JP3544943B2 - 半固体鋳造装置および方法 - Google Patents

半固体鋳造装置および方法 Download PDF

Info

Publication number
JP3544943B2
JP3544943B2 JP2000560994A JP2000560994A JP3544943B2 JP 3544943 B2 JP3544943 B2 JP 3544943B2 JP 2000560994 A JP2000560994 A JP 2000560994A JP 2000560994 A JP2000560994 A JP 2000560994A JP 3544943 B2 JP3544943 B2 JP 3544943B2
Authority
JP
Japan
Prior art keywords
metal
semi
container
solid
solid metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000560994A
Other languages
English (en)
Other versions
JP2002521202A (ja
Inventor
リチャード,ケビン,エル.
ニール,リチャード,アイ.,ジュニア
ライス,クリストファー,エス.
ミョウジン,シンヤ
メンデス,パトリシオ,エフ.
ゲイジ,ティモシー,ビー.
オダニエル,ジョン,エフ.
バロン,チャールズ,イー.
Original Assignee
ギブス・ダイ・キャスティング・アルミナム・コーポレイション
セミ−ソリッド テクノロジーズ,インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ギブス・ダイ・キャスティング・アルミナム・コーポレイション, セミ−ソリッド テクノロジーズ,インコーポレイテッド filed Critical ギブス・ダイ・キャスティング・アルミナム・コーポレイション
Publication of JP2002521202A publication Critical patent/JP2002521202A/ja
Application granted granted Critical
Publication of JP3544943B2 publication Critical patent/JP3544943B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D1/00Treatment of fused masses in the ladle or the supply runners before casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/007Semi-solid pressure die casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/02Hot chamber machines, i.e. with heated press chamber in which metal is melted
    • B22D17/06Air injection machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/08Cold chamber machines, i.e. with unheated press chamber into which molten metal is ladled
    • B22D17/10Cold chamber machines, i.e. with unheated press chamber into which molten metal is ladled with horizontal press motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/14Machines with evacuated die cavity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/30Accessories for supplying molten metal, e.g. in rations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S164/00Metal founding
    • Y10S164/90Rheo-casting

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Description

【0001】
《発明の技術分野》
本発明は半固体金属からの部品の鋳造に関し、特に、半固体金属浴から取り出された半固体金属からの部品の鋳造に関する。
【0002】
《発明の背景》
金属部品の製造者は型鋳造法で製造するのに適した部品の型鋳造の利点を長い間認めてきた。半固体(チキソトロピー性)金属からの部品の型鋳造の利点もよく記録されており、それらの利点には、それに限定されるものではないが、溶融金属から鋳造した部品に比して気孔性が低くより均質な構造を示す熱処理可能な完成部品の創出がある。
【0003】
以下に示すいくつかの従来技術の参考文献を参照する。
米国特許:
(1) 米国特許第4,709,746号、「連続スラリー鋳造方法および装置」、ヤング(Young)ら;
(2) 米国特許第5,313,815号、「連続加熱を用いた成形金属部品の製造装置および方法」、ニッチング(Nichting)ら;
(3) 米国特許第4,565,241号、「スラリー組織の金属組成物の製造方法」、ヤング(Young);
(4) 米国特許第5,464,053号、「レオキャストインゴット、特に高機械的性能型鋳造品を製造するためのレオキャストインゴットの製造方法」、モスキーニ(Moschini);
(5) 米国特許第5,381,847号、「鉛直鋳造方法」、アショック(Ashok)ら;
(6) 米国特許第5,375,645号、「半固体金属予備成形材から成形品を製造する装置および方法」、ブリューカー(Breuker)ら;
(7) 米国特許第5,287,719号、「半固体化金属組成物の成形方法」、モリタカ(Moritaka)ら;
(8) 米国特許第5,219,018号、「多相電流電磁撹拌を用いた連続鋳造によるチキソトロピー性金属製品の製造方法」、メイヤー(Meyer);
(9) 米国特許第5,178,204号、「レオキャスト方法および装置」、キリー(Kelly)ら;
(10) 米国特許第5,110,547号、「半固体化金属組成物の製造のための方法および装置」、キウチ(Kiuchi)ら;
(11) 米国特許第4,964,455号、「連続鋳造によるチキソトロピー性金属製品の製造方法」、メイヤー(Meyer);
(12) 米国特許第4,874,471号、「ペースト状相における金属の鋳造方法」、ウィルモット(Wilmotte);
(13) 米国特許第4,804,034号、「チキソトロピー性沈着物の製造方法」、リーサム(Leathham)ら;
(14) 米国特許第4,687,042号、「成形金属部品の製造方法」、ヤング(Young);
(15) 米国特許第4,580,616号、「制御された金属の固体化のための方法および装置」、ワッツ(Watts);
(16) 米国特許第4,345,637号、「型鋳造による高分率固体組成物の成形方法」、フレミング(Flemings)ら;
(17) 米国特許第4,108,643号、「高分率固体金属組成物の成形方法およびそのための組成物」、フレミング(Flemings)ら;
(18) 米国特許第3,902,544号、「非樹枝状結晶一次固体を含む合金の連続成形方法」、フレミング(Flemings)ら;
(19) 米国特許第5,211,216号、「鋳造方法」、ドルーリー(Drury)ら;
(20) 米国特許第3,948,650号、「鋳造用液体−固体合金を製造するための組成物および方法、ならびに該液体−固体合金を用いた鋳造方法」、フレミング(Flemings)ら;
(21) 米国特許第3,954,455号、「液体−固体合金組成物」、フレミング(Flemings)ら;
(22) 米国特許第4,972,899号、「結晶粒微細化インゴットの鋳造方法および装置」、タンガット(Tungatt);
(23) 米国特許第4,577,676号、「微細化結晶粒組織をもつインゴットの鋳造方法および装置」、ワトソン(Watson);
(24) 米国特許第4,231,664号、「化学結合した鋳物砂の高速水平兼高速鉛直混合のための方法および装置」、フロック(Flock);
(25) 米国特許第4,506,982号、「粘性液体と微粒状固体の混合装置」、スミサー(Smithers)ら;
(26) 米国特許第4,469,444号、「粘性物質の混合および脱ガス装置」、グミーナー(Gmeiner)ら;
(27) 米国特許第5,037,209号、「流体、特にペースト状媒体の混合装置およびその作動方法」、ウィス(Wyss);
(28) 米国特許第4,893,941号、「容器内で粘性液体を混合する装置」、ウェイト(Wayte);
(29) 米国特許第4,397,687号、「溶融金属の混合のための混合装置および方法」、バイ(Bye);
関連記事:
(30) 「レオキャスト方法」、フレミング(Flemings), M.C., リーク(Riek), R.G.,およびヤング(Young), K.P. 『International Cast Metals Journal』, vol.1, No.3, Sept.1976, pp.11−22
(31) 「部分固体化した高銅含有率合金の型鋳造」、ファセッタ(Fascetta), E.F., リーク(Riek), R.G., メーラビアン(Mehrabian), R., およびフレミング(Flemings), M.C. 『Cast Metals Research Journal』, Vol.9, No.4, Dec.1973, pp.167−171
【0004】
上記の参考文献は半固体金属から金属部品を成形することに関する一般的概念とその利点を教えている。参考文献はまた、型鋳造一般ならびに半固体金属からの部品の型鋳造に用いられる標準的な技法をも教えている。さらに、半固体材料を撹拌する種々の方法を教える文献も上記に含まれる。上記文献の全て、ならびにその中で引用されている参考文献をここに包含するが、その目的は、半固体金属の処理ならびに部品の型鋳造とその方法に用いることができる方法および手順を確立することにある。
【0005】
半固体金属から部品を型鋳造するための従来の方法および装置の多くでは、固体棒材から切り出した円筒形金属片、すなわち、ビレットであって半固体微細組織を持つように予備成形されたものが用いられてきた。これらビレットは極めて高い圧力(典型的には2.32〜4.35 Pa(16,000〜30,000 psi)のオーダー)で鋳造金型に圧入するのに先立って加熱され、半固体状態に戻される。これらビレットは表面酸化しやすいので酸化した材料が最終製品に取り込まれる可能性がある。また、この方法では、金属を半固体状態まで加熱する必要があり、最終部品の鋳造に先立ってビレットを、鋳造し、冷却し、在庫保管し、所定長さに切断し、おそらく発送し、そして最後に再加熱する必要がある。
【0006】
《発明の概要》
本発明は安定した、一定の撹拌をされ温度制御された半固体金属の浴を貯槽に保持し、それを初期の半固体状態のまま、最終部品へ即座に鋳造する準備ができた型鋳造機へ送給する方法および装置を提供する。移送は、加熱された吸引管および温度制御された充填スリーブを介して、真空取鍋操作によって行うことができる。移送される半固体金属はプランジャーチップによって金型キャビティへ圧入されるが、このプランジャーチップは通気路を提供することで取鍋操作の際に形成された真空を破るので、吸引管内の半固体金属は圧入操作の間に浴へ戻ることができる。このように、安定した、均質な、温度制御された半固体金属の、すぐに使える浴が型鋳造の環境下で提供されるので、その半固体金属は向上した性能特性で金属部品を製造すべく、型鋳造機の金型キャビティへ必要に応じてその半固体形態で送給することができる。
【0007】
本発明によれば、少なくとも一つのキャビティ、真空ゲートおよび金属供給ゲートを有する型鋳造機へ加熱された金属を送給する装置は、溶融金属の温度がそれが凝固し始める温度よりも高い所定の温度範囲に保持されている溶融金属の供給源と、金属の約45%以内が粒子として金属の流体部分の中に浮遊している半固体状態で金属を入れる容器と、加熱された吸入管と、前記加熱された吸入管を介して前記容器に金属流動連通するとともに前記金属供給ゲートを介して前記キャビティに連通するショットスリーブと、前記スリーブ内の半固体金属を加圧下に前記キャビティに圧入すべくスリーブ内で往復動可能に配置されたプランジャーと、半固体金属を温度制御された前記容器から前記吸入管を介して前記スリーブ内のプランジャーで前記金型に圧入する位置へ引き込むべく、前記真空ゲート、キャビティ、供給ゲートおよびショットスリーブに連通している真空源と、を有してなる。前記容器は底部、側壁、および頂部を有し、前記装置は前記容器内に配置された撹拌器と、前記容器の底部を介して容器内の半固体金属に熱をもたらすべく配置されたヒーターとを有してもよい。前記容器の底部は、容器の底部を介して容器内の半固体金属に金属流動連通する独立寸法の加熱室を含んでもよく、前記ヒーターは加熱室内の金属を加熱すべく配置されてもよい。前記ヒーターは誘導加熱器でもよい。前記撹拌器は、前記加熱室内の金属と前記容器内の半固体金属との混合を促進すべく配置されてもよい。前記ショットスリーブにはジャケットを設け、ジャケット内に流体を循環させてもよい。前記装置は、所定体積の溶融金属を前記溶融金属供給源から前記容器に送給する送給手段を含んでもよい。半固体金属を加熱されたショットスリーブへ送給する前記吸引管は、前記容器内の半固体金属の表面から上方へ延びていてもよい。
【0008】
本発明の別の様相によれば、鋳造に使用すべく半固体金属を均熱状態に保持するための改良された容器は、底部、側壁、および頂部と、撹拌器と、容器の底部を介して容器内の半固体金属に熱をもたらすべく配置されたヒーターとを有する。前記容器の前記底部は、容器の底部を介して容器内の半固体金属に金属流動する独立寸法の加熱室を含んでもよく、前記ヒーターは加熱室内の金属を加熱すべく配置されてもよい。前記ヒーターは誘導加熱器でもよい。前記容器は、加熱室内の金属と容器内の撹拌された半固体金属との混合を促進すべく配置された撹拌器を含んでもよい。
【0009】
本発明のさらに別の様相によれば、半固体金属を充填スリーブから金型内へプランジャーで圧入する型鋳造方法は、充填スリーブを加熱する工程を含むことにより改良される。充填スリーブにはジャケットを設けてもよく、ジャケット内に流体を循環させてもよい。
【0010】
本発明の別の様相によれば、半固体状態に保持される合金の供給源からの金属合金を型鋳造する方法は、鋳造すべき金属を受容し該金属を固体形状に冷却する金型キャビティを有する型鋳造機を備える工程と、底部と側部とを有する溶融金属のための容器を備える工程と、溶融金属の温度を該金属が凝固し始めるレベルに下げる工程と、前記金属を撹拌しその温度を制御することで該金属を固体金属粒子と溶融金属とを含む均熱状態に保つ工程であって、その温度制御は前記容器の底部を介して加熱することにより達成され、金属の冷却は部分的には前記容器の側部を介して行われ、その撹拌は凝固しつつある金属を容器の側部から剪断することを含むものである金属撹拌・温度制御工程と、を含んで成り、それによって、前記容器内の金属を一定の撹拌と温度制御のもとで安定した半固体状態に保持する。制御された量の金属を前記容器から周期的に引き出し、その金属を鋳造のための金型キャビティへ吸引管を介して移送する工程を含んでもよい。前記移送工程の間に引き出された金属の温度を制御してもよい。各引き出された量の金属を置換すべく制御された量の溶融金属を前記容器に周期的に加えてもよい。部品の鋳造の間に前記吸入管内に停留している金属が金属浴に戻るのを可能にしてもよい。
【0011】
本発明のさらに別の様相によれば、成型金属鋳物を製造すべく、少なくとも一つのキャビティを両者間に形成する少なくとも一対の金型と、真空ゲートと、金属供給ゲートとを有して成る型鋳造機へ加熱された金属を送給する装置は、半固体金属の貯槽を保持するための撹拌器と温度制御機構とを備えた容器と、溶融金属を前記容器に送給する系と、半固体金属を前記容器から型鋳造用金型へ半固体状態で送給する移送系と、前記容器に流体連通する加熱室と、を有して成る。前記装置は、前記容器から引き出される半固体金属の量と前記容器に加えられる溶融金属の量とを制御するための調整器を有してもよい。前記移送系は、機械的取鍋操作または真空取鍋操作を含んでもよく、さらに、ヒーターを備えた吸引管を含んでもよい。前記装置は、ショットスリーブに流体連通する吸入管とプランジャーとを有してもよく、該プランジャーは真空取鍋操作の間はショットスリーブをシールすることで、材料の金型キャビティへの圧入に先立って半固体金属がショットスリーブ内へ引き込まれるとともに吸引管内に停留できるようにし、圧入操作の間は通気路を形成することで吸引管内に停留している金属が金属浴へ戻ることができるようにするべく構成されていてもよい。前記装置は、前記加熱室内の金属を加熱するための誘導加熱器を有してもよい。前記容器は、型鋳造で部品を製造するのに必要な半固体金属の体積よりも実質的に大きな容積を有してもよい。
【0012】
本発明によれば、成型金属鋳物を製造すべく、少なくとも一つのキャビティを両者間に形成する少なくとも一対の金型と、真空ゲートと金属供給ゲートとを有を有して成る型鋳造機へ加熱された金属を送給する装置は、半固体金属の貯槽を保持する容器と、前記貯槽に流体連通する吸引管と、前記キャビティおよび前記吸引管に流体連通する充填スリーブとを有する。前記充填スリーブは前記吸引管を受け入れて連結部となす開口を含み、前記開口は前記連結部における前記充填スリーブの表面積を最小にすべく形成されている。前記吸引管は前記開口に受け入れられる面取りされた端部を有してもよい。前記吸引管は非金属製であってもよい。前記充填スリーブは前記開口に形成された皿穴を有してもよい。
【0013】
本発明のさらなる特徴および利点は、現時点で最良と思われる発明の実施形態を例示する、以下の好適実施例の詳細な説明を考慮することで当業者に明らかになるであろう。
【0014】
《好適実施態様の詳細な説明》
本発明は半固体状態に保持できるものならどんな金属または合金にも適合できるが、ここに開示される装置は具体的にはアルミ合金、特にアルミニウムA356用に構成されている。図1〜3を参照すると、部品の型鋳造のための半固体金属用炉10は中に保有される金属の熱損失を制御すべく設計された容器12を含む。容器12は、混合のため、および容器12に入っている半固体金属浴16内での樹枝状結晶の生成を阻止するための撹拌系14を含む。容器12内に配置されたセンサー18(図2)は、半固体金属浴16の固体分に関する情報をヒーター22のための制御器20へ送る。ヒーター22は容器12に流体連通する加熱室24に熱的に連結されている。頂部56を介して貯槽30に流体連通する入口26および出口28は、半固体金属浴16に溶融金属32を添加しそこから半固体金属34を取り出すための、貯槽30へのアクセスを提供する。半固体金属炉10は型鋳造環境下で型鋳造機(図示しない)の近傍に配置されているので、半固体金属34が型鋳造機の金型キャビティ(図示しない)に容易に利用できるとともにその半固体状態のまま送給できる。
【0015】
容器12は底壁36および円筒形側壁38を有し、それらが頂部56と共に貯槽30を画定し、例えば図2に示すように、その中において半固体金属34を半固体金属浴16の中に貯えることができる。容器12は、円筒形側壁38、底壁36および頂部56を介しての半固体金属浴16からの熱損失を制御しやすくするような設計仕様に合うように形づくられている。容器12にA356を入れる場合、容器の側壁38、底壁36および頂部56は厚さ41が約6.35cm(2.5in)のTherm bond Formula Five−L製の耐火物壁40を含む。この厚さ41では、側壁38、底壁36および頂部56は半固体金属浴16から熱を放散させるが、ヒーター22が半固体金属浴16を加熱できる速度よりも高い速度で熱が放散されるのを防ぐ。例示として、ヒーター22は35kWの誘導加熱器であり、容器12は側壁38、底壁36および頂部56を介しての熱放散が35kWよりも小さくなるように設計される。誘導加熱器22はAjax Magnathermicから普通に入手できるタイプのものである。半固体金属34が引き出されて溶融金属32で置換される速度を制御することによって、容器12の側壁38、底壁36および頂部56を介しての熱放散が誘導加熱器22の加熱容量を超えることも有り得ることが想定される。鋳造操作のために他の金属が半固体状態に保たれる場合は、側壁38、底壁36および頂部56は十分な厚さ41の適切な材料から構成して、側壁38、底壁36および頂部56を介しての熱損失が、誘導加熱器22と引き出された半固体金属34を置換する溶融金属32の添加とにより半固体浴16にもたらし得る熱を超えないようにしなければならない。
【0016】
加熱室24は、容器12の底壁36の開口42を介して貯槽30に流体連通している。例えば図1〜3に示すように、加熱室24は容器12から下方に延びるU字形流路44を画定する耐火物管でできており、誘導加熱器22のコア46を加熱室24のU字形流路44の一方の側に巻き付けることで加熱室24を加熱する。誘導加熱器22の誘導コア46は電場を発生し、それによって加熱室24内の半固体金属34を加熱する。
【0017】
例示として、センサー18は熱電対50である。半固体金属浴16の固体分率は、浴16の温度と関係がある。しかし、センサー18は、半固体金属浴16の固体分率と関係のある半固体金属浴16又は炉10の動作の何らかの特性を測定することができ、その測定された特性の値に基づいて信号をヒーター制御器20にもたらすことができるならば、いかなる装置でもよい。半金属浴16の固体分率に関係すると信じられる炉10動作の特性としては、ローター60またはオーガー62を駆動するモーター72,102にかかるトルク、および、ローター軸66またはオーガー軸96の振動がある。したがって、センサー18はトルク変換器、または振動に敏感な光学装置でもよい。例示として、センサー18はヒーター制御器20に電気的につながっている。ヒーター制御器20は電線23で誘導加熱器22につながっている。制御器20は半固体金属浴16の温度を設定値に保つように適切にプログラムされたP.I.D.制御器でもよい。
【0018】
熱電対50は容器12の頂部56を通って延び、半固体金属浴16に部分的に浸り、そして、半固体金属浴16の温度を調整すべく誘導加熱器22を選択的に駆動・不駆動するヒーター制御器20につながれている。A356アルミニウム合金の場合、半固体金属浴16の温度は590℃(1094°F)と615℃(1139°F)の間の設定値(「設定値」)の1℃(1.8°F)以内に調整される。A356以外の金属とともに炉10を用いる場合は、設定値は金属が半固体状態をとる温度範囲内に選ばれる。
【0019】
A356の場合、溶融金属32の供給源52は、615℃(1139°F)、すなわち半固体金属34に形成される金属の液化温度よりも少し上に維持される。供給源52からの溶融金属32は図2の幻影線53で示すように、取鍋54で入口26へと手動または自動取鍋操作される。供給源52と入口26の間に適切な流体連通を形成できるとともに、適切な弁によって供給源52と貯槽30の間の溶融金属32の流れを自動的に制御することが想定される。
【0020】
初期の始動の際、供給源52からの溶融金属32を用いて貯槽30を満たす。溶融金属32が凝固し始めるまで、熱は容器12の円筒形側壁38を通して放散する。金属浴16の温度が溶融金属32の温度から設定値まで下がるにつれて、容器12内には半固体金属34が生成される。
【0021】
例示として、撹拌系14は貯槽30内の半固体金属浴16を一定に撹拌し、それによって、凝固に際して浴16の中での樹枝状結晶の生成と温度勾配の形成が阻止されるものと考えられる。この一定の撹拌は、貯槽30内の半固体金属浴16全体にわたる均質性を促進するが、これは、側壁38のところで凝固する過剰の金属を取り除いてそれを浴16のバルクへ送ることによってなされる。凝固の際、金属34の中に樹枝状組織または樹枝状結晶が形成される。樹枝状組織の破壊を樹枝状結晶の剪断と呼ぶ。このように、一定の撹拌によって後述するように容器12の側壁38から樹枝状結晶が剪断される。容器12内に2つの別々の撹拌機58が配置され、貯槽30内の半固体金属浴16を一定に撹拌すべく設計されている。両撹拌機58は半固体金属34をいくらか混合する。例示として、撹拌機58は中心ローター60とオーガー62を有する。しかし、中心ローター60は剪断作用と水平方向の混合のバルクを行うのに対し、オーガー62は鉛直方向の混合のバルクを行う。
【0022】
中心ローター60は軸66の駆動端64に連結され、軸66は従動端68でスプロケット(明示しない)に連結される。炉10の枠74に装着されたモーター72は駆動軸76に連結され、駆動軸76は減速歯車(明示しない)およびチェーン70によって軸66に駆動可能に連結されている。中心ローター60の所望の角速度を維持できるならば、モーター72と中心ローター60の連結のためにはいかなる標準的仕組みも使用することができ、例えば、プーリーとベルト、噛み合った歯車などが使用できる。モーター72と中心ローター60とのカップリング78は、好ましくは、中心ローター60を25〜35rpmの角速度で回転するように設計・装備される。
【0023】
中心ローター60は容器12の頂部56の同心空隙80を通して延びているので、中心部材82は容器12の円筒形壁38の長手方向軸上にあり、その周りを回転する。中心ローター60の底脚86は中心部材82から容器12の底壁86に隣接する容器12の側壁38の方へ延びている。中心ローター60の側脚88は、容器12の円筒形側壁38に隣接する底脚86から上方へ延びている。容器12の円筒形壁38に沿って起こり始める凝固の際に形成されがちな樹枝状結晶を剪断するために、中心ローター60の底脚86および側脚88は、好ましくは、容器12の円筒形側壁38および底壁36の2.54cm(1.0in)以内で回転するように配置される。半固体金属浴16の冷却は主として側壁38および底壁36を通しての熱伝達によって起き、半金属浴16の加熱は主として貯槽30と加熱室24の間の流体連通を介しての熱伝達によって起きるので、側脚88の側壁38からの隔たりおよび底脚86の底壁36からの隔たりは、共に重要である。側脚88の側壁38からの隔たりおよび底脚86の底壁36からの隔たりを、壁隙間90と呼ぶ。中心ローター60の剪断速度は壁隙間90および中心ローター60の角速度に基づいている。
【0024】
中心ローター60は中実の(solid)チタン又はステンレス鋼でもよいが、内部流体流路92を形成する中空ステンレス鋼またはチタン材であってもよい。ある種の金属、特にアルミ合金は、半固体金属34の浴16にかなりの時間浸っていたステンレス鋼に対して有害な効果を持つことが解っている。この有害な効果を減じるため、流体流路92を空気、油、水等の冷却流体の供給源(図示しない)に連結することにより、中心ローター60を冷却してもよい。有害な効果を減じる過程は完全には判らないが、浴16内の半固体金属34が冷却された中心ローター60に触れた途端に凝固して中心ローター60の上に凝固金属の皮膜(図示しない)を形成するものと考えられる。この皮膜が、中心ローター60を常に半固体金属浴16に浸しておくことの有害な効果を減じるものと考えられる。また、ひとたび中心ローター60が十分な厚さに被覆されると、皮膜金属の中に温度勾配が生じて、皮膜金属の外表面の温度と半固体金属浴16の温度との差はさらなる被覆を生じさせるには不十分となるものと考えられる。
【0025】
オーガー62は駆動軸96のオーガー端94で直結され、その駆動軸96は頂部56の中心から外れた穴98を通して延びるとともに、駆動端100において炉10の枠74に装着された両方向変速モーター102に連結されている。両方向変速モーター102はオーガー62を100〜200rpmの角速度で回転させるように設計されている。図示された装置では、オーガー62の反時計回りの回転(上から見下ろす)によって、ブレード104は近くの半固体金属34を容器12の底壁36に向けて下方に押し遣り、また、オーガー62の時計回りの回転によって、ブレード104は近くの半固体金属34を容器12の頂部56に向けて上方へ押し遣る。半固体金属浴16の中で浮遊する凝固金属が容器12の底36へ沈降するのを防ぐため、オーガー62は時計回り方向で運転される。こうして、沈降しつつある凝固金属は底36から引っ張られ、貯槽30内の半固体金属浴16の均質な性質が維持される。オーガー62の底106は、加熱室24内へ開いている底壁36の開口42に隣接して配置されている。したがって、オーガー62の回転は加熱室に出入りする半固体金属34の流れをも誘発する。上記のオーガー62は一例であって、その他の撹拌または混合装置も使用できる。例えば、多ブレード混合機を用いて非常に良い結果が得られた。
【0026】
半固体金属浴16の一定の撹拌と、取り出された半固体金属34を液化温度の少し上で溶融金属32で迅速に置換することとにより、貯槽30内に保持可能な均質・均熱の半固体金属浴16が得られ、そこから、必要に応じて鋳造用分を引き出すことができる。A356を使用する場合、開示された炉10は、45%以内の固体金属を金属の流体分の中に含んだ半金属浴16を、鋳造機へ送給するための設定値の1℃(1.8°F)以内に保持する。移送系107に真空取鍋操作を用いる図示された炉10においては、金属の流体分に浮遊する固体物質の割合を30%以下に保持することが好ましい。もしも移送系が手動または機械的取鍋操作を含むなら、もっと高い固体分率を用いてもよいと考えられる。浮遊する固体金属の粒子は、寸法が100〜500μm(0.0254〜0.127in)に限定され、半固体金属浴16全体にわたってすこぶる均一に分布する。
【0027】
吸引管108は上端114、採取端110および長手方向軸118を有する。吸引管108は容器12の頂部56を貫通し、採取端110は半固体浴16の表面112よりも下に配置されている。吸引管108の上端114は充填スリーブ116に流体連通している。吸引管108の長手方向軸118は、好ましくは、吸引管108内で半固体金属34が凝固するのを防ぐため鉛直に方向づけされている。吸引管108は制御されたヒーター120によって加熱されるが、ヒーター120は、吸引管108内での半固体金属34の凝固を防ぐため吸引管108の温度を600℃(1112°F)よりも高く保つ。
【0028】
吸引管108は中にプランジャー128を往復動可能に配置させた充填スリーブ116に接続されている。充填スリーブ116は金属供給ゲート(図示しない)につながることで、真空ゲート(図示しない)を有する少なくとも一対の金型(図示しない)で形成されるキャビティ(図示しない)に流体連通する。ジャケット121が充填スリーブ116を囲み、充填スリーブ116の過度の加熱または冷却を防ぐために、約150℃(302°F)に保たれた例えば油等の流体123を受け入れるように設計されている。半固体金属34が充填スリーブ116内にあるのは1/10秒のオーダーの短時間のみであるという想定であるため、充填スリーブ116と半固体金属34の間の温度差は金属を凝固させるほど十分ではない。
【0029】
例示として、充填スリーブ116は吸引管108と同様に管である。金型キャビティへ真空取鍋操作される半固体金属34はそれが初めて充填スリーブ116に接触する充填スリーブ116の連結部154で凝固しやすいため、吸引管108は充填スリーブ116よりもかなり高い温度まで加熱される。例えば図11に示されるように、充填スリーブ116は外壁117、内壁160、および外壁117と内壁160の間に延びて連結開口133を画定する連結壁119を有する壁115を有する。連結部154における半固体金属34の凝固は、半固体金属が接触する可能性のある連結壁119の表面積を減ずることによって、最小にされる。連結部開口133は、吸引管108の内径127にほぼ等しい直径125を持つように形成される。例えば図11に示されるように、連結部壁119のところで外表面117に深い皿穴129が形成され、吸引管108の上端114は皿穴129に受容される面取り部131を有するように形成される。
【0030】
金属供給ゲートは、半固体金属34をキャビティ内へ送給すべく設けられる。真空ゲート、キャビティ、金属供給ゲート、充填スリーブ116および吸引管108に連通する真空源(図示しない)は、半固体金属34を半固体金属浴16から吸引管108を通して充填スリーブ116の中へ迅速に送給するのに十分な圧力差分を提供する。プランジャー128はシリンダー(図示しない)に連結され、半固体金属34が充填スリーブ116に受容された後、プランジャー128は半固体金属34を金属供給ゲートを介してキャビティ内へ圧入する。図示した炉10においては、充填スリーブへ送給される半固体金属34は30%未満が固体粒子であるので、プランジャー128は半固体金属34をキャビティ内へ0.725〜1.885Pa(5,000〜13,000psi)にて圧入すればよい。炉10が25%固体粒子を有する半固体浴16を維持するように運転される場合は、プランジャー128は半固体金属34をキャビティ内へ0.87Pa(6,000psi)で圧入する。金型およびプランジャー128がさらされる圧力はビレット法の場合の圧力(すなわち、2.32〜4.35Pa(16,000〜30,000psi))よりも低いので、本発明によってプランジャー128および金型の寿命が延ばされる。
【0031】
プランジャー128はラム130とブランジャーチップ132を有して成る。プランジャーチップ132は前壁134と、充填スリーブ116の内径140よりも少しだけ小さい直径138を持つ周方向に延びるシール壁136と、シール壁136の直径138および充填スリーブ116の直径140よりも小さい直径144を持つ周方向に延びる流路壁142とを含んで成る。
【0032】
シール壁136は前壁134から後方へある距離146延びており、そこに、流路壁142をシール壁136から分離する段差148がある。プランジャーチップ132は、型鋳造環境でSemco,inc.から入手可能な標準的なプランジャーチップPattern No.869−D5と同様に、熱処理したベリリウム銅から作られる。プランジャーチップ132がこれら標準的プランジャーチップと異なるのは、標準的プランジャーチップは典型的には段差148や周方向に延びる流路壁142を持たないという点である。プランジャーチップ132は、標準的プランジャーチップを旋盤、ボール盤などで適切に加工して段差148および流路壁142を形成することによって、標準的プランジャーチップから作ることができる。プランジャーチップ132は、プランジャーチップ132の温度を制御することができる空気、油、水、冷却剤などの温度制御された流体に流体連通した内室150を有する。
【0033】
例えば図7〜10に示すように、プランジャーチップ132は充填スリーブ116内に往復動可能に受容される。充填スリーブ116内に受容された半固体材料34を型鋳造機のキャビティに圧入する前に、例えば図7に示すように、プランジャー132の位置は、充填スリーブ116と吸引管108の連結部154の真空源(図示しない)のある側156とは反対の側152にある。こうして、シール壁136は充填スリーブ116をシールして、型鋳造用金型(図示しない)と半固体浴16の間に流体通路158を画定する。真空源は、半固体材料34を吸引管108を通して引き上げ、充填スリーブ116を通して金型キャビティ(図示しない)内へ送給できる。真空源(図示しない)が真空をもはや供給しなくなると、流体通路158はシールされたままであり、半固体材料34は充填スリーブ116および吸引管108内に留まり、金型キャビティへの圧入を待つ。ついで、図8に示すように、ラム130がプランジャーチップ132を金型キャビティの方へ押し始める。図8において、段差148はまだ連結部154の反対側152を横切っていないので、シール壁136は充填スリーブ116をシールし続ける。流体通路158はシールされたままなので、吸引管108内の半固体材料34は先に加えられた真空の影響下で吸引管108内に停留し続ける。
【0034】
プランジャーチップ132が動いて段差148が連結部154の両側152および156の間に位置すると、シール壁136はもはや流体通路158をシールしなくなり、図9に示すように、流路壁142と充填スリーブ116の内壁160とで通気路または空気流路162が形成され、真空が破れ、吸引管108内の半固体金属34は重力のもとで半固体浴16へ戻るべく降下し始める。プランジャーチップ132がさらに左へ動くにつれて、空気流路162は大きさが増し、例えば図10に示すように、吸引管108に停留していた半固体金属34の全てがついには重力のもとで半固体浴16に戻る。プランジャーチップ132はさらに左へ動き続け、半固体金属34を金型キャビティ(図示しない)へ圧入することは理解されるべきである。充填スリーブ116内の半固体金属34が金型キャビティ内へ圧入されたのち、金属供給ゲートは閉じられ、プランジャーチップ132は図7の位置へと戻り、次の鋳造サイクルを待つ。真空源で低圧を加えて真空取鍋操作をするに先立って、装置は実質的に図3に示す状態となる。
【0035】
プランジャーチップ132の構成形状は、空気通路162を提供して吸引管108に半固体金属34を保つシールを破るだけではなく、半固体金属34とプランジャーチップ132の冷たいベリリウム銅材料との接触を最小にする。このように、プランジャーチップ132の構成形状は吸引管108および充填スリーブ116内の半固体材料34の均質・均熱な性質を維持する助けとなる。図示したプランジャーチップ132は周方向に延びる流路壁142を有するが、流路壁142は必ずしもチップ132のまわりを周方向に延びる必要はなく、流路壁142が吸引管108内に半固体金属34を保有するシールを破り、半固体金属34とプランジャーチップ132の冷たいベリリウム銅材との接触を最小にするようにチップが構成されているなら、長手方向の溝などでもよいことは、理解されるべきである。半固体金属34が短時間だけ吸引管108および充填スリーブ116内に保有される場合、本発明において標準的プランジャーチップを使用することもできるが、ただし、ラム130のストロークが十分に長く、標準的プランジャーの後端が連結部154の反対側152を通過して空気通路を形成し、吸引管108内に停留する半固体金属34が半固体金属浴16に戻れることが必要である。
【0036】
図4を参照すると、吸引管108およびヒーター220の第二の実施態様が示されている。図2および3は吸引管108を加熱するのにコイルを用いた電気ヒーター120を示すが、第二の実施態様では、図4に示すように、吸引管108はブロートーチまたはガス出口224からの炎222によって加熱される。電気ヒーター120、ガス出口224および/または他のヒーターの組み合わせで吸引管108を加熱することも、本発明の範囲に含まれる。
【0037】
現時点で好適な実施態様においては、吸引管108はより均一な吸引管108の加熱をもたらすグラファイトでできている。前述のように、吸引管108はその中の半固体金属34の凝固を阻止するために加熱される。現時点で好適な実施態様においては、吸引管108は電気ヒーター120とガス出口224の両者で加熱される。吸引管108の下端は半固体浴116に浸っているので、実質的に半固体浴116の温度である。下端から約15.24cm(6in)上方で、吸引管108は電気ヒーターで約790℃(1450°F)に加熱されている。吸引管108の電気ヒーター120で加熱されている部分の上方の吸引管108の部分はガス出口224からの炎222で加熱されている。吸引管108が十分に加熱され、プランジャーが連結部154を通過した後に半固体金属34が吸引管108から浴16へ戻れるならば、吸引管108の別々の位置における温度は変化してもよいことは、理解されるべきである。
【0038】
型鋳造部品の製造において、半固体金属浴16から吸引管108を介して充填スリーブ116へ引き出される半固体金属34の量は制御される。これは、圧力差分が特定時間にわたって加えられるように真空源のデューティサイクルを制御することによって、制御される。したがって、各成型の際に既知量122の半固体金属34が半固体浴16から引き出される。この既知量122は図3の左の点線143で図式的に表される金型キャビティと、例えば図7に示される吸引管連結部154のキャビティ側156の充填スリーブ116の部分との容積である。既知量122の半固体金属34が半固体金属浴16から吸引管108を通じて引き出されるとき、類似の量126の溶融金属32が供給源52から入口26を通して半固体金属浴16に加えられ、貯槽30内の半固体金属浴16のレベル124と半固体金属浴16の温度とが維持される。この溶融金属32の類似量126は、好ましくは、引き出される半固体金属34の既知量122と実質的に等しい。各鋳造サイクルののちに既知量122の引き出された半固体金属34を類似量126の溶融金属32で置換してもよいが、しばしば、数回の鋳造サイクルの後に、数回のサイクルの間に引き出された累計量の半固体金属34を類似の累計量の溶融金属32で置換するのが好ましい。
【0039】
典型的な応用では、容器12は約544.3kg(1,200 lb)の半固体A356アルミ合金を受容する一方、半固体合金から形成される部品は典型的には2.27〜13.6kg(5〜30 lb)の半固体合金を必要とする。したがって、590−615℃(1094−1139°F)の半固体金属34の3重量%が浴16から引き出され、615℃(1139°F)より高い温度の溶融金属32で置換されるので、各鋳造サイクルの間、浴16の平均温度の変化は1℃(1.8°F)よりもはるかに小さい。11.34kg(25 lb)の半固体金属34を供給源52からの溶融金属32で置換した場合でも、A356浴16の平均温度の変化は0.3℃(0.54°F)未満である。
【0040】
本発明によって考えられる一つの方法は、鋳造すべき金属を受容しその金属を固体形状に冷却する金型キャビティを有する型鋳造機を備えることと、底壁36および側壁38を有する溶融金属のための容器12を備えることとを含んで成る。容器12内の溶融金属の温度は金属が凝固し始めるまで下げられ、次いで、その金属は撹拌され加熱されて、制御されたパーセントの金属固体粒子と溶融金属をふくむ均熱状態に金属を維持するようにされる。例示として、固体粒子のパーセントの制御は、部分的には、金属の温度を設定値の特定範囲内に制御することにより行われるが、その温度制御は、容器12の底壁36を通じて連通する加熱室24に半固体金属34を循環させることと、容器12の側壁38を通して半固体金属34を冷却することによって行われる。
【0041】
制御された量122の半固体金属34が容器12から周期的に引き出され、鋳造のために金型キャビティへ移送される。この移送は、移送過程の全体にわたって半固体金属34がその半固体状態を維持するように行われる。引き出された半固体金属34の温度は移送工程の間に制御される。現時点で好適な方法では、引き出された半固体金属34の移送中の温度の制御は温度制御された吸引管108および充填スリーブ116を備えることで行われるが、鋳造機と容器12とを互いに十分近く隣接させて、容器12と充填スリーブ116との間での手動または自動による半固体金属34の取鍋操作を、移送される量122からの実質的な熱損失を防ぐのに十分な迅速さで行うことによって、温度制御を行うようにしてもよい。移送過程の一部として、制御された量122の半固体金属34が金型キャビティ内へ圧入される。必要な圧力は1.45Pa(10,000psi)のオーダーである。
【0042】
引き出された半固体金属84を金型キャビティ内へ圧入するのに用いられるプランジャーチップ132は、充填スリーブ116を選択的にシールすることで圧入に先立って金型への半固体金属34の真空取鍋操作を可能ならしめるとともに、そのシールを破ることで、充填スリーブ内でない半固体金属34が浴16へ戻るのを可能ならしめるように、設計される。
【0043】
対応する制御された量126の溶融金属32が周期的に容器12へ加えられ、各引き出された量122の半固体金属34を置換する。容器12内の半固体金属34は、一定の撹拌と制御された加熱とで、安定した半固体状態に維持される。半固体金属34の制御された加熱の様相には、制御された量122の引き出される半固体金属34の量を制限して引き出される量が容器12内の半固体金属34の総量の特定パーセントを超えないようにすることや、引き出された半固体金属34を置換すべく加えられる溶融金属32の温度を制御してその温度が金属の液化温度の少しだけ上となるようにすることが、含まれる。
【0044】
いくつかの好適実施態様を参照しながら本発明を詳細に説明してきたが、以下の特許請求の範囲に記載され定義される本発明の範囲と精神の中において、種々の変化や変更が存在する。
【図面の簡単な説明】
詳細な説明は特に以下の図に言及するものである。
【図1】図1は、本発明にしたがって、最終部品に即座に鋳造する準備のできた型鋳造機へその本来の半固体状態で送給されうる、一定の撹拌をされ温度制御された半固体金属の浴を提供するための空の装置の部分透視図である。
【図2】図2は、本発明の第一の実施態様の部分断面図であり、撹拌され温度制御された半固体金属の浴で満たされた貯槽を有する容器の下方にあって容器に流体連通する加熱室と、加熱された吸引管と、最終部品に鋳造すべく型鋳造機へ金属をその半固体状態で送給するための充填スリーブとを示す。
【図3】図3は、図2の3−3線に沿う部分断面図であり、半固体浴と充填スリーブの間に延びる加熱された吸引管を示し、さらに、充填スリーブ内に往復動可能に配置されたプランジャーを示す。
【図4】図4は、図3に実質的に類似した吸引管、充填スリーブおよびプランジャーの接近部分断面図であり、代替のガス炎加熱器が吸引管を加熱している。
【図5】図5は、図3および4のプランジャーチップの断面図であり、半固体金属のプランジャーとの接触を最小にするとともに、圧入および鋳造工程の間に吸引管内の半固体金属が半固体浴へ戻れるように設計された、大径の充填スリーブシール壁および小径の流路壁を示す。
【図6】図6は、図5のプランジャーの側面図である。
【図7】図7〜10は、充填スリーブ内へ真空取鍋操作された半固体金属を金型キャビティ(図示しない)内へ迅速に圧入する操作を図解する図である。図7は、本発明に係る吸引管、充填スリーブおよびプランジャーチップの部分断面図であり、プランジャーが吸引管連結部の右で充填スリーブをシールしており、充填スリーブの左端に流体連通している真空源(図示しない)によって、半固体金属が浴から吸引管を介して充填スリーブ内へ引き込まれる様子を示す。
【図8】図8は、図7に類似の部分断面図であり、プランジャーが充填スリーブ内を左へ移動されて半固体金属を金型(図示しない)内へ圧入し始める様子を示すとともに、プランジャーが充填スリーブの右端をまだシールしているので図7で加えられた真空は未だに存在するため、半固体金属は未だに吸引管を満たしている様子を示す。
【図9】図9は、図8に類似の部分断面図であり、プランジャーがさらに左へ移動されることで、空気がプランジャーの流路壁と充填スリーブとで形成される流路を通ってプランジャーを通過して吸引管内へ流れるので、図7で形成された真空は破れるため、吸引管内の半固体金属は半固体浴へと落ちて戻る様子を示している。
【図10】図10は、図9に類似の部分断面図であり、プランジャーはさらに左へ移動され、半固体金属を吸引管内に支える真空が破れてから十分な時間が経過したことを示し、そのため、吸引管内に停留していた半固体金属が全て浴へと戻り、吸引管が空になった様子を示す。
【図11】図11は、加熱された吸引管と加熱された充填スリーブとの連結部の部分断面図であり、充填スリーブに形成された開口の皿穴に吸引管の面取りされた端部が受け止められて、移送中に半固体金属と接触する可能性のある連結部位における充填スリーブの表面積が最小になるように構成されている様子を示す。

Claims (21)

  1. 成型金属鋳物を製造すべく、真空ゲートと金属供給ゲートとを有する少なくとも一つのキャビティを形成する金型を有して成る型鋳造機へ加熱された金属を送給する装置において、
    溶融金属の温度がそれが凝固し始める温度よりも高い所定の温度範囲に保持されている溶融金属の供給源と、
    金属の約45%以内が粒子として金属の流体部分の中に浮遊している半固体状態で金属を入れる容器と、
    加熱された吸入管と、
    前記加熱された吸入管を介して前記容器に金属流動連通し、前記金属供給ゲートを介して前記キャビティに連通するショットスリーブであって、スリーブ内の半固体金属を加圧下に前記キャビティに圧入すべくスリーブ内で往復動可能にプランジャーを配置してなるショットスリーブと、
    半固体金属を温度制御された前記容器から前記吸入管を介して前記スリーブ内のプランジャーで前記金型に圧入する位置へ引き込むべく、前記真空ゲート、キャビティ、供給ゲートおよびショットスリーブに連通している真空源と、
    を有してなる該装置であって、
    前記容器は底部、側壁および頂部を有し、
    さらに、
    容器内に配置された撹拌器と、
    容器の底部を介して容器内の半固体金属に熱をもたらすべく配置されたヒーターと
    を有し、
    前記容器の前記底部は容器の底部を介して容器内の半固体金属と金属流動連通する独立寸法の加熱室を含み、
    前記ヒーターは前記加熱室内の金属を加熱すべく配置されていることを特徴とする装置。
  2. 請求項1の装置において、前記ヒーターは誘導加熱器であることを特徴とする該装置。
  3. 請求項2の装置において、前記撹拌器は前記加熱室内の金属と前記容器内の半固体金属との混合を促進すべく前記容器内に配置されていることを特徴とする該装置。
  4. 請求項1の装置において、前記ショットスリーブにはジャケットを設け、ジャケット内に流体を循環させることを特徴とする該装置。
  5. 請求項4の装置において、前記容器の前記底部は容器の底部を介して容器内の半固体金属と金属流動連通する独立寸法の加熱室を含み、前記ヒーターは前記加熱室内の金属を加熱すべく配置されていることを特徴とする該装置。
  6. 請求項1の装置において、さらに、所定体積の溶融金属を前記溶融金属供給源から前記容器に送給する送給手段を有することを特徴とする該装置。
  7. 請求項6の装置において、前記容器の前記底部は容器の底部を介して容器内の半固体金属と金属流動連通する独立寸法の加熱室を含み、前記ヒーターは前記加熱室内の金属を加熱すべく配置されていることを特徴とする該装置。
  8. 請求項1の装置において、半固体金属を加熱されたショットスリーブへ送給する前記吸引管は前記容器内の半固体金属の表面から上方へ延びていることを特徴とする該装置。
  9. 底部と、側壁と、頂部と、撹拌器と、ヒーターとを有し、鋳造に使用すべく半固体金属を均熱状態に保持する改良された容器において、改良点はヒーターを、容器の底部を介して容器内の半固体金属に熱をもたらすべく配置したことであることを特徴とする改良された容器であって、
    前記容器の前記底部は容器の底部を介して容器内の半固体金属と金属流動連通する独立寸法の加熱室を含み、
    前記ヒーターは前記加熱室内の金属を加熱すべく配置されている
    ことを特徴とする改良された容器。
  10. 請求項の改良された容器において、前記ヒーターは誘導加熱器であることを特徴とする改良された容器。
  11. 請求項の改良された容器において、さらに容器内に撹拌器を有し、加熱室内の金属と容器内の撹拌された半固体金属との混合を促進すべく撹拌器を配置したことを特徴とする改良された容器。
  12. 請求項1〜8のいずれかに記載の装置における、半固体金属をショットスリーブから金型内へプランジャーで圧入する型鋳造方法において、ショットスリーブを加熱する工程を含むことを特徴とする改良された型鋳造方法。
  13. 請求項12の改良された型鋳造方法において、前記ショットスリーブにはジャケットを設け、ジャケット内に流体を循環させることを特徴とする方法。
  14. 成型金属鋳物を製造すべく、真空ゲートと金属供給ゲートとを有する少なくとも一つのキャビティを両者間に形成する少なくとも一対の金型を有して成る型鋳造機へ加熱された金属を送給する装置において、
    半固体金属の貯槽を保持するための撹拌器と温度制御機構とを備えた容器と、
    溶融金属を前記容器に送給する系と、
    半固体金属を前記容器から型鋳造用金型へ半固体状態で送給する移送系と、
    前記容器に流体連通する加熱室と、
    を有して成る該装置。
  15. 請求項14の装置において、さらに、前記容器から引き出される半固体金属の量と前記容器に加えられる溶融金属の量とを制御するための調整器を有することを特徴とする該装置。
  16. 請求項14の装置において、前記移送系は機械的な取鍋操作を含むことを特徴とする該装置。
  17. 請求項14の装置において、前記容器と前記型鋳造用金型との間の前記移送系は、真空状態とされ、前記半固体金属が真空状態にて移送されることを特徴とする該装置。
  18. 請求項17の装置において、前記移送系はヒーターを備えた吸引管を含むことを特徴とする該装置。
  19. 請求項15の装置において、前記移送系はショットスリーブに流体連通する吸入管とプランジャーとを有し、前記容器と前記型鋳造用金型との間の前記移送系が真空状態とされ前記半固体金属が真空状態にて移送される間は該プランジャーショットスリーブをシールすることで、材料の金型キャビティへの圧入に先立って半固体金属がショットスリーブ内へ引き込まれるとともに吸引管内に停留できるようにし、圧入操作の間は通気路を形成することで吸引管内に停留している金属が金属浴へ戻ることができるようにするべく構成されていることを特徴とする該装置。
  20. 請求項14の装置において、さらに、前記加熱室内の金属を加熱するための誘導加熱器を有することを特徴とする該装置。
  21. 請求項14の装置において、前記容器は型鋳造で部品を製造するのに必要な半固体金属の体積よりも十分に大きな容積を有することを特徴とする該装置。
JP2000560994A 1998-07-24 1999-07-22 半固体鋳造装置および方法 Expired - Fee Related JP3544943B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US9410898P 1998-07-24 1998-07-24
US60/094,108 1998-07-24
US12473499P 1999-03-17 1999-03-17
US60/124,734 1999-03-17
PCT/US1999/016560 WO2000005015A1 (en) 1998-07-24 1999-07-22 Semi-solid casting apparatus and method

Publications (2)

Publication Number Publication Date
JP2002521202A JP2002521202A (ja) 2002-07-16
JP3544943B2 true JP3544943B2 (ja) 2004-07-21

Family

ID=26788427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000560994A Expired - Fee Related JP3544943B2 (ja) 1998-07-24 1999-07-22 半固体鋳造装置および方法

Country Status (11)

Country Link
US (2) US6470955B1 (ja)
EP (1) EP1121214A4 (ja)
JP (1) JP3544943B2 (ja)
KR (1) KR20010072053A (ja)
CN (1) CN1115215C (ja)
AU (1) AU5121999A (ja)
BR (1) BR9912315A (ja)
CA (1) CA2338004A1 (ja)
HU (1) HUP0102977A3 (ja)
MX (1) MXPA01000508A (ja)
WO (1) WO2000005015A1 (ja)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1121214A4 (en) * 1998-07-24 2005-04-13 Gibbs Die Casting Aluminum SEMI-SOLID MOLDING METHOD AND APPARATUS
US6845809B1 (en) 1999-02-17 2005-01-25 Aemp Corporation Apparatus for and method of producing on-demand semi-solid material for castings
US6796362B2 (en) 2000-06-01 2004-09-28 Brunswick Corporation Apparatus for producing a metallic slurry material for use in semi-solid forming of shaped parts
US6402367B1 (en) 2000-06-01 2002-06-11 Aemp Corporation Method and apparatus for magnetically stirring a thixotropic metal slurry
US6399017B1 (en) 2000-06-01 2002-06-04 Aemp Corporation Method and apparatus for containing and ejecting a thixotropic metal slurry
US6432160B1 (en) 2000-06-01 2002-08-13 Aemp Corporation Method and apparatus for making a thixotropic metal slurry
US6611736B1 (en) 2000-07-01 2003-08-26 Aemp Corporation Equal order method for fluid flow simulation
US7024342B1 (en) 2000-07-01 2006-04-04 Mercury Marine Thermal flow simulation for casting/molding processes
ATE299059T1 (de) * 2000-09-21 2005-07-15 Massachusetts Inst Technology Metall-legierungszusammensetzungen und herstellungsverfahren
SE523881C2 (sv) * 2001-09-27 2004-05-25 Abb Ab Anordning samt förfarande för kontinuerlig gjutning
US6964199B2 (en) * 2001-11-02 2005-11-15 Cantocor, Inc. Methods and compositions for enhanced protein expression and/or growth of cultured cells using co-transcription of a Bcl2 encoding nucleic acid
CN1411932B (zh) * 2002-03-01 2012-07-11 北京科技大学 球状初晶半固态金属或合金浆料直接成型方法及装置
US6726085B2 (en) * 2002-05-14 2004-04-27 The Boeing Company Method and apparatus for producing a refined grain structure
JP3993813B2 (ja) * 2002-10-31 2007-10-17 有限会社リムテック 溶融金属材料の射出装置
US6918427B2 (en) * 2003-03-04 2005-07-19 Idraprince, Inc. Process and apparatus for preparing a metal alloy
CN101117698A (zh) * 2003-03-04 2008-02-06 布勒王子公司 制备金属部件的装置
US20040261970A1 (en) * 2003-06-27 2004-12-30 Cyco Systems Corporation Pty Ltd. Method and apparatus for producing components from metal and/or metal matrix composite materials
US20050126737A1 (en) * 2003-12-04 2005-06-16 Yurko James A. Process for casting a semi-solid metal alloy
US8030082B2 (en) * 2006-01-13 2011-10-04 Honeywell International Inc. Liquid-particle analysis of metal materials
EP2010346A4 (en) * 2006-04-25 2013-02-20 Abb Ab STIRRERS
CA2628504C (en) 2007-04-06 2015-05-26 Ashley Stone Device for casting
US20090065354A1 (en) * 2007-09-12 2009-03-12 Kardokus Janine K Sputtering targets comprising a novel manufacturing design, methods of production and uses thereof
PL2393619T3 (pl) * 2010-03-24 2013-09-30 Rheinfelden Alloys Gmbh & Co Kg Metoda wytwarzania elementów odlewanych ciśnieniowo
ITMI20110903A1 (it) * 2011-05-20 2012-11-21 Freni Brembo Spa Impianto e metodo per l'iniezione in stampo di alluminio semisolido
ITMI20111767A1 (it) * 2011-09-30 2013-03-31 T C S Molding Systems S P A Metodo e apparato di rheocasting
JP5442903B1 (ja) * 2013-10-11 2014-03-19 東芝機械株式会社 成形装置、半凝固金属の製造装置、成形方法及び半凝固金属の製造方法
CN103817309B (zh) * 2014-02-25 2016-05-04 张英华 半固态金属铸造设备及其工艺流程
PL3142812T3 (pl) 2014-05-16 2021-05-17 Gissco Company Limited Sposób przygotowania stopionych metali do odlewania w niskiej do zerowej temperaturze przegrzania
GB2529449B (en) * 2014-08-20 2016-08-03 Cassinath Zen A device and method for high shear liquid metal treatment
CN104493134A (zh) * 2014-12-23 2015-04-08 广东科达洁能股份有限公司 闭式取浆机构和方法
MX2018003009A (es) * 2015-09-10 2018-06-27 Andritz Metals Inc Horno de retencion de aluminio por inmersión eléctrica con medios de circulacion y metodo relacionado.
US20200038946A1 (en) * 2015-11-03 2020-02-06 Fujian Rheomet Light Metal Co., Ltd. Aluminum alloy semi-solid molding method and device
CN106270441A (zh) * 2016-09-18 2017-01-04 广东鸿图科技股份有限公司 厚壁压铸件的无孔松缺陷压铸成形方法
US11051466B2 (en) 2017-01-27 2021-07-06 Rain Bird Corporation Pressure compensation members, emitters, drip line and methods relating to same
USD883048S1 (en) 2017-12-12 2020-05-05 Rain Bird Corporation Emitter part
CN110434300A (zh) * 2019-08-30 2019-11-12 尚智强 半固态制浆设备
CN110479993A (zh) * 2019-08-30 2019-11-22 尚智强 半固态制浆装置及制浆设备
CN112705714B (zh) * 2020-12-18 2021-11-02 燕山大学 用于表面修复一体化设备的半固态浆料制备及供料装置
CN114939633B (zh) * 2022-04-13 2022-11-29 北京科技大学 无氧化高纯净大体积半固态浆料制备及成形的系统与工艺

Family Cites Families (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3157923A (en) 1960-09-08 1964-11-24 Hodler Fritz Apparatus for transporting molten metal
US3222776A (en) 1961-12-04 1965-12-14 Ibm Method and apparatus for treating molten material
US3528478A (en) 1968-07-25 1970-09-15 Nat Lead Co Method of die casting high melting point alloys
BE794970A (fr) 1972-02-11 1973-08-06 Glaverbel Procede et dispositif de fabrication d'une unite vitree
US3948650A (en) 1972-05-31 1976-04-06 Massachusetts Institute Of Technology Composition and methods for preparing liquid-solid alloys for casting and casting methods employing the liquid-solid alloys
US3951651A (en) 1972-08-07 1976-04-20 Massachusetts Institute Of Technology Metal composition and methods for preparing liquid-solid alloy metal compositions and for casting the metal compositions
US3791876A (en) 1972-10-24 1974-02-12 Aluminum Co Of America Method of making high strength aluminum alloy forgings and product produced thereby
DE2320761A1 (de) 1973-04-25 1974-11-07 Magnesium Ges Mbh Druckgiessmaschine
US3920223A (en) 1973-07-05 1975-11-18 Wallace F Krueger Plural component mixing head
US3936298A (en) 1973-07-17 1976-02-03 Massachusetts Institute Of Technology Metal composition and methods for preparing liquid-solid alloy metal composition and for casting the metal compositions
US3954455A (en) 1973-07-17 1976-05-04 Massachusetts Institute Of Technology Liquid-solid alloy composition
US3932980A (en) 1974-01-23 1976-01-20 Takeda Chemical Industries, Ltd. Apparatus for continuously making a mixture of viscous material with solid material
US3902544A (en) 1974-07-10 1975-09-02 Massachusetts Inst Technology Continuous process for forming an alloy containing non-dendritic primary solids
US3979026A (en) 1974-09-16 1976-09-07 Roger Howard Lee Apparatus for dispensing particulate and viscous liquid material
US3955802A (en) 1975-03-24 1976-05-11 Bruyne Norman Adrian De Orbital oscillating stirrer
US4008883A (en) 1975-06-11 1977-02-22 Robert Frutos Zubieta Blender
US3993290A (en) 1975-10-16 1976-11-23 Louis Kovich Manually operated agitator for thixotropic suspensions
DE2632335C2 (de) 1976-07-17 1987-04-09 Fried. Krupp Gmbh, 4300 Essen Mischeinrichtung
US4065105A (en) 1976-09-17 1977-12-27 Amax Inc. Fluidizing means for reducing viscosity of slurries
US4108643A (en) 1976-09-22 1978-08-22 Massachusetts Institute Of Technology Method for forming high fraction solid metal compositions and composition therefor
US4049204A (en) 1976-09-23 1977-09-20 Mckee Bros. Limited Fan for forage harvesting system
US4072543A (en) 1977-01-24 1978-02-07 Amax Inc. Dual-phase hot-rolled steel strip
US4194552A (en) 1977-05-23 1980-03-25 Rheocast Corporation Method to form metal containing nondendritic primary solids
US4116423A (en) 1977-05-23 1978-09-26 Rheocast Corporation Apparatus and method to form metal containing nondendritic primary solids
US4345637A (en) 1977-11-21 1982-08-24 Massachusetts Institute Of Technology Method for forming high fraction solid compositions by die casting
US4229210A (en) 1977-12-12 1980-10-21 Olin Corporation Method for the preparation of thixotropic slurries
SU732073A1 (ru) 1978-06-20 1980-05-05 Предприятие П/Я Р-6668 Устройство дл получени и дозированной выдачи частично затвердевших расплавов
NO149684C (no) 1978-07-25 1984-06-06 Halvor Forberg Fremgangsmaate til blanding av parikkelformede bestanddeler
US4215628A (en) 1978-08-18 1980-08-05 Dodd William A Jr Infusion and stirring device
DE2852499A1 (de) 1978-12-05 1980-06-19 Schwing Gmbh F Mischer fuer dickstoffe, z.b. fuer filterkuchen, schlaemme o.dgl.
JPS5594773A (en) 1979-01-09 1980-07-18 Nissan Motor Co Ltd Method and apparatus for die-casting
US4457355A (en) 1979-02-26 1984-07-03 International Telephone And Telegraph Corporation Apparatus and a method for making thixotropic metal slurries
US4434837A (en) 1979-02-26 1984-03-06 International Telephone And Telegraph Corporation Process and apparatus for making thixotropic metal slurries
US4231664A (en) 1979-03-21 1980-11-04 Dependable-Fordath, Inc. Method and apparatus for combining high speed horizontal and high speed vertical continuous mixing of chemically bonded foundry sand
IT1119287B (it) 1979-06-20 1986-03-10 Fiat Ricerche Procedimento per la preparazione di una miscela comprendente una fase solida ed una fase liquida di una lega metallica e dispositivo atto a realizzare tale procedimento
US4382685A (en) 1979-07-17 1983-05-10 Techne (Cambridge) Limited Method and apparatus for stirring particles in suspension such as microcarriers for anchorage-dependent living cells in a liquid culture medium
NO158107C (no) 1979-10-09 1988-07-13 Showa Aluminium Co Ltd Fremgangsmaate ved smelting av aluminium.
US4771818A (en) 1979-12-14 1988-09-20 Alumax Inc. Process of shaping a metal alloy product
US4305673A (en) 1980-03-25 1981-12-15 General Signal Corporation High efficiency mixing impeller
US4390285A (en) 1980-08-24 1983-06-28 Draiswerke Gmbh Method and apparatus for mixing solids with liquids, in particular for gluing wood chips
US4565242A (en) 1981-03-13 1986-01-21 Kubota Ltd. Heat accumulating material enclosing container and heat accumulating apparatus
US4361404A (en) 1981-04-06 1982-11-30 Pettibone Corporation Mixing equipment and agitator therefor for use with granular material and method of producing prepared granular material
US4436429A (en) 1981-05-11 1984-03-13 William A. Strong Slurry production system
US4506982A (en) 1981-08-03 1985-03-26 Union Oil Company Of California Apparatus for continuously blending viscous liquids with particulate solids
US4694881A (en) 1981-12-01 1987-09-22 The Dow Chemical Company Method for making thixotropic materials
US4694882A (en) 1981-12-01 1987-09-22 The Dow Chemical Company Method for making thixotropic materials
US4397687A (en) 1982-05-21 1983-08-09 Massachusetts Institute Of Technology Mixing device and method for mixing molten metals
US4482012A (en) 1982-06-01 1984-11-13 International Telephone And Telegraph Corporation Process and apparatus for continuous slurry casting
US4709746A (en) 1982-06-01 1987-12-01 Alumax, Inc. Process and apparatus for continuous slurry casting
US4565241A (en) 1982-06-01 1986-01-21 International Telephone And Telegraph Corporation Process for preparing a slurry structured metal composition
CH655857A5 (de) 1982-07-21 1986-05-30 Micafil Ag Misch- und entgasungsvorrichtung fuer zaehfluessige stoffe.
US4453829A (en) 1982-09-29 1984-06-12 The Dow Chemical Company Apparatus for mixing solids and fluids
US4580616A (en) 1982-12-06 1986-04-08 Techmet Corporation Method and apparatus for controlled solidification of metals
US4620795A (en) 1983-01-12 1986-11-04 The United States Of America As Represented By The United States Department Of Energy Fluidizing device for solid particulates
US4534657A (en) 1983-07-14 1985-08-13 Crepaco, Inc. Blending and emulsifying apparatus
US4577676A (en) 1984-12-17 1986-03-25 Olin Corporation Method and apparatus for casting ingot with refined grain structure
EP0200349B1 (en) 1985-03-25 1989-12-13 Osprey Metals Limited Improved method of manufacture of metal products
GB8507647D0 (en) 1985-03-25 1985-05-01 Osprey Metals Ltd Manufacturing metal products
US4635706A (en) 1985-06-06 1987-01-13 The Dow Chemical Company Molten metal handling system
DE3543745A1 (de) 1985-12-11 1987-06-19 Bhs Bayerische Berg Doppelwellen-zwangsmischer fuer kontinuierliche und diskontinuierliche arbeitsweise
US5271539A (en) * 1986-06-09 1993-12-21 Kawasaki Steel Corporation Pressure type automatic pouring furnace for casting
GB8617569D0 (en) 1986-07-18 1986-08-28 Davidson J F Impellers
US4687042A (en) 1986-07-23 1987-08-18 Alumax, Inc. Method of producing shaped metal parts
ATE71004T1 (de) 1986-11-26 1992-01-15 Centre Rech Metallurgique Vorrichtung zum giessen eines pastenartigen metalles.
DE3708803A1 (de) 1987-03-18 1988-09-29 Fischbach A Kunststoff Kg Mischvorrichtung fuer pastoese mehrkomponenten-massen
US4865808A (en) 1987-03-30 1989-09-12 Agency Of Industrial Science And Technology Method for making hypereutetic Al-Si alloy composite materials
US4893941A (en) 1987-07-06 1990-01-16 Wayte Joseph M Apparatus for mixing viscous liquid in a container
JPH01180770A (ja) 1987-12-27 1989-07-18 Idea Res:Kk 金属等の強化ブロック材の製造方法
CH675215A5 (ja) 1988-02-08 1990-09-14 Kurt Walter Wyss
DE3816654A1 (de) 1988-05-16 1989-11-23 Doman Michael Vorrichtung zum bewegen von fluessigen, pastoesen und/oder schuettfaehigen medien
FR2634677B1 (fr) 1988-07-07 1990-09-21 Pechiney Aluminium Procede de fabrication par coulee continue de produits metalliques thixotropes
US5121329A (en) 1989-10-30 1992-06-09 Stratasys, Inc. Apparatus and method for creating three-dimensional objects
US5009844A (en) 1989-12-01 1991-04-23 General Motors Corporation Process for manufacturing spheroidal hypoeutectic aluminum alloy
US4972899A (en) 1990-01-02 1990-11-27 Olin Corporation Method and apparatus for casting grain refined ingots
FR2656552B1 (fr) 1990-01-04 1995-01-13 Pechiney Aluminium Procede de fabrication de produits metalliques thixotropes par coulee continue avec brassage electromagnetique en courant polyphase.
IT1243100B (it) 1990-04-12 1994-05-24 Stampal Spa Procedimento e relativa apparecchiatura per la colata indiretta di billette con lega metallica allo stato semiliquido o pastoso
US5257657A (en) 1990-07-11 1993-11-02 Incre, Inc. Method for producing a free-form solid-phase object from a material in the liquid phase
US5144998A (en) 1990-09-11 1992-09-08 Rheo-Technology Ltd. Process for the production of semi-solidified metal composition
US5110547A (en) 1990-10-29 1992-05-05 Rheo-Technology, Ltd. Process and apparatus for the production of semi-solidified metal composition
CA2053990A1 (en) 1990-11-30 1992-05-31 Gordon W. Breuker Apparatus and process for producing shaped articles from semisolid metal preforms
US5178204A (en) 1990-12-10 1993-01-12 Kelly James E Method and apparatus for rheocasting
CH682402A5 (de) 1990-12-21 1993-09-15 Alusuisse Lonza Services Ag Verfahren zum Herstellen einer Flüssig-Fest-Metallegierungsphase mit thixotropen Eigenschaften.
US5135564A (en) 1990-12-28 1992-08-04 Rheo-Technology, Ltd. Method and apparatus for the production of semi-solidified metal composition
DE69202728T2 (de) 1991-01-02 1995-11-09 Osprey Metals Ltd Metallische spritzung mittels mehrerer düsen.
US5775403A (en) * 1991-04-08 1998-07-07 Aluminum Company Of America Incorporating partially sintered preforms in metal matrix composites
JP2518981B2 (ja) 1991-08-22 1996-07-31 株式会社レオテック 半凝固金属の成形方法
US5211216A (en) 1991-09-23 1993-05-18 Gibbs Die Casting Aluminum Corporation Casting process
US5161888A (en) 1991-09-26 1992-11-10 Wenger Manufacturing, Inc. Dual shaft preconditioning device having differentiated conditioning zones for farinaceous materials
US5388633A (en) 1992-02-13 1995-02-14 The Dow Chemical Company Method and apparatus for charging metal to a die cast
US5253696A (en) 1992-04-08 1993-10-19 Misra Asoka K Method and apparatus for controlling solidification of metals and other materials
RU2042414C1 (ru) 1992-04-28 1995-08-27 Малое предприятие "Двойная Спираль-АвиаПолис" Рабочий орган смесителя
IT1257114B (it) 1992-09-29 1996-01-05 Weber Srl Procedimento per l'ottenimento di masselli reocolati, in particolare adatti a venire utilizzati per la produzione di pressocolati ad alte prestazioni meccaniche.
US5313815A (en) 1992-11-03 1994-05-24 Amax, Inc. Apparatus and method for producing shaped metal parts using continuous heating
US5342124A (en) 1993-02-12 1994-08-30 Cmi Corporation Mixer having blades arranged in a discontinuous helical pattern
US5381847A (en) 1993-06-10 1995-01-17 Olin Corporation Vertical casting process
FR2712512B1 (fr) 1993-11-18 1996-02-02 Seva Dispositif et installation de mixage de produits visqueux et/ou fluides et utilisation d'un tel dispositif.
US5555926A (en) * 1993-12-08 1996-09-17 Rheo-Technology, Ltd. Process for the production of semi-solidified metal composition
US5501266A (en) * 1994-06-14 1996-03-26 Cornell Research Foundation, Inc. Method and apparatus for injection molding of semi-solid metals
NO950843L (no) 1994-09-09 1996-03-11 Ube Industries Fremgangsmåte for behandling av metall i halvfast tilstand og fremgangsmåte for stöping av metallbarrer til bruk i denne fremgangsmåte
US5913353A (en) * 1994-09-26 1999-06-22 Ford Global Technologies, Inc. Process for casting light metals
US5492166A (en) * 1994-12-06 1996-02-20 Aluminum Company Of America Shot sleeve having a passageway for fluid flow
JP3474017B2 (ja) 1994-12-28 2003-12-08 株式会社アーレスティ 鋳造用金属スラリーの製造方法
US5730198A (en) 1995-06-06 1998-03-24 Reynolds Metals Company Method of forming product having globular microstructure
JP3817786B2 (ja) * 1995-09-01 2006-09-06 Tkj株式会社 合金製品の製造方法及び装置
US5881796A (en) * 1996-10-04 1999-03-16 Semi-Solid Technologies Inc. Apparatus and method for integrated semi-solid material production and casting
US5887640A (en) 1996-10-04 1999-03-30 Semi-Solid Technologies Inc. Apparatus and method for semi-solid material production
EP1121214A4 (en) * 1998-07-24 2005-04-13 Gibbs Die Casting Aluminum SEMI-SOLID MOLDING METHOD AND APPARATUS

Also Published As

Publication number Publication date
WO2000005015A1 (en) 2000-02-03
BR9912315A (pt) 2001-10-16
JP2002521202A (ja) 2002-07-16
AU5121999A (en) 2000-02-14
US6470955B1 (en) 2002-10-29
CA2338004A1 (en) 2000-02-03
HUP0102977A3 (en) 2002-02-28
US20030006020A1 (en) 2003-01-09
US6640879B2 (en) 2003-11-04
EP1121214A4 (en) 2005-04-13
CN1311722A (zh) 2001-09-05
EP1121214A1 (en) 2001-08-08
HUP0102977A2 (hu) 2001-12-28
MXPA01000508A (es) 2002-11-29
CN1115215C (zh) 2003-07-23
KR20010072053A (ko) 2001-07-31

Similar Documents

Publication Publication Date Title
JP3544943B2 (ja) 半固体鋳造装置および方法
US5501266A (en) Method and apparatus for injection molding of semi-solid metals
US6432160B1 (en) Method and apparatus for making a thixotropic metal slurry
KR20000048914A (ko) 반용융 재료 제조를 위한 장치 및 방법
EP1331279A2 (en) Method and apparatus for shaping semisolid metals
JP4154385B2 (ja) 固液共存状態金属材料製造装置
AU2001264749A1 (en) Method and apparatus for making a thixotropic metal slurry
EP1445044A2 (en) Method and apparatus for manufacturing semi-solid metallic slurry
JP2004538153A (ja) 半固体成形時に使用し得るよう攪拌せずにスラリー材料を製造する装置及び方法
US6918427B2 (en) Process and apparatus for preparing a metal alloy
CN1575886A (zh) 制造半固态金属泥浆的装置
JP2002534272A (ja) 半固体金属の熱加圧室式ダイカスティング
EP0931607B1 (en) Method of preparing a shot of semi-solid metal
JP2004322203A (ja) 固液共存状態金属スラリの製造装置
CN101117698A (zh) 制备金属部件的装置
US20220017993A1 (en) Method and apparatus for processing a liquid alloy
KR20000048913A (ko) 일체형 반용융 재료 제조 및 주조를 위한 장치 및 방법
CN117862431B (zh) 一种在线真空机械搅拌调压挤压铸造设备
JPH0654448U (ja) 複合材の鋳造装置
JPH027741B2 (ja)
AU2005239701A1 (en) Method and apparatus for making a thixotropic metal slurry

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040406

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees