JP3541596B2 - Thickness control method of sheet material in continuous tandem rolling mill - Google Patents

Thickness control method of sheet material in continuous tandem rolling mill Download PDF

Info

Publication number
JP3541596B2
JP3541596B2 JP00259697A JP259697A JP3541596B2 JP 3541596 B2 JP3541596 B2 JP 3541596B2 JP 00259697 A JP00259697 A JP 00259697A JP 259697 A JP259697 A JP 259697A JP 3541596 B2 JP3541596 B2 JP 3541596B2
Authority
JP
Japan
Prior art keywords
thickness
rolling
stand
change
mill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00259697A
Other languages
Japanese (ja)
Other versions
JPH09248611A (en
Inventor
秀夫 木島
一仁 剣持
正人 伊理
泰理 砂盛
明彦 福原
一仁 岡田
盛行 宮原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP00259697A priority Critical patent/JP3541596B2/en
Publication of JPH09248611A publication Critical patent/JPH09248611A/en
Application granted granted Critical
Publication of JP3541596B2 publication Critical patent/JP3541596B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • B21B37/24Automatic variation of thickness according to a predetermined programme
    • B21B37/26Automatic variation of thickness according to a predetermined programme for obtaining one strip having successive lengths of different constant thickness

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、完全連続式タンデム圧延機を用いた板材の圧延において、走間での板厚変更を精度よく行おうとするものである。
【0002】
【従来の技術】
ロール組み替え時以外は圧延機を停止することなく圧延を継続する完全連続式のタンデム圧延機においては、板材の板厚を連続的に変更するため、先行材と後行材の接続点である溶接点等の板厚変更点を判断基準にして、圧延モデルより計算した後行材の圧下位置およびロール速度に制御する走間板厚変更制御を行っているのが一般的であった(板圧延の理論と実際,p131 参照)。
【0003】
しかし、ミル入側の板厚には前工程(熱間仕上げ圧延機であれば熱間粗圧延、冷間圧延機であれば熱間仕上げ圧延)での圧延において生じた板厚偏差が残っており、とくに、板厚変更点である溶接点の前後は前工程でも非定常圧延部であることから板厚偏差が非常に大きく、従来の板厚変更制御においては板厚精度が十分なものとは言えないのが現状であった。
【0004】
この点に関して特開昭60- 227913号公報には、ミルの入側から十分に離れた位置(圧延機入側ルーパの手前)に板厚計を設け、この板厚計にて板材の入側板厚を検出し、これをセットアップ計算の入力値として用いることにより入側板厚偏差の影響の軽減を図った技術が開示されている。
【0005】
一方、定常部におけるミル入側板厚変動に関しては、ミルの入側に配置した板厚計で検出した厚み偏差を材料速度に合わせて遅延させ、その測定点が第1スタンドに到達した時点で圧下位置を操作し、第1スタンド出口板厚が目標とする板厚になるように制御する、いわゆるFF−AGCが知られていた(板圧延の理論と実際p301 参照) 。
【0006】
【発明が解決しようとする課題】
ところで、特開昭60−227913号公報に開示の技術は、板厚計がミルの入側から十分離れた位置に、望ましくは溶接機のほぼ直後に設置されているため、トラッキングの精度に問題があり板厚精度の改善を図るのが難しく、FF−AGCについてはその実施に際してトラッキング精度や記憶装置の容量等から、ミル入側数mという直近に板厚計を設置しなければならない設備上の不利があった。
【0007】
なお、特開昭60-227913 号公報に開示されている方法ではミル入側の直近に板厚計を設置することも考えられるが、この場合には板材の板厚変更点である溶接点がミル入側の板厚計に到達する以前にセットアップ計算を終了させる必要があるが計算のための時間が足りず、その実現は困難であった。
【0008】
本発明の目的は上述したような従来の問題を解決するためミル入側直近の板厚計で入側板厚偏差を検出し、走間板厚変更制御を精度よく行うと同時に、圧下FF−AGCをも併用して板厚変更後や板材の定常部でもミル入側板厚変動の影響を受けずに板厚精度をアップできる新規な方法を提案するところにある。
【0009】
【課題を解決するための手段】
本発明は、複数台のミルをタンデムに配列した連続式タンデム圧延機を用い、走間での板厚変更を行いつつ連続的な圧延を実施するに当たり、板材の板厚変更点がタンデム圧延機の入側に配置した板厚計に到達するよりも前に、タンデム圧延機の第1スタンドにおける第1の圧下位置変更量と入側板厚偏差に対する圧延荷重の影響係数を計算し、板材の板厚変更点が板厚計を通過してから第1スタンドに到達する前に、板材の板厚変更点前後における入側板厚偏差を検出し、この入側板厚偏差と前記影響係数を基に荷重の変動量を算出して荷重の変動量を第1スタンドのミル剛性で除した値の分だけ補償する第2の圧下位置変更量を求め、板材の板厚変更点が第1スタンドを通過した直後に第1の圧下位置変更量と第2の圧下位置変更量の総和分だけ第1スタンドの圧下位置を変更することを特徴とする連続式タンデム圧延機における板材の板厚制御方法である。
【0010】
また、本発明は、上記の構成において、板厚計にて検出した板材の板厚と設定入側板厚とに基づいて入側板厚偏差を求め、板材の板厚変更点が第1スタンドを通過した直後でかつ、該板厚計にて検出した板材の位置が第1スタンドに到達した時点で、該入側板厚偏差から第2の圧下位置変更量を求める際に検出した板厚変更点後の入側板厚偏差を差し引いて該板厚偏差が零となるように第1スタンドの圧下位置を操作する板材の板厚制御方法である。
【0011】
【発明の実施の形態】
本発明は、連続タンデム式圧延機の入側直近に設置した板厚計で板材の入側板厚偏差を検出し、この板厚偏差に基づき、第1スタンドの圧下位置変更量を補正しようとするものであり、発明を実施するに当たっては図1に示したような例えば5スタンドのミルをタンデムに配列した構成になる圧延機 (図中第2、第3スタンドは省略) が適用でき、かかる圧延機を適用して圧延を行う場合の板厚制御の要領を図2に基づいて以下に説明する。
【0012】
図1において、被圧延材(板材)である先行材1a,後行材1bは図中左から右へ向かって移動し溶接点Pにおいて板厚をスケジュールs1からスケジュールs2に変更するものとする。
【0013】
入側板厚計2は第1スタンドの入側直近に設置してあり、溶接点Pが入側板厚計2に到達するよりも前の段階で、プロセスコンピュータ3にて図2の(a1)〜(a4)に従う計算を実施する。
【0014】
まず先行材1a(添字S1で表す)の各スタンドの圧延荷重Ps1iを計算する。
【数1】

Figure 0003541596
とし、以降、添字がs1からs2に変わった場合は、後行材1bの当該量を表すこととする。
【0015】
次に溶接点Pが第iスタンドを通過し、第iスタンドと第(i+1)スタンドの間にある時(添字 Tで表す)の後行材1bの各スタンドの圧延荷重を計算する。
【数2】
Figure 0003541596
【0016】
そして、第3番目に溶接点Pが第(i+1)スタンドを通過した時(添字s2)の後行材1bの各スタンドの圧延荷重を計算する。
【数3】
Figure 0003541596
【0017】
これらの圧延荷重から、各スタンドの第1の圧下位置変更量を計算する。
【数4】
Figure 0003541596
【0018】
これらの計算は、ミル入側に板厚計がないか、あるいはあってもミル直近に設置されているミルで通常行われているものと同様である。この点に関し特開昭60-227913 号公報に開示の方法では、ミル入側板厚の設定値ではなく、ミルから十分離れた位置にある入側板厚計の実測値を入力している。
【0019】
ここで下記に示すスケジュールS1およびS2における入側板厚偏差設定値の変動があったときには、上記 (1) 式および (2) 式で表される圧延荷重は、下記 (6) および (7) で計算する。
【数5】
Figure 0003541596
P´ S1i :先行材の板厚が、スケジュールS1の板厚に対して偏差がある場合の圧延荷重予測値
P´ Ti :後行材の板厚が、スケジュールS2の板厚に対して偏差がある場合の圧延荷重予測値
【0020】
そして、これらより、入側板厚に偏差が存在する場合の第1スタンドの圧延荷重への影響係数を計算する。
【数6】
Figure 0003541596
【0021】
計算された影響係数は圧下位置演算器4に送られ、次いで溶接点Pがミル入側板厚計2の地点を通過し第1スタンドに到達する前に圧下位置演算器4にて図2中の(b1),(b2) が計算される。
【0022】
溶接点Pの前後における板厚の設定入側板厚に対する先行材1aの偏差dH s11 および後行材1bの板厚偏差dHs21 は入側板厚計2にて実測され、これらと式(8)(9)で計算した前述の影響係数より荷重変動分を下記の式(10)で計算する。
【数7】
Figure 0003541596
【0023】
この荷重変動を補償するため次に第2の圧下位置変更量を下記式(11)にて計算する。
【数8】
Figure 0003541596
【0024】
第2の圧下位置変更量ΔS ′T1とプロセスコンピュータ3からの出力である第1の圧下位置変更量の和が計算される一方、溶接点Pが第1スタンド通過直後に図2の(c1)に示すように圧下位置演算器4から圧下制御装置5aに前記和が出力され、第1スタンドの圧下位置が変更される。
【0025】
また、溶接点Pが第2スタンド通過直後に図2の(d1)に示すようにプロセスコンピュータ3からΔS s21 が圧下位置制御装置5aに出力され、第1スタンドの圧下位置がスケジュールs2の圧下位置に変更される。
【0026】
本発明においては以上の要領に従って第1スタンドの走間板厚変更制御による圧下位置の変更は終了するが、第2スタンド以降の圧下位置の変更方法は従来の走間板厚変更制御と同様にして行うことができる。
【0027】
例えば第2スタンドの圧下位置の変更は溶接点Pが前述した第2スタンド通過直後、すなわち、ΔS s21 が圧下制御装置5aに出力されたときプロセスコンピュータ3からΔS T2が圧下位置制御装置5b(図示省略)に出力され、第2スタンドの圧下位置をトランジェットの圧下位置に変更する。
【0028】
次いで溶接点Pが第3スタンド通過直後にプロセスコンピュータ3からΔS s22 下位置制御装置5bに出力され第2スタンドの圧下位置がスケジュールs2の圧下位置に変更されると同時にプロセスコンピュータ3からΔS T3 圧下位置制御装置5c(図示省略)に出力さ第3スタンドの圧下位置をトランジェットの圧下位置に変更すればよく、以降同様にして第5スタンドまで行う。
【0029】
次に、本発明においては上述の走間板厚変更制御を行うことに加え、第1スタンドにおいて圧下FF−AGCを適用することもでき、この場合には、図2(c1)に示すように第1の圧下位置変更量と第2の圧下位置変更量との総和の出力が圧下位置制御装置5aに出力された直後から制御を行うようにする。
【0030】
図3はその際の制御に用いて好適な設備の構成の一例を示したものであり、6はFF−AGC制御演算器、7は遅延演算器である。遅延演算器7は、板厚計2で検出した後行材1bのある所定の位置が板厚計2を通過してから第1スタンドに到達した時点で、板厚計2で検出したその所定位置の板厚と設定入側板厚との差である後行材1bの板厚偏差dH1をFF−AGC制御演算器6に出力するものであり、また、圧下位置演算器4は板厚計2から入力される溶接点の直後の板厚計2による検出値と設定入側板厚との差である板厚偏差(溶接点直後の板厚偏差)dHS21(時間に対して一定の値)をFF−AGC制御演算器6に出力するものである。
【0031】
FF−AGC制御演算器6においては、上記の板厚偏差dH S21 と板厚偏差dH1との差ΔH1 が求められ、その差を零とする圧下位置変更量が下記式(12)にて計算される。
【数9】
Figure 0003541596
【0032】
そして、板材の溶接点Pが第1スタンドを通過し図2(c1)に示すように第1スタンドにおいて第1の圧下位置変更量と第2の圧下位置変更量との総和の出力が第1スタンドの圧下位置制御装置5aに出力された直後から、上記の式にて得られた圧下位置変更量が第1スタンドの圧下位置制御装置5aに出力され、その値にしたがって第1スタンドの圧下位置が変更される。
【0033】
【実施例】
実施例1
図1に示したような構成になる4段式のミルを配置した5スタンド冷間タンデム圧延を使用 (溶接機の直後に板厚計を設置) して、
Figure 0003541596
の条件のもとで、本発明に従う板厚制御を行いつつ圧延を実施し、得られた板の出側板厚について調査した。
その結果を特開昭60-227913 号公報に開示の方式で板厚制御 (圧下位置の変更) を行った場合の結果とともに図4に示す。
【0034】
図4に示すように入側板厚偏差が溶接点前後で存在した場合、本発明によればミル直近に板厚計を設置したのでトラッキング精度が向上し圧下位置の変更量が適正なものとなり板厚精度が従来方式に比較し一層向上することが確認できた。
【0035】
また上記の実施例と同様の圧延機を用いて、母板板厚を4.0 〜2.0 mm、ミル出側板厚を2.0 〜0.5 mm、ミル出側板幅700 〜1800mmとするスケジュールの圧延を実施 (圧延荷重式はHillの式使用) し板厚が所定の範囲に収まる長さによる製品歩留り状況について調査した。
その結果、本発明に従う板厚制御を適用したものでは品質を確保できたのが93%であったのに対し従来法では88%であり、製品歩留りが著しく改善されることも明らかとなった。
【0036】
なお、この実施例では4段式のミルを配置した5スタンドの圧延機を用いたが本発明はかかる圧延機に限るものではなく、また、板厚スケジュールや板幅、材質等の各事項についてもそれにのみ限定されるものではない。
【0037】
実施例2
図3に示したような構成になる4段式のミルを配置した5スタンド冷間タンデム圧延を使用 (溶接機の直後に板厚計を設置) して、
Figure 0003541596
の条件のもとで、本発明に従う板厚制御を行いつつ圧延を実施し、得られた板の出側板厚について調査した。
その結果を特開昭60-227913 号公報に開示の方式で板厚制御 (圧下位置の変更) を行った場合 (比較例1) と、圧下位置演算器の出力 (dHS21)をFF−AGC制御演算器に入力しなかった場合 (比較例2) の結果とともに図5に示す。
【0038】
図5に示すように入側板厚偏差が溶接点前後で存在し、さらに、その後に大きな板厚変動が存在する場合においても、本発明によれば板厚精度が従来方式に比較し一層向上可能であることが確認できた。
【0039】
また上記の実施例と同様の圧延機を用いて、母板板厚を4.0 〜2.0 mm、ミル出側板厚を2.0 〜0.5 mm、ミル出側板幅700 〜1800mmとするスケジュールの圧延を実施 (圧延荷重式はHillの式使用) し板厚が所定の範囲に収まる長さによる製品歩留り状況について調査したが、本発明に従う板厚制御を適用したものでは品質を確保できたのが96%であったのに対し比較例2においては92%程度であり、製品歩留りが著しく改善されることも明らかとなった。
【0040】
【発明の効果】
本発明においては板厚変更点が圧延機の直近に設けた板厚計よりも前に存在するときに求めた影響係数と、板厚変更点が板厚計を通過したときに検出した入側板厚偏差とに基づいて第1スタンドの圧延位置を補正するようにしたので、板厚精度が改善され歩留りの向上を図ることができる。また、圧下FF−AGCの併用によって板厚精度、歩留りがより一層改善される。
【図面の簡単な説明】
【図1】本発明を実施するのに好適な設備の構成を示した図である。
【図2】本発明に従う制御要領の説明図である。
【図3】本発明を実施するのに好適な他の設備 (圧下FF−AGC制御の併用) の構成を示した図である。
【図4】実施例1における先行材、後行材の板厚の変動状況を示した図である。
【図5】実施例2における先行材、後行材の板厚の変動状況を示した図である。
【符号の説明】
1a 先行材
1b 後行材
2 板厚計
3 プロセスコンピュータ
4 圧下位置演算器
5a 圧下位置制御装置
5d 圧下位置制御装置
5e 圧下位置制御装置
6 圧下FF−AGC制御演算器
7 遅延演算器[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is intended to accurately change the thickness between runs during rolling of a plate using a completely continuous tandem rolling mill.
[0002]
[Prior art]
In a completely continuous tandem rolling mill that continues rolling without stopping the rolling mill except when changing rolls, the welding point, which is the connection point between the preceding and succeeding materials, is used to continuously change the thickness of the sheet material. In general, the running thickness change control for controlling the rolling position and the rolling speed of the succeeding material calculated from the rolling model is performed based on the thickness change point such as a point as a criterion (plate rolling). Theory and practice, p. 131).
[0003]
However, the thickness deviation at the mill entry side caused by the rolling in the previous process (hot rough rolling in the case of a hot finishing rolling mill, hot finishing rolling in the case of a cold rolling mill) remains. In particular, especially before and after the welding point, which is the thickness change point, the thickness deviation is very large because it is an unsteady rolling part even in the previous process, and the thickness accuracy is sufficient in the conventional thickness change control. I couldn't say it.
[0004]
In this regard, Japanese Patent Application Laid-Open No. 60-227913 discloses that a thickness gauge is provided at a position sufficiently far from the entrance side of the mill (before the looper on the entrance side of the rolling mill), and the thickness gauge is used to measure the thickness of the entry side plate. There is disclosed a technique for detecting the thickness and using the detected thickness as an input value for a setup calculation to reduce the influence of the thickness deviation on the entry side.
[0005]
On the other hand, with respect to the thickness variation on the mill entrance side in the steady portion, the thickness deviation detected by the thickness gauge arranged on the entrance side of the mill is delayed in accordance with the material speed, and when the measurement point reaches the first stand, the reduction is reduced. There has been known a so-called FF-AGC in which the position of the first stand is controlled so that the exit thickness of the first stand becomes a target thickness (see the theory and practice of sheet rolling , p301).
[0006]
[Problems to be solved by the invention]
By the way, the technique disclosed in Japanese Patent Application Laid-Open No. 60-227913 has a problem in tracking accuracy because the thickness gauge is installed at a position sufficiently distant from the entrance side of the mill, preferably almost immediately after the welding machine. Therefore, it is difficult to improve the thickness accuracy of the FF-AGC. For the FF-AGC, due to the tracking accuracy and the capacity of the storage device, it is necessary to install a thickness gauge as close as several meters to the mill entry side. There was a disadvantage.
[0007]
In the method disclosed in Japanese Patent Application Laid-Open No. 60-227913, it is conceivable to install a thickness gauge in the immediate vicinity of the mill entry side. The setup calculation had to be completed before reaching the thickness gauge on the mill entry side, but the time for the calculation was not enough, and it was difficult to realize it.
[0008]
An object of the present invention is to solve the above-mentioned conventional problems by detecting a thickness deviation on the entrance side with a thickness gauge immediately adjacent to the mill entrance and accurately controlling the change in the running thickness while simultaneously reducing the FF-AGC. The present invention is also to propose a new method that can increase the thickness accuracy without being affected by the thickness variation at the mill entry side even after the thickness change or the steady portion of the plate material.
[0009]
[Means for Solving the Problems]
The present invention uses a continuous tandem rolling mill in which a plurality of mills are arranged in tandem, and in performing continuous rolling while changing the thickness between runs, the thickness change point of the sheet material is a tandem rolling mill. of before reaching the plate thickness meter arranged in the inlet side, a first pressing position change amount in the first stand of the tandem mill, the influence coefficient of the rolling load was calculated for thickness at entrance side deviation of the sheet material before thickness change point reaches the first stand after passing through the plate thickness meter, and detects the thickness at entrance side deviation before and after the plate thickness changes of the plate, on the basis of the influence coefficient and the thickness at entrance side deviations Calculate the amount of change in load and obtain the second amount of change in the rolling position that compensates for the amount of change in load divided by the mill stiffness of the first stand. Immediately after the first reduction position change amount and the second reduction position change amount A gauge control method for plate material in a continuous tandem rolling mill, characterized in that to change the pressing position of the first stand alone sum.
[0010]
Further, according to the present invention, in the above configuration, the entrance side sheet thickness deviation is obtained based on the sheet thickness of the plate material detected by the thickness gauge and the set entrance side sheet thickness, and the sheet thickness change point of the plate material passes through the first stand. Immediately after and when the position of the sheet material detected by the sheet thickness gauge reaches the first stand, after the sheet thickness change point detected when calculating the second rolling position change amount from the entry side sheet thickness deviation A thickness control method of a plate material in which the pressing-down position of the first stand is operated so that the thickness deviation of the first stand is reduced to zero by subtracting the thickness deviation of the entrance side.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention detects an entry-side sheet thickness deviation of a sheet material with a thickness gauge installed immediately adjacent to an entry side of a continuous tandem rolling mill, and attempts to correct the amount of change in the rolling position of the first stand based on the sheet thickness deviation. In carrying out the invention, a rolling mill having a configuration in which, for example, five-stand mills are arranged in tandem as shown in FIG. 1 (second and third stands are omitted in the figure) can be applied. The procedure for controlling the thickness in the case of performing rolling by using a mill will be described below with reference to FIG.
[0012]
In FIG. 1, it is assumed that a preceding material 1a and a following material 1b, which are materials to be rolled (plate materials), move from left to right in the figure and change the plate thickness at a welding point P from schedule s1 to schedule s2 .
[0013]
Entry side thickness meter 2 Yes installed on the entry side nearest the first stand, the welding point P is in front of the stage than arrives at the entry side thickness gauge 2 at a process computer 3 of Figure 2 (a 1) The calculation according to (a 4 ) is performed.
[0014]
First, the rolling load Ps1i of each stand of the preceding material 1a (represented by the suffix S1 ) is calculated.
(Equation 1)
Figure 0003541596
Hereafter, when the suffix changes from s1 to s2 , it indicates the amount of the following material 1b.
[0015]
Next, when the welding point P passes through the i-th stand and is between the i-th stand and the (i + 1) -th stand, the rolling load of each stand of the following material 1b (represented by a subscript T ) is calculated.
(Equation 2)
Figure 0003541596
[0016]
Thirdly, when the welding point P passes through the (i + 1) th stand (subscript s2 ), the rolling load of each stand of the following material 1b is calculated.
[Equation 3]
Figure 0003541596
[0017]
From these rolling loads, the first rolling position change amount of each stand is calculated.
(Equation 4)
Figure 0003541596
[0018]
These calculations are the same as those normally performed in a mill installed near or without a thickness gauge on the mill entry side. In this regard, in the method disclosed in Japanese Patent Application Laid-Open No. 60-227913, instead of the set value of the mill entry side thickness, an actually measured value of the entry thickness gauge at a position sufficiently distant from the mill is input.
[0019]
Here, when there is a change in the entry side sheet thickness deviation set value in the schedules S1 and S2 shown below, the rolling load represented by the above equations (1) and (2) is calculated by the following (6) and (7) . calculate.
(Equation 5)
Figure 0003541596
P ' S1i : Rolling load prediction value when the thickness of the preceding material has a deviation from the thickness of schedule S1
P ′ Ti : Rolling load predicted value when the sheet thickness of the succeeding material has a deviation from the sheet thickness of schedule S2
From these, the influence coefficient on the rolling load of the first stand when there is a deviation in the entry side plate thickness is calculated.
(Equation 6)
Figure 0003541596
[0021]
The calculated influence coefficient is sent to the rolling position calculator 4, and then, before the welding point P passes through the point of the mill entry side thickness gauge 2 and reaches the first stand, the rolling position calculator 4 in FIG. (b 1 ) and (b 2 ) are calculated.
[0022]
The deviation dH s11 of the preceding material 1a and the thickness deviation dH s21 of the following material 1b with respect to the set entry thickness of the entry thickness before and after the welding point P are actually measured by the entry thickness gauge 2, and these are calculated by the equation (8) ( The load variation is calculated by the following equation (10) from the influence coefficient calculated in 9).
(Equation 7)
Figure 0003541596
[0023]
Next, in order to compensate for this load variation, a second rolling position change amount is calculated by the following equation (11).
(Equation 8)
Figure 0003541596
[0024]
While the sum of the first pressing position change amount which is the output from the second pressing position change amount [Delta] S 'T1 and the process computer 3 is calculated, the welding point P of FIG. 2 immediately after passing through the first stand (c 1 As shown in ()), the sum is output from the rolling position calculator 4 to the rolling control device 5a, and the rolling position of the first stand is changed.
[0025]
Immediately after the welding point P passes through the second stand, ΔS s21 is output from the process computer 3 to the rolling-down position control device 5a as shown in (d 1 ) of FIG. 2, and the rolling-down position of the first stand is reduced by the schedule s2 . Changed to position.
[0026]
In the present invention, the change of the rolling position by the running thickness change control of the first stand is completed according to the above procedure, but the method of changing the rolling position after the second stand is the same as the conventional running thickness change control. Can be done.
[0027]
For example, the rolling position of the second stand is changed immediately after the welding point P passes through the second stand, that is, when ΔS s21 is output to the rolling-down control device 5a, the process computer 3 sends ΔST2 to the rolling-down position control device 5b (illustrated). (Not shown), and the rolling position of the second stand is changed to the rolling position of the jet.
[0028]
Then welding point P is [Delta] S [Delta] S s22 from the process computer 3 from a process computer 3 and at the same time pressing position of the second stand is output to the lower position control device 5b is changed to the pressing position of the schedule s2 immediately after passing through the third stand T3 Is output to the rolling position control device 5c (not shown), and the rolling position of the third stand may be changed to the rolling position of the tranget.
[0029]
Next, in the present invention, in addition to performing the above-described running thickness change control, it is also possible to apply the reduction FF-AGC in the first stand. In this case, as shown in FIG. 2 (c 1 ) The control is performed immediately after the output of the sum of the first rolling position change amount and the second rolling position change amount is output to the rolling position control device 5a.
[0030]
FIG. 3 shows an example of a configuration of equipment suitable for the control at that time. Reference numeral 6 denotes an FF-AGC control arithmetic unit, and reference numeral 7 denotes a delay arithmetic unit. The delay calculator 7 detects the predetermined material detected by the thickness gauge 2 when the predetermined position of the following material 1b detected by the thickness gauge 2 reaches the first stand after passing through the thickness gauge 2. the thickness deviation dH 1 row material 1b after a difference between the thickness of the position and configuration entry side thickness Metropolitan is intended to output the FF-AGC control calculation unit 6, also pressing position calculator 4 thickness gauge Thickness deviation, which is the difference between the value detected by the thickness gauge 2 immediately after the welding point input from Step 2 and the set entry side thickness (thickness deviation immediately after the welding point) dH S21 (a constant value over time) Is output to the FF-AGC control calculator 6.
[0031]
In FF-AGC control calculation unit 6, a difference [Delta] H 1 between the plate thickness deviation dH S21 and thickness deviation dH 1 is determined, pressing position change amount of the difference between zero by the following formula (12) Is calculated.
(Equation 9)
Figure 0003541596
[0032]
Then, the welding point P of the plate material passes through the first stand, and as shown in FIG. 2 (c 1 ), the output of the sum of the first rolling position change amount and the second rolling position change amount in the first stand is Immediately after being output to the rolling-down position control device 5a of one stand, the amount of change in the rolling-down position obtained by the above equation is output to the rolling-down position control device 5a of the first stand. The position changes.
[0033]
【Example】
Example 1
Using a five-stand cold tandem rolling mill with a four-stage mill arranged as shown in Fig. 1 (installing a thickness gauge immediately after the welding machine)
Figure 0003541596
Under the conditions described above, rolling was performed while controlling the thickness according to the present invention, and the thickness of the exit side of the obtained sheet was investigated.
The results are shown in FIG. 4 together with the results obtained when plate thickness control (change of the rolling position) was performed by the method disclosed in Japanese Patent Application Laid-Open No. 60-227913.
[0034]
As shown in FIG. 4, when the entrance side thickness deviation exists before and after the welding point, according to the present invention, since the thickness gauge is installed in the vicinity of the mill, the tracking accuracy is improved, and the amount of change of the rolling position becomes appropriate, and It was confirmed that the thickness accuracy was further improved as compared with the conventional method.
[0035]
In addition, using the same rolling mill as in the above embodiment, rolling was performed on a schedule in which the base plate thickness was 4.0 to 2.0 mm, the mill exit side plate thickness was 2.0 to 0.5 mm, and the mill exit side plate width was 700 to 1800 mm (rolling). The load equation was Hill's equation.) The product yield was investigated according to the length in which the sheet thickness was within a predetermined range.
As a result, in the case where the thickness control according to the present invention was applied, the quality could be ensured by 93%, whereas in the conventional method, it was 88%, and the product yield was clearly improved. .
[0036]
In this embodiment, a five-stand rolling mill in which four-stage mills are arranged is used. However, the present invention is not limited to such a rolling mill. Is not limited thereto.
[0037]
Example 2
Using a five-stand cold tandem rolling mill with a four-stage mill having the configuration shown in Fig. 3 (installing a thickness gauge immediately after the welding machine)
Figure 0003541596
Under the conditions described above, rolling was performed while controlling the thickness according to the present invention, and the thickness of the exit side of the obtained sheet was investigated.
When performing the thickness control (change of pressing position) in the manner disclosed the result in JP-A-60-227913 (Comparative Example 1), the output of the pressing position computing units (dH S21) FF-AGC FIG. 5 shows the result when the signal was not input to the control arithmetic unit (Comparative Example 2).
[0038]
According to the present invention, even in the case where the entrance side thickness deviation exists before and after the welding point as shown in FIG. 5 and there is a large thickness variation thereafter, the thickness accuracy can be further improved according to the present invention. Was confirmed.
[0039]
In addition, using the same rolling mill as in the above embodiment, rolling was performed on a schedule in which the base plate thickness was 4.0 to 2.0 mm, the mill exit side plate thickness was 2.0 to 0.5 mm, and the mill exit side plate width was 700 to 1800 mm (rolling). (Hill formula was used for the load equation.) The product yield was investigated according to the length in which the sheet thickness falls within the predetermined range. However, 96% of the sheets to which the sheet thickness control according to the present invention was applied ensured the quality were achieved. On the other hand, in Comparative Example 2, it was about 92%, and it was also clear that the product yield was significantly improved.
[0040]
【The invention's effect】
In the present invention, the influence coefficient determined when the thickness change point is present before the thickness gauge provided immediately near the rolling mill, and the input side plate detected when the thickness change point passes through the thickness gauge. Since the rolling position of the first stand is corrected based on the thickness deviation, the thickness accuracy is improved, and the yield can be improved. In addition, the combined use of the reduction FF-AGC further improves the thickness accuracy and the yield.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of equipment suitable for carrying out the present invention.
FIG. 2 is an explanatory diagram of a control procedure according to the present invention.
FIG. 3 is a diagram showing a configuration of another facility (combined use with reduction FF-AGC control) suitable for carrying out the present invention.
FIG. 4 is a diagram showing a change in the thickness of a preceding material and a succeeding material in Example 1.
FIG. 5 is a diagram showing a variation in sheet thickness of a leading material and a succeeding material in Example 2.
[Explanation of symbols]
1a Leading material 1b Trailing material 2 Thickness gauge 3 Process computer 4 Roll-down position calculator 5a Roll-down position controller 5d Roll-down position controller 5e Roll-down position controller 6 Roll-down FF-AGC control calculator 7 Delay calculator

Claims (2)

複数台のミルをタンデムに配列した連続式タンデム圧延機を用い、走間での板厚変更を行いつつ連続的な圧延を実施するに当たり、板材の板厚変更点がタンデム圧延機の入側に配置した板厚計に到達するよりも前に、タンデム圧延機の第1スタンドにおける第1の圧下位置変更量と入側板厚偏差に対する圧延荷重の影響係数を計算する一方、板材の板厚変更点が板厚計を通過してから第1スタンドに到達する前に、板材の板厚変更点前後における入側板厚偏差を検出し、この入側板厚偏差と前記影響係数を基に荷重の変動量を算出して荷重の変動量を第1スタンドのミル剛性で除した値の分だけ補償する第2の圧下位置変更量を求め、板材の板厚変更点が第1スタンドを通過した直後に第1の圧下位置変更量と第2の圧下位置変更量の総和分だけ第1スタンドの圧下位置を変更することを特徴とする連続式タンデム圧延機における板材の板厚制御方法。Using a continuous tandem rolling mill in which multiple mills are arranged in tandem, and performing continuous rolling while changing the thickness between runs, the thickness change point of the sheet material is on the entrance side of the tandem rolling mill before reaching the arrangement the thickness gauge, while calculating a first pressing position change amount in the first stand of the tandem mill, the influence coefficient of the rolling load for the thickness at entrance side deviations, changes the thickness of the plate Before the point passes through the thickness gauge and reaches the first stand, the entrance side thickness deviation before and after the thickness change point of the plate material is detected, and the load variation is determined based on the entrance side thickness deviation and the influence coefficient. The second amount of change in the rolling position is calculated to compensate for the amount of change in the load by the value obtained by dividing the amount of change in the load by the mill rigidity of the first stand, and immediately after the thickness change point of the plate material passes through the first stand. The sum of the first rolling position change amount and the second rolling position change amount Gauge control method for plate material in a continuous tandem rolling mill, characterized in that to change the pressing position of the first stand alone. 板厚計にて検出した板材の板厚と設定入側板厚とに基づいて入側板厚偏差を求め、板材の板厚変更点が第1スタンドを通過した直後でかつ、該板厚計にて検出した板材の位置が第1スタンドに到達した時点で、該入側板厚偏差から第2の圧下位置変更量を求める際に検出した板厚変更点後の入側板厚偏差を差し引いて該板厚偏差が零となるように第1スタンドの圧下位置を操作する、請求項1記載の板材の板厚制御方法。The entrance side thickness deviation is obtained based on the thickness of the plate material detected by the thickness gauge and the set entrance side thickness, and immediately after the thickness change point of the plate material has passed through the first stand and the thickness gauge is used. When the detected position of the sheet material reaches the first stand, the sheet thickness deviation obtained by subtracting the sheet thickness deviation after the sheet thickness change point detected when calculating the second rolling position change amount from the entry side sheet thickness deviation is calculated. 2. The method of controlling a thickness of a sheet material according to claim 1, wherein the pressing position of the first stand is operated so that the deviation becomes zero.
JP00259697A 1996-01-11 1997-01-10 Thickness control method of sheet material in continuous tandem rolling mill Expired - Fee Related JP3541596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00259697A JP3541596B2 (en) 1996-01-11 1997-01-10 Thickness control method of sheet material in continuous tandem rolling mill

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-3270 1996-01-11
JP327096 1996-01-11
JP00259697A JP3541596B2 (en) 1996-01-11 1997-01-10 Thickness control method of sheet material in continuous tandem rolling mill

Publications (2)

Publication Number Publication Date
JPH09248611A JPH09248611A (en) 1997-09-22
JP3541596B2 true JP3541596B2 (en) 2004-07-14

Family

ID=26336015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00259697A Expired - Fee Related JP3541596B2 (en) 1996-01-11 1997-01-10 Thickness control method of sheet material in continuous tandem rolling mill

Country Status (1)

Country Link
JP (1) JP3541596B2 (en)

Also Published As

Publication number Publication date
JPH09248611A (en) 1997-09-22

Similar Documents

Publication Publication Date Title
JP3607029B2 (en) Rolling mill control method and control apparatus
US10456818B2 (en) Simple pre-control of a wedge-type roll-gap adjustment of a roughing stand
KR980008369A (en) Rolling method and rolling mill of plate material for reducing edge drop
US6185967B1 (en) Strip threading speed controlling apparatus for tandem rolling mill
JP3541596B2 (en) Thickness control method of sheet material in continuous tandem rolling mill
JP3690282B2 (en) Camber and wedge prevention method in hot rolling
JP3485083B2 (en) Cold rolling equipment and cold rolling method
JP3403330B2 (en) Strip width control method in hot rolling
JPH1110215A (en) Method for controlling wedge of hot rolled stock
JP3617227B2 (en) Plate thickness control method for continuous tandem rolling mill.
JP3506119B2 (en) Method of changing rolling load distribution of tandem rolling mill
JP3767832B2 (en) Thickness control method in hot rolling
KR100467229B1 (en) Rolling speed compensation apparatus at rolling process and its compensation method
JP3062017B2 (en) Thickness control method in hot rolling
JP7375947B2 (en) Tandem cold rolling mill control system
JPS626713A (en) Temperature control method for rolling stock in outlet side of hot rolling mill
JP4223344B2 (en) Thickness estimation method for continuous rolling mill and thickness control method using the estimation method
JP2697573B2 (en) Control method of continuous rolling mill
JP3350294B2 (en) Control method and control device for tandem mill
JPH08150406A (en) Thickness controller for cold tandem mill
JP3588960B2 (en) A method for changing the thickness between strips in a continuous tandem rolling mill
JP2003211212A (en) Method for controlling plate width in hot finishing mill
JP2005186085A (en) Thickness change controller for travelling plate in continuous cold rolling machine
JPH0234241B2 (en)
JPH08192210A (en) Method for controlling width in rolling mill

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040322

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees