JP3544259B2 - Negative electrode for lithium secondary battery - Google Patents

Negative electrode for lithium secondary battery Download PDF

Info

Publication number
JP3544259B2
JP3544259B2 JP31387395A JP31387395A JP3544259B2 JP 3544259 B2 JP3544259 B2 JP 3544259B2 JP 31387395 A JP31387395 A JP 31387395A JP 31387395 A JP31387395 A JP 31387395A JP 3544259 B2 JP3544259 B2 JP 3544259B2
Authority
JP
Japan
Prior art keywords
negative electrode
lithium
secondary battery
lithium secondary
solid solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31387395A
Other languages
Japanese (ja)
Other versions
JPH09161774A (en
Inventor
順 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP31387395A priority Critical patent/JP3544259B2/en
Publication of JPH09161774A publication Critical patent/JPH09161774A/en
Application granted granted Critical
Publication of JP3544259B2 publication Critical patent/JP3544259B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リチウム二次電池用負極、特にデンドライトの巨大結晶の成長を抑制したリチウム二次電池用負極に関する。
【0002】
【従来技術】
特開平5−47381号公報は、リチウムに銀、亜鉛、マグネシウムのどれかを0.01〜15wt%の含有率で固溶させた固溶体(添加量が多い場合には固溶体相と金属間化合物相とからなる合金)をリチウム二次電池用負極とすることにより、電池のサイクル寿命(初期容量の半分の容量となる時点までの累積充放電サイクル数)を延長できることを記載している。
【0003】
【発明が解決しようとする課題】
負極にリチウムを用いたリチウム二次電池においては、充放電にともなうリチウムの溶解、析出の繰り返しにより負極表面にデンドライト結晶が成長してセパレータを突き抜け、陽極と接触してショートするという問題があった。
上記した公報によれば、上記銀、亜鉛、マグネシウムのどれかをリチウムに0.01〜15wt%溶解させて固溶体相又は固溶体相と金属間化合物相とを含む合金を形成することによりサイクル寿命の延長が実現したということはわかるが、このサイクル寿命の延長が果たしてデンドライト結晶の成長阻止によるものかどうかについては検証されておらず、真のサイクル寿命延長原因については不明であった。
【0004】
更に、このような銀、亜鉛、マグネシウムなどの添加は次の問題を生起することがわかった。
すなわち、リチウムの標準単極電位は−3.02Vであり、銀のそれは+0.8Vであり、亜鉛のそれは−0.76Vであり、マグネシウムを含めてそれらのイオン化傾向はリチウムに比べてかなり小さく、このためにこれらを含むリチウム合金を負極とした場合、放電を進行させるとこれらの添加元素がイオン化して電解液に一時的に溶解してもすぐにリチウムとの置換によりこれら添加元素が負極表面に回帰して被着され、その結果、負極の表面における添加元素の密度が元々の密度より著しく増大してしまう。更に、上記説明からわかるようにこの負極の表面における添加元素の密度は放電量により変動し充放電時には著しく高くなることがわかる。
【0005】
このように上記公報による方法では、リチウム表面の状態が充放電サイクルを繰り返す毎に異なるので、負極表面におけるデンドライト結晶の安定した析出がなされず、その結果、充放電効率の低下を招くことが充分に懸念される。
また、原子量の大きな添加元素を多量に添加することは当然、負極の容量密度を低下させる。
【0006】
本発明は、上記事情に鑑みなされたものであり、充電時におけるデンドライト巨大結晶の析出を抑止可能なリチウム二次電池用負極を提供することを解決すべき課題としている。
また本発明は、上記事情に鑑みさなされたものであり、充放電により負極表面に添加元素の過度の集中を抑止してデンドライト巨大結晶の析出抑止するとともに電池反応の向上が可能なリチウム二次電池用負極を提供することを解決すべき課題としている。
【0007】
【課題を解決するための手段】
請求項1記載の手段によれば、リチウムと等しい電気陰性度をもつアルカリ土類金属であるカルシウム(Ca)又はストロンチウム(Sr)をリチウムに固溶限界内である0.60〜2.00wt%で固溶させた固溶体をリチウム二次電池用負極として採用するので、充電時におけるデンドライト巨大結晶が抑止できるリチウム二次電池用負極を実現した。すなわち、本発明者は、リチウムにCa又はSrを固溶させた固溶体を負極とするリチウム二次電池用負極において顕著にデンドライト巨大結晶の析出を阻止できることを見出した。
【0008】
この理由としては、固溶によりリチウム中に非常に良好に分散したCa又はSr又はそれによる結晶欠陥が電池充電時に負極表面に極めて多数の析出核を形成し、これによりリチウムが負極表面全面にわたって良好に分散析出するためであると考えられる。このため、負極表面全面が結晶成長面となって、充電継続によりリチウム層の厚さのみが増大し、デンドライト結晶が局部的に形成されるのが抑止される。したがって、本手段のリチウム二次電池用負極を用いれば極間短絡を良好に抑止できることがわかる。
【0009】
なお、Linus Paulingが求めたLi、Ca、Srの電気陰性度はともに1.0であり、また、それらのイオン化傾向(標準単極電位)は、Liが−3.02V、Caが−2.81V、Srが−2.89Vと極めて近似しており、更にLiとCa又はSrとは周期律表において隣接する族であり、これらの物理化学的特性の近似がリチウム内におけるCa又はSrの良好な分散性、又は、電池充電時における極めて多数の析出核を形成するのに関連しているものと思われる。
【0010】
特に、これら3元素の標準単極電位が近似しているということは、例えば放電時などにおいて電解液中にイオンとして溶解したCa又はSrがその後、容易に負極表面にリチウムと置換しないということを意味しており、このために前述した非充電時における負極表面への添加元素の過度の被着が抑止され、この結果、負極表面におけるその後の充電時などにおいて金属間化合物などが生成されることが少なく、添加元素すなわちCaやSrが負極表面において充電が進行しても良好に固溶体を構成し、CaやSrの良好な(緻密な)分散の維持による析出核の良好な分散によりデンドライト巨大結晶の成長を抑止し、良好な負極電極反応の維持が実現することがわかる。
【0012】
添加濃度が0.06wt%未満であれば添加元素の析出密度が低下してデンドライト巨大結晶の発生確率が増大し、添加濃度が2.00wt%を超過すれば、金属間化合物相を含む合金となるためかデンドライト巨大結晶の発生確率が増大するとともに、リチウム量の減少による容量低下が大きくなる。
更に言えば添加元素が増加してリチウムとこの添加元素により多量の金属間化合物が生成する場合、これら金属間化合物は添加元素単体に比べてリチウムに対する分散性が劣るので、極めて局所的な析出が生じる。更に、充放電に関与する有効リチウム量が減少するので容量密度の低下を招くという欠点が生じる。
【0013】
これらの問題は本手段により解決される。
【0014】
【実施例】
負極として以下の5つのサンプルを準備した。サンプル1はCaの添加濃度が0wt%の従来品、サンプル2はCaの添加濃度が0.06wt%の実施例1品、サンプル3はCaの添加濃度が0.60wt%の実施例2品、サンプル4はCaの添加濃度が2.00wt%の実施例3品、サンプル5はCaの添加濃度が12wt%の実施例4品である。
【0015】
各サンプルは、Li粉末に上記割合でCa粉末を混合して溶融、攪拌後、冷却して固溶体インゴットを作製し、この固溶体インゴットを圧延して、厚さ0.4mm、直径10mmの円板に成形して作用極とした。対極として同一形状のLiを用い、これらを電解液中に対面させて直流電圧を印加して析出試験を実施した。電解液としては、LiClOをプロピレンカーボネートに1モル/lだけ溶解したものを用い、負極電流密度1.9mA/cmの条件で80分間通電した後、各サンプルの表面を観察した。
【0016】
その結果、サンプル1では全面にデンドライト結晶が析出し、サンプル2、5ではかなりデンドライト結晶が析出し、サンプル3、4では一部にデンドライト結晶を残して表面の多くが平滑面となることがわかった。
上記充電終了後のサンプル1〜3の表面状態を撮影した写真を図1〜図3に示す。図1はサンプル1の表面を示し、図2はサンプル2の表面を示し、図3はサンプル3の表面を示す。
【0017】
次に、上記充電終了後のサンプル1と3の断面の凹凸を調べた。検査装置としてはレーザー顕微鏡を用いた。
その結果、上記表面観察結果と同様に、サンプル1では大きな表面凹凸が生じているにもかかわらず、サンプル3では、ほとんど表面凹凸が生じていなかった。図4はサンプル1の断面を計測してプロットした画面の写真であり、図5はサンプル3の断面を計測してプロットした画面の写真である。
【0018】
なお、この実施例では電解液としてプロピレンカーボネート(PC)/LiClOを用いたが、他の電解液、例えばPC+DME/1MLiClO、PC+DME/1MLiPF等を用いることができ、正極としてLiMn等リチウムをドープおよび脱ドープする物質を用いることができる。更に、電池形状もボタン型に限られるものではなく、他の形状のものとすることができる。
【0019】
(実施例2)
Caの代わりに、Caと同じくリチウムと同じ電気陰性度をもち、同じアルカリ土類であるSrを用いて上記と同じ試験を行った。その結果は、Caの場合とほとんど同じであった。
【図面の簡単な説明】
【図1】Ca含有量0wt%のリチウムからなるリチウム二次電池用負極の充電後の表面の粒子構造を示す写真を複写した図である。
【図2】Ca含有量0.06wt%のリチウム固溶体からなるリチウム二次電池用負極の充電後の表面の粒子構造を示す写真を複写した図である。
【図3】Ca含有量0.60wt%のリチウム固溶体からなるリチウム二次電池用負極の充電後の表面の粒子構造を示す写真を複写した図である。
【図4】Ca含有量0wt%のリチウムからなるリチウム二次電池用負極の充電後の表面部断面の凹凸を示すオシロ波形を示す図である。
【図5】Ca含有量0.60wt%のリチウムからなるリチウム二次電池用負極の充電後の表面部断面の凹凸を示すオシロ波形を示す図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a negative electrode for a lithium secondary battery, and more particularly to a negative electrode for a lithium secondary battery in which the growth of dendrite giant crystals is suppressed.
[0002]
[Prior art]
JP-A-5-47381 discloses a solid solution in which any one of silver, zinc, and magnesium is dissolved in lithium at a content of 0.01 to 15 wt% (when a large amount is added, a solid solution phase and an intermetallic compound phase are formed). It is described that the cycle life (cumulative number of charge / discharge cycles up to half the initial capacity) of the battery can be extended by using a negative electrode for a lithium secondary battery with an alloy comprising
[0003]
[Problems to be solved by the invention]
In a lithium secondary battery using lithium for the negative electrode, there was a problem that dendrite crystals grew on the negative electrode surface due to repeated dissolution and deposition of lithium during charge and discharge, penetrated the separator, and short-circuited in contact with the anode. .
According to the above publication, one of the above silver, zinc, and magnesium is dissolved in lithium in an amount of 0.01 to 15% by weight to form a solid solution phase or an alloy containing a solid solution phase and an intermetallic compound phase. It can be seen that the extension was achieved, but it was not verified whether this extension of the cycle life was due to the inhibition of the growth of the dendrite crystal, and the true cause of the extension of the cycle life was unknown.
[0004]
Further, it has been found that the addition of silver, zinc, magnesium and the like causes the following problem.
That is, the standard monopolar potential of lithium is -3.02 V, that of silver is +0.8 V, that of zinc is -0.76 V, and their ionization tendency including magnesium is considerably smaller than that of lithium. Therefore, when a lithium alloy containing them is used as a negative electrode, these additional elements are ionized as the discharge proceeds, and are temporarily dissolved in the electrolytic solution. It is deposited back on the surface, and as a result, the density of the additional element on the surface of the negative electrode is significantly increased from the original density. Further, as can be seen from the above description, the density of the additional element on the surface of the negative electrode varies depending on the amount of discharge, and becomes extremely high during charge and discharge.
[0005]
As described above, in the method according to the above publication, since the state of the lithium surface is different each time the charge / discharge cycle is repeated, stable precipitation of dendrite crystals on the negative electrode surface is not achieved, and as a result, it is sufficient to reduce the charge / discharge efficiency. Is concerned.
Also, adding a large amount of the additional element having a large atomic weight naturally lowers the capacity density of the negative electrode.
[0006]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a negative electrode for a lithium secondary battery that can suppress the precipitation of a large dendrite crystal during charging.
In addition, the present invention has been made in view of the above circumstances, and a lithium secondary battery capable of suppressing excessive concentration of an additional element on the surface of a negative electrode by charging and discharging to suppress precipitation of a large dendrite crystal and improving a battery reaction. It is an object to provide a negative electrode for a battery.
[0007]
[Means for Solving the Problems]
According to the means of the present invention, calcium (Ca) or strontium (Sr), which is an alkaline earth metal having an electronegativity equal to that of lithium , is within a solid solution limit of 0.60 to 2.00 wt% in lithium. Since the solid solution obtained by the solid solution is adopted as a negative electrode for a lithium secondary battery, a negative electrode for a lithium secondary battery that can suppress dendrite giant crystals during charging has been realized. That is, the present inventor has found that precipitation of giant dendrite crystals can be remarkably prevented in a negative electrode for a lithium secondary battery using a solid solution in which Ca or Sr is dissolved in lithium as a negative electrode.
[0008]
The reason for this is that Ca or Sr dispersed very well in lithium due to solid solution or crystal defects due to it form an extremely large number of precipitation nuclei on the negative electrode surface during charging of the battery, whereby lithium is good over the entire negative electrode surface. This is considered to be due to dispersion and precipitation. Therefore, the entire surface of the negative electrode surface becomes a crystal growth surface, and only the thickness of the lithium layer increases due to continuation of charging, so that local formation of dendrite crystals is suppressed. Therefore, it is understood that the use of the negative electrode for a lithium secondary battery according to the present means makes it possible to favorably prevent short-circuiting between the electrodes.
[0009]
The electronegativities of Li, Ca, and Sr determined by Linus Pauling are all 1.0, and the ionization tendency (standard unipolar potential) of Li is -3.02 V and Ca is -2. 81V and Sr are very close to -2.89V, Li and Ca or Sr are adjacent groups in the periodic table, and their physicochemical properties are close to those of Ca or Sr in lithium. It seems to be related to high dispersibility or formation of a large number of precipitation nuclei during battery charging.
[0010]
In particular, the fact that the standard monopolar potentials of these three elements are close means that, for example, Ca or Sr dissolved as ions in the electrolytic solution during discharge or the like does not easily replace lithium on the surface of the negative electrode. This means that excessive deposition of the additional element on the negative electrode surface during non-charging described above is suppressed, and as a result, intermetallic compounds and the like are generated during subsequent charging on the negative electrode surface and the like. And the additive element, ie, Ca or Sr, forms a solid solution well even when charging progresses on the surface of the negative electrode. It can be seen that the growth of GaN is suppressed and a favorable maintenance of the negative electrode reaction is realized.
[0012]
If the addition concentration is less than 0.06 wt%, the precipitation density of the additional element is reduced and the probability of the generation of dendrite giant crystals increases, and if the addition concentration exceeds 2.00 wt%, the alloy containing the intermetallic compound phase may be removed. Presumably, the probability of generation of dendrite giant crystals increases, and the capacity decrease due to the decrease in the amount of lithium increases.
Furthermore, when the additional element increases and lithium and a large amount of intermetallic compound are generated by this additional element, these intermetallic compounds are inferior in dispersibility to lithium as compared with the additional element alone. Occurs. Further, there is a disadvantage in that the capacity density is reduced because the amount of effective lithium involved in charging and discharging is reduced.
[0013]
These problems are solved by this means.
[0014]
【Example】
The following five samples were prepared as negative electrodes. Sample 1 is a conventional product having a Ca addition concentration of 0 wt%, Sample 2 is an Example 1 product having a Ca addition concentration of 0.06 wt%, Sample 3 is an Example 2 product having a Ca addition concentration of 0.60 wt%, Sample 4 is the product of Example 3 with an addition concentration of Ca of 2.00 wt%, and Sample 5 is the product of Example 4 with an addition concentration of Ca of 12 wt%.
[0015]
Each sample was prepared by mixing Ca powder in the above ratio with Li powder, melting and stirring, and then cooling to produce a solid solution ingot. This solid solution ingot was rolled into a disk having a thickness of 0.4 mm and a diameter of 10 mm. It was formed into a working electrode. Li of the same shape was used as a counter electrode, these were faced in an electrolytic solution, and a DC voltage was applied to perform a deposition test. As an electrolytic solution, a solution obtained by dissolving LiClO 4 at a concentration of 1 mol / l in propylene carbonate was used, and a current was applied at a negative electrode current density of 1.9 mA / cm 2 for 80 minutes, and then the surface of each sample was observed.
[0016]
As a result, it was found that dendrite crystals were precipitated on the entire surface in Sample 1, that dendrite crystals were considerably precipitated in Samples 2 and 5, and that in Samples 3 and 4, most of the surfaces became smooth with some dendrite crystals left. Was.
FIGS. 1 to 3 show photographs of the surface states of Samples 1 to 3 after completion of the charging. 1 shows the surface of sample 1, FIG. 2 shows the surface of sample 2, and FIG.
[0017]
Next, the unevenness of the cross section of Samples 1 and 3 after completion of the charging was examined. A laser microscope was used as an inspection device.
As a result, as in the case of the above-mentioned surface observation results, although the sample 1 had large surface irregularities, the sample 3 had almost no surface irregularities. FIG. 4 is a photograph of a screen on which a cross section of Sample 1 is measured and plotted, and FIG. 5 is a photograph of a screen on which a cross section of Sample 3 is measured and plotted.
[0018]
In this example, propylene carbonate (PC) / LiClO 4 was used as the electrolyte. However, other electrolytes such as PC + DME / 1M LiClO 4 and PC + DME / 1M LiPF 6 can be used, and LiMn 2 O 4 as the positive electrode. Materials that dope and dedope lithium can be used. Further, the shape of the battery is not limited to the button type, but may be other shapes.
[0019]
(Example 2)
The same test as above was performed using Sr, which has the same electronegativity as lithium and the same alkaline earth as Ca, instead of Ca. The results were almost the same as for Ca.
[Brief description of the drawings]
FIG. 1 is a copy of a photograph showing the particle structure of a charged surface of a negative electrode for a lithium secondary battery made of lithium having a Ca content of 0 wt%.
FIG. 2 is a copy of a photograph showing the particle structure of a charged surface of a negative electrode for a lithium secondary battery made of a lithium solid solution having a Ca content of 0.06 wt%.
FIG. 3 is a copy of a photograph showing the particle structure of the charged surface of a negative electrode for a lithium secondary battery made of a lithium solid solution having a Ca content of 0.60 wt%.
FIG. 4 is a diagram showing an oscilloscope waveform showing unevenness of a cross section of a surface portion of a negative electrode for a lithium secondary battery made of lithium having a Ca content of 0 wt% after charging.
FIG. 5 is a view showing an oscilloscope waveform showing unevenness of a cross section of a surface portion of a negative electrode for a lithium secondary battery made of lithium having a Ca content of 0.60 wt% after charging.

Claims (1)

リチウムと等しい電気陰性度をもつアルカリ土類金属であるカルシウム又はストロンチウムをリチウムに固溶限界内である0.60〜2.00wt%で固溶させた固溶体により少なくとも表面部分が構成されることを特徴とするリチウム二次電池用負極 At least the surface portion is constituted by a solid solution in which calcium or strontium , which is an alkaline earth metal having an electronegativity equal to lithium, is dissolved in lithium at a solid solution limit of 0.60 to 2.00 wt%. Characteristic negative electrode for lithium secondary batteries .
JP31387395A 1995-12-01 1995-12-01 Negative electrode for lithium secondary battery Expired - Fee Related JP3544259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31387395A JP3544259B2 (en) 1995-12-01 1995-12-01 Negative electrode for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31387395A JP3544259B2 (en) 1995-12-01 1995-12-01 Negative electrode for lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH09161774A JPH09161774A (en) 1997-06-20
JP3544259B2 true JP3544259B2 (en) 2004-07-21

Family

ID=18046539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31387395A Expired - Fee Related JP3544259B2 (en) 1995-12-01 1995-12-01 Negative electrode for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3544259B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117219869A (en) * 2023-11-09 2023-12-12 宁德时代新能源科技股份有限公司 Electrolyte, sodium secondary battery and electricity utilization device
CN117219867A (en) * 2023-11-09 2023-12-12 宁德时代新能源科技股份有限公司 Electrolyte, sodium secondary battery and electricity utilization device
CN117219868B (en) * 2023-11-09 2024-04-09 宁德时代新能源科技股份有限公司 Electrolyte, sodium secondary battery and electricity utilization device
CN117219871A (en) * 2023-11-09 2023-12-12 宁德时代新能源科技股份有限公司 Electrolyte, sodium secondary battery and electricity utilization device
CN117219870B (en) * 2023-11-09 2024-04-16 宁德时代新能源科技股份有限公司 Electrolyte, sodium secondary battery and electricity utilization device

Also Published As

Publication number Publication date
JPH09161774A (en) 1997-06-20

Similar Documents

Publication Publication Date Title
JP3148293B2 (en) Non-aqueous electrolyte secondary battery
KR20060048698A (en) Non-aqueous electrolyte secondary battery
KR101255853B1 (en) Nonaqueous electrolyte secondary battery
Yuan et al. Electrochemical performance and morphology evolution of nanosized ZnO as anode material of Ni–Zn batteries
JP2005050779A (en) Nonaqueous electrolytic solution secondary battery
JPH05234621A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP2008130516A (en) Liquid lead-acid storage battery
US20030228525A1 (en) Lead-acid battery having an organic polymer additive and process thereof
JP3544259B2 (en) Negative electrode for lithium secondary battery
US4461815A (en) Ca Electrochemical cell
JP3186811B2 (en) Method of charging lithium secondary battery
JP3054829B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JPH06203829A (en) Nonaqueous electrolyte secondary battery
US20040033422A1 (en) Lead-acid battery having an organic polymer additive and process thereof
US20180277888A1 (en) Electrodes for metal ion batteries and related materials, batteries and methods
JPH05251080A (en) Negative electrode for nonaqueous electrolyte secondary cell and its manufacture
JP3565478B2 (en) Non-aqueous electrolyte secondary battery
JPH07169460A (en) Crystalline lithium metal, manufacture thereof, and lithium secondary battery
JP3487438B2 (en) Negative electrode for lithium secondary battery
JPH11503863A (en) Electrolysis cell and electrolysis method using small particulate graphite
JPH07169504A (en) Nonaqueous electrolytic secondary battery
JP3223599B2 (en) How to charge a lithium secondary battery
JPH0765867A (en) Discharge method for lithium secondary battery
JP3216835B2 (en) How to charge a lithium secondary battery
JPS6089068A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040401

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees