flowing water state in the sewage pipe to be used for specifying the intrusion location of the abnormal water and It relates to a detection method.

都市部に敷設される汚水用の下水管路や雨水用の下水管路は、一般的に道路に沿って敷設されるが、その上流側には比較的口径の小さい枝管が多く敷設され、それら枝管は管路下流側に敷設される口径の大きな本管に連通される。このような下水管路にはメンテナンス用として、開閉が可能な蓋を有する枡やマンホール等が多く設置される。枡は住宅や工場に近い場所に埋設される枝管の先端領域に多く設置され、マンホールは枝管の途中や本管の途中、または枝管同士の合流部や枝管と本管の合流部に設置される。   Sewage sewage pipes and sewage sewage pipes laid in urban areas are generally laid along the road, but on the upstream side there are many branch pipes with relatively small diameters, These branch pipes communicate with a main pipe having a large diameter laid on the downstream side of the pipe. In such sewage pipes, a lot of eaves or manholes having lids that can be opened and closed are installed for maintenance. Amber is often installed in the tip area of branch pipes buried near houses and factories, and manholes are in the middle of branch pipes, in the middle of main pipes, or in junctions between branch pipes or in junctions of branch pipes and main pipes. Installed.

都市部では汚水用の下水管路と雨水用の下水管路が網目状に多数敷設され、それらは同じ道路に沿って並設されることが多い。そのため、例えば汚水用の下水管路の一部に雨水用の下水管路の一部が誤って接続される例、またはその逆に雨水用の下水管路の一部に汚水用の下水管路の一部が接続される例、などの接続ミスが各所で発生することがある。また何十年間の長期間に亘り埋設された下水管路では、老朽化や地震等により本管の継ぎ手部分や、枡と枝管を結ぶ取付管の接合部に損傷等の異常が発生し、地下水や雨水の流入事故が発生している。一般に下水管路は施工後に地中に埋設された状態になるので、これらのような異常発生個所は、外部からは容易に発見できないのが現状である。   In urban areas, many sewer pipes for sewage and sewer for rainwater are laid in a mesh pattern, and they are often arranged along the same road. Therefore, for example, a part of the sewage sewage pipe is mistakenly connected to a part of the sewage sewage pipe, or vice versa. A connection error such as an example in which a part of the connection is made may occur in various places. Also, in sewer pipes that have been buried for a long period of decades, abnormalities such as damage have occurred at the joints of the main pipe and the joints between the pipes and branch pipes due to aging and earthquakes, etc. A groundwater or rainwater inflow accident has occurred. In general, since the sewage pipes are buried in the ground after construction, the location where such an abnormality has occurred cannot be easily found from the outside.

このように誤接続や管路の損傷により汚水用の下水管路に浸入する雨水や地下水、または雨水用の下水管路に浸入する汚水や地下水は、本来流下する水とは別の異常水(もしくは不明水)として扱われ、これを解消させるには下水管路の補修や改修工事などの何らかの対策が必要になる。   In this way, rainwater or groundwater that enters the sewer pipe for sewage due to incorrect connection or damage to the pipe, or sewage or groundwater that enters the sewage pipe for stormwater is different from the water that originally flows down ( In order to solve this problem, some countermeasures such as repair of the sewer pipe and repair work are required.

特に汚水用の下水管路に流入する雨水や地下水は下水処理場で浄化処理すべきものではなく、その流入は処理費用の負担増となる。そして下水処理場の計画処理能力を超える下水の流入がある場合は未処理汚水の状態で河川湖沼に放流され、水質汚染問題の発生源となってしまう。また管路に損傷部があると、そこから汚水が管路外の地下地盤に漏出し、土壌や地下水の汚染問題を発生する原因となりこの問題解決は重要となる。   In particular, rainwater and groundwater flowing into the sewage sewage pipes should not be purified at the sewage treatment plant, and this inflow increases the cost of treatment. And if there is an inflow of sewage that exceeds the planned treatment capacity of the sewage treatment plant, it will be discharged into rivers and lakes in the state of untreated sewage, which will be a source of water pollution problems. In addition, if there is a damaged part in the pipeline, the sewage leaks from there to the underground ground outside the pipeline, causing the problem of soil and groundwater contamination, and solving this problem becomes important.

これらの問題の発生源となる下水管路における誤接続や損傷の場所の特定は、従来から種々試みられている。   Various attempts have been made in the past to identify the location of misconnection or damage in the sewage pipeline that is the source of these problems.

特許文献1には異常水の浸入場所を特定する方法が開示されている。特許文献1の方法は、下水管路の複数個所に温度検出部を有する検出装置を設置し、所定の時間間隔で温度を複数記憶し、所定の検出期間(例えば1〜2カ月)の経過後に各検出装置を下水管路から回収し、記録された温度変化データを電磁波通信によりデータ処理装置に伝送する。そしてデータ処理装置は特定の下水管路ごとに予め記憶蓄積された平常状態の温度変化データと、伝送された温度変化データを比較し、両者の間に温度変化の相違が生じた場合、その下水管路の場所には異常水が浸入していると判定する方法である。なお汚水や雨水の平常温度は季節ごとに異なるが、地下水の場合はあまり大きな変化はない。それらの平常温度は季節や時間ごとに予めデータ処理装置に記憶される。   Patent Document 1 discloses a method for specifying an intrusion location of abnormal water. The method of patent document 1 installs the detection apparatus which has a temperature detection part in the several places of a sewer pipe, memorize | stores two or more temperature at predetermined time intervals, and after progress of a predetermined detection period (for example, 1 to 2 months) Each detection device is collected from the sewer pipe, and the recorded temperature change data is transmitted to the data processing device by electromagnetic wave communication. The data processing device compares the normal temperature change data stored and stored in advance for each specific sewage pipeline with the transmitted temperature change data, and if there is a difference in temperature change between the two, In this method, it is determined that abnormal water has entered the place of the water pipeline. The normal temperature of sewage and rainwater varies from season to season, but groundwater does not change much. These normal temperatures are stored in advance in the data processor for each season and time.

一方、下水管路の異常水浸入場所の特定方法として、下水管路における下水流の流量変化を水位変化で捉え、平常な水位変化から離脱した異常な水位変化の状態を検出し、その検出データを基にデータ処理装置で異常水浸入場所を特定する方法も知られている。すなわち下水管路における平常な水位変化(流量変化)、例えば特定の管路における通常予想される一日の水位変化と、水位検出装置で検出した水位変化をデータ処理装置で比較することにより、下水管路における異常水の浸入場所を特定する方法である。   On the other hand, as a method of identifying the location of abnormal water intrusion in the sewage pipeline, the flow rate change of the sewage flow in the sewage pipeline is detected by the water level change, and the abnormal water level change state that deviates from the normal water level change is detected, and the detection data There is also known a method for identifying an abnormal water intrusion place by a data processing device based on the above. That is, a normal water level change (flow rate change) in a sewage pipeline, for example, a daily expected water level change in a specific pipeline, and a water level change detected by a water level detection device are compared by a data processing device. This is a method for identifying the location of abnormal water intrusion in the water pipeline.

特許第4756092号公報Japanese Patent No. 4756092

下水管路における異常水の浸入場所を特定する際、特定の下水管路において検出した温度変化データと予め記憶蓄積した温度変化データを比較する方法は、各種の下水管路においてかなり高い精度で異常水の浸入場所を特定することが可能である。しかし下水管路によっては、日や時間の経過とともに、各所から合流する各汚水等の混合温度が、予め予測した平常な温度と異なるような変化を生じることもある。また本来の下水温度と異常水の温度に大きな相違が無い場合もあり、そのような下水管路では、異常水の浸入場所特定の精度は低下する可能性がある。   When identifying the location of abnormal water intrusion in sewage pipes, the method of comparing temperature change data detected in specific sewage pipes with temperature change data stored and stored in advance is abnormal with high accuracy in various sewage pipes. It is possible to specify the place where water enters. However, depending on the sewage pipeline, the mixing temperature of each sewage or the like that merges from each place may change with the passage of day or time so that it differs from the normal temperature predicted in advance. In addition, there may be no significant difference between the original sewage temperature and the temperature of abnormal water, and in such a sewage pipe, the accuracy of specifying the location of abnormal water may decrease.

一方、下水管路内の水位変化のみで異常水の浸入場所を特定する方法においては、汚水等の平常な流量変化が予測した範囲と一致しない場合がある。例えば各所から合流する汚水等自体に予測しなかった異常な変化が生じることはしばしば起こる。そのような下水管路では、異常水の浸入場所特定の精度は低下する可能性がある。   On the other hand, in the method of identifying the intrusion location of abnormal water only by changing the water level in the sewage pipeline, normal flow rate changes such as sewage may not match the predicted range. For example, unforeseen abnormal changes often occur in the sewage that joins from various places. In such sewage pipes, the accuracy of specifying the location of abnormal water may decrease.

さらに、一般的な水位計は比較的高価である上に、かなり大きな設置スペースを必要とし、口径の小さい下水管路に設置することは容易ではない。またミリ単位の高精度の水位を検出する水位計の構造はより複雑化するので、その設置スペースやコストなどの問題がより大きくなる。   Furthermore, a general water level meter is relatively expensive and requires a considerably large installation space, and it is not easy to install it in a sewage pipe having a small diameter. In addition, since the structure of a water level meter that detects a water level with high accuracy in millimeters is more complicated, problems such as installation space and cost become larger.

これら種々の問題を解決するため、本発明は下水管路を流れる流水の温度変化と水圧変化の両者を検出して記憶し得るようにした流水検出装置、およびそれを用いた流水検出方法を提供するものである。 To solve these various problems, the present invention is water flow detection apparatus that can detect and store both the flowing water of a temperature change and pressure change through the sewer pipe, and provides a running water detection method using the same To do.

本発明の流水検出装置を下水管路に設置すると、前記のように予測できない外乱要素が発生する可能性のある下水管路であっても、温度と水圧を同時に記録した2つの検出データにより、例え温度と水圧の一方の検出データに異常な現象が発生したとしても、他方の検出データが平常な値であれば、その異常な現象は外乱要素であり異常水の浸入ではないと判定することは容易であり、異常水浸入場所特定のミスは大幅に低減する。 When the flowing water detection device of the present invention is installed in a sewer pipe, even with a sewer pipe where an unpredictable disturbance element may occur as described above, two detection data recorded simultaneously with temperature and water pressure Even if an abnormal phenomenon occurs in one of the detected data of temperature and water pressure , if the other detected data is a normal value, it is determined that the abnormal phenomenon is a disturbance element and not an intrusion of abnormal water. Is easy, and the error of specifying the location of abnormal water entry is greatly reduced.

例えば汚水用の下水管路にはトイレや浴室などからの生活汚水が排出され、一般的にその下水温度は雨水や地下水より高いとされており、異常水の流入がある下水管路では、降雨時に雨水が流入することで下水の温度が下がり、また流量が増加することで、水位が上がることになる。現在、気象庁や多くの自治体では地域毎に降雨があった日時と降水量についてのデータを公表しており、例えばその降雨時の前後に上記の方法で測定した下管路内の下水の温度と水圧に変化が生じていれば、その下水管路には雨水が異常水として流入していると判定することが可能となる。 For example, domestic sewage from toilets and bathrooms is discharged into sewage sewer pipes, and the sewage temperature is generally higher than that of rainwater and groundwater. Sometimes rainwater inflows lowers the temperature of sewage and increases the flow rate, which increases the water level. Currently, the Japan Meteorological Agency and many local governments publish data on the date and amount of rainfall that occurred in each region, for example, the temperature of sewage in the lower pipe measured by the above method before and after the rain. If there is a change in the water pressure , it can be determined that rainwater is flowing into the sewer pipe as abnormal water.

以上の背景から、本発明の第1の発明は、下水管路の底部に設置して下水管路の流水を検出する装置であって、温度検出部、水圧検出部、制御部、温度及び水圧の検出値を同時に所定の時間間隔で複数記憶する記憶部、送受信部および水密性の検出ボックスを備え、前記検出ボックスの内部に前記温度検出部、前記水圧検出部、前記制御部、送受信部および記憶部が設けられ、前記検出ボックスは、それを下水管路に設置した状態における底面、上面および側面を有し、流水が分流する左右の両側面は円弧状に形成されている。 In view of the above background, the first invention of the present invention is an apparatus that is installed at the bottom of a sewage pipe and detects flowing water in the sewage pipe, and includes a temperature detection unit, a water pressure detection unit, a control unit, temperature and water pressure. A plurality of detection values simultaneously stored at predetermined time intervals, a transmission / reception unit, and a watertight detection box, and the temperature detection unit, the water pressure detection unit, the control unit, the transmission / reception unit, and the inside of the detection box, A storage unit is provided, and the detection box has a bottom surface, an upper surface, and side surfaces in a state in which the detection box is installed in the sewer pipe, and both left and right side surfaces to which the flowing water is divided are formed in an arc shape.

前記検出ボックスを下水管路の底部に設置した際、流水の下流側に位置する前記検出ボックスの側面に前記水圧検出部の検出面が設けられ、その検出面で該検出ボックス下流側の水圧変化を検出することにより、下水管路における流水の水位変化に換算できるようになっており、検出ボックス設置位置における流水の温度と水圧を所定の時間間隔で同時に検出して検出データを記憶部に記憶できるように構成されていることを特徴とする(請求項1)。 When the detection box is installed at the bottom of the sewer pipe, a detection surface of the water pressure detection unit is provided on a side surface of the detection box located on the downstream side of running water, and the water pressure change on the downstream side of the detection box on the detection surface. the by detecting being adapted to be converted into flowing water of the water level changes in the sewer pipe, the detection data detected simultaneously flowing water temperature and water pressure in the detection box installation position at a predetermined time interval in the storage unit It is constituted so that it can memorize (claim 1).

本発明の第2の発明は、上記第1の発明の検出装置を用い、下水管路を流れる流水の温度と水圧を同時に所定の時間間隔で複数検出することにより、下水管路の流水状態を検出する方法であって、前記検出装置を下水管の底部または下水管路に設置されたマンホールもしくは枡の底部に設置することを特徴とする(請求項)。 The second aspect of the present invention uses the detection device of the first aspect of the present invention, and simultaneously detects a plurality of temperatures and water pressures of flowing water flowing through the sewage pipe line at predetermined time intervals, thereby determining the flowing water state of the sewage pipe line. A detection method, wherein the detection device is installed at the bottom of a sewer pipe or at the bottom of a manhole or dredge installed in a sewer pipe (Claim 2 ).

本発明の第1の発明は、温度検出部、水圧検出部、制御部、送受信部、記憶部および水密性の検出ボックスを備え、検出ボックスの内部に温度検出部、水圧検出部、送受信部、制御部および記憶部が設けられ、検出ボックスにおける下水管路の下流側となる下流側外面に水圧検出部の検出面が設けられ、その検出面で検出ボックス下流側の水圧変化を検出することにより流水の水位変化に換算できるように構成されていることを特徴とする。 A first aspect of the present invention includes a temperature detection unit, a water pressure detection unit, a control unit, a transmission / reception unit, a storage unit, and a watertight detection box, and the temperature detection unit, the water pressure detection unit, the transmission / reception unit, A control unit and a storage unit are provided, and a detection surface of the water pressure detection unit is provided on the downstream outer surface on the downstream side of the sewer pipe in the detection box, and the detection surface detects a change in water pressure downstream of the detection box. It is configured so that it can be converted into a change in the level of running water.

検出される水圧(静水圧)の値は水位にそのまま換算できる。このように水圧を小型化できる水圧検出部により検出し、且つ一つの検出ボックス内に温度検出部と水圧検出部の両者を設けることにより、これらの検出部を独立したボックスに構成する場合と比較して検出装置は外形が極めて小型化され、下水管路における狭い設置スペースの場所であっても、流水検出装置を容易に設置できる。 The detected water pressure (hydrostatic pressure) value can be converted directly into the water level. In this way, the water pressure is detected by a water pressure detector that can be miniaturized, and by providing both a temperature detector and a water pressure detector in one detection box, these detectors are compared to the case where they are configured as independent boxes. Thus, the outer shape of the detection device is extremely reduced, and the flowing water detection device can be easily installed even in a narrow installation space in the sewer pipe.

また、下水管路の同じ設置場所で温度と水圧(水位に相当)を検出して記録できるので、流水における同一時期の温度変化と水圧変化の相互関係を精度よく検出し、所定の検出期間経過後に、検出したデータをデータ処理装置などで処理することが可能である。それによって、予測できない温度変化または水圧変化のような外乱要素が発生する下水管路においても、これら両者の検出データを利用することにより、異常水浸入の有無を高精度で識別し判定することが可能になる。特に雨水による異常水の浸入の場合は、その地区周辺に実際に発生した降雨が大きく関係するので、その降雨に関係するデータ等の利用でより精度高く判定することができる。 In addition, since the temperature and water pressure (corresponding to the water level) can be detected and recorded at the same installation location in the sewer pipe, the correlation between the temperature change and the water pressure change at the same time in flowing water can be detected accurately, and the predetermined detection period has elapsed Later, the detected data can be processed by a data processing device or the like. As a result, even in sewage pipelines where disturbance factors such as temperature changes or water pressure changes that cannot be predicted occur, the presence or absence of abnormal water intrusion can be identified and determined with high accuracy by using both detection data. It becomes possible. In particular, in the case of abnormal water intrusion due to rainwater, since the rain actually generated around the area is greatly related, it can be determined with higher accuracy by using data related to the rain.

さらに、検出ボックスを下水管路内に設置した際に、流水の下流側に位置する検出ボックスの下流側の側面に水圧検出部の水圧検出面が設けられるので、水圧検出の際に流水の動水圧や乱流の影響が著しく低減され、流水の静水圧値のみを高精度で検出でき、それによって水圧から換算される水位データが高精度の値で得られる。   Furthermore, when the detection box is installed in the sewer pipe, the water pressure detection surface of the water pressure detection unit is provided on the downstream side surface of the detection box located downstream of the running water. The influence of water pressure and turbulent flow is remarkably reduced, and only the hydrostatic pressure value of the flowing water can be detected with high accuracy, whereby water level data converted from the water pressure can be obtained with high accuracy values.

また、検出ボックスが、それを下水管路に設置した状態における底面、上面および側面を有しており、流水が分流する左右の両側面は円弧状に形成され、下流側の側面に水圧検出部の水圧検出面が設けられている。 In addition , the detection box has a bottom surface, an upper surface, and side surfaces in a state where it is installed in the sewer pipe, and both left and right side surfaces to which the flowing water is divided are formed in an arc shape, and a water pressure detection unit is formed on the downstream side surface. water pressure detection surface of that provided.

検出ボックスをこのような形状にすると、円弧状の両側面における流水がスムーズに下流側に流れるので、その部分の局部的な乱流発生が抑制され、測定データが安定する。   When the detection box has such a shape, the flowing water on both sides of the arc shape flows smoothly downstream, so that the generation of local turbulence in that portion is suppressed and the measurement data is stabilized.

本発明の第2の発明は、上記いずれかの発明の検出装置を用い、下水管路を流れる流水の温度と水圧を同時に所定の時間間隔で複数記録することにより、下水管路の流水検出を行う方法であって、前記検出装置を下水管の底部または下水管路に設置されたマンホールもしくは枡の底部に設置することを特徴とする。 According to a second aspect of the present invention, by using the detection device according to any one of the above-described aspects, a plurality of temperatures and water pressures of flowing water flowing through the sewage pipeline are simultaneously recorded at predetermined time intervals, thereby detecting the flowing water in the sewage pipeline. In the method, the detection device is installed at the bottom of a sewer pipe or the bottom of a manhole or dredger installed in the sewer pipe.

本方法によれば、予測できない温度変化または水位変化のような外乱要素が発生する下水管路においても、これら温度および水圧(水位)の両者の検出データを利用することにより、異常水浸入の有無だけを高精度で識別し判定することが可能になる。   According to this method, even in sewage pipelines where disturbance factors such as unpredictable temperature changes or water level changes occur, the presence or absence of abnormal water intrusion can be determined by using both temperature and water pressure (water level) detection data. Can be identified and determined with high accuracy.

本発明の流水検出装置を設置した下水管路の1例を示す系統図である。It is a systematic diagram which shows one example of the sewer pipe which installed the flowing water detection apparatus of this invention. 図1の下水管路に設置した本発明の流水検出装置の1例を模式的に示す側面図および平面図である。It is the side view and top view which show typically one example of the flowing water detection apparatus of this invention installed in the sewer pipe line of FIG. 本発明の流水検出装置を設置部材により下水管路に設置した状態を示す平面図および側面図である。It is the top view and side view which show the state which installed the flowing water detection apparatus of this invention in the sewer pipe line by the installation member. 本発明の流水検出装置の系統図である。It is a systematic diagram of the flowing water detection apparatus of the present invention.

次に図面により本発明の最良の形態を説明する。図1は本発明の流水検出装置(以下単に「検出装置」という)を設置した下水管路の1例を示す系統図である。下水管路1は本管2と枝管3を備え、流水は矢印のように枝管3と本管2の上流側から下流側に向かって流れる。本管2または枝管3の適宜の場所、または本管2と枝管3の合流個所には、メンテナンス用のマンホール4が設置される。 Next, the best mode of the present invention will be described with reference to the drawings. FIG. 1 is a system diagram showing an example of a sewage pipe in which a flowing water detection device (hereinafter simply referred to as “detection device”) of the present invention is installed. The sewer pipe 1 includes a main pipe 2 and a branch pipe 3, and flowing water flows from the upstream side to the downstream side of the branch pipe 3 and the main pipe 2 as indicated by arrows. Appropriate place of the main pipe 2 or the branch pipe 3, or the confluence point of the main pipe 2 and the branch pipe 3, the manhole 4 are installed for maintenance.

口径の大きい枝管3の一部には図示のように、より口径の小さい枝管3が合流する場合が多く、それら口径の小さい枝管3の上流側には、図示しない枡等が適宜設置されることが多い。本管2または枝管3、あるいはマンホール4の底面には本発明の検出装置5が設置される。   As shown in the figure, branch pipes 3 having a smaller diameter often join a part of the branch pipe 3 having a larger diameter, and a trough or the like (not shown) is appropriately installed on the upstream side of the branch pipe 3 having a smaller diameter. Often done. The detection device 5 of the present invention is installed on the bottom surface of the main pipe 2 or the branch pipe 3 or the manhole 4.

汚水用の下水管路の場合、例えば図1の右側の枝管3のA部分に雨水用の下水管路が誤接続された場合、その異常水の浸入場所の特定は、A部分を含む枝管3に沿った複数個所、およびそれより下流側の本管2への合流点付近における降雨データによる降雨時前後の汚水の温度変化および水圧(水位)変化の検出データの解析により行うことが好ましいが、最小限A部分を挟む前後の枝管3における2個所の温度変化および水圧(水位)変化の検出データを解析することにより行う。 In the case of a sewage pipe for sewage, for example, when a sewage pipe for rainwater is erroneously connected to part A of the right branch pipe 3 in FIG. It is preferable to perform analysis by analyzing detection data of temperature change and water pressure (water level) change of the sewage before and after the rain by rain data at a plurality of locations along the pipe 3 and in the vicinity of the junction to the main pipe 2 on the downstream side. However, it is performed by analyzing detection data of temperature changes and water pressure (water level) changes at two locations in the branch pipe 3 before and after the minimum portion A is sandwiched.

一方、図1の左側の枝管3のB部分が損傷して外部から地下水が浸入した場合、その異常水の浸入場所の特定は、最小限B部分を挟む枝管3の2個所の検出装置5の温度および水圧(水位)変化の検出データを解析することにより行われる。なおデータ解析は後述するデータ処理装置20で行われる。この地下水の浸入がある下水管路の流水の温度は異常水の浸入がない生活汚水だけの下水管路の温度より低くなる傾向があり、これらにより異常水の特定が可能になる。 On the other hand, when the B portion of the left branch pipe 3 in FIG. 1 is damaged and groundwater enters from the outside, the intrusion location of the abnormal water is specified by detecting devices at two locations of the branch pipe 3 sandwiching at least the B portion. 5 is performed by analyzing detection data of temperature and water pressure (water level) changes. Data analysis is performed by the data processing device 20 described later. The temperature of running water in the sewage pipeline with the infiltration of groundwater tends to be lower than the temperature of the sewage pipeline only for domestic sewage without the intrusion of abnormal water, which makes it possible to identify abnormal water.

一方、雨水用の下水管路の場合も同様で、例えば図1の右側の枝管3のA部分に汚水用の下水管路が誤接続された場合、あるいは図1の左側の枝管3のB部分が損傷して外部から地下水が浸入した場合は、正常な下水管路では雨水用であるので晴天時には下水管路内への雨水の浸入はないが、浸入がある下水管路では地下水や汚水の流入により検出データに変化が生じる。また降雨があった場合でも検出データに変化が生じる。これらにより異常水の浸入場所の特定が可能になる。   On the other hand, the same applies to the sewage pipe for rainwater. For example, when the sewage sewage pipe is misconnected to the portion A of the right branch pipe 3 in FIG. 1, or the left branch pipe 3 in FIG. If the B part is damaged and groundwater enters from the outside, normal rainwater pipes are used for rainwater, so rainwater does not enter the sewage pipes in fine weather. Changes in detection data occur due to inflow of sewage. Even if there is rainfall, the detection data changes. These make it possible to specify the location of abnormal water intrusion.

図2(a)は図1の下水管路1の底面1a上に設置した本発明の検出装置5の側面図で、図2(b)はその平面図である。検出装置5は検出ボックス6を有し、検出ボックス6は平断面が円形の形状とされ、平坦な上面6aと底面6bを有し、上流側からの流水の動水圧が加わる上流側の側面6d、上流側からの流水が分流して接する左右の両側面6cは、共に円弧状に形成されている。検出ボックス6の下流側の側面6dには水圧検出部8の水圧検出面8aが設けられる。   2A is a side view of the detection device 5 of the present invention installed on the bottom surface 1a of the sewage pipe 1 of FIG. 1, and FIG. 2B is a plan view thereof. The detection device 5 includes a detection box 6, and the detection box 6 has a circular cross section, a flat top surface 6 a and a bottom surface 6 b, and an upstream side surface 6 d to which the hydraulic pressure of running water from the upstream side is applied. The left and right side surfaces 6c, which are in contact with the flow of water flowing from the upstream side, are both formed in an arc shape. A water pressure detection surface 8 a of the water pressure detection unit 8 is provided on the downstream side surface 6 d of the detection box 6.

なお上流側の側面6dは円弧状以外に、台形状であってもよく、場合によっては流水方向に直角な平坦面であってもよい。そのような平坦面により乱流が多少発生したとしても、その乱流は下流側の左右の両側面6cにより軽減される。   The upstream side surface 6d may have a trapezoidal shape other than the arc shape, or may be a flat surface perpendicular to the flowing water depending on the case. Even if some turbulent flow is generated by such a flat surface, the turbulent flow is reduced by the left and right side surfaces 6c on the downstream side.

検出ボックス6は通常、硬質の樹脂材で水密性に形成されるが、場合によっては両側面6cは耐食性を有するステンレス等の金属材で形成することもできる。本発明の検出装置5は極めて小さく形成できる。実際に製造した例では、検出ボックス6の大きさは直径27mmφ、高さ12mm程度である。従って検出ボックス6の底面6bを平坦な面に形成しても、口径の著しく異なる下水管の円弧状の底面はそれに適合するほぼ平坦な面とみなせるので、該底面に安定して設置することができる。   The detection box 6 is usually formed of a hard resin material in a watertight manner, but in some cases, both side surfaces 6c may be formed of a metal material such as stainless steel having corrosion resistance. The detection device 5 of the present invention can be formed extremely small. In the actually manufactured example, the size of the detection box 6 is about 27 mm in diameter and about 12 mm in height. Therefore, even if the bottom surface 6b of the detection box 6 is formed on a flat surface, the arc-shaped bottom surface of the sewage pipe having a significantly different diameter can be regarded as a substantially flat surface suitable for it, so that it can be stably installed on the bottom surface. it can.

検出ボックス6の内部には温度検出部7、水圧検出部8、制御部11およびその他の部材が固定した状態で収容される。温度検出部7の温度検出面7aは検出ボックス6の上面6aの内面に配置され、水圧検出部8の本体は検出ボックス6の内部に配置され、その本体から延長する水圧検出面8aの部分が、前記側面6dから検出ボックス6の外部に露出して流水と接するようになっている。このように水圧検出面8aを露出させることによって高い精度で水圧を測定することが可能である。なお検出ボックス6は金属製または樹脂製とすることができる。   Inside the detection box 6, the temperature detection unit 7, the water pressure detection unit 8, the control unit 11 and other members are housed in a fixed state. The temperature detection surface 7a of the temperature detection unit 7 is disposed on the inner surface of the upper surface 6a of the detection box 6, the body of the water pressure detection unit 8 is disposed inside the detection box 6, and the portion of the water pressure detection surface 8a extending from the body is provided. The side 6d is exposed to the outside of the detection box 6 and comes into contact with running water. Thus, by exposing the water pressure detection surface 8a, it is possible to measure the water pressure with high accuracy. The detection box 6 can be made of metal or resin.

検出ボックス6の外側を流れる流水は、図2(a)(b)に矢印で示すように、検出ボックス6の上面6aおよび両側面6cに沿って流下するが、上面6a側は該面に沿って実質的に平行に流下し、両側面6c側は上流側から分流してスムーズな流れで該側面6cに沿って流下する。そのため検出ボックス6付近における局部的な乱流発生は極力抑制され、水圧検出面8aには上流側からの動水圧や乱流などの影響も実質的に受けず、水位に対応する静水圧のみ正確に印加される。   The flowing water flowing outside the detection box 6 flows down along the upper surface 6a and both side surfaces 6c of the detection box 6 as shown by arrows in FIGS. 2A and 2B, but the upper surface 6a side is along this surface. The two side surfaces 6c are divided from the upstream side and flow along the side surface 6c in a smooth flow. Therefore, local turbulence generation near the detection box 6 is suppressed as much as possible, and the hydrostatic pressure detection surface 8a is not substantially affected by dynamic water pressure or turbulent flow from the upstream side, and only the hydrostatic pressure corresponding to the water level is accurate. To be applied.

図3は本発明の検出装置5を設置部材10により下水管路1に設置した例を示す模式的な図である。なお図2と同じ部分には同一符号を付し、重複する説明は省略する。設置部材10は平坦な底板10aと、底板10aから垂直上方に延長する側板10bを有する。図3(a)示すにように、側板10bは流水の上流側に位置する部分が検出ボックス6の上流側の側面に合わせて円弧状に形成され、その円弧部の両端部から下流側にそれぞれ直線状に平坦な側板10bが互いに平行して延長され、その直線状の側板10bの両先端部はそれぞれ内側に小さい角度(例えば30〜40度程度の角度θ)で折り曲げられている。なお折り曲げられた側板10bの両先端部の間は充分に開口され、側板10bの高さより低い水位の場合でも、水圧検出面8aが流水に接するようになっている。このように直線状の側板10bの両先端部をそれぞれ内側に小さい角度で折り曲げることにより、側板10bの外側に沿って流下する流水による下流側の乱流発生を抑制している。これは図2における検出ボックス6の円弧状の両側面6cと同様な作用効果である。   FIG. 3 is a schematic view showing an example in which the detection device 5 of the present invention is installed in the sewer pipe 1 by the installation member 10. The same parts as those in FIG. 2 are denoted by the same reference numerals, and redundant description is omitted. The installation member 10 has a flat bottom plate 10a and a side plate 10b extending vertically upward from the bottom plate 10a. As shown in FIG. 3 (a), the side plate 10b is formed in an arc shape in accordance with the upstream side surface of the detection box 6 on the upstream side of the running water, and from both ends of the arc portion to the downstream side, respectively. The linear flat side plates 10b are extended in parallel with each other, and both end portions of the linear side plates 10b are bent inward at a small angle (for example, an angle θ of about 30 to 40 degrees). It should be noted that there is a sufficient opening between both ends of the bent side plate 10b, so that the water pressure detection surface 8a is in contact with running water even when the water level is lower than the height of the side plate 10b. In this way, by bending the both end portions of the linear side plate 10b inward at a small angle, the occurrence of turbulent flow on the downstream side due to flowing water flowing along the outside of the side plate 10b is suppressed. This is the same effect as the arc-shaped side surfaces 6c of the detection box 6 in FIG.

設置部材10は金属材または樹脂材で形成され、その底板10aの一部には必要に応じて下水管路1の底部1aに固定するためのボルト孔やロープ等への係合部などを設けることもできる。   The installation member 10 is formed of a metal material or a resin material, and a part of the bottom plate 10a is provided with a bolt hole for fixing to the bottom portion 1a of the sewage pipe 1 or an engagement portion with a rope or the like as necessary. You can also.

図3に示すような設置部材10を用いると、流水は設置部材10の側板10bの外面に沿ってスムーズに流下するので、水圧検出面8aにはより安定した静水圧が印加される。   When the installation member 10 as shown in FIG. 3 is used, the flowing water smoothly flows along the outer surface of the side plate 10b of the installation member 10, so that a more stable hydrostatic pressure is applied to the water pressure detection surface 8a.

図4は本発明の検出装置5の系統図である。検出装置5は温度検出部7、水圧検出部8、制御部11、記憶部12および送受信部13を備えている。制御部11はCPU等により構成され、アナログデジタル変換部14を経由して温度検出部7、水圧検出部8および送受信部13に接続される。記憶部12は温度及び水圧の検出データを同時に所定の時間間隔で複数記憶するもので、例えば512Kbitの容量を有して測定点数12000程度記憶できるようになっている。記憶部12で温度及び水圧の検出データを同時に所定の時間間隔で複数記憶するため時計部15が設けられ、例えば測定間隔が1分〜256分間隔に設定された記憶信号を制御部11に送り、制御部11からその信号を記憶部12に送る。   FIG. 4 is a system diagram of the detection device 5 of the present invention. The detection device 5 includes a temperature detection unit 7, a water pressure detection unit 8, a control unit 11, a storage unit 12, and a transmission / reception unit 13. The control unit 11 includes a CPU and the like, and is connected to the temperature detection unit 7, the water pressure detection unit 8, and the transmission / reception unit 13 via the analog / digital conversion unit 14. The storage unit 12 stores a plurality of temperature and water pressure detection data simultaneously at predetermined time intervals, and has a capacity of, for example, 512 Kbit and can store about 12,000 measurement points. A clock unit 15 is provided to store a plurality of temperature and water pressure detection data at a predetermined time interval in the storage unit 12, and for example, a storage signal in which a measurement interval is set between 1 minute and 256 minutes is sent to the control unit 11. The control unit 11 sends the signal to the storage unit 12.

電源部16は制御部11及びその他の部分に電源を供給するもので、例えばリチウム電池が使用される。送受信部13はアンテナ部13aを有し、アンテナ部13aを通して外部のデータ処理装置20と電磁波通信を行う。なお電源部16を除くこれらの部分は、例えば同一の集積基板上に形成することができ、その基板の周囲が樹脂で密封された状態で検出ボック6の内部に固定される。   The power supply unit 16 supplies power to the control unit 11 and other parts. For example, a lithium battery is used. The transmission / reception unit 13 includes an antenna unit 13a, and performs electromagnetic wave communication with the external data processing device 20 through the antenna unit 13a. These parts excluding the power supply unit 16 can be formed on, for example, the same integrated substrate, and are fixed inside the detection box 6 with the periphery of the substrate sealed with resin.

データ処理装置20はコンピュータシステムにより構成され、前記送受信部13と電磁波通信するためのアンテナと送受信部を備えている。多数の検出装置5を下水管路1に設置する際に、予めデータ処理装置20から各検出装置5に測定間隔等の情報を電磁波通信により伝送して入力しておき、データ取得時には各検出装置5に記憶されたデータを電磁波通信によりデータ処理装置20に伝送してそのデータ処理装置20内部の記憶部に記憶する。そして降雨があった日時の降雨前、降雨中、降雨後での温度、水圧(水位)の蓄積データを比較することで、異常水個所を検出することができる。なお記録データとの関連性をデータ処理装置20に予め各下水管路の季節や時間ごとの温度、水位等のデータがその記憶部に蓄積しておくことで、異常個所を特定することができる。従ってその蓄積データと各検出部5から受けた温度および水圧(水位)の検出データを比較し、比較した結果データを出力部に出力することが可能となる。 The data processing device 20 is configured by a computer system, and includes an antenna and a transmission / reception unit for electromagnetic wave communication with the transmission / reception unit 13. When installing a large number of detection devices 5 in the sewer pipe 1, information such as measurement intervals is transmitted from the data processing device 20 to each detection device 5 in advance by electromagnetic wave communication, and each detection device is acquired at the time of data acquisition. The data stored in 5 is transmitted to the data processing device 20 by electromagnetic wave communication and stored in the storage unit inside the data processing device 20. The abnormal water location can be detected by comparing the accumulated data of the temperature and water pressure (water level) before, during and after the rain at the date and time of the rain. It is to be noted that the abnormality portion can be specified by storing the data, such as the season of each sewage pipeline, the temperature for each hour, the water level, etc. in the storage unit in advance in the data processing device 20 with the relationship with the recorded data. . Therefore, it is possible to compare the accumulated data with the detected data of the temperature and water pressure (water level) received from each detection unit 5 and output the comparison result data to the output unit.

本発明の下水管路における流水状態の検出装置は、下水管路に本来の流水と異なる流水(異常水)が浸入場所を特定するために利用できる。   The apparatus for detecting a flowing water state in a sewage pipe of the present invention can be used to identify a location where a flowing water (abnormal water) different from the original flowing water enters the sewage pipe.

1 下水管路
1a 底面
2 本管
3 枝管
4 マンホール
5 検出装置
6 検出ボックス
6a 上面
6b 底面
6c、6d 側面
7 温度検出部
7a 温度検出面
8 水圧検出部
8a 水圧検出面
10 設置部材
10a 底板
10b 側板
11 制御部
12 記憶部
13 送受信部
13a アンテナ部
14 アナログデジタル変換部
15 時計部
16 電源部
20 データ処理装置
DESCRIPTION OF SYMBOLS 1 Sewer pipe 1a Bottom surface 2 Main pipe 3 Branch pipe 4 Manhole 5 Detection apparatus 6 Detection box 6a Upper surface 6b Bottom surface 6c, 6d Side surface 7 Temperature detection part 7a Temperature detection surface 8 Water pressure detection part 8a Water pressure detection surface 10 Installation member 10a Bottom plate 10b Side plate 11 Control unit 12 Storage unit 13 Transmission / reception unit 13a Antenna unit 14 Analog-digital conversion unit 15 Clock unit 16 Power supply unit 20 Data processing device

Claims (2)

下水管路の底部に設置して下水管路の流水を検出する装置であって、温度検出部、水圧検出部、制御部、温度及び水圧の検出値を同時に所定の時間間隔で複数記憶する記憶部、送受信部および水密性の検出ボックスを備え、
前記検出ボックスの内部に前記温度検出部、前記水圧検出部、前記制御部、送受信部および記憶部が設けられ、
前記検出ボックスは、それを下水管路に設置した状態における底面、上面および側面を有し、流水が分流する左右の両側面は円弧状に形成され、
前記検出ボックスを下水管路の底部に設置した際、流水の下流側に位置する前記検出ボックスの側面に前記水圧検出部の検出面が設けられ、その検出面で該検出ボックス下流側の水圧変化を検出することにより、下水管路における流水の水位変化に換算できるようになっており、検出ボックス設置位置における流水の温度と水圧を所定の時間間隔で同時に検出して検出データを記憶部に記憶できるように構成されていることを特徴とする下水管路に発生する異常水検出に用いられる下水管路の流水検出装置。
A device installed at the bottom of a sewage pipeline to detect the flowing water in the sewage pipeline, and a temperature detection unit, a water pressure detection unit, a control unit, and a memory for storing a plurality of detected values of temperature and water pressure simultaneously at predetermined time intervals Unit, transmitter / receiver unit and watertight detection box,
The temperature detection unit, the water pressure detection unit, the control unit, the transmission / reception unit and the storage unit are provided inside the detection box,
The detection box has a bottom surface, an upper surface and a side surface in a state where it is installed in a sewer pipe, and both left and right side surfaces from which running water is diverted are formed in an arc shape
When the detection box is installed at the bottom of the sewer pipe, a detection surface of the water pressure detection unit is provided on a side surface of the detection box located on the downstream side of running water, and the water pressure change on the downstream side of the detection box on the detection surface. the by detecting being adapted to be converted into flowing water of the water level changes in the sewer pipe, the detection data detected simultaneously flowing water temperature and water pressure in the detection box installation position at a predetermined time interval in the storage unit A flowing water detection device for a sewage pipe used for detecting abnormal water generated in a sewage pipe, which is configured to be memorized .
請求項1に記載の流水検出装置を用い、下水管路を流れる流水の温度と水圧の検出値を同時に所定の時間間隔で複数記憶することにより、下水管路の流水検出を行う方法であって、前記検出装置を下水管の底部または下水管路に設置されたマンホールもしくは枡の底部に設置することを特徴とする下水管路の流水検出方法。 A method for detecting the flow of water in a sewage pipeline by simultaneously storing a plurality of detected values of the temperature and water pressure of the flowing water flowing through the sewage pipeline at predetermined time intervals using the running water detection device according to claim 1. A method for detecting the flowing water in a sewage pipe, characterized in that the detection device is installed at the bottom of a sewage pipe or at the bottom of a manhole or tub installed in the sewage pipe.
JP2015033471A 2015-02-24 2015-02-24 Sewage pipe flowing water detection device and detection method Active JP5842071B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015033471A JP5842071B1 (en) 2015-02-24 2015-02-24 Sewage pipe flowing water detection device and detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015033471A JP5842071B1 (en) 2015-02-24 2015-02-24 Sewage pipe flowing water detection device and detection method

Publications (2)

Publication Number Publication Date
JP5842071B1 true JP5842071B1 (en) 2016-01-13
JP2016156158A JP2016156158A (en) 2016-09-01

Family

ID=55073283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015033471A Active JP5842071B1 (en) 2015-02-24 2015-02-24 Sewage pipe flowing water detection device and detection method

Country Status (1)

Country Link
JP (1) JP5842071B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017138190A (en) * 2016-02-03 2017-08-10 富士通株式会社 Water-level measurement device, method, and program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101879704B1 (en) * 2016-12-28 2018-07-18 주식회사 수인테크 Method and system for diagnosing sewage pipe line using water temperature difference and water level difference

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010203964A (en) * 2009-03-04 2010-09-16 Toshiba Corp Monitoring control system of sewerage facility
JP4756092B2 (en) * 2009-11-13 2011-08-24 株式会社ハネックス Temperature recording method for identification of abnormal water intrusion locations in sewer pipes
JP2013170832A (en) * 2012-02-17 2013-09-02 Shinkosha:Kk Optical fiber liquid level switch

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010203964A (en) * 2009-03-04 2010-09-16 Toshiba Corp Monitoring control system of sewerage facility
JP4756092B2 (en) * 2009-11-13 2011-08-24 株式会社ハネックス Temperature recording method for identification of abnormal water intrusion locations in sewer pipes
JP2013170832A (en) * 2012-02-17 2013-09-02 Shinkosha:Kk Optical fiber liquid level switch

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017138190A (en) * 2016-02-03 2017-08-10 富士通株式会社 Water-level measurement device, method, and program

Also Published As

Publication number Publication date
JP2016156158A (en) 2016-09-01

Similar Documents

Publication Publication Date Title
KR100828968B1 (en) Method connected to gis for maintaining and managing sewage pipe and system with function thereof
Le Gauffre et al. Performance indicators and multicriteria decision support for sewer asset management
Beheshti et al. Detection of extraneous water ingress into the sewer system using tandem methods–a case study in Trondheim city
US9068866B2 (en) Micromonitoring apparatus and method
JP5842071B1 (en) Sewage pipe flowing water detection device and detection method
Pereira et al. Improving operational management of wastewater systems. A case study
Jiang et al. Quantifying rainfall-derived inflow from private foundation drains in sanitary sewers: case study in London, Ontario, Canada
Heiderscheidt et al. Stable water isotopes as a tool for assessing groundwater infiltration in sewage networks in cold climate conditions
Yap et al. Assessment on inflow and infiltration in sewerage systems of Kuantan, Pahang
KR100869052B1 (en) Pipe for easy checking of detecting a water leakage, breakage, and pipeline location
KR100538445B1 (en) Total management/monitoring system for sewer and method thereof
KR101659310B1 (en) System and method for managing drain pipes
Sumer et al. Real-time detection of sanitary sewer overflows using neural networks and time series analysis
JP4756092B2 (en) Temperature recording method for identification of abnormal water intrusion locations in sewer pipes
JP5925585B2 (en) Main line manhole emergency simulation system, method and program
KR102080066B1 (en) System for monitoring illegal waste- water discharge
Kaur et al. Reducing the risk of basement flooding through building-and lot-scale flood mitigation approaches: performance of foundation drainage systems
Panasiuk et al. Identifying sources of infiltration and inflow in sanitary sewers in a northern community: comparative assessment of selected methods
Chen et al. Performance evaluation of sewer system upgrade in an old residential area in Ningbo, China
Sebo et al. Influence of Sewershed Characteristics on Rainfall‐Derived Inflow and Infiltration
Valerio et al. Monitoring phosphorus in the tributaries of a deep lake from the perspective of the receiving water body
Ahm et al. Rainfall measurement based on in-situ storm drainage flow sensors
Shaw The development of contributor hydrographs for sanitary sewers and their use in sewer design
Riechel et al. A network of low-cost temperature sensors for real-time monitoring of combined sewer overflow
Raimondi et al. Uncertainty on flow rate and temperature measurement for the detection of illicit flows in sewers

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151116

R150 Certificate of patent or registration of utility model

Ref document number: 5842071

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250