JP3544861B2 - 計測対象区間識別方法 - Google Patents

計測対象区間識別方法 Download PDF

Info

Publication number
JP3544861B2
JP3544861B2 JP16476898A JP16476898A JP3544861B2 JP 3544861 B2 JP3544861 B2 JP 3544861B2 JP 16476898 A JP16476898 A JP 16476898A JP 16476898 A JP16476898 A JP 16476898A JP 3544861 B2 JP3544861 B2 JP 3544861B2
Authority
JP
Japan
Prior art keywords
optical fiber
measurement target
target section
measurement
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16476898A
Other languages
English (en)
Other versions
JPH11287670A (ja
Inventor
敦 野引
利雄 倉嶋
泰臣 内山
知規 薄
郁昭 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP16476898A priority Critical patent/JP3544861B2/ja
Publication of JPH11287670A publication Critical patent/JPH11287670A/ja
Application granted granted Critical
Publication of JP3544861B2 publication Critical patent/JP3544861B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光ファイバ自体をセンサーとして用い、光ファイバの長さ方向に沿った物理量の分布を計測する際に必要となる計測対象区間の識別方法に関するものである。本発明は、通信線路等についての遠隔からの計測及び監視の分野で利用される。
【0002】
【従来の技術】
光ファイバは、それ自体が信号を発信又は物理的な動きをすることがない受動部品である。そのため、電源が不要で故障或いは経年変化が極めて少ない高い信頼性を実現している。また、大量生産される光ファイバは低コストである。このような背景から、光ファイバをセンサーとして用いて構造物又は地盤の歪み又は亀裂等の変状若しくは温度等を計測又は監視する種々の方法が提案されている。以下に一例として、光ファイバをセンサーとして用いて構造物の歪みを計測する場合を説明する。
【0003】
構造物に蓄積された歪みを正確に評価することはその構造物の信頼性を診断する上で重要である。これまで、このような用途には電気式の歪みゲージを点在させる方法が採られてきた。しかし、この従来の方法では、歪みゲージを張り付けた部分のみを計測するため点の計測であり、連続的な歪みの計測が不可能であるという問題があった。
【0004】
歪みが発生している光ファイバに光を入射すると、歪みが発生している部分と発生していない部分とでは、散乱光の一種であるブリルアン散乱光が異なる状態で戻って来る。この性質を利用し、光ファイバの片端から光ファイバ全体の歪みの大きさとその位置を検出する技術が提案されている(特願平7−248169号参照)。この技術は、光ファイバにパルス光を入射し、ブリルアン散乱光とそれが戻って来るまでの時間とによって、光ファイバの長さ方向の歪みの大きさとその位置を検出している。
【0005】
この技術を応用して構造物の形状の変化即ち歪みを計測する方法が提案されている(倉嶋他、「光ファイバセンサを用いたコンクリート構造物のひずみ分布測定」応用物理学会第19回光波センシング技術研究会資料、第23−30頁(1997)参照)。この方法では、通信用の光ファイバをセンサーとして構造物に固定しておき、その光ファイバにかかる張力の大きさとその位置から構造物の形状の変化の大きさとその箇所を計測している。ここでは、物理的に長い光ファイバをセンサーとして使用することにより、長さ方向の任意の点における歪み計測即ち線での計測が可能になっている。また、この方法によれば、光ファイバの引回し方によっては面をカバーする歪み計測も可能である。
【0006】
この報告では、構造物として長さ10mのコンクリート単純梁を用いて曲げの実験を行っている。図1(a)にこの実験系の説明図を、図1(b)にこの実験に使用したコンクリート単純梁の断面図を示す。コンクリート単純梁100 の表面の長さ方向に光ファイバ105 及び106 を貼付し、単純梁の中央に重さ5tの荷重101 を載せて曲げを発生させ、その時に単純梁100 に発生する歪みを光ファイバ103−106 と歪み損失統合型OTDR110 を用いて計測している。同時に、歪みゲージ107 及び108 を設置して歪みゲージ計測器102 で計測し、光ファイバによる歪みの計測値と比較している。
【0007】
この場合の計測結果を図2に示す。曲線の103,104,105 及び106 はそれぞれ図1のそれぞれの参照番号に該当する部分の計測値に相当する部分である。この図から単純梁100 の上面及び下面の歪みに相当する部分105 及び106 の部分のみを取り出して図示すると図3のようになる。同時に図示されている○及び□は、それぞれコンクリート単純梁100 の上側及び下側の鉄筋に1m間隔で貼付した歪みゲージ107 、108 による各点毎の歪みの計測値であり、線A及び線Bは、それぞれコンクリート単純梁100 の上面及び下面に貼付した光ファイバ105 及び106 による歪み計測値である。光ファイバ105 、106 が貼付されている位置と歪みゲージ107 、108 が貼付されている位置とがコンクリート単純梁の高さ方向で50mm離れているため、歪みゲージにより計測された歪み値をコンクリート単純梁の上面及び下面の位置の歪みに換算して図示している。
【0008】
図3に示された結果から、光ファイバによる長さ方向の連続的な歪み分布の計測結果と歪みゲージによる各ポイント毎の歪みの計測結果とがほぼ同一の値を示していることがわかる。このことから、光ファイバを用いる構造物の歪み計測が有効であることが確認されたといえる。
【0009】
この場合、図2の曲線から実際に計測する区間である梁の部分に相当する部分を決定することは、曲線の形状から比較的容易である。しかしながら、実際にこの種の計測を行う場合には、一つの計測系で例えば単純梁のみではなく、光ファイバを壁−梁−壁−梁−壁のように構造物の異なる部分に連続的に敷設して計測することが必要になる。このような場合に、計測波形とそれに対応する構造物の部分との間の対応関係を知ることは容易ではない。このようなことは、例として説明した構造物の場合に限らず、光ファイバをセンサーとしてその長さ方向に沿って物理量を計測する場合に一般的に提起される問題点である。
【0010】
【発明が解決しようとする課題】
本発明の目的は、上述の問題点に鑑み、光ファイバをセンサーとして用い、光ファイバの長さ方向に沿って物理量を計測する際に、計測対象区間の識別を簡単且つ効率的に行う方法を提供することにある。
【0011】
【課題を解決するための手段】
本発明の第1の計測区間識別方法は、上記の目的を達成するために、光ファイバに光パルスを入射し、該光パルスによって生じる光ファイバの長さ方向における散乱光の分布を測定することにより該光ファイバの長さ方向における物理量の分布を測定する場合、計測対象区間の前後にグレーティングが形成された光ファイバを敷設し、光ファイバ全体の散乱光及び反射光の測定値の中から計測対象区間の測定値を識別することを特徴とする。
【0012】
本発明の第2の計測区間識別方法は、光ファイバに光パルスを入射し、該光パルスによって生じる光ファイバの長さ方向における散乱光の分布を測定することにより該光ファイバの長さ方向における物理量の分布を測定する場合、計測対象区間の前後にフィルタが形成された光ファイバを敷設し、光ファイバ全体の散乱光及び反射光の測定値の中から計測対象区間の測定値を識別することを特徴とする。
【0013】
【発明の実施の形態】
次に図面を用いて本発明の実施例について説明する前に参考例について説明する。
【0014】
〔参考例1〕
図4は参考例1を示す図である。図4(a)に示すように、計測対象物1の表面の計測対象区間に波長1.55μm 用の光ファイバ4を貼り付け、その前後に融着点5及び6で波長 1.3μm 用の光ファイバ2及び3を融着する。この場合、歪み分布計測装置11により光ファイバ全体の歪みの分布を計測した結果は図4(b)に示すとおりである。この結果によれば、波長1.55μm 用の光ファイバ4と波長1.3μm 用の光ファイバ2及び3とで計測された歪みの大きさが異なっている。これにより、波長1.55μm 用の光ファイバ4と波長 1.3μm 用の光ファイバ2及び3との融着点5及び6、即ち計測対象区間を容易に決定することができる。この場合、融着点と計測対象区間とが多少ずれていても、本発明の効果は変わらない。
【0015】
〔参考例2〕
図5は参考例2を示す図である。図5(a)に示すように、計測対象物1の表面の計測対象区間に波長1.55μm 用の光ファイバ4を貼り付け、その前後に融着点5及び6で波長 1.3μm 用の光ファイバ2及び3を融着する。この場合、温度分布計測装置21により光ファイバ全体の温度の分布を計測した結果は図5(b)に示すとおりである。この結果によれば、波長1.55μm 用の光ファイバ4と波長1.3μm 用の光ファイバ2及び3とで計測された温度が異なっている。これにより、波長1.55μm 用の光ファイバ4と波長 1.3μm 用の光ファイバ2及び3との融着点5及び6、即ち計測対象区間を容易に決定することができる。この場合、融着点と計測対象区間とが多少ずれていても、本発明の効果は変わらない。
【0016】
〔参考例3〕
図6は参考例3を示す図である。図6(a)に示すように、計測対象物1の表面の計測対象区間に波長1.55μm 用の光ファイバ4を貼り付け、その前後に融着点5及び6で波長 1.3μm 用の光ファイバ2及び3を融着する。この場合、損失分布計測装置31により光ファイバ全体の損失の分布を計測した結果は図6(b)に示すとおりである。この結果によれば、波長1.55μm 用の光ファイバ4と波長1.3μm 用の光ファイバ2及び3とで計測された損失の傾きが異なっている。これにより、波長1.55μm 用の光ファイバ4と波長 1.3μm 用の光ファイバ2及び3との融着点5及び6、即ち計測対象区間を容易に決定することができる。この場合、融着点と計測対象区間とが多少ずれていても本発明の効果は変わらない。
【0017】
〔参考例4〕
図7は参考例4を示す図である。図7(a)に示すように、計測対象物1の表面の計測対象区間に波長1.55μm 用の光ファイバ4を貼り付ける。その際、光ファイバ4の計測対象区間7に一定の張力を加えて貼り付ける。この場合、歪み分布計測装置11により光ファイバ全体の歪みの分布を計測した結果は図7(b)に示すとおりである。この結果によれば、一定の張力を加えた部分とその他の部分との間で計測された歪みの大きさが異なっている。これにより、一定の張力を加えた部分、即ち計測対象区間を容易に決定することができる。
【0018】
〔参考例5〕
図8は参考例5を示す図である。図8(a)に示すように、計測対象物1の表面の計測対象区間に波長1.55μm 用の光ファイバ4を貼り付ける。その際、光ファイバ4の計測対象区間の前後部分の一部をボビン12、13に一定の張力で巻き付ける。この場合、歪み分布計測装置11により光ファイバ全体の歪みの分布を計測した結果は図8(b)に示すとおりである。この結果によれば、一定の張力を加えた部分とその他の部分との間で計測された歪みの大きさが異なっている。これにより、ボビンを用いて一定の張力を加えた部分の位置から計測対象区間を容易に決定することができる。
【0019】
〔参考例6〕
図9は参考例6を示す図である。図9(a)に示すように、計測対象物1の表面の計測対象区間に波長1.55μm 用の光ファイバ4を貼り付ける。その際、光ファイバ4の計測対象区間の前後部分の全部をボビン14、15に一定の張力で巻き付ける。この場合、歪み分布計測装置11により光ファイバ全体の歪みの分布を計測した結果は図9(b)に示すとおりである。この結果によれば、一定の張力を加えた部分とその他の部分との間で計測された歪みの大きさが異なっている。これにより、ボビンを用いて一定の張力を加えた部分から計測対象区間を容易に決定することができる。
【0020】
〔参考例7〕
図10は参考例7を示す図である。図10(a)に示すように、計測対象物1の表面の計測対象区間にGI光ファイバ24を貼り付ける。その際、光ファイバ24の計測対象区間の前後部分に電熱線22、23を巻いて温度を変化させる。この場合、温度分布計測装置21により光ファイバ全体の温度の分布を計測した結果は図10(b)に示すとおりである。この結果によれば、温度を変化させた部分とその他の部分との間で計測された温度が異なっている。これにより、温度を変化させた部分から計測対象区間を容易に決定することができる。温度分布計測装置21としては、ラマン散乱光又はブリルアン散乱光を用いて光ファイバの長さ方向の温度分布を計測する装置を用いることができる。
【0021】
〔参考例8〕
図11は参考例8を示す図である。図11(a)に示すように、計測対象物1の表面の計測対象区間に波長1.55μm 用の光ファイバ4を貼り付ける。その際、光ファイバ4の計測対象区間の前後部分の一部をボビン12、13に巻き付けて曲げ損失を発生させる。この場合、損失分布計測装置31により光ファイバ全体の損失の分布を計測した結果は図11(b)に示すとおりである。この結果によれば、ボビンを用いて曲げ損失を発生させた位置で損失が大きくなっている。これにより、損失が大きくなる位置から計測対象区間を容易に決定することができる。
【0022】
〔参考例10〕
図13は参考例10を示す図である。図13(a)に示すように、計測対象物1の表面の計測対象区間に波長1.55μm 用の光ファイバ4を貼り付ける。この光ファイバ4には、計測対象区間の前後に、光コネクタ34、35が接続されている。この場合、損失分布計測装置31により光ファイバ全体の損失の分布を計測した結果は図13(b)に示すとおりである。この結果によれば、光コネクタが接続された位置で反射が生起すると共に損失も大きくなっている。これにより、損失が大きくなる位置から計測対象区間を容易に決定することができる。
【0023】
〔実施例1〕
図12は本発明の実施例1を示す図である。図12(a)に示すように、計測対象物1の表面の計測対象区間に波長1.55μm 用の光ファイバ4を貼り付ける。この光ファイバ4には、計測対象区間の前後に、通過光の一部を反射するグレーティング32、33を形成してある。この場合、損失分布計測装置31により光ファイバ全体の損失の分布を計測した結果は図12(b)に示すとおりである。この結果によれば、グレーティングが形成された位置で反射が生起すると共に損失も大きくなっている。これにより、損失が大きくなる位置から計測対象区間を容易に決定することができる。
【0024】
〔実施例2〕
図14は本発明の実施例2を示す図である。図14(a)に示すように、計測対象物1の表面の計測対象区間に波長1.55μm 用の光ファイバ4を貼り付ける。この光ファイバ4には、計測対象区間の前後に、フィルタ36、37が形成されている。フィルタが形成されている部分を図15に示す。図15(b)は図15(a)のAB間の一部拡大図である。フェルール41に光ファイバ42の一部を固定し、光ファイバ42が固定されたフェルール41ごと数十μm の溝43を切る。その溝43に、光の透過率が波長依存性を有する多層膜フィルタ44を差し込み、接着剤で固定する。このフィルタ44は、光ファイバ自体をセンサーとして用い光ファイバの長さ方向に沿った物理量の分布を計測するための試験光(例えば波長1.55μm )45を透過し、計測対象区間を特定するための識別光(例えば波長1.3 μm )46を一部反射することができる。この場合、損失分布計測装置31により光ファイバ全体の損失の分布を計測した結果は図14(b)に示すとおりである。この結果によれば、フィルタが形成された位置で反射が生起すると共に損失も大きくなっている。これにより、損失が大きくなる位置から計測対象区間を容易に決定することができる。
【0025】
【発明の効果】
以上説明したように、本発明によれば、光ファイバに光を入射すると光ファイバの長さ方向に種々の物理量に起因する特徴を含む散乱光が発生することを利用し、光ファイバ自体をセンサーとして用いて光ファイバの長さ方向に沿った物理量の分布を計測する際、光ファイバの長さ方向に発生する散乱光の分布を測定する装置と光ファイバとを用いて計測対象区間の識別を行う。計測対象区間の前後にグレーティング又はフィルタが形成された光ファイバを用いることにより、計測対象区間を明確に識別することができる。従って、従来のように余長部分の長さを正確に計測する必要がなく、計測対象区間を効率的に決定することができる。
【図面の簡単な説明】
【図1】コンクリート単純梁の曲げの実験を説明する図である。
【図2】図1の実験の計測結果を示す図である。
【図3】図1の実験の計測結果を説明する図である。
【図4】参考例1を説明する図である。
【図5】参考例2を説明する図である。
【図6】参考例3を説明する図である。
【図7】参考例4を説明する図である。
【図8】参考例5を説明する図である。
【図9】参考例6を説明する図である。
【図10】参考例7を説明する図である。
【図11】参考例8を説明する図である。
【図12】本発明の実施例1を説明する図である。
【図13】参考例9を説明する図である。
【図14】本発明の実施例2を説明する図である。
【図15】本発明の実施例2におけるフィルタが形成されている部分を説明する図である。
【符号の説明】
1 計測対象物
2、3 波長 1.3μm 用の光ファイバ
4 波長1.55μm 用の光ファイバ
5、6 融着点
7 計測対象区間
11 歪み分布計測装置
12、13、14、15 ボビン
21 温度分布計測装置
22、23 電熱線
24 GI光ファイバ
31 損失分布計測装置
32、33 グレーティング
34、35 光コネクタ
41 フェルール
42 光ファイバ
43 溝
44 多層膜フィルタ
45 試験光
46 識別光
100 コンクリート単純梁
101 荷重
102 歪みゲージ計測器
103、104、105、106 光ファイバ
107、108 歪みゲージ
110 歪み損失統合型OTDR

Claims (3)

  1. 光ファイバに光パルスを入射し、該光パルスによって生じる光ファイバの長さ方向における散乱光の分布を測定することにより該光ファイバの長さ方向における物理量の分布を測定する場合、計測対象区間の前後にグレーティングが形成された光ファイバを敷設し、光ファイバ全体の散乱光及び反射光の測定値の中から計測対象区間の測定値を識別することを特徴とする計測区間識別方法。
  2. 光ファイバに光パルスを入射し、該光パルスによって生じる光ファイバの長さ方向における散乱光の分布を測定することにより該光ファイバの長さ方向における物理量の分布を測定する場合、計測対象区間の前後にフィルタが形成された光ファイバを敷設し、光ファイバ全体の散乱光及び反射光の測定値の中から計測対象区間の測定値を識別することを特徴とする計測区間識別方法。
  3. 前記フィルタが形成された部分が、光ファイバを台座に固定し、台座に固定された光ファイバに溝を形成し、その溝にフィルタを指し込み接着剤で固定して構成されたものであることを特徴とする請求項2記載の計測対象区間識別方法。
JP16476898A 1998-02-03 1998-06-12 計測対象区間識別方法 Expired - Fee Related JP3544861B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16476898A JP3544861B2 (ja) 1998-02-03 1998-06-12 計測対象区間識別方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-21912 1998-02-03
JP2191298 1998-02-03
JP16476898A JP3544861B2 (ja) 1998-02-03 1998-06-12 計測対象区間識別方法

Publications (2)

Publication Number Publication Date
JPH11287670A JPH11287670A (ja) 1999-10-19
JP3544861B2 true JP3544861B2 (ja) 2004-07-21

Family

ID=26359053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16476898A Expired - Fee Related JP3544861B2 (ja) 1998-02-03 1998-06-12 計測対象区間識別方法

Country Status (1)

Country Link
JP (1) JP3544861B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4775094B2 (ja) * 2006-04-21 2011-09-21 住友電気工業株式会社 ブリルアンスペクトル測定装置
JP4932625B2 (ja) * 2007-07-12 2012-05-16 日鐵住金溶接工業株式会社 光ファイバセンサ及び歪観測システム
EP2110651B1 (en) * 2008-04-18 2017-06-07 OZ Optics Ltd. Method and system for simultaneous measurement of strain and temperature
JP6694923B2 (ja) * 2018-07-30 2020-05-20 北陸電力株式会社 温度測定装置および温度測定方法

Also Published As

Publication number Publication date
JPH11287670A (ja) 1999-10-19

Similar Documents

Publication Publication Date Title
US5723857A (en) Method and apparatus for detecting cracks and strains on structures using optical fibers and Bragg gratings
US5118931A (en) Fiber optic microbending sensor arrays including microbend sensors sensitive over different bands of wavelengths of light
CA2490113C (en) Method for measuring and calibrating measurements using optical fiber distributed sensor
JP2006250647A (ja) ワイヤケーブル、並びに張力測定システム及び張力測定方法
US8727613B2 (en) Method and system for measuring a parameter in a high temperature environment using an optical sensor
CA1183016A (en) Microbending of optical fibers for remote force measurement
JPH0261698B2 (ja)
US20080084914A1 (en) Sensor and Disturbance Measurement Method Using the Same
KR101465156B1 (ko) 최대 변형률 측정을 위한 fbg 센서, 제조방법 및 사용방법
US9534965B2 (en) Flexible fibre optic deformation sensor system and method
KR20100026145A (ko) 광섬유 브래그 격자 센서를 이용한 긴장력 또는 변형량 측정 방법
JP2000039309A (ja) 変形検査方法及び装置
US10161767B2 (en) Diagnostic and measurement system comprising a branched optical fiber embedded in a structural element
JP3544861B2 (ja) 計測対象区間識別方法
EP0086231A4 (en) MICROFLEXION OF OPTICAL FIBERS FOR THE REMOTE MEASUREMENT OF A FORCE.
US20110205526A1 (en) Flexible fibre optic deformation sensor system and method
JP2002048517A (ja) 歪みセンシング用ケーブル及び歪み計測方法
JP2005351663A (ja) Fbg湿度センサ及びfbg湿度センサを用いた湿度測定方法
JP2003014561A (ja) 歪センサ及び歪検知装置
WO2007043716A1 (en) Optical fiber bragg grating unit and apparatus and method of measuring deformation of structure having the same
Kinet et al. Temperature and strain effects discrimination inside composite materials with embedded weakly tilted fibre Bragg grating
CN114088003B (zh) 一种光纤光栅传感器
US11788909B2 (en) Measuring device and measuring method using tape core wire
WO1996031756A1 (en) Optical fibre sensor
JP2002062200A (ja) 歪みセンシング用ケーブル及び歪み計測方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040406

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees