JP3541671B2 - Method for detecting stress distribution in semiconductor chip - Google Patents

Method for detecting stress distribution in semiconductor chip Download PDF

Info

Publication number
JP3541671B2
JP3541671B2 JP10519098A JP10519098A JP3541671B2 JP 3541671 B2 JP3541671 B2 JP 3541671B2 JP 10519098 A JP10519098 A JP 10519098A JP 10519098 A JP10519098 A JP 10519098A JP 3541671 B2 JP3541671 B2 JP 3541671B2
Authority
JP
Japan
Prior art keywords
semiconductor chip
chip
stress
stress distribution
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10519098A
Other languages
Japanese (ja)
Other versions
JPH11304602A (en
Inventor
政博 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP10519098A priority Critical patent/JP3541671B2/en
Publication of JPH11304602A publication Critical patent/JPH11304602A/en
Application granted granted Critical
Publication of JP3541671B2 publication Critical patent/JP3541671B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Wire Bonding (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、フリップチップ実装を施す半導体チップにおける実装検査工程時の応力分布検出方法に関するものである。
【0002】
【従来技術】
電子回路の高密度化、高集積化に伴い、チップをフェイスダウンして基板に接合するフリップチップ実装技術が開発されている。フリップチップ実装ではチップと基板との間に金属ボールを配し、これらを一括して溶融接合する。しかし、この際に発生する熱応力により、冷却時に接合部が断たれることがある。また、フリップチップ実装された基板の使用環境から生じる熱応力によっても接合部が断たれることがある。フリップチップ実装では、実装検査工程時に従来のワイヤボンディング実装のように接合部を目視により確認することができない。よって、接合部の状態は、これを介した全回路の導通検査によって行われている。以上のことから、チップに生じる熱応力を検出する方法、チップの応力分布を検出し接合部の状態を予測する手法の確立が重要である。
【0003】
フリップチップ実装を施す半導体チップにおける応力分布の従来の検出方法には、第一に、素子の表面を鏡面にし、光学的干渉を用いて応力分布を検出する方法がある。この方法では素子に応力が発生すると表面である鏡面に変形が生じ、これによって起こる光学的干渉を観察することで応力分布を検出できる。次に、ピエゾ抵抗を配置した応力検出用の専用チップを用いる方法が考えられる。この方法では、チップ内に応力が発生しこれが変形する際に、ひずみによって変化するピエゾ抵抗値を検出することで応力分布を検出できる。
【0004】
【発明が解決しようとする課題】
前述した従来の応力分布の検出方法において、素子の表面を鏡面にして光学的干渉を用いて検出する方法は、検査方法は簡素であるものの、素子に鏡面を形成する工程にコストがかかる。
また、ピエゾ抵抗を配置した応力検出用の専用素子を用いる方法は、測定装置は安価であるものの、一般の素子に対しては応力分布を検出することができない。
【0005】
本発明はこのような点に鑑みてなされたものであり、その目的とするところは、比較的安価に且つ簡素な検査方法で、フリップチップ実装される半導体チップにおける実装検査工程時の応力分布を検出する方法を提供することにある。
【0006】
【課題を解決するための手段】
請求項1の発明によれば、上記の課題を解決するために、フリップチップ実装を施す半導体チップに生じる応力の分布を検出する方法において、半導体チップの製造過程におい て異方性エッチングにより表面に溝を掘ることで半導体チップの表面にモアレ干渉検出用パターンを形成し、応力の発生に伴うチップの変形を前記パターンを用いたモアレ干渉法により検出することを特徴とするものである。ここで、半導体チップの表面に形成するモアレ干渉検出用パターンは直線状、縞状、同心円状、格子状のいずれかとすることが好ましい
【0007】
【発明の実施の形態】
図1は本発明の方法を実施するための装置の外観を示す斜視図である。図中、1は半導体チップ、2はフリップチップ実装基板である。半導体チップ1は、フェイスダウンして基板2に実装されている。Pはモアレ干渉検出用パターンであり、半導体チップ1の表面(実装面と反対側の表面)に形成されている。3はテレビカメラであり、フィルター用のモアレ干渉検出用パターンP2を介して半導体チップ1の表面のモアレ干渉検出用パターンPを撮影する。4はモニターであり、テレビカメラ3により撮影されたモアレ干渉縞を映し出している。半導体チップ1に加わる応力により、半導体チップ1が変形すると、モアレ干渉縞が様々に変化することにより、応力分布を検出することができる。
【0008】
図2は本発明で用いる各種のモアレ干渉検出用パターンを示す斜視図である。図2(a)は直線状(縞状)のパターンであり、図1の実施例で使用している。図2(b)は同心円状のパターン、図2(c)は格子状のパターンである。このほかにも、モアレ干渉縞を生じ得るパターンであれば、任意のパターンを使用できることは言うまでもない。
【0009】
図3は本発明の作用説明図であり、図3(a)は直線状のパターンを使用した場合、図3(b)は同心円状のパターンを使用した場合について、それぞれチップが変形したときに、観察されるモアレ干渉縞を例示している。
【0010】
図4は本発明において半導体チップにモアレ干渉検出用パターンを形成する方法の一例を示す説明図であり、図4(a)は半導体チップの外観を示す斜視図、図4(b)はその要部断面図である。この例では、半導体チップ1の製造過程において異方性エッチングにより表面に溝5を掘る方法でモアレ干渉検出用パターンを形成するものである。
【0011
【発明の効果】
請求項1の発明によれば、半導体チップの製造過程において異方性エッチングにより表面に溝を掘ることで半導体チップの表面にモアレ干渉検出用パターンを形成し、応力の発生に伴うチップの変形をこのパターンを用いたモアレ干渉法により検出することで、素子内の応力分布をリアルタイムに可視化することができる。これによって、応力検出用の専用チップを用いずに一般のチップに対しても応力分布を検出することができる。
【0012
また、請求項2のように、半導体チップの表面に形成するモアレ干渉検出用パターンを直線状(縞状)、同心円状、格子状とすることで、チップの平面内の変形や反りなどの三次元変形を可視化しやすくすることができ、チップの変形を検出しやすくすることができる。
【図面の簡単な説明】
【図1】本発明による応力検査方法を実施するための装置の外観を示す斜視図である。
【図2】本発明で用いる各種のモアレ干渉検出用パターンを示す斜視図である。
【図3】本発明の作用説明図である。
【図4】本発明において半導体チップにモアレ干渉検出用パターンを形成する方法の一例を示す説明図であり、(a)は半導体チップの外観を示す斜視図、(b)はその要部断面図である
【符号の説明】
1 半導体チップ
2 フリップチップ実装基板
3 テレビカメラ
4 モニター
P モアレ干渉検出用パターン(チップ側)
P2 モアレ干渉検出用パターン(フィルター側)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for detecting a stress distribution in a mounting inspection step of a semiconductor chip to be flip-chip mounted.
[0002]
[Prior art]
With the increase in density and integration of electronic circuits, flip-chip mounting technology for bonding a chip face down to a substrate has been developed. In flip chip mounting, metal balls are arranged between a chip and a substrate, and these are collectively melt-bonded. However, the joint may be broken during cooling due to the thermal stress generated at this time. In addition, the joint may be broken due to thermal stress generated from the use environment of the substrate mounted with the flip chip. In flip-chip mounting, the joint cannot be visually checked during the mounting inspection process as in conventional wire bonding mounting. Therefore, the state of the joint is determined by conducting a continuity test of all circuits through the joint. From the above, it is important to establish a method for detecting the thermal stress generated in the chip and a method for detecting the stress distribution of the chip and predicting the state of the joint.
[0003]
As a conventional method for detecting a stress distribution in a semiconductor chip to be flip-chip mounted, first, there is a method in which the surface of an element is made a mirror surface and the stress distribution is detected using optical interference. In this method, when a stress is generated in the element, a mirror surface as a surface is deformed, and a stress distribution can be detected by observing optical interference caused by the deformation. Next, a method using a dedicated chip for stress detection in which piezoresistors are arranged can be considered. In this method, when a stress is generated in the chip and deformed, the stress distribution can be detected by detecting a piezo resistance value that changes due to the strain.
[0004]
[Problems to be solved by the invention]
In the above-described conventional method for detecting a stress distribution, the method of detecting the surface of an element by making the surface of the element a mirror surface and using optical interference, although the inspection method is simple, the process of forming a mirror surface on the element requires a cost.
In the method using a dedicated element for stress detection in which a piezoresistor is arranged, the measurement device is inexpensive, but the stress distribution cannot be detected for a general element.
[0005]
The present invention has been made in view of such a point, and an object of the present invention is to use a relatively inexpensive and simple inspection method to reduce a stress distribution in a mounting inspection process in a flip-chip mounted semiconductor chip. It is to provide a method of detecting.
[0006]
[Means for Solving the Problems]
According to the present invention, in order to solve the above problems, a method for detecting the distribution of stress generated in the semiconductor chip for performing flip chip mounting, on the surface by anisotropic etching Te manufacturing process smell of the semiconductor chip A moire interference detection pattern is formed on the surface of the semiconductor chip by digging a groove, and deformation of the chip due to generation of stress is detected by a moire interference method using the pattern. Here, it is preferable that the moiré interference detection pattern formed on the surface of the semiconductor chip is any of a linear shape, a stripe shape, a concentric shape, and a lattice shape .
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a perspective view showing the appearance of an apparatus for carrying out the method of the present invention. In the figure, reference numeral 1 denotes a semiconductor chip, and 2 denotes a flip-chip mounting substrate. The semiconductor chip 1 is mounted on the substrate 2 face down. P denotes a moiré interference detection pattern, which is formed on the surface of the semiconductor chip 1 (the surface opposite to the mounting surface). Reference numeral 3 denotes a television camera which captures an image of the moire interference detection pattern P on the surface of the semiconductor chip 1 via a filter moire interference detection pattern P2. Reference numeral 4 denotes a monitor, which displays moire interference fringes captured by the television camera 3. When the semiconductor chip 1 is deformed by the stress applied to the semiconductor chip 1, the Moire interference fringes change in various ways, so that the stress distribution can be detected.
[0008]
FIG. 2 is a perspective view showing various moiré interference detection patterns used in the present invention. FIG. 2A shows a linear (striped) pattern, which is used in the embodiment of FIG. FIG. 2B shows a concentric pattern, and FIG. 2C shows a lattice pattern. In addition, it goes without saying that any pattern can be used as long as it can generate moiré interference fringes.
[0009]
3A and 3B are diagrams for explaining the operation of the present invention. FIG. 3A shows a case where a linear pattern is used, and FIG. 3B shows a case where a concentric pattern is used. , And Moire interference fringes observed.
[0010]
4A and 4B are explanatory views showing an example of a method for forming a moiré interference detection pattern on a semiconductor chip in the present invention. FIG. 4A is a perspective view showing the appearance of the semiconductor chip, and FIG. It is a fragmentary sectional view. In this example, a moire interference detection pattern is formed by a method of digging a groove 5 on the surface by anisotropic etching in the process of manufacturing the semiconductor chip 1.
[00 11]
【The invention's effect】
According to the invention of claim 1, a moire interference detection pattern is formed on the surface of the semiconductor chip by digging a groove on the surface by anisotropic etching in the process of manufacturing the semiconductor chip, and deformation of the chip due to generation of stress is prevented. The stress distribution in the element can be visualized in real time by detecting the moire interference method using this pattern. Thus, the stress distribution can be detected even for a general chip without using a dedicated chip for stress detection.
[00 12 ]
Further, by forming the pattern for detecting moire interference formed on the surface of the semiconductor chip into a linear shape (striped shape), a concentric shape, or a lattice shape as in claim 2, tertiary deformation such as deformation or warping in the plane of the chip is achieved. The original deformation can be easily visualized, and the deformation of the chip can be easily detected.
[Brief description of the drawings]
FIG. 1 is a perspective view showing the appearance of an apparatus for performing a stress inspection method according to the present invention.
FIG. 2 is a perspective view showing various moiré interference detection patterns used in the present invention.
FIG. 3 is an operation explanatory view of the present invention.
4A and 4B are explanatory views showing an example of a method for forming a moiré interference detection pattern on a semiconductor chip in the present invention, wherein FIG. 4A is a perspective view showing the appearance of the semiconductor chip, and FIG. It is .
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Semiconductor chip 2 Flip chip mounting board 3 TV camera 4 Monitor P Moire interference detection pattern (chip side)
P2 Moiré interference detection pattern (filter side)

Claims (2)

フリップチップ実装を施す半導体チップに生じる応力の分布を検出する方法において、半導体チップの製造過程において異方性エッチングにより表面に溝を掘ることで半導体チップの表面にモアレ干渉検出用パターンを形成し、応力の発生に伴うチップの変形を前記パターンを用いたモアレ干渉法により検出することを特徴とする半導体チップの応力分布検出方法。In a method of detecting a distribution of stress generated in a semiconductor chip to be flip-chip mounted, a moire interference detection pattern is formed on the surface of the semiconductor chip by digging a groove by anisotropic etching in a process of manufacturing the semiconductor chip, A method for detecting a stress distribution in a semiconductor chip, wherein the deformation of the chip due to the generation of stress is detected by a Moire interference method using the pattern. 半導体チップの表面に形成するモアレ干渉検出用パターンは直線状、縞状、同心円状、格子状のいずれかであることを特徴とする請求項1記載の半導体チップの応力分布検出方法。2. The method according to claim 1, wherein the moiré interference detection pattern formed on the surface of the semiconductor chip is one of a linear shape, a stripe shape, a concentric shape, and a lattice shape.
JP10519098A 1998-04-15 1998-04-15 Method for detecting stress distribution in semiconductor chip Expired - Fee Related JP3541671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10519098A JP3541671B2 (en) 1998-04-15 1998-04-15 Method for detecting stress distribution in semiconductor chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10519098A JP3541671B2 (en) 1998-04-15 1998-04-15 Method for detecting stress distribution in semiconductor chip

Publications (2)

Publication Number Publication Date
JPH11304602A JPH11304602A (en) 1999-11-05
JP3541671B2 true JP3541671B2 (en) 2004-07-14

Family

ID=14400764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10519098A Expired - Fee Related JP3541671B2 (en) 1998-04-15 1998-04-15 Method for detecting stress distribution in semiconductor chip

Country Status (1)

Country Link
JP (1) JP3541671B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0205568D0 (en) * 2002-03-09 2002-04-24 Harvey William J Movement gauge
JP4621827B2 (en) * 2004-03-09 2011-01-26 財団法人名古屋産業科学研究所 Optical tactile sensor, sensing method using optical tactile sensor, sensing system, object operation force control method, object operation force control device, object gripping force control device, and robot hand
JP5048953B2 (en) * 2006-02-27 2012-10-17 株式会社タイカ Shock absorbing member visualizing action state, manufacturing method thereof, and shock absorbing equipment incorporating shock absorbing member visualizing action state
JP5369500B2 (en) * 2008-06-03 2013-12-18 株式会社ニコン Substrate bonding method and strain measuring apparatus
CN103149614B (en) * 2013-03-06 2015-01-07 清华大学 Manufacturing and transferring method of high-temperature grating
JP6729912B2 (en) * 2015-07-09 2020-07-29 国立研究開発法人産業技術総合研究所 Damage progress measuring method and damage progress measuring system
MX2021011071A (en) * 2019-03-15 2021-10-22 Nxstage Medical Inc Pressure measurement devices, methods, and systems.
US11386544B2 (en) * 2019-10-30 2022-07-12 Toyota Motor Engineeeing & Manufacturing North America, Inc. Visualizing and modeling thermomechanical stress using photoluminescence
CN114788150A (en) * 2019-12-13 2022-07-22 三菱电机株式会社 Inspection device for rotating electrical machine, and inspection method for rotating electrical machine

Also Published As

Publication number Publication date
JPH11304602A (en) 1999-11-05

Similar Documents

Publication Publication Date Title
JP3541671B2 (en) Method for detecting stress distribution in semiconductor chip
KR100795761B1 (en) Inspection system with vibration resistant video capture
JP4673280B2 (en) Probe card for inspection of solid-state image sensor
KR19990022385A (en) Photoelectrically patterned spring contacts
JP2006173503A (en) Probe card, manufacturing method therefor, and alignment method
JP5694452B2 (en) Optical measuring device
KR20070100117A (en) Manufacturing method of microprobe, microprobe unit using microprobe guide and zigzag arrangement type microprobe unit
JP2001189353A (en) Device and method for probe inspection
US5787098A (en) Complete chip I/O test through low contact testing using enhanced boundary scan
JP4962929B2 (en) PROBER DEVICE AND PROBE ASSEMBLY USED FOR THE SAME
JP3453526B2 (en) Semiconductor element inspection socket, semiconductor device, semiconductor device manufacturing method, and semiconductor device inspection method
US6667627B2 (en) Probe for inspecting semiconductor device and method of manufacturing the same
JP2000227444A (en) Element inspecting probe, manufacture thereof, and semiconductor inspecting device using it
JPS61186846A (en) Conductive dust sensor
JPH02224354A (en) Inspection of deviation of contact hole in semiconductor device
JPH0783953A (en) Probe for circuit board inspection, circuit board inspection system provided with it and manufacture of probe for circuit board inspection
JP3327279B2 (en) Semiconductor device and manufacturing method thereof
Pitarresi et al. A parametric solder joint reliability model for wafer level-chip scale package
JP7474964B2 (en) Inspection method for device manufacturing equipment and device manufacturing equipment
JP4183793B2 (en) Pixel shift platform
JP2018124076A (en) Joining state inspection device, joining state inspection method and joining state inspection program
JP2001298244A (en) Printed board for mounting semiconductor device
JP3437467B2 (en) Inspection method for semiconductor device
JPH11177223A (en) Electronic component
JPH1114318A (en) Contact inspection device and contact inspection method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040322

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080409

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees