JP3539981B2 - Solid shaft for drive shaft - Google Patents

Solid shaft for drive shaft Download PDF

Info

Publication number
JP3539981B2
JP3539981B2 JP12610292A JP12610292A JP3539981B2 JP 3539981 B2 JP3539981 B2 JP 3539981B2 JP 12610292 A JP12610292 A JP 12610292A JP 12610292 A JP12610292 A JP 12610292A JP 3539981 B2 JP3539981 B2 JP 3539981B2
Authority
JP
Japan
Prior art keywords
shaft
weight
solid shaft
solid
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12610292A
Other languages
Japanese (ja)
Other versions
JPH05320825A (en
Inventor
和彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP12610292A priority Critical patent/JP3539981B2/en
Publication of JPH05320825A publication Critical patent/JPH05320825A/en
Application granted granted Critical
Publication of JP3539981B2 publication Critical patent/JP3539981B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
この発明は、自動車等の駆動軸用中実軸に関し、さらに詳しくは、等速ジョイントを用いた自動車等の駆動軸用中実軸に関する。
【0002】
【従来の技術】
一般に、自動車等のエンジンにて発生したトルクは、トランスミッション、デファレンシャルから等速ジョイントを介して中実軸に伝達され、さらに等速ジョイントを介してハブ、タイヤに伝達される。このような駆動軸系に介在する中実軸1は、たとえば図1に示すように、その両端が等速ジョイント2嵌合用のセレーション軸部3であり、この部分に前記のトルクが負荷される。
【0003】
したがって、駆動軸用中実軸は、その全体に所要の捩れ強度が必要であり、かつセレーション軸部には、応力集中を招かないようにピッチ等を精密に加工する必要がある。
【0004】
このため、従来の駆動軸用中実軸は、圧延用鋼AISI1541またはS40C等の中炭素鋼を成形材料として、焼なましを行なって機械加工性を高めて転造、切削等の加工を行なった後、最終工程にて高周波焼入れを行ない、その表面を硬化して所要の捩れ強度を確保していた。
【0005】
【発明が解決しようとする課題】
しかしながら、S40C等の従来の中炭素鋼から成形され、高周波焼入れされた駆動軸用中実軸は、焼割れ感受性に問題があり、前記焼入れによる硬化層を充分な層厚で形成できないため、捩り強度が最大せん断応力(τmax)にて1.27GPa(130kgf/mm2 )に止まり、このような中実軸では部品や装置の小型化、軽量化の要求に対応できないという問題点がある。
【0006】
具体的には、中実軸の小型化を計るため、捩り強度を最大せん断応力(τmax)にて少なくとも1.47GPa(150kgf/mm2 )以上とする必要があるが、このような捩り強度は、従来構造の中実軸では得られなかった。
【0007】
そこで、この発明は、上記した問題点を解決し、駆動軸用中実軸を、最大せん断応力が所定の値以上となるように捩り強度を向上させ、かつ加工精度がよく、セレーション軸部も応力集中のないものとして、充分に小型化し得る高性能の中実軸とすることを課題としている。
【0008】
【課題を解決するための手段】
上記の課題を解決するため、この発明においては、中実軸にセレーション軸部を有する駆動軸用中実軸において、この中実軸を、C:0.38〜0.45重量%、Si:0.35重量%以下、Mn:0.8〜1.5重量%、B:0.0005〜0.0035重量%、Ti:0.01〜0.05重量%およびAl:0.01〜0.06重量%を含有し、N:0.01重量%以下であって、残部が実質上Feからなる合金組成物から成形すると共に、その表面に、高周波焼入れによる表面硬さがHR C55以上焼入硬化層を、層厚/軸半径の比が0.45以上となるよう形成し、捩り強度が最大せん断応力(τmax)値で1.47GPa以上である構成を採用したのである。
【0009】
以下、その詳細を述べる。
【0010】
この発明に用いる合金組成物のうち炭素元素(C)の含有量は、0.38〜0.45重量%(以下、単に%と略記する)である。なぜなら、0.38%未満の少量では、中実軸の捩り強度、耐衝撃性が充分でなく、0.45%を越える多量では、被削性が著しく低下すると共に、転造性も低下し、焼割れ感受性は増大して不都合となるからである。
【0011】
またケイ素元素(Si)の合金組成物中の含有量は、0.35%以下である。このものは、鋼材の生産性を高める脱酸剤として若干量必要であるが、0.35%を越えて多量に存在する場合には、冷間転造性が低下する。
【0012】
マンガン元素(Mn)の前記含有量は0.8〜1.5%である。なぜなら、このものは、所定範囲内の含有量にて高周波焼入れ性を高め、硫化マンガン化合物となって被削性を向上させる。しかし、0.8%未満の少量では、焼入れ性の改善効果が充分に得られず、1.5%を越える多量では、冷間鍛造性を阻害するので、好ましくない。
【0013】
ホウ素元素(B)の前記含有量は、0.0005〜0.0035%である。Bは、上記所定範囲内の含有量にて焼入れ性、粒界強化および耐衝撃性を改善するが、0.0005%未満ではそのような改善効果が充分にない。一方、0.0035%を越えると、添加量に見合った焼入れ性の向上効果が発揮されないばかりか、冷間加工時にFe2 Bを析出して、いわゆる冷間割れの原因となるからである。
【0014】
チタン元素(Ti)、アルミニウム元素(Al)の前記含有量は、それぞれ0.01〜0.05%、0.01〜0.06%である。これらは共に材料中のNおよびOを固定する作用がある。たとえば、固溶したNがあると、窒化ホウ素化合物を形成してBの焼入れ性向上効果が阻害されるが、TiやAlがあれば、TiN、AlNの生成が優先して、Bの効果が効率よく発揮される。このためには、どちらも0.01%以上の存在が必要であり、一方、多量に添加しても意味がなくなるから、清浄度を害しないようにとの配慮によって、Tiは0.05%、Alは0.06%を限界量とした。
【0015】
チッ素元素(N)の前記含有量は0.01%以下である。なぜなら、0.01%を越える多量では、窒化ホウ素(BN)が形成されるので、焼入れ性に有効に作用するフリーボロンが減少して好ましくないからである。
【0016】
なお、この発明における合金組成物の被削性を更に改善する為、S、Pb、Te、Ca等の元素を含有させてもよく、また、焼入れ性を改善する為、加工性を著しく低下させない範囲でCr:0.5%以下、Mo:0.2%以下でそれぞれ、または両者併用して添加してもよい。また、Nb:0.1%以下を添加すれば耐衝撃性および焼割れ感受性が改善される。
【0017】
上記の合金組成物から成形された中実軸には、高周波焼入れにより、表面硬さがHR C(ロックウェルC硬さ)55以上で焼入硬化層を、層厚/軸半径の比が0.45以上となるよう形成する。なぜなら、この比が0.45未満の場合には、中実軸の捩り強度が充分に改善されず、最大せん断応力(τmax)の値も1.47GPa(150kgf/mm2 )未満となって、所期の目的である中実軸の小型化を達成できないからである。なお、前記焼入硬化層は、JISGO559の測定法に従い、表面からビッカース硬さHV 392(HR C40相当)までの距離とした。
【0018】
【作用】
この発明の駆動軸用中実軸は、マルテンサイト変態温度が従来材料より高い合金組成物であると共に、ホウ素元素(B)が所定範囲の組成割合からなり、細粒組織(フェライト結晶粒度番号6以上)を形成して、焼割れ感受性は低下したものとなる。高周波焼入れによって、所定の表面硬さでかつ所定の深さまで形成された焼入硬化層は、中実軸の捩れ強度を充分に高めるので、最大せん断応力が1.47GPa(150kgf/mm2 )以上に高まる。
【0019】
【実施例】
この発明の実施例を以下、図面を参照しつつ説明する。
【0020】
[実施例1〜21]
C:0.38〜0.45重量%、Si:0.35重量%以下、Mn:0.8〜1.5重量%、B:0.0005〜0.0035重量%、Ti:0.01〜0.05重量%およびAl:0.01〜0.06重量%を含有し、N:0.01重量%以下であって、残部が実質上Feからなる合金組成物を、加熱温度1100℃以下、仕上げ温度950℃以下で、減面率70%以上の低温圧延を施して、図1に示す87ACおよび109AC(等速ジョイントのサイズ別名称)の中実軸1の素材を成形した。主な諸元を表1に示す。
【0021】
【表1】

Figure 0003539981
【0022】
図1に示すように、中実軸1には、セレーション軸部3の他、端部に止め輪4装着用の周溝5および、中程にブーツ6嵌合用の周溝7を形成した。
【0023】
そして、上記中実軸1に対して、以下の条件にて高周波焼入れを行ない、表2に示す表面硬さ(HR C)および焼入硬化層の層厚/軸半径の比(γ)とした。(高周波焼入れ条件)
周波数 :8KHz
出力 :250KW
移動速度:5.7〜9.3mm/sec
【0024】
【表2】
Figure 0003539981
【0025】
得られた中実軸に対し、静捩り強度試験による最大せん断応力(τmax)を調べ、この結果を表2に示した。また、τmaxと焼入硬化層の層厚/軸半径の比γの関係を図2中に、前記表2の表面硬さ毎に一致した符号をプロットして示した。
【0026】
[比較例1〜7]
従来材であるS40C相当材(C:0.37〜0.43%、Si:0.15〜0.35%、Mn:0.60〜0.90%、P:0.030以下、S:0.035以下)を用いる以外は、実施例と全く同様にして製造した中実軸(87AC、109AC)について、焼入硬化層の層厚/軸半径の比γと、最大せん断応力を調べ、この結果を図2中に×印にてプロットした。
【0027】
表2および図2の結果から明らかなように、比較例1〜7のγは0.45未満で捩り強度は、いずれも1.47GPaを下回ったが、実施例1〜21(HR C55以上)のγは0.45以上で充分な焼入れ深さであり、しかも1.47GPaを越える最大せん断応力を有して、中実軸の小型化に充分な捩り強度であった。
【0028】
[実施例22〜24]
実施例1〜21と全く同様にして、実施例22;◆印(軸径φD28.1mm、表面硬さHR C55以上、γ=0.55)、実施例23;△印(軸径φD22.2mm、表面硬さHR C55以上、γ=0.64)、実施例24;●印(軸径φD28.1mm、表面硬さHR C55以上、γ=0.75)の中実軸を各4本ずつ得た。得られた中実軸について、実施例別にトルクを負荷して両振り捩り疲労強度を調べ、この結果を図3に示した。なお、前記した比較例6;×印(軸径φD28.1mm、γ=0.33)についても同様に両振り捩り疲労強度を調べ、この結果を図3中に併記した。
【0029】
すなわち、負荷トルクと破断部軸径より換算した最大せん断応力τmaxをY軸に、破断までの繰り返し回数N(常用対数)をX軸に採り、破断面部軸半径に対する焼入深さの比γをパラメーターとして示した。なお、図3中の直線は、試験結果より求めた回帰直線である。
【0030】
図3の結果から明らかなように、実施例の両振り捩り強度は、焼入深さ比γに比例して増加するが、実施例23(△印、γ=0.64)と実施例24(●印、γ=0.75)の強度は同レベルであり、静捩り強度と、同様にγ=0.65近辺より飽和する傾向にあった。また、τmaXで1.27GPa(130kgf/mm2 )の静捩り保証強度を有する比較例6(×印、γ=0.33)と前記の実施例22〜24の捩り疲労強度を比較すると、後者が顕著に向上していた。
【0031】
なお、上記いずれの実施例においてもセレーション軸部に焼割れの発生はなく、量産加工機での加工性評価結果も、素材切断については比較例と同等、それ以外のセンタリング、外径旋削、セレーション転造、止め輪溝加工性は、比較例よりいずれも良好であった。特に、比較例1〜7では、セレーションのピッチ誤差が平均x=0.06であったが、実施例1〜24のものは平均x=0.03と半分以下に改善されており、セレーションの各歯に作用する応力も均一となることが判明した。
【0032】
【効果】
この発明は、以上説明したように、所定の合金組成物から、高周波焼入れにより所定の表面硬さで、かつ焼入硬化層を所定の層厚にて形成した駆動軸用中実軸としたので、最大せん断応力が1.47GPa(150kgf/mm2 )となって、捩り強度が向上し、かつ、セレーション軸も精密なピッチで応力集中のないものとなり、充分に小型化し得る高性能の中実軸となる利点がある。
【図面の簡単な説明】
【図1】実施例の正面図
【図2】最大せん断応力と焼入深さ/軸半径および表面硬度の関係を示すグラフ
【図3】中実軸の両振り捩り疲労強度を示すグラフ
【符号の説明】
1 中実軸
2 等速ジョイント
3 セレーション軸部
4 止め輪
5、7 周溝
6 ブーツ[0001]
[Industrial applications]
The present invention relates to a solid shaft for a drive shaft of an automobile or the like, and more particularly to a solid shaft for a drive shaft of an automobile or the like using a constant velocity joint.
[0002]
[Prior art]
Generally, torque generated by an engine of an automobile or the like is transmitted from a transmission and a differential to a solid shaft via a constant velocity joint, and further transmitted to a hub and a tire via a constant velocity joint. As shown in FIG. 1, for example, a solid shaft 1 interposed in such a drive shaft system has serration shaft portions 3 at both ends for fitting a constant velocity joint 2, and the aforementioned torque is applied to this portion. .
[0003]
Therefore, the solid shaft for the drive shaft needs to have a required torsional strength as a whole, and the serration shaft needs to be precisely machined with a pitch or the like so as not to cause stress concentration.
[0004]
For this reason, conventional solid shafts for drive shafts are formed by using medium carbon steel such as AISI1541 or S40C for rolling as a molding material, and performing machining such as rolling and cutting by increasing the machinability by annealing. After that, induction hardening was performed in the final step, and the surface was hardened to secure the required torsional strength.
[0005]
[Problems to be solved by the invention]
However, a solid shaft for a drive shaft formed from conventional medium carbon steel such as S40C and induction hardened has a problem of susceptibility to quenching, and a hardened layer formed by the quenching cannot be formed with a sufficient layer thickness. The strength is limited to 1.27 GPa (130 kgf / mm 2 ) at the maximum shear stress (τmax), and there is a problem that such a solid shaft cannot meet the demand for downsizing and lightening of parts and devices.
[0006]
Specifically, in order to reduce the size of the solid shaft, the torsional strength needs to be at least 1.47 GPa (150 kgf / mm 2 ) at the maximum shear stress (τmax). However, it cannot be obtained with the solid shaft of the conventional structure.
[0007]
Therefore, the present invention solves the above-mentioned problems, and improves the torsional strength of the solid shaft for the drive shaft so that the maximum shear stress is equal to or more than a predetermined value, and has good machining accuracy, and the serration shaft portion is also improved. An object of the present invention is to provide a high-performance solid shaft that can be sufficiently miniaturized without stress concentration.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, in the present invention, in a solid shaft for a drive shaft having a serrated shaft portion on a solid shaft, the solid shaft is C: 0.38 to 0.45% by weight, Si: 0.35% by weight or less, Mn: 0.8 to 1.5% by weight, B: 0.0005 to 0.0035% by weight, Ti: 0.01 to 0.05% by weight, and Al: 0.01 to 0% 0.06% by weight, N: 0.01% by weight or less, the balance being formed from an alloy composition substantially consisting of Fe, and having a surface hardness of at least H R C55 by induction hardening. the hardened layer, the layer thickness / shaft radius ratio is formed so as to be 0.45 or more, and the torsional strength is adopted a configuration is 1.47GPa or more at the maximum shear stress (.tau.max) value.
[0009]
The details are described below.
[0010]
The content of the carbon element (C) in the alloy composition used in the present invention is 0.38 to 0.45% by weight (hereinafter simply abbreviated as%). If the amount is less than 0.38%, the torsional strength and impact resistance of the solid shaft are not sufficient, and if the amount exceeds 0.45%, the machinability is remarkably reduced and the rollability is also reduced. This is because the susceptibility to cracking increases, which is inconvenient.
[0011]
The content of the silicon element (Si) in the alloy composition is 0.35% or less. Although a small amount of this is necessary as a deoxidizing agent for increasing the productivity of steel materials, if it is present in a large amount exceeding 0.35%, cold rollability is reduced.
[0012]
The content of the manganese element (Mn) is 0.8 to 1.5%. The reason for this is that when the content is within a predetermined range, it enhances induction hardening and becomes a manganese sulfide compound to improve machinability. However, if the amount is less than 0.8%, the effect of improving the hardenability cannot be sufficiently obtained, and if the amount exceeds 1.5%, the cold forgeability is impaired.
[0013]
The content of the boron element (B) is 0.0005 to 0.0035%. B improves quenching properties, grain boundary strengthening and impact resistance when the content is within the above-mentioned predetermined range, but if it is less than 0.0005%, such improvement effects are not sufficient. On the other hand, if it exceeds 0.0035%, not only the effect of improving the hardenability corresponding to the added amount is not exhibited, but also Fe 2 B precipitates during cold working, which causes so-called cold cracking.
[0014]
The contents of the titanium element (Ti) and the aluminum element (Al) are 0.01 to 0.05% and 0.01 to 0.06%, respectively. These both have the effect of fixing N and O in the material. For example, the presence of solid solution N inhibits the effect of improving the hardenability of B by forming a boron nitride compound, but the presence of Ti or Al gives priority to the generation of TiN and AlN, and the effect of B is reduced. Exhibited efficiently. For this purpose, 0.01% or more is required for both of them. On the other hand, since it is meaningless to add a large amount of Ti, 0.05% of Ti is taken into consideration so as not to impair the cleanliness. , Al was limited to 0.06%.
[0015]
The content of the nitrogen element (N) is 0.01% or less. This is because if the amount exceeds 0.01%, boron nitride (BN) is formed, so that the amount of free boron that effectively acts on hardenability decreases, which is not preferable.
[0016]
In addition, in order to further improve the machinability of the alloy composition in the present invention, elements such as S, Pb, Te, and Ca may be contained, and in order to improve hardenability, workability is not significantly reduced. In the range, Cr: 0.5% or less and Mo: 0.2% or less may be added individually or in combination. If Nb: 0.1% or less is added, the impact resistance and the susceptibility to burn cracking are improved.
[0017]
A solid shaft which is molded from the alloy composition, by induction hardening, the hardened layer in the surface hardness H R C (Rockwell C hardness) 55 or more, the ratio of thickness / shaft radius It is formed to be 0.45 or more. When the ratio is less than 0.45, the torsional strength of the solid shaft is not sufficiently improved, and the value of the maximum shear stress (τmax) is also less than 1.47 GPa (150 kgf / mm 2 ). This is because it is not possible to achieve the intended purpose of downsizing the solid shaft. The quench-hardened layer had a distance from the surface to Vickers hardness H V 392 (equivalent to H R C40) according to the measurement method of JISGO559.
[0018]
[Action]
The solid shaft for a drive shaft according to the present invention is an alloy composition having a higher martensitic transformation temperature than the conventional material, a boron element (B) having a composition ratio in a predetermined range, and a fine grain structure (ferrite grain size number 6). Above), the cracking susceptibility is reduced. The quench hardened layer formed to a predetermined surface hardness and a predetermined depth by induction hardening sufficiently increases the torsional strength of the solid shaft, so that the maximum shear stress is 1.47 GPa (150 kgf / mm 2 ) or more. To increase.
[0019]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0020]
[Examples 1 to 21]
C: 0.38 to 0.45% by weight, Si: 0.35% by weight or less, Mn: 0.8 to 1.5% by weight, B: 0.0005 to 0.0035% by weight, Ti: 0.01 To 0.05% by weight and Al: 0.01 to 0.06% by weight, N: 0.01% by weight or less, and the balance substantially consisting of Fe was heated to 1100 ° C. Hereinafter, low-temperature rolling at a finishing temperature of 950 ° C. or less and a reduction in area of 70% or more was performed to form a material for the solid shaft 1 of 87AC and 109AC (named according to the size of the constant velocity joint) shown in FIG. Table 1 shows the main specifications.
[0021]
[Table 1]
Figure 0003539981
[0022]
As shown in FIG. 1, in addition to the serration shaft portion 3, a peripheral groove 5 for mounting a retaining ring 4 and a peripheral groove 7 for fitting a boot 6 in the middle are formed on the solid shaft 1.
[0023]
Then, the solid shaft 1 was subjected to induction hardening under the following conditions, and the surface hardness (H R C) and the ratio (γ) of the layer thickness / shaft radius of the quenched hardened layer shown in Table 2 were obtained. did. (Induction hardening conditions)
Frequency: 8KHz
Output: 250KW
Moving speed: 5.7 to 9.3 mm / sec
[0024]
[Table 2]
Figure 0003539981
[0025]
For the obtained solid shaft, the maximum shear stress (τmax) by a static torsional strength test was examined, and the results are shown in Table 2. Further, the relationship between τmax and the ratio γ of the layer thickness of the quenched hardened layer / axial radius is shown in FIG. 2 by plotting the codes corresponding to the respective surface hardnesses in Table 2 above.
[0026]
[Comparative Examples 1 to 7]
Conventional S40C equivalent material (C: 0.37 to 0.43%, Si: 0.15 to 0.35%, Mn: 0.60 to 0.90%, P: 0.030 or less, S: 0.035 or less), the ratio γ of the layer thickness / axial radius of the quenched hardened layer and the maximum shear stress were examined for the solid shaft (87AC, 109AC) manufactured in exactly the same manner as in the example. The results are plotted with a cross in FIG.
[0027]
Table 2 and As is clear from the results shown in FIG. 2, torsional strength less than 0.45 γ of Comparative Examples 1 to 7, which were both below 1.47GPa, Example 1 to 21 (H R C55 or higher ) Is 0.45 or more, which is a sufficient quenching depth, has a maximum shear stress exceeding 1.47 GPa, and is a torsional strength sufficient for miniaturizing a solid shaft.
[0028]
[Examples 22 to 24]
In exactly the same manner as in Examples 1 to 21, Example 22; mark (shaft diameter φD 28.1 mm, surface hardness H R C55 or more, γ = 0.55), Example 23; mark Δ (shaft diameter φD22. 2 mm, surface hardness H R C55 or more, γ = 0.64), Example 24; solid marks (shaft diameter φD 28.1 mm, surface hardness H R C55 or more, γ = 0.75) Four were obtained. With respect to the obtained solid shaft, torque was applied to each of the examples and the torsional torsional fatigue strength was examined. The results are shown in FIG. In addition, the swinging torsional fatigue strength of Comparative Example 6 described above; cross mark (shaft diameter φD: 28.1 mm, γ = 0.33) was similarly examined, and the results are also shown in FIG.
[0029]
That is, the maximum shear stress τmax converted from the load torque and the fracture part axis diameter is taken on the Y axis, the number of repetitions N (common logarithm) until fracture is taken on the X axis, and the ratio γ of the quenching depth to the fracture surface part axis radius is taken as Shown as parameters. The straight line in FIG. 3 is a regression line obtained from the test results.
[0030]
As is clear from the results of FIG. 3, the swing torsional strength of the example increases in proportion to the quenching depth ratio γ. However, in Example 23 (△ mark, γ = 0.64) and Example 24. The strength of (● mark, γ = 0.75) was at the same level, and tended to saturate from the static torsional strength, similarly, from around γ = 0.65. When the torsional fatigue strength of Comparative Examples 6 (x mark, γ = 0.33) having a guaranteed torsional strength of 1.27 GPa (130 kgf / mm 2 ) at τmaX is compared with the torsional fatigue strengths of the above Examples 22 to 24, Was significantly improved.
[0031]
In each of the above examples, there was no occurrence of burning cracks in the serration shaft, and the workability evaluation results in the mass production machine were the same as those of the comparative example for material cutting, and other centering, outer diameter turning, serration Rolling and retaining ring groove workability were all better than the comparative example. In particular, in Comparative Examples 1 to 7, the average pitch error of the serration was x = 0.06, but in Examples 1 to 24, the average x was 0.03, which was improved to less than half. It has been found that the stress acting on each tooth is also uniform.
[0032]
【effect】
As described above, according to the present invention, since a solid shaft for a drive shaft is formed from a predetermined alloy composition with a predetermined surface hardness by induction hardening, and a quench-hardened layer formed with a predetermined layer thickness. , The maximum shear stress is 1.47 GPa (150 kgf / mm 2 ), the torsional strength is improved, and the serration shaft has a precise pitch without stress concentration. There is a core advantage.
[Brief description of the drawings]
FIG. 1 is a front view of an embodiment. FIG. 2 is a graph showing the relationship between maximum shear stress and quenching depth / shaft radius and surface hardness. FIG. 3 is a graph showing swinging torsional fatigue strength of a solid shaft. Description]
DESCRIPTION OF SYMBOLS 1 Solid shaft 2 Constant velocity joint 3 Serration shaft part 4 Retaining ring 5, 7 Circumferential groove 6 Boot

Claims (1)

中実軸にセレーション軸部を有する駆動軸用中実軸において、この中実軸を、C:0.38〜0.45重量%、Si:0.35重量%以下、Mn:0.8〜1.5重量%、B:0.0005〜0.0035重量%、Ti:0.01〜0.05重量%およびAl:0.01〜0.06重量%を含有し、N:0.01重量%以下であって、残部が実質上Feからなる合金組成物から成形すると共に、その表面に、高周波焼入れによる表面硬さがHR C55以上焼入硬化層を、層厚/軸半径の比が0.45以上となるよう形成し、捩り強度が最大せん断応力(τmax)値で1.47GPa以上であることを特徴とする駆動軸用中実軸。In a solid shaft for a drive shaft having a serrated shaft portion on a solid shaft, the solid shaft is defined as C: 0.38 to 0.45% by weight, Si: 0.35% by weight or less, and Mn: 0.8 to 0.8%. 1.5% by weight, B: 0.0005 to 0.0035% by weight, Ti: 0.01 to 0.05% by weight and Al: 0.01 to 0.06% by weight, N: 0.01 a less wt%, the remainder being formed from an alloy composition consisting essentially Fe, on the surface, the surface hardness by induction hardening the H R C55 or more hardened layer, the layer thickness / shaft radius A solid shaft for a drive shaft, wherein the solid shaft is formed to have a ratio of 0.45 or more and has a torsional strength of 1.47 GPa or more in maximum shear stress (τmax) value.
JP12610292A 1992-05-19 1992-05-19 Solid shaft for drive shaft Expired - Lifetime JP3539981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12610292A JP3539981B2 (en) 1992-05-19 1992-05-19 Solid shaft for drive shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12610292A JP3539981B2 (en) 1992-05-19 1992-05-19 Solid shaft for drive shaft

Publications (2)

Publication Number Publication Date
JPH05320825A JPH05320825A (en) 1993-12-07
JP3539981B2 true JP3539981B2 (en) 2004-07-07

Family

ID=14926668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12610292A Expired - Lifetime JP3539981B2 (en) 1992-05-19 1992-05-19 Solid shaft for drive shaft

Country Status (1)

Country Link
JP (1) JP3539981B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010029841A1 (en) 2008-09-12 2010-03-18 Ntn株式会社 Power transmission shaft, drive shaft, and propeller shaft

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4862419A (en) * 1983-11-10 1989-08-29 Advanced Micro Devices, Inc. High speed pointer based first-in-first-out memory
US6390924B1 (en) 1999-01-12 2002-05-21 Ntn Corporation Power transmission shaft and constant velocity joint
US6319337B1 (en) * 1999-02-10 2001-11-20 Ntn Corporation Power transmission shaft
JP4771745B2 (en) 2004-10-13 2011-09-14 新日本製鐵株式会社 Steel material for high strength constant velocity joint intermediate shaft and high strength constant velocity joint intermediate shaft
JP2011225142A (en) * 2010-04-21 2011-11-10 Ntn Corp Bearing device for wheel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010029841A1 (en) 2008-09-12 2010-03-18 Ntn株式会社 Power transmission shaft, drive shaft, and propeller shaft
US8435125B2 (en) 2008-09-12 2013-05-07 Ntn Corporation Power transmission shaft, drive shaft, and propeller shaft

Also Published As

Publication number Publication date
JPH05320825A (en) 1993-12-07

Similar Documents

Publication Publication Date Title
JP3995904B2 (en) Method for producing inner ring for constant velocity joint excellent in workability and strength
JP2000154828A (en) Outer ring for constant velocity universal joint excellent in anti-flaking characteristic and shaft strength and manufacture thereof
JPH0853714A (en) Shaft parts for machine structural use excellent in torsional fatigue strength
EP1647608A1 (en) Steel material for high strength constant velocity joint intermediate shaft and high strength constant velocity joint intermediate shaft
KR100375344B1 (en) Carburizing and carbonitriding steel
JP3539981B2 (en) Solid shaft for drive shaft
JP2001303173A (en) Steel for carburizing and carbo-nitriding
JP4320589B2 (en) Mechanical structure shaft parts and manufacturing method thereof
JP2725747B2 (en) Steel for induction hardening
JP2650225B2 (en) Spring steel
US6391124B1 (en) Non-heat treated, soft-nitrided steel parts
US6800144B2 (en) Process for producing retainer for constant velocity joint possessing improved machinability and flexural strength
JP3194093B2 (en) Manufacturing method of high torsional strength shaft parts
JP4458592B2 (en) Rolling bearing parts for high temperature
JPH0416538B2 (en)
JPH05132713A (en) Manufacture of high bearing pressure machine structural parts
JPH04297552A (en) Manufacture of steel for synchronous joint and synchronous joint part
JP3792542B2 (en) Rolling parts and power transmission parts
JPH09201644A (en) Steel for carburized bevel gear, high toughness carburized bevel gear and manufacture thereof
JPH0978127A (en) Production of high strength and high toughness axial parts for mechanical structure
JPH0559486A (en) Steel for cold forging excellent in induction hardenability and fatigue property
WO2007043315A1 (en) Steel material and process for producing the same
JPH0797656A (en) Cold forging steel
JPH11269601A (en) Steel for cold working excellent in induction hardenability, parts for machine structure and production thereof
JPH0557350B2 (en)

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040324

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9