JP3539843B2 - High fatigue strength steel wire and its manufacturing method - Google Patents

High fatigue strength steel wire and its manufacturing method Download PDF

Info

Publication number
JP3539843B2
JP3539843B2 JP24933597A JP24933597A JP3539843B2 JP 3539843 B2 JP3539843 B2 JP 3539843B2 JP 24933597 A JP24933597 A JP 24933597A JP 24933597 A JP24933597 A JP 24933597A JP 3539843 B2 JP3539843 B2 JP 3539843B2
Authority
JP
Japan
Prior art keywords
steel wire
fatigue strength
hardness
wire
fatigue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24933597A
Other languages
Japanese (ja)
Other versions
JPH1171638A (en
Inventor
望 河部
照幸 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo SEI Steel Wire Corp
Original Assignee
Sumitomo SEI Steel Wire Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo SEI Steel Wire Corp filed Critical Sumitomo SEI Steel Wire Corp
Priority to JP24933597A priority Critical patent/JP3539843B2/en
Priority to PCT/JP1998/003622 priority patent/WO1999011836A1/en
Priority to DE69839353T priority patent/DE69839353T2/en
Priority to US09/486,370 priority patent/US6527883B1/en
Priority to EP98937821A priority patent/EP1063313B1/en
Publication of JPH1171638A publication Critical patent/JPH1171638A/en
Priority to US10/361,619 priority patent/US7255758B2/en
Application granted granted Critical
Publication of JP3539843B2 publication Critical patent/JP3539843B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は耐熱性および疲労強度に優れた鋼線とその製造方法に関するものである。
【0002】
【従来の技術】
ばね用鋼線として、C:0.6〜0.8,Si:0.15〜0.35,Mn:0.3〜0.9mass%を含むものが知られている。このばね鋼線は、圧延→パテンティング(γ化加熱→恒温変態)→伸線→(コイリング)→歪み取り焼鈍(300±30℃)の工程を経て製造される。
【0003】
【発明が解決しようとする課題】
しかし、上記のばね用鋼線では耐熱性,疲労強度共に十分とはいえない。一方、Siの含有量を高めることで耐熱性が向上することはパラレルワイヤをはじめとする鋼線において知られている。ただし、耐熱性といってもその狙いは様々であり、パラレルワイヤでの耐熱性は溶融亜鉛メッキ(450℃×30秒)された後にTSの変化が小さいことが本来の狙いである。しかし、本発明鋼線が用いられる自動車のエンジン回りのばね等の場合、重要なのは100〜200℃の温度域でのへたりが小さいことであり、さらに疲労特性も兼ね具えることである。このため、単にパラレルワイヤの化学成分をばねに応用してもばね材として十分な特性は得られていない。すなわち、パラレルワイヤでSiを添加することによって疲労特性が向上するとの報告もあるが、これらは引張力の繰り返し疲労であり、ばね材の疲労とは本質的に要求特性が異なる。パラレルワイヤでは表面の硬度低下があっても疲労特性への影響が小さいが、Si含有量の高いばね用鋼線では疲労特性への影響が大きいことがわかった。
【0004】
また、鋼線製造の最終工程で熱処理(焼入れ・焼戻し)を施すことで耐熱性,疲労強度共に優れた鋼線を得ることが知られているが、焼入れ・焼戻しを施す場合はコストが高くなるという問題がある。
【0005】
従って、本発明の主目的は、焼入れ・焼戻しを行わない、すなわち伸線加工により得られる耐熱性と疲労強度の優れた鋼線およびその製造方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明は上記の課題を解消するもので、その特徴は、mass%でC:0.7〜1.0,Si:0.5〜1.5を含むパーライト組織の鋼線であって、鋼線横断面において、表面から50μmまでの硬度の平均と内部の硬度の平均との差をマイクロビッカース硬度で50以内としたことにある。この鋼線にはさらにMoを0.03〜0.1mass%含有することが好ましい。また、Mn:0.3〜0.9mass%,Cr:0.2mass%以下を含有してもよい。この鋼線の引張強度は、十分な疲労強度を出すためには、1800N/mm2 以上が好適である。
【0007】
ここで、上記鋼線の金属組織としては、粒界フェライトが5vol %以下であることが好ましい。さらに、パーライト組織を構成するセメンタイト形状としては、セメンタイトの厚さをt,長さをlとしたとき、
l/t≧5 …(式1)
であるものが80vol %以上であることが望ましい。
【0008】
このような組織を得るには、

Figure 0003539843
として、γ化加熱後の冷却速度V(℃/秒)が580℃以上の温度域で、
V≧−50T+275 …(式3)
を満たせばよい。
【0009】
また、本発明鋼線の製造方法は、mass%でC:0.7〜1.0,Si:0.5〜1.5を含むパーライト組織の鋼線をシェービングしてからパテンティングし、伸線することを特徴とする。さらに、伸線後に歪み取り焼鈍を350〜450℃で行うことが望ましい。なお、伸線加工度は80%以上とすることが好適である。
【0010】
以下、本発明の構成を上記のように限定した理由を述べる。
<化学成分>
C:疲労強度の観点から下限値を決め、伸線性の観点から上限値を決めた。
Si:耐熱性の向上に必要な元素である。下限値未満では十分な耐熱性が得られず、上限値を越えると鋼線表面に傷が付きやすい。
Mo:下限値未満では耐熱性・疲労強度向上の効果が小さく、上限値を越えるとパテンティングの時間が長く生産性が劣る。
Mn:焼入れ性向上のために添加する。上限値を越えると偏析が多くなりやすく、伸線性に劣る。
Cr:上限値を越えるとパテンティングの時間が長く生産性に劣るからである。
【0011】
<シェービング>
鋼線表面の低硬度層の除去が目的である。鋼線の内部の硬度よりもマイクロビッカース硬度で50以上硬度の低い層を除去することで疲労特性を改善する。
【0012】
<歪み取り焼鈍>
ばねの疲労特性向上のため350〜450℃で行う。下限値未満では疲労特性向上の効果が少なく、上限値を越えるとワイヤの強度,疲労強度も下がる。この焼鈍の時間は20分程度が効果と生産性の点で好ましい。
【0013】
<粒界フェライト>
本発明鋼線のようにSiの高い材料は粒界フェライトが析出しやすいことが特徴であり、疲労特性に対しては欠点である。この粒界フェライトが5vol %以下であると疲労特性および耐熱性に優れる。
【0014】
<セメンタイト形状>
セメンタイト形状についても同様に疲労・耐熱性にとって重要である。従来パラレルワイヤでの450℃以上の耐熱性とは異なり、100〜200℃の温度域での疲労・耐熱性にとっては前述の式1を満たすことが好ましいからである。
【0015】
<化学成分と冷却速度との関係>
化学成分とγ化加熱後の冷却速度との関係が前述の式2,式3を満たすことで、前記の粒界フェライトやセメンタイト形状の組織を得ることができるからである。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
(試験例1)
C=0.82,Si=1.05,Mn=0.51,Cr=0.09mass%の成分のインゴット100kgを真空溶解設備で溶解鋳造し、熱間鍛造,圧延により11mmφと10mmφの線材を製造した。
【0017】
これらの線材のうち、11mmφのものは10mmφまでシェービングにより表面層を除去してから、またシェービングしない10mmφの線材はそのままで下記のパテンティング,伸線,歪み取り焼鈍を行ってパーライト組織の鋼線を得た。
パテンティング:950→580℃鉛浴
伸線:10mmφ→4mmφ
歪み取り焼鈍:300,350,400,450,500℃で各20分間
【0018】
さらに比較例として、C:0.6〜0.8,Si:0.15〜0.35,Mn:0.3〜0.9mass%を含む鋼種を溶解鋳造→圧延→パテンティング→伸線(減面率84%)→歪み取り焼鈍(300±30℃)の工程で製造される4mmφの鋼線を得た。
【0019】
そして、上記の各鋼線に中村式の回転曲げ疲労試験機で疲労試験を行い、その際の疲労限を107 回とした。その結果を図1に示す。また、各鋼線の横断面における硬度分布も調べた。その結果を図2に示す。
【0020】
図1に示すように、シェービングを行ったものは行わないものに比べて疲労限界振幅応力が大きく、疲労強度に優れることがわかる。特に、シェービングを行ったものでは歪み取り焼鈍の温度が350〜450℃の場合に好結果となっており、シェービングを行わないものでも歪み取り焼鈍の温度が350〜400℃の場合に比較例よりも好結果となっている。
【0021】
また、図2に示すように、シェービングを施していない線材では表面の硬度が低下しているが、シェービングを施した線材は断面の中心から表面にわたってほぼ均等な硬度分布を示している。そして、表面から50μmにおける平均硬度と内部の平均硬度との差がマイクロビッカース硬度で50以内の場合に疲労強度の改善に効果的であった。
【0022】
なお、各鋼線の引張強度は次の通りであった。
シェービングありの線材:2130N/mm2
シェービングなしの線材:2110N/mm2
比較例 :1900N/mm2
【0023】
(試験例2)
次に、表1に示す化学成分の鋼種について試験例1と同様に真空溶解でメルトにした後、試験例1と同様の工程で鍛造,圧延,シェービング,伸線,歪み取り焼鈍(350℃×20分)を行った。
【0024】
【表1】
Figure 0003539843
【0025】
そして、これらの鋼線について耐熱性の評価と回転曲げ疲労試験とを行った。耐熱性は700MPa の捻じり応力,150℃,1時間保持後のへたり量として残留剪断歪を求めることで評価した。具体的な評価基準は、残留剪断歪が従来のピアノ線(試験例1の比較例と同等の鋼線)の1/2以下となる0.075%以下、疲労限界振幅が従来のピアノ線に対し20%以上の向上を示す550MPa 以上である。評価結果を図3に示す。
【0026】
図3に示すように、Cの含有量が多い試料番号1-5,Siの含有量が多い同2-4,Moが多い同3-2 はパテンティングでマルテンサイトが発生したか表面傷が多発したため、鋼線として不十分であった。また、Cの含有量が少ない試料番号1-1 ,Siの含有量が少ない同2-1 は疲労強度,耐熱性の点で不十分であることがわかる。これに対し、試料番号1-2〜1-4,2-2,2-3,3-1 はいずれも疲労強度と耐熱性について好結果である。特にMoを適量添加した試料番号3-1 は高い疲労強度と耐熱性を示している。
【0027】
(試験例3)
試験例1で用いた11mm線材を用いて試験例1と同様の工程で4mmの鋼線を得た。ただし、パテンティング時のγ化から恒温変態するまでの冷却速度を変化させて、それぞれの金属組織とばね特性(疲労限界振幅応力と残留剪断歪)の関係を評価した。
【0028】
<金属組織とばね特性の関係>
セメンタイト形状{厚さt(μm),長さL(μm)}L/tと粒界フェライト量α(vol.%)の違いによるばね特性評価の結果を図4のグラフに示す。なお、このグラフの評価基準は表2に示す通りである。
【0029】
【表2】
Figure 0003539843
【0030】
図4のグラフから明らかなように、セメンタイト形状がL/t≧5で、粒界フェライト量αが≦5の場合に良好なばね特性を示すことがわかる。なお、L/t≧5となるセメンタイト比率が80%以上であると、ばね特性、特にへたりで安定性が増す。
【0031】
<製造条件と組織の関係>
前記表1における試料番号1-2〜1-4,2-2,2-3,3-1 の6鋼種を用いて、下記の式により求められるTとγ化加熱後の冷却速度Vの違いが組織に与える影響について調べた。各試料のTを表3に、試験結果を図5のグラフに示す。
T=10×{C(mass%)−0.76}−Si(mass%)+5×Cr(mass%)
【0032】
【表3】
Figure 0003539843
【0033】
図5のグラフから明らかなように、V≧−50T+275を満たす条件において良好な組織が得られていることがわかる。
【0034】
【発明の効果】
以上説明したように、本発明鋼線は高い耐熱性と疲労強度を具えており、ばね用鋼線に最適である。また、本発明鋼線の製造方法は、焼入れ・焼戻し処理を行うことなく本発明鋼線を製造することができ、低コストで耐熱性と疲労強度を兼ね具えた鋼線を製造することができる。
【図面の簡単な説明】
【図1】歪み取り焼鈍温度と疲労限界振幅応力との関係を示すグラフである。
【図2】線材断面の硬度分布を示すグラフである。
【図3】化学成分の異なる鋼線の残留剪断歪みおよび疲労限界振幅との関係を示すグラフである。
【図4】セメンタイト形状L/tと粒界フェライト量αの違いによるばね特性評価の結果を示すグラフである。
【図5】Tとγ化加熱後の冷却速度Vの違いが組織に与える影響について示すグフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a steel wire excellent in heat resistance and fatigue strength and a method for producing the same.
[0002]
[Prior art]
As a spring steel wire, a wire containing C: 0.6 to 0.8, Si: 0.15 to 0.35, and Mn: 0.3 to 0.9 mass% is known. This spring steel wire is manufactured through the steps of rolling → patenting (gamma heating → constant temperature transformation) → drawing → (coiling) → strain relief annealing (300 ± 30 ° C.).
[0003]
[Problems to be solved by the invention]
However, the above-mentioned spring steel wire is not sufficient in both heat resistance and fatigue strength. On the other hand, it is known in parallel wires and other steel wires that heat resistance is improved by increasing the content of Si. However, the aim of heat resistance is various, and the original aim of the heat resistance of the parallel wire is that the change in TS after hot-dip galvanizing (450 ° C. × 30 seconds) is small. However, in the case of a spring around an engine of an automobile using the steel wire of the present invention, it is important that the sag in a temperature range of 100 to 200 ° C. is small and that the steel wire also has fatigue characteristics. For this reason, simply applying the chemical composition of the parallel wire to the spring does not provide sufficient properties as a spring material. That is, although there is a report that the fatigue characteristics are improved by adding Si with a parallel wire, these are repeated fatigues of tensile force, and the required characteristics are essentially different from those of spring materials. It was found that even if the surface hardness of the parallel wire was reduced, the effect on the fatigue properties was small, but the spring steel wire with a high Si content had a large effect on the fatigue properties.
[0004]
It is known that a heat treatment (quenching / tempering) is performed in the final step of steel wire production to obtain a steel wire excellent in both heat resistance and fatigue strength. However, when quenching / tempering is performed, the cost increases. There is a problem.
[0005]
Therefore, a main object of the present invention is to provide a steel wire which does not perform quenching and tempering, that is, has excellent heat resistance and fatigue strength obtained by wire drawing, and a method for producing the same.
[0006]
[Means for Solving the Problems]
The present invention solves the above-mentioned problems, and is characterized by a steel wire having a pearlite structure containing C: 0.7 to 1.0 and Si: 0.5 to 1.5 in mass%. In the cross section of the line, the difference between the average of the hardness from the surface to 50 μm and the average of the internal hardness is set to within 50 micro Vickers hardness. Preferably, the steel wire further contains Mo in an amount of 0.03 to 0.1 mass%. Further, Mn: 0.3 to 0.9 mass% and Cr: 0.2 mass% or less may be contained. The tensile strength of the steel wire is preferably 1800 N / mm 2 or more in order to obtain sufficient fatigue strength.
[0007]
Here, as the metal structure of the steel wire, it is preferable that grain boundary ferrite is 5 vol% or less. Further, as the cementite shape constituting the pearlite structure, when the thickness of the cementite is t and the length is l,
1 / t ≧ 5 (Equation 1)
Is desirably 80 vol% or more.
[0008]
To get such an organization,
Figure 0003539843
In a temperature range where the cooling rate V (° C./sec) after γ-heating is 580 ° C.
V ≧ −50T + 275 (Equation 3)
Should be satisfied.
[0009]
Further, in the method for producing a steel wire of the present invention, a steel wire having a pearlite structure including C: 0.7 to 1.0 and Si: 0.5 to 1.5 in mass% is subjected to shaving, patenting, and elongation. It is characterized by line drawing. Furthermore, it is desirable to perform the strain relief annealing at 350 to 450 ° C. after drawing. The degree of wire drawing is preferably set to 80% or more.
[0010]
Hereinafter, the reason why the configuration of the present invention is limited as described above will be described.
<Chemical components>
C: The lower limit was determined from the viewpoint of fatigue strength, and the upper limit was determined from the viewpoint of drawability.
Si: an element necessary for improving heat resistance. If it is less than the lower limit, sufficient heat resistance cannot be obtained, and if it exceeds the upper limit, the surface of the steel wire is easily damaged.
Mo: If less than the lower limit, the effect of improving heat resistance and fatigue strength is small, and if it exceeds the upper limit, the patenting time is long and productivity is poor.
Mn: added for improving hardenability. If it exceeds the upper limit, segregation tends to increase, resulting in poor drawability.
Cr: If it exceeds the upper limit, the patenting time is long and the productivity is poor.
[0011]
<Shaving>
The purpose is to remove the low hardness layer on the steel wire surface. Fatigue properties are improved by removing a layer having a hardness not less than 50 in micro Vickers hardness than the hardness inside the steel wire.
[0012]
<Strain relief annealing>
This is performed at 350 to 450 ° C. to improve the fatigue characteristics of the spring. If it is less than the lower limit, the effect of improving the fatigue properties is small, and if it exceeds the upper limit, the strength and fatigue strength of the wire also decrease. The annealing time is preferably about 20 minutes in view of the effect and the productivity.
[0013]
<Grain boundary ferrite>
A material having a high Si like the steel wire of the present invention is characterized in that grain boundary ferrite is easily precipitated, and has a disadvantage in fatigue characteristics. If the grain boundary ferrite is at most 5 vol%, the fatigue properties and heat resistance will be excellent.
[0014]
<Cementite shape>
The cementite shape is also important for fatigue and heat resistance. This is because, unlike the conventional parallel wire having a heat resistance of 450 ° C. or higher, it is preferable to satisfy the above-described expression 1 for fatigue and heat resistance in a temperature range of 100 to 200 ° C.
[0015]
<Relationship between chemical composition and cooling rate>
When the relationship between the chemical component and the cooling rate after the γ-formation heating satisfies Expressions 2 and 3, the grain boundary ferrite or cementite-shaped structure can be obtained.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
(Test Example 1)
100 kg of an ingot having a composition of C = 0.82, Si = 1.05, Mn = 0.51, and Cr = 0.09 mass% is melted and cast in a vacuum melting facility, and hot forging and rolling are performed to form 11 mmφ and 10 mmφ wires. Manufactured.
[0017]
Of these wire rods, the surface layer was removed by shaving to 11 mmφ by shaving to 10 mmφ, and the following 10 mmφ wire rods without shaving were subjected to the following patenting, drawing, and strain relief annealing to obtain a pearlite steel wire. Got.
Patenting: 950 → 580 ° C Lead bath wire drawing: 10mmφ → 4mmφ
Strain relief annealing: 300, 350, 400, 450 and 500 ° C. for 20 minutes each.
Further, as a comparative example, a steel type containing C: 0.6 to 0.8, Si: 0.15 to 0.35, and Mn: 0.3 to 0.9 mass% is melt-cast → rolling → patenting → wire drawing ( A steel wire of 4 mmφ manufactured in the process of reducing the area (84%) → strain annealing (300 ± 30 ° C.) was obtained.
[0019]
Then, a fatigue test in rotating bending fatigue tester of Nakamura in the steel wire above and the fatigue limit at that time with 10 7 times. The result is shown in FIG. The hardness distribution in the cross section of each steel wire was also examined. The result is shown in FIG.
[0020]
As shown in FIG. 1, it can be seen that the one subjected to shaving has a larger fatigue limit amplitude stress than the one not subjected to shaving, and is superior in fatigue strength. In particular, in the case where shaving was performed, good results were obtained when the temperature of the strain relief annealing was 350 to 450 ° C, and even when the temperature of the strain relief annealing was 350 to 400 ° C even in the case where the shaving was not performed, Have also been successful.
[0021]
As shown in FIG. 2, the hardness of the surface of the wire without shaving is reduced, but the hardness of the wire with shaving shows a substantially uniform hardness distribution from the center of the cross section to the surface. When the difference between the average hardness at 50 μm from the surface and the average hardness inside was within 50 micro Vickers hardness, it was effective in improving fatigue strength.
[0022]
The tensile strength of each steel wire was as follows.
Wire with shaving: 2130 N / mm 2
Wire without shaving: 2110 N / mm 2
Comparative example: 1900 N / mm 2
[0023]
(Test Example 2)
Next, the steel types having the chemical components shown in Table 1 were melted by vacuum melting in the same manner as in Test Example 1, and then forged, rolled, shaved, drawn, and strain-relieved annealing (350 ° C. × 20 minutes).
[0024]
[Table 1]
Figure 0003539843
[0025]
Then, evaluation of heat resistance and rotational bending fatigue test were performed on these steel wires. The heat resistance was evaluated by determining the residual shear strain as a set amount after holding at a torsion stress of 700 MPa and 150 ° C. for 1 hour. The specific evaluation criteria are 0.075% or less, in which the residual shear strain is 1 / or less of the conventional piano wire (a steel wire equivalent to the comparative example of Test Example 1), and the fatigue limit amplitude is less than that of the conventional piano wire. On the other hand, it is 550 MPa or more which shows an improvement of 20% or more. FIG. 3 shows the evaluation results.
[0026]
As shown in FIG. 3, Sample No. 1-5 having a high C content, Sample No. 2-4 having a high Si content, and Sample No. 3-2 having a high Mo content had martensite generated by patenting or surface scratches. Because it occurred frequently, it was insufficient as a steel wire. Further, it can be seen that Sample No. 1-1 having a low C content and Sample No. 2-1 having a low Si content are insufficient in terms of fatigue strength and heat resistance. On the other hand, sample numbers 1-2 to 1-4, 2-2, 2-3, and 3-1 all have good results in terms of fatigue strength and heat resistance. In particular, Sample No. 3-1 to which an appropriate amount of Mo was added exhibited high fatigue strength and heat resistance.
[0027]
(Test Example 3)
Using the 11 mm wire rod used in Test Example 1, a 4 mm steel wire was obtained in the same process as in Test Example 1. However, the relationship between the respective metal structures and the spring properties (fatigue limit amplitude stress and residual shear strain) was evaluated by changing the cooling rate from gamma transformation during patenting to constant temperature transformation.
[0028]
<Relationship between metal structure and spring characteristics>
FIG. 4 is a graph showing the results of spring characteristic evaluation based on the difference between the cementite shape {thickness t (μm), length L (μm)} L / t and the amount of grain boundary ferrite α (vol.%). The evaluation criteria of this graph are as shown in Table 2.
[0029]
[Table 2]
Figure 0003539843
[0030]
As is clear from the graph of FIG. 4, when the cementite shape is L / t ≧ 5 and the amount of grain boundary ferrite α is ≦ 5, good spring characteristics are exhibited. In addition, when the cementite ratio that satisfies L / t ≧ 5 is 80% or more, the spring characteristics, particularly the set, increase the stability.
[0031]
<Relationship between manufacturing conditions and organization>
Difference between T obtained by the following equation and cooling rate V after gamma heating using six steel types of sample numbers 1-2 to 1-4, 2-2, 2-3 and 3-1 in Table 1 above. We investigated the effect of sucrose on the tissue. Table 3 shows the T of each sample, and the test results are shown in the graph of FIG.
T = 10 × {C (mass%) − 0.76} −Si (mass%) + 5 × Cr (mass%)
[0032]
[Table 3]
Figure 0003539843
[0033]
As is clear from the graph of FIG. 5, it is understood that a good structure is obtained under the condition of V ≧ −50 T +275.
[0034]
【The invention's effect】
As described above, the steel wire of the present invention has high heat resistance and fatigue strength, and is optimal for a spring steel wire. In addition, the method for producing a steel wire of the present invention can produce the steel wire of the present invention without performing quenching and tempering treatment, and can produce a steel wire having both heat resistance and fatigue strength at low cost. .
[Brief description of the drawings]
FIG. 1 is a graph showing a relationship between a strain relief annealing temperature and a fatigue limit amplitude stress.
FIG. 2 is a graph showing a hardness distribution of a cross section of a wire rod.
FIG. 3 is a graph showing the relationship between residual shear strain and fatigue limit amplitude of steel wires having different chemical components.
FIG. 4 is a graph showing a result of spring characteristic evaluation based on a difference between a cementite shape L / t and a grain boundary ferrite amount α.
FIG. 5 is a graph showing the effect of the difference between T and the cooling rate V after gamma heating on the structure.

Claims (5)

mass%でC:0.7〜1.0,Si:0.5〜1.5 Mn 0.3 0.9 Cr 0.2 以下(但し 0 を含まない)をみ、残部が Fe および不可避的不純物からなるパーライト組織の鋼線であって、鋼線横断面において、表面から50μmまでの硬度の平均と内部の硬度の平均との差がマイクロビッカース硬度で50以内であることを特徴とする高疲労強度鋼線。C in mass%: 0.7~1.0, Si: 0.5~1.5 , Mn: 0.3 ~ 0.9, Cr: 0.2 or less (but not including 0) seen including, steel wire pearlite structure the balance being Fe and unavoidable impurities A high fatigue strength steel wire, wherein a difference between an average hardness from the surface to 50 μm from the surface and an average hardness inside the steel wire cross section is 50 or less in micro Vickers hardness. さらにMoを0.03〜0.1mass%含有することを特徴とする請求項1記載の高疲労強度鋼線。The high fatigue strength steel wire according to claim 1, further comprising 0.03 to 0.1 mass% of Mo. 引張強度が1800N/mm2以上であることを特徴とする請求項1または2記載の高疲労強度鋼線。3. The high fatigue strength steel wire according to claim 1, wherein the tensile strength is 1800 N / mm 2 or more. mass%でC:0.7〜1.0,Si:0.5〜1.5 Mn 0.3 0.9 Cr 0.2 以下(但し 0 を含まない)を含み、残部が Fe および不可避的不純物からなる鋼線をシェービングして鋼線内部の硬度よりもマイクロビッカース硬度で 50 以上硬度の低い層を除去する工程と、
シェービングした鋼線をパテンティングしてパーライト組織とする工程と、
パテンティングした鋼線を伸線する工程とを行うことを特徴とする高疲労強度鋼線の製造方法。
C in mass%: 0.7~1.0, Si: 0.5~1.5 , Mn: 0.3 ~ 0.9, Cr: 0.2 see contains below (but not including 0), and shaving a steel wire and the balance being Fe and unavoidable impurities A step of removing a layer having a hardness of 50 or more lower than the hardness inside the steel wire with a micro Vickers hardness ,
Patenting the shaved steel wire to a pearlite structure ,
And a step of drawing a patented steel wire.
伸線後に歪み取り焼鈍を350〜450℃で行うことを特徴とする請求項4記載の高疲労強度鋼線の製造方法。The method for producing a high fatigue strength steel wire according to claim 4, wherein the strain relief annealing is performed at 350 to 450 ° C after drawing.
JP24933597A 1997-08-28 1997-08-28 High fatigue strength steel wire and its manufacturing method Expired - Lifetime JP3539843B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP24933597A JP3539843B2 (en) 1997-08-28 1997-08-28 High fatigue strength steel wire and its manufacturing method
PCT/JP1998/003622 WO1999011836A1 (en) 1997-08-28 1998-08-13 Steel wire and method of manufacturing the same
DE69839353T DE69839353T2 (en) 1997-08-28 1998-08-13 STEEL WIRE AND METHOD FOR THE PRODUCTION THEREOF
US09/486,370 US6527883B1 (en) 1997-08-28 1998-08-13 Steel wire and method of manufacturing the same
EP98937821A EP1063313B1 (en) 1997-08-28 1998-08-13 Steel wire and method of manufacturing the same
US10/361,619 US7255758B2 (en) 1997-08-28 2003-02-11 Steel wire and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24933597A JP3539843B2 (en) 1997-08-28 1997-08-28 High fatigue strength steel wire and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH1171638A JPH1171638A (en) 1999-03-16
JP3539843B2 true JP3539843B2 (en) 2004-07-07

Family

ID=17191495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24933597A Expired - Lifetime JP3539843B2 (en) 1997-08-28 1997-08-28 High fatigue strength steel wire and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3539843B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6208611B2 (en) 2014-03-31 2017-10-04 株式会社神戸製鋼所 High strength steel with excellent fatigue properties

Also Published As

Publication number Publication date
JPH1171638A (en) 1999-03-16

Similar Documents

Publication Publication Date Title
CN111164230B (en) Wire rod and steel wire for spring having excellent corrosion and fatigue resistance, and method for producing same
US3810793A (en) Process of manufacturing a reinforcing bar steel for prestressed concrete
JP3742232B2 (en) Steel wire rod capable of rapid spheroidization and excellent cold forgeability and method for producing the same
KR102401569B1 (en) Method and steel strip of this type for producing high strength steel strip with improved properties for further processing
WO2012132821A1 (en) Spring steel wire rod having excellent wire drawability and excellent fatigue characteristics after wire drawing, and spring steel wire having excellent fatigue characteristics and excellent spring formability
JP3246210B2 (en) High strength and high toughness hot-dip coated steel wire and method for producing the same
JP3859331B2 (en) High fatigue strength steel wires and springs and methods for producing them
US20030168136A1 (en) Steel wire and method of manufacturing the same
JP3468048B2 (en) Manufacturing method of high carbon cold rolled steel sheet with excellent formability
JPS63109144A (en) High-strength spring steel
JP2000119805A (en) Steel wire rod excellent in wire drawability
JP3539843B2 (en) High fatigue strength steel wire and its manufacturing method
JP3840376B2 (en) Steel for hard-drawn wire and hard-drawn wire with excellent fatigue strength and ductility
JP3176226B2 (en) Manufacturing method of high strength and high toughness hot-dip coated steel wire
JP3434080B2 (en) Wire for descaling
JPH06271937A (en) Production of high strength and high toughness hyper-eutectoid steel wire
JP4937499B2 (en) High strength spring steel excellent in corrosion resistance and fatigue characteristics and method for producing the same
JPH08337844A (en) Steel wire rod, steel wire and production thereof
JPH05331597A (en) Coil spring with high fatigue strength
JP2002155339A (en) Medium and high carbon steel having excellent deep drawability
JP2510230B2 (en) Method for manufacturing suspension spring for automobile having excellent high temperature sag
JPH07216451A (en) Production of stainless steel material having high welding softening resistance, high strength, and high ductility
JPH108203A (en) Wire rod excellent in descaling property and wire drawability
JP3453501B2 (en) Cold-rolled spring steel with low residual stress after spring-rolling
JP7215647B1 (en) High-strength steel plate and its manufacturing method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040323

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term