JP2000230224A - Water surface grade observation system - Google Patents

Water surface grade observation system

Info

Publication number
JP2000230224A
JP2000230224A JP11033336A JP3333699A JP2000230224A JP 2000230224 A JP2000230224 A JP 2000230224A JP 11033336 A JP11033336 A JP 11033336A JP 3333699 A JP3333699 A JP 3333699A JP 2000230224 A JP2000230224 A JP 2000230224A
Authority
JP
Japan
Prior art keywords
water
water level
difference
potential difference
water surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11033336A
Other languages
Japanese (ja)
Other versions
JP3546349B2 (en
Inventor
Tatsuo Obuchi
達雄 大渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIYAZAKI JOHO SHORI CENTER KK
MIYAZAKI JOHO SHORI CT KK
Original Assignee
MIYAZAKI JOHO SHORI CENTER KK
MIYAZAKI JOHO SHORI CT KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIYAZAKI JOHO SHORI CENTER KK, MIYAZAKI JOHO SHORI CT KK filed Critical MIYAZAKI JOHO SHORI CENTER KK
Priority to JP03333699A priority Critical patent/JP3546349B2/en
Publication of JP2000230224A publication Critical patent/JP2000230224A/en
Application granted granted Critical
Publication of JP3546349B2 publication Critical patent/JP3546349B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water surface grade observation system having a simple structure, capable of keeping a stable operation for a long period, and allowing an operator to easily judge the water level difference and current direction. SOLUTION: This system is constituted of hydraulic water level gauges 1A, 1B arranged at two positions in the longitudinal direction and measuring the water depths at two positions, a potential difference converting section 2 converting the signals of the water depths detected by the hydraulic water level gauges 1A, 1B into a potential difference matched with the water level elevation difference, a data processing device 3 automatically calculating the water surface grade, current direction and flow rate from the potential difference (water level difference), and a display device 11 visually displaying fine changes of the current direction and water level difference required for the gate opening/closing operations of lifting pipes of a drain machine site.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、河川計画・河川管
理(主に水防活動)に使用され、河川の水面勾配を連続
して自動的に観測する装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus used for river planning and river management (mainly for flood control), and for continuously and automatically observing the water surface gradient of a river.

【0002】[0002]

【従来の技術】従来、河川流量を連続・自動的に計測す
る方法として、水位のみを測定量とするH−Q曲線方式
・測水施設方式の他、流速を対象変量とするドップラー
方式・水面勾配方式・画像解析方式がある。現状は、機
械的に測定が簡易で、特別な構造物を要しないH−Q曲
線方式が主流となっているが、この方式は、水位と流量
との間に一意性がある場合にのみ適用可能であり、背水
影響を受ける地点では適用出来ないため、氾濫や汚染等
の問題を抱える河川では有効な観測値を収集できないと
いう問題があった。流速測定方法の上記3手法のうち、
水面勾配方式は原理的な有効性が認められ、一部の手法
は特許が取得されて実河川での実績もある(特許第14
48747号)。
2. Description of the Related Art Conventionally, as a method for continuously and automatically measuring a river flow, in addition to an HQ curve method and a water measuring facility method using only a water level as a measurement amount, a Doppler method using a flow velocity as a target variable and a water surface. There are gradient method and image analysis method. At present, the HQ curve method, which is mechanically simple and does not require special structures, is mainly used, but this method is only applicable when there is uniqueness between water level and discharge. Because it is possible and cannot be applied at locations affected by backwater, there is a problem that effective observation values cannot be collected in rivers that have problems such as flooding and pollution. Of the above three methods of measuring the flow velocity,
The water surface gradient method has been found to be effective in principle, and some methods have been patented and have been used in actual rivers (Patent No. 14).
No. 48747).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、測定方
法が河川の縦断方向2地点に導水パイプを敷設し、一箇
所に水を集める「水面差再現型」であったため、パイプ
接合箇所の水密・気密保持が物理的に困難で、繁雑な保
守作業を要するという欠点があった。
However, since the measuring method was a "water level difference reproduction type" in which a water pipe was laid at two points in the longitudinal direction of the river and water was collected at one point, the watertightness and airtightness of the pipe joints were measured. There is a drawback that holding is physically difficult and complicated maintenance work is required.

【0004】上記「水面差再現型」測定装置を、実河川
に設置して運用した経過では、観測データが安定するま
でに、最低1ヶ月、安定後1〜2週間毎の定期保守を継
続して得られる正常動作保持期間が平均2〜3ヶ月で、
実用上採用し難いものであった。また、排水機揚・桶門
・桶管の水門操作は、本川・支川の水位差(特にその方
向である流向)を基準に、本川から支川への逆流を起こ
さないように操作される必要があるが、現状は操作員の
目視による判断によっているのが一般的であり、特に夜
間は可視範囲が限られ、人為的操作ミスによる氾濫事故
が毎年報告されている。
When the above-mentioned “water level difference reproduction type” measuring device is installed and operated on an actual river, regular maintenance is continued for at least one month until the observation data becomes stable, and every one to two weeks after the stability. The normal operation retention period obtained is an average of 2 to 3 months,
It was difficult to adopt practically. In addition, the drainage operation of the drainage pump / Oke-mon / Oke-pipe is operated based on the water level difference between the Honkawa and tributaries (especially the direction of flow), so that there is no backflow from the Honkawa to the tributaries. Although it is necessary, at present the situation is generally determined by the visual judgment of the operator, especially at night, the visibility range is limited, and flooding accidents due to human error are reported every year.

【0005】従来の「流向計」は、流水方向を直接検知す
るセンサー方式と、ボールの動きから方向を判断するボ
ール方式に大別されるが、従来方式の水面勾配計と同じ
く導水パイプによる「水面差再現型」であり、通水性保
持に同様の困難さがある。また、検知された流向は、数
値データとして編集・表示してもゲート操作の情報とし
ては判別しずらいという問題があった。本発明は、上記
従来技術の問題点に鑑み、水面の状態には変化を加え
ず、構造が簡単で安定動作を長期間保つことができると
共に、操作員が水位差・流向を容易に判別することがで
きる水面勾配観測システムを提供することを目的とする
ものである。
[0005] Conventional "flow direction meters" are roughly classified into a sensor type for directly detecting the direction of flowing water and a ball type for judging the direction from the movement of the ball. It is a "water level difference reproduction type" and has the same difficulty in maintaining water permeability. Further, there is a problem that even if the detected flow direction is edited and displayed as numerical data, it is difficult to determine it as information on a gate operation. The present invention has been made in view of the above-mentioned problems of the prior art, and does not change the state of the water surface, the structure is simple, stable operation can be maintained for a long time, and the operator can easily determine the water level difference and flow direction. It is an object of the present invention to provide a water surface gradient observing system capable of performing the above.

【0006】[0006]

【課題を解決するための手段】このため本発明の水面勾
配観測システムは、縦断方向2地点に配置され、この2
地点の水深を測定する水圧式水位計と、水圧式水位計が
検出した水深信号を水面標高差に整合した電位差に変換
する電位差変換部と、前記電位差(水位差)から水面勾
配・流向・流量の自動計算を行うデータ処理装置とから
なることを第1の特徴とするものである。
Therefore, the water surface gradient observation system of the present invention is disposed at two points in the longitudinal direction.
A water pressure gauge for measuring the water depth at a point, a potential difference conversion unit for converting a water depth signal detected by the water pressure gauge to a potential difference matched to a water level elevation difference, and a water surface gradient, flow direction, and flow rate from the potential difference (water level difference). And a data processing device for performing automatic calculation of

【0007】また、請求項1記載の水面勾配観測システ
ムにより得られた電位差信号を回路分岐して、排水機場
・桶管のゲート開閉操作上必要となる、流向・水位差の
微小な変化を視覚的に表現する表示装置を設けたことを
第2の特徴とするものである。
In addition, the potential difference signal obtained by the water surface gradient observation system according to the first aspect is branched into circuits, and minute changes in flow direction and water level difference required for opening and closing the gate of the drainage station / tub pipe are visually recognized. A second feature is that a display device that expresses the image is provided.

【0008】[0008]

【発明の実施の形態】次に、図面に示す実施例に基づい
て本発明の実施の形態を説明する。本発明では、水圧式
水位計の水位と信号電圧関係に高い直線性があることを
利用して、水位差を電位差として利用する「電位差変換
型」の観測方式を開発した。本方式での検知対象は、河
川の自然状態での水深に対応した水圧であり、センサー
として、河川・井戸一般に普及している水圧式水位計を
採用しているため、河川流水を人工的に制御する必要が
なく、従来方式の水面勾配計で要した保守作業の繁雑さ
から解放される。
Next, an embodiment of the present invention will be described with reference to an embodiment shown in the drawings. The present invention has developed a "potential difference conversion type" observation method using a water level difference as a potential difference by utilizing the fact that the water level of a water pressure type water level meter has a high linearity with the signal voltage relationship. The detection target in this method is the water pressure corresponding to the water depth in the natural state of the river.Since a water pressure gauge that is widely used in rivers and wells is used as a sensor, the river flow is artificially detected. There is no need for control, and the complexity of maintenance work required by conventional water surface gradiometers is relieved.

【0009】[0009]

【実施例】図1は本発明に係る水面勾配測定の原理を示
す説明図、図2は本発明システムの概要を示すブロック
構成図であり、1A及び1Bは河川の縦断方向2地点、
すなわち、上流側と下流側に各々設置される水圧式水位
計、2は水圧式水位計が検出した水深の信号(水位差の
電圧信号)を水面標高差に整合した電位差に変換する電
位差変換部である。
1 is an explanatory view showing the principle of water surface gradient measurement according to the present invention, and FIG. 2 is a block diagram showing the outline of the system of the present invention. 1A and 1B show two points in the longitudinal direction of a river.
That is, a hydraulic pressure gauge installed on each of the upstream and downstream sides and a potential difference conversion unit 2 for converting a signal of the water depth (voltage signal of the water level difference) detected by the hydraulic pressure gauge into a potential difference matched with the water level elevation difference. It is.

【0010】データ処理装置3は、電位差変換部2から
入力された電位差信号を検知する検知入力部4と、得ら
れた電位差信号から水面勾配・流向・流量を自動的に演
算して算出し水文情報に変換するデータ変換部5と、各
データを数値情報に変換し、記憶すると共に、通信回線
の制御・音声変換制御・日付け・時間制御等を行うデー
タ制御部6とから構成されており、得られた水文情報を
電話回線7を通じて受信所8のパソコン9に通信できる
ようにされている。10はデータ出力用のプリンターで
ある。
The data processing device 3 automatically detects and calculates a water surface gradient, a flow direction, and a flow rate from the obtained potential difference signal and a detection input unit 4 for detecting the potential difference signal input from the potential difference conversion unit 2. It comprises a data conversion unit 5 for converting information into information, and a data control unit 6 for converting each data into numerical information, storing the data, and performing communication line control, voice conversion control, date and time control, and the like. The obtained hydrological information can be communicated to the personal computer 9 of the receiving station 8 through the telephone line 7. Reference numeral 10 denotes a data output printer.

【0011】また、データ処理装置3の検知入力部4に
は雨量計12及びゲート開閉検知器13が接続されてい
る。ここで、流向は、本川・支川合流の2地点での水位
差を検知して求めるが、水位差は連続アナログ値として
観測されるので、合流関係の変化が経過的に把握でき、
ゲート操作のタイミングが図り易い。しかしながら、検
知された流向は、数値データとして編集・表示してもゲ
ート操作の情報としては判別しずらい。そこで、水位差
・流向を視覚的に通知する屋外作業員向けの表示方法と
して、電位差変換部2から信号分岐したライトバー型電
光表示板11を設けた。
A rain gauge 12 and a gate opening / closing detector 13 are connected to the detection input unit 4 of the data processing device 3. Here, the flow direction is determined by detecting the water level difference at two points of the confluence of the Honkawa and the tributaries. Since the water level difference is observed as a continuous analog value, the change of the merging relation can be grasped over time,
The timing of the gate operation is easy to achieve. However, even if the detected flow direction is edited and displayed as numerical data, it is difficult to determine it as information on the gate operation. Therefore, as a display method for an outdoor worker who visually notifies the water level difference and the flow direction, a light bar type electronic display panel 11 branched from the potential difference conversion unit 2 is provided.

【0012】水面勾配Iは、区間距離Lの2断面間で水
位差△Hを測定し、I=△H/Lとして求める。水位差
を電位差として処理するためには、測量による水面標高
差を電位差変換結果として較正する機能を有する変換手
段を要するが、2系統の水圧式水位計の電圧信号を入力
し、新たな水位差信号として出力する電位差変換部を開
発して、水位差信号の零点と最大検知水位差に対応した
スパン調整機能をもたせることで解決した。
The water surface gradient I is obtained by measuring a water level difference ΔH between two sections having a section distance L, and assuming I = ΔH / L. In order to process the water level difference as a potential difference, a conversion means having a function of calibrating the water level difference obtained by surveying as a potential difference conversion result is required, but the voltage signal of the two hydraulic pressure gauges is input and a new water level difference is inputted. The problem was solved by developing a potential difference converter that outputs a signal and providing a span adjustment function corresponding to the zero point of the water level difference signal and the maximum detected water level difference.

【0013】図1に示すように、E・Eは2台の水
位計の水面から機械零点までの各々の水深に対応した信
号電圧、Sは機械零点の誤差及び水位計零点標高差を調
整するための電位シフト値である。ここで、次式(1) △H=E−(E−S)……(1) から水位差測定値△Hが得られ、△Hから水面勾配・流
向(水面勾配の正負)が計算される。流量は、水位と水
面勾配を独立変数とする水理式からの計算結果であり、
以上の変換・計算を処理し、観測データとして編集・記
憶すると共に、外部受信機器との通信を介してデータを
提供するデータ処理装置5によって、一連の動作が制御
される(図2参照)。
As shown in FIG. 1, E 1 and E 2 are signal voltages corresponding to the respective water depths from the water level of the two water level gauges to the mechanical zero point, and S is the error of the mechanical zero point and the altitude difference of the water level gauge. This is a potential shift value for adjustment. Here, the measured water level difference ΔH is obtained from the following equation (1) ΔH = E 1 − (E 2 −S) (1), and the water surface gradient / flow direction (positive or negative of the water surface gradient) is obtained from ΔH. Is calculated. Discharge is the result of calculation from the hydraulic equation using water level and water surface gradient as independent variables,
A series of operations are controlled by the data processing device 5 that processes the above conversion and calculation, edits and stores the data as observation data, and provides the data through communication with an external receiving device (see FIG. 2).

【0014】水面勾配I及び下流側水位Hを基準とし
た断面特性を用いて、次式(2)及び(3)による等流
計算によって流量が求まる。 v=1/n*I1/2*R2/3 ……(2) Q=A*v …………………(3) 水面勾配方式の妥当性を検証するために、直線・同一断
面の3面ガラス張で勾配が可動な実験水路に水位計2台
を敷設し、流下流量と水面勾配による計算流量との比較
を行い、図3のとおり良好な対応関係が求められた。
尚、流量は三角堰を設けた水槽からの溢流によって発生
させ、水理式により流下流量を把握しながらランダムな
時間変化をつけた。
[0014] Using the cross-sectional characteristics as water gradient I and the reference downstream water level H 2, flow rate is determined by such flow calculation using equation (2) and (3). v = 1 / n * I 1/2 * R 2/3 (2) Q = A * v (3) To verify the validity of the water surface gradient method, straight lines and the same Two water level gauges were laid in an experimental waterway with a three-sided glass surface and a movable gradient, and a comparison was made between the flow rate and the calculated flow rate based on the water level gradient, and a good correspondence was obtained as shown in FIG.
The flow rate was generated by overflow from a water tank provided with a triangular weir, and a random time change was given while grasping the flow rate by a hydraulic equation.

【0015】水面勾配方式の実河川への応用を検証する
ために、清武川水系熊野川の直線・整正河道を選定し雨
量・水位・水面勾配観測所を新設し、水面勾配を連続・
自動計測すると共に、平成10年10月12日及び10
月17日の両日に渡り、浮子流過速度測定による通常の
洪水流量観測を実施し、水位・水面勾配計測値からの流
量計算値との比較を行った。浮子は水位の変動に応じて
吃水長30cm・50cmの2種類を使い分けた。観測
点数は、1(川幅は約5m)で較正係数は標準値の0.
88とした。上記式(2)における粗度係数nは未知で
あり、nが確定されれば水位・水面勾配の関数値として
流速が計算される。式(2)を変形すると、 n=I1/2*R2/3/v……(4) となり、計測記録IとHから求められる径深R及びvが
与えられれば、粗度係数nが計算される。ここで、vに
洪水流量観測時の流速を当てはめるとnが得られる。実
測流量Qと計測記録からの粗度係数nの関係を図4に示
したが、各流量実測値に対してほぼ理論値に近い数値で
ある0.026を平均的に示しながら安定した分布とな
っており、熊野川での水面勾配方式の妥当性を認めるに
足る結果となった。nの計算結果の平均値をもって熊野
川の粗度係数とし、式(2)から改めて計算した流量Q
と洪水流量観測結果Qを比較して図5に示すグラフを
作成したが、図4のグラフから判るように、先の式
(4)で粗度係数の分布が一様であったことを反映し
て、一致性が高い。
In order to verify the application of the water surface gradient method to an actual river, a straight line / rectification river channel of the Kumano River of the Kiyotake River water system was selected, and a rainfall / water level / water surface gradient observation station was newly established.
In addition to automatic measurement, October 12 and 1998
Over the two days of March 17, normal flood flow observations were made by measuring the overdraft flow velocity, and the results were compared with those calculated from water level and water surface gradient measurements. Two types of floats were used, with draft lengths of 30 cm and 50 cm, depending on the fluctuation of the water level. The number of observation points is 1 (river width is about 5m) and the calibration coefficient is the standard value of 0.
88. The roughness coefficient n in the above equation (2) is unknown, and when n is determined, the flow velocity is calculated as a function value of the water level / water surface gradient. When the equation (2) is modified, n = I 1/2 * R 2/3 / v (4). Is calculated. Here, n is obtained by applying the flow velocity at the time of flood flow observation to v. FIG. 4 shows the relationship between the measured flow rate Q and the roughness coefficient n from the measurement record. The result was enough to confirm the validity of the water gradient method in the Kumano River. The average value of the calculation results of n is used as the roughness coefficient of Kumano River, and the flow rate Q newly calculated from equation (2)
And comparing the flood flow observations Q 0 has been created the graph shown in FIG. 5, as can be seen from the graph of FIG. 4, the distribution of the roughness coefficient in the preceding formula (4) were uniformly Reflecting, high consistency.

【0016】水面勾配式による流量観測は、流量が水位
(および水位から導かれる断面特性)と水面勾配を独立
変数とする関数関係にあることに着眼した手法である。
図6は、従来観測成果として報告されることのほとんど
なかった水面勾配と、流量との対応を散布図にしたグラ
フだが、減水期に比べて増水期の勾配が急になる傾向が
認められ、水面勾配の流水に対する影響が現れていて本
手法の有効性を裏付けている。
The flow rate observation using the water surface gradient formula is a technique that focuses on the fact that the flow rate has a functional relationship with the water level (and the cross-sectional characteristics derived from the water level) and the water surface gradient as independent variables.
Fig. 6 is a scatter plot of the relationship between the water surface gradient and the flow rate, which was rarely reported as a result of conventional observation. The effect of the water surface gradient on the running water has appeared, confirming the effectiveness of this method.

【0017】熊野川に新設した観測所は、オンライン化
のための電源・電話引き込み工事を除いては工期が一日
で済み、設置後すぐに安定した装置状態が保持された。
定常の保守作業は、洪水流量観測のための河道上除草の
みで、観測装置本体は、現在まで保守を要することなく
稼動中である。水面勾配方式は、現段階では従来報告さ
れている水面勾配計に比して、設置性・保守性の問題点
をある程度解決する方法となり得る。
The construction of the new observatory in Kumanogawa was completed in one day except for the power supply and telephone service for online operation, and the stable equipment status was maintained immediately after installation.
The regular maintenance work is only weeding on the river channel for flood flow observation, and the observation device body has been operating without any maintenance until now. At this stage, the water surface gradient method can be a method of solving the problems of installation and maintainability to some extent as compared with the water surface gradiometer that has been conventionally reported.

【0018】[0018]

【発明の効果】以上説明したように、本発明の水面勾配
観測システムは以下の優れた効果を有する。 (1)観測・調査費用が確保され難いため、河川計画に
必要な観測流量データが絶対的に不足している一方、洪
水被害額の構成比でみると、その割合が年々増加してい
る中小河川に対して、導入可能な観測手段の提供が可能
となる。 (2)上記(1)の結果、河川計画が理論値のみによっ
て策定されることによる過大工事や流過能力不足を招来
しない適正計画の立案が可能となる。 (3)現状の水防活動での河川情報としては、「警戒水
位」等、水位を唯一の基準としているが、上流からの急
激な流入量増大や、下流側湛水による急激な水位上昇
は、水面勾配に現れ、短期的な河川氾濫の危険予測指標
となる他、流域の長期的な変化を把握する基礎情報とな
る。 (4)本方式では、導水管の敷設がないため、測定2地
点間の設置関係が自由であり、排水機揚・桶門・桶管等
の堤体を跨いだ形態での本川・支川の水位差測定が可能
となる。特に支川側への逆流を起こさせないゲート操作
のために必要な流向検知が可能となり、操作員の負担を
軽減し、誤操作を防ぐことができる。
As described above, the water surface gradient observation system of the present invention has the following excellent effects. (1) Observation and survey costs are difficult to secure, so there is absolutely a shortage of observation flow data required for river planning. On the other hand, the proportion of flood damage amount is increasing every year. Observation means that can be introduced to rivers can be provided. (2) As a result of the above (1), it is possible to make an appropriate plan that does not lead to excessive construction or insufficient flow capacity due to the river plan being formulated based only on theoretical values. (3) As the river information in the current flood control activities, the water level is the only criterion, such as the "warning water level". However, a sudden increase in the inflow from the upstream and a sudden rise in Appearing on the water surface gradient, it can be used as a predictor of the risk of river inundation in the short term, and can be used as basic information to understand long-term changes in the basin. (4) In this method, since there is no laying of water pipes, the installation relationship between the two measurement points is free, and the Honkawa / Shikawa in the form of straddling the levee such as drainage pump, tub gate, tub pipe, etc. Water level difference measurement becomes possible. In particular, it is possible to detect a flow direction necessary for a gate operation that does not cause a backflow to the tributary side, thereby reducing a burden on an operator and preventing an erroneous operation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る水面勾配測定の原理を示す説明図
である。
FIG. 1 is an explanatory diagram showing the principle of water surface gradient measurement according to the present invention.

【図2】本発明システムの概要を示すブロック構成図で
ある。
FIG. 2 is a block diagram showing the outline of the system of the present invention.

【図3】実験水路における実測流量と水面勾配方式によ
る計算流量との比較を示すグラフである。
FIG. 3 is a graph showing a comparison between an actually measured flow rate in an experimental channel and a calculated flow rate by a water surface gradient method.

【図4】実河川(熊野川)における実測流量と粗度係数
の関係を示すグラフである。
FIG. 4 is a graph showing a relationship between an actually measured flow rate and a roughness coefficient in an actual river (Kumano River).

【図5】実河川(熊野川)における洪水観測流量と水面
勾配方式による計算流量との比較を示すグラフである。
FIG. 5 is a graph showing a comparison between a flood observation flow rate in a real river (Kumano River) and a flow rate calculated by a water surface gradient method.

【図6】実河川(熊野川)における水面勾配と流量の関
係を示すグラフである。
FIG. 6 is a graph showing a relationship between a water surface gradient and a flow rate in an actual river (Kumano River).

【図7】ライトバー型電光表示板の一実施例を示す説明
図である。
FIG. 7 is an explanatory view showing one embodiment of a light bar type electric light display panel.

【符号の説明】[Explanation of symbols]

1A 水圧式水位計 1B 水圧式水位計 2 電位差変換部 3 データ処理装置 4 検知入力部 5 データ変換部 6 データ制御部 7 電話回線 8 受信所 9 パソコン 10 プリンタ 11 ライトバー型電光表示板 12 雨量計 13 ゲート開閉検知器 Reference Signs List 1A Water pressure level gauge 1B Water pressure level meter 2 Potential difference converter 3 Data processor 4 Detection input unit 5 Data converter 6 Data controller 7 Telephone line 8 Receiver 9 PC 10 Printer 11 Light bar type electronic display 12 Rain gauge 13 Gate open / close detector

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 縦断方向2地点に配置され、この2地点
の水深を測定する水圧式水位計と、水圧式水位計が検出
した水深信号を水面標高差に整合した電位差に変換する
電位差変換部と、前記電位差(水位差)から水面勾配・
流向・流量の自動計算を行うデータ処理装置とからなる
ことを特徴とする水面勾配観測システム。
1. A hydraulic water level gauge which is disposed at two points in a longitudinal direction and measures the water depth at these two points, and a potential difference conversion unit which converts a water depth signal detected by the water pressure type water gauge into a potential difference matched with a water level elevation difference. From the potential difference (water level difference)
A water surface gradient observation system, comprising: a data processor for automatically calculating flow direction and flow rate.
【請求項2】 請求項1記載の水面勾配観測システムに
より得られた電位差信号を回路分岐して、排水機場・桶
管のゲート開閉操作上必要となる、流向・水位差の微小
な変化を視覚的に表現する表示装置。
2. The potential difference signal obtained by the water surface gradient observation system according to claim 1 is branched into circuits, and a minute change in flow direction and water level difference required for opening and closing the gate of a drainage station / tub pipe is visually recognized. A display device that expresses itself.
JP03333699A 1999-02-10 1999-02-10 Water surface gradient observation system Expired - Lifetime JP3546349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03333699A JP3546349B2 (en) 1999-02-10 1999-02-10 Water surface gradient observation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03333699A JP3546349B2 (en) 1999-02-10 1999-02-10 Water surface gradient observation system

Publications (2)

Publication Number Publication Date
JP2000230224A true JP2000230224A (en) 2000-08-22
JP3546349B2 JP3546349B2 (en) 2004-07-28

Family

ID=12383735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03333699A Expired - Lifetime JP3546349B2 (en) 1999-02-10 1999-02-10 Water surface gradient observation system

Country Status (1)

Country Link
JP (1) JP3546349B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4553826B2 (en) * 2005-02-09 2010-09-29 アジア航測株式会社 Feature environment status providing method and program thereof

Also Published As

Publication number Publication date
JP3546349B2 (en) 2004-07-28

Similar Documents

Publication Publication Date Title
Herschy Streamflow measurement
Maheepala et al. Hydrological data monitoring for urban stormwater drainage systems
JPS6330564B2 (en)
JP3546349B2 (en) Water surface gradient observation system
White Discharge measuring methods in open channels
Tremwel et al. Geometrically incremental volume sampling for ephemeral channel pollutants
KR100791910B1 (en) Method for predicting the amount of deposit in sewage pipe and sewage pipe monitoring system with function thereof
Mutreja et al. Flood Forecasting Model for Citanduy River Basin
Hamill A GUIDE TO THE HYDRAULIC ANALYSES OF SINGLE-SPAN ARCH BRIDGES.
Mutreja FLOOD FORECASTING MODEL FOR CITANDUY RIVER BASIN
Rogers et al. Field data for verifying canal unsteady flow models
McMahon et al. Estimating discharge at an ungauged site
Wen Flow Metering: A Powerful Tool to Build Smart Sewer Systems
WILEMAN et al. CORRESPONDENCE. THE MEASUREMENT OF THE DISCHARGES OF THE RIVER-BASINS OF THE WHITE NILE (SUDAN) AND NENE (GREAT BRITAIN).
Newman et al. A Case Study in Developing an Accurate and Defensible Collection-System Model
White FIELD CALIBRATION OF FLOW MEASURING STRUCTURES.
Graham et al. Computing discharge from large combined sewer overflows
Marshall The instrumentation of flat low-lying catchments for hydrological research
Wheeler et al. Seepage investigation on selected reaches of Fish Creek, Teton County, Wyoming, 2004
McDermott et al. Sewer flow hysteresis in trunk sewers–observations using improved velocity sensors
Wileman et al. THE MEASUREMENT OF THE DISCHARGES OF THE RIVER-BASINS OF THE WHITE NILE (SUDAN) AND NENE (GREAT BRITAIN).(INCLUDES PLATES).
Yoo et al. Water Measurement
Oberg et al. Measurements of leakage from Lake Michigan through three control structures near Chicago, Illinois, April-October 1993
SYLVESTRE et al. FLDWAV application: transitioning from calibration to operational mode
River Flow Summary for Gaging Stations on Selected Tributaries of the

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040331

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term