JP3539599B2 - Gas separation membrane - Google Patents

Gas separation membrane Download PDF

Info

Publication number
JP3539599B2
JP3539599B2 JP29621395A JP29621395A JP3539599B2 JP 3539599 B2 JP3539599 B2 JP 3539599B2 JP 29621395 A JP29621395 A JP 29621395A JP 29621395 A JP29621395 A JP 29621395A JP 3539599 B2 JP3539599 B2 JP 3539599B2
Authority
JP
Japan
Prior art keywords
blend
membrane
gas separation
separation membrane
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29621395A
Other languages
Japanese (ja)
Other versions
JPH08323170A (en
Inventor
将 河端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP29621395A priority Critical patent/JP3539599B2/en
Publication of JPH08323170A publication Critical patent/JPH08323170A/en
Application granted granted Critical
Publication of JP3539599B2 publication Critical patent/JP3539599B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、気体分離膜に関する。更に詳しくは、ポリ[1-(トリメチルシリル)-1-プロピン]の膜状物よりなる気体分離膜に関する。
【0002】
【従来の技術】
ポリ[1-(トリメチルシリル)-1-プロピン] (PMSP) の膜状物は、低分子化合物の透過性にすぐれているため、酸素富化膜、有機溶媒選択透過性浸透気化膜などとしての用途が注目されている。
【0003】
PMSP膜を用いて、混合ガスから酸素ガスを選択的に透過分離する場合、そのガス透過速度はシリコーン系のゴム状膜を用いた場合と比較して、1桁程度大きいことが知られているが、分離係数α(O2/N2)がかなり小さいという問題点がみられる。
【0004】
また、気体分離膜を酸素富化膜として用いるためには、高透過性に加えて、高選択性であることも要求される。そのため、ガス透過性を損なうことなく、O2とN2との分離性を改善させることが望まれている。従来からそのための対策として、PMSP膜に加熱処理やプラズマ処理を施す方法、ポリジメチルシロキサン、ポリ(4-メチルペンテン-1)、ポリ(2,6-ジメチルフェニレンオキサイド)等をPMSPにブレンドする方法などが提案されているが、これらの方法では分離係数は改善できてもガス透過速度がかなり小さくなったり、あるいは分離係数が期待された程大きくはならないというのが実情である。
【0005】
【発明が解決しようとする課題】
本発明の目的は、ガス透過速度を実質的に低下させることなく、分離係数α(O2/N2)を改善せしめた気体分離膜を提供することにある。
【0006】
【課題を解決するための手段】
かかる本発明の目的は、ポリ[1-(トリメチルシリル)-1-プロピン]99〜60重量%および分子中に不飽和結合を有するゴム状物質1〜40重量%のブレンド物から製膜され、好ましくは更に塩素系有機溶媒水溶液によって浸漬処理された気体分離膜によって達成される。
【0007】
【発明の実施の形態】
分子中に不飽和結合を有するゴム状物質としては、各種ニトリル含量のNBR、ポリブタジエンゴム、クロロプレンゴム、EPDM等が好んで用いられ、それのブレンド割合はPMSPとの合計量中約1〜40重量%、好ましくは約5〜15重量%の範囲内にある。これ以下のブレンド割合では、PMSP単独膜の分離透過性能と殆んど変わらず、一方これ以上の割合でブレンドして用いると、ガス透過速度が小さくなりすぎるばかりではなく、膜も不均質となり、また機械的強度を著しく低下させるようになる。
【0008】
ブレンド物の製膜は、PMSPとゴム状物質とを両者の共通の溶媒、例えばクロロホルム、n-ヘキサン、n-ヘプタン、ベンゼン、トルエン、更には蒸気圧が0.1〜30mmHg/25℃のn-パラフィン、具体的にはC8〜C12のn-パラフィン(特開平6-339,618号公報参照)等に溶解し、その溶液をガラス板、テフロンシート等の平坦な基質上あるいは多孔質ポリスルホン、多孔質ポリフッ化ビニリデン等の多孔質基質上に流延し、溶媒を蒸発させるキャスティング法によって一般には行われるが、水面展開法によっても製膜が行われる。このようにして得られる平膜以外にもブレンド物溶液をキャスト法、スピンコ−ト法などによって不織布、多孔性平板基質上等に均一に塗布、乾燥して製膜した複合中空糸として使用することもできる。更に、これらの平膜あるいは複合平膜を、スパイラル型、プレ−トアンドフレ−ム型などとして分離装置に組み込んだ形でも使用することができる。
【0009】
また、二重管状ノズルからブレンド物溶液を吐出させ、紡糸した中空糸として、あるいは別途製作された多孔性中空糸基質上に浸漬、噴霧、刷毛塗りなどの方法によってブレンド物溶液を塗布、乾燥して製膜した複合中空糸としても使用することができる。更に、多孔性中空糸内部にブレンド物溶液を送液した後、乾燥することによって、中空糸内部にコ−ティング層を製膜した複合中空糸としても使用に供することができる。これらの塗布操作は、1回だけではなく、複数回くり返すことも行われる。
【0010】
得られたブレンド膜は、約0.1〜100μm、好ましくは約1〜50μm程度の厚さに製膜される。この膜は、単体でも用いることができるが、支持体上に形成させた複合膜としても使用されること上述の如くである。更に、このブレンド膜を濃度約10〜5000ppm、好ましくは約100〜1000ppmの塩素系有機溶媒、例えば 1,1,1-トリクロロエタン、トリクロロエチレン等の水溶液中に、約10〜50℃、好ましくは約20〜30℃で約50〜150時間、好ましくは約60〜80時間程度浸漬処理することが好ましい。
【0011】
【発明の効果】
ポリ[1-(トリメチルシリル)-1-プロピン]に少量の分子中に不飽和結合を有するゴム状物質をブレンドして製膜することにより、ポリ[1-(トリメチルシリル)-1-プロピン]が本来有するガス透過速度を実質的に低下させることなく、分離係数が高められた気体分離膜が得られる。また、このようなブレンド膜を塩素系有機溶媒水溶液中で浸漬処理すると、膜の分離性を殆ど損なうことなく、透過速度を向上させた気体分離膜を得ることができる。
【0012】
【実施例】
次に、実施例について本発明を説明する。
【0013】
実施例1
PMSP(ポリスチレン換算の重量平均分子量約150万) 0.18g
ポリブタジエン(アルドリッチ社製品、重量平均分子量42万) 0.02g
n-ヘプタン 19.80g
を用い、PMSPおよびポリブタジエンを48時間かけて室温下で溶解させた。この溶液をガラス板上に流延し、一昼夜風乾した後、水中でガラス板から剥がし、2日間真空乾燥して、厚さ約30μmのブレンド膜を得た。
【0014】
実施例2〜4、比較例1〜2
実施例1において、PMSP量およびポリブタジエン量をそれぞれ次のように変更し、ブレンド膜を製膜した。

Figure 0003539599
【0015】
以上の各実施例および比較例でそれぞれ製膜されたブレンド膜について、酸素および窒素の透過速度(単位:m3/m2・秒・Pa)を測定し、その値から分離係数α(O2/N2)を算出した。得られた結果は、次の表に示される。なお、比較例2のブレンド膜は、均一な膜とはならなかったので測定が行われなかった。また、比較例3および4は、それぞれポリブタジエンの代わりに、同量のジオクチルフタレートまたはポリジメチルシロキサンを用いて得られたブレンド膜についての測定結果である。
【0016】
Figure 0003539599
【0017】
実施例5
実施例2で用いられた溶液を、ポリエーテルイミド中空糸膜(外径0.86mm、内径0.71mm、平均孔径0.03μm)の外表面上にコーティングして、膜厚5.5μmのブレンド膜層を形成させた。得られた複合中空糸膜を、濃度1000ppmの1,1,1-トリクロロエタン水溶液中に室温下で3日間浸漬した。ブレンド膜層の膜厚に変化はみられなかった。
得られた複合中空糸膜について、前記と同様にして酸素および窒素の透過速度(単位:m3/m2・秒・Pa)を測定し、その値から分離係数を算出した。なお、カッコ内は、浸漬処理を行わなかったものについての値である。
O2透過速度:7.1×10-9(4.9×10-9)
N2透過速度:4.6×10-9(3.0×10-9)
分離係数α:1.56 (1.63)[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a gas separation membrane. More specifically, the present invention relates to a gas separation membrane comprising a film of poly [1- (trimethylsilyl) -1-propyne].
[0002]
[Prior art]
Poly [1- (trimethylsilyl) -1-propyne] (PMSP) membranes have excellent permeability for low molecular weight compounds, so they can be used as oxygen-enriched membranes, organic solvent selective permeable pervaporation membranes, etc. Is attracting attention.
[0003]
It is known that, when a PMSP membrane is used to selectively permeate and separate oxygen gas from a mixed gas, the gas permeation rate is about one order of magnitude higher than when a silicone-based rubber-like membrane is used. However, there is a problem that the separation coefficient α (O 2 / N 2 ) is considerably small.
[0004]
Further, in order to use a gas separation membrane as an oxygen-enriched membrane, it is required to have high selectivity in addition to high permeability. Therefore, it is desired to improve the separability between O 2 and N 2 without impairing gas permeability. Conventionally, as a countermeasure, a method of subjecting a PMSP film to heat treatment or plasma treatment, a method of blending polydimethylsiloxane, poly (4-methylpentene-1), poly (2,6-dimethylphenylene oxide), etc. with PMSP. Although these methods have been proposed, the fact is that even though the separation coefficient can be improved, the gas permeation rate is considerably reduced, or the separation coefficient is not as large as expected.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a gas separation membrane having an improved separation coefficient α (O 2 / N 2 ) without substantially lowering the gas permeation rate.
[0006]
[Means for Solving the Problems]
The object of the present invention is to form a film from a blend of 99 to 60% by weight of poly [1- (trimethylsilyl) -1-propyne] and 1 to 40% by weight of a rubbery substance having an unsaturated bond in a molecule, Is further achieved by a gas separation membrane immersed in an aqueous solution of a chlorine-based organic solvent.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
As the rubber-like substance having an unsaturated bond in the molecule, NBR having various nitrile contents, polybutadiene rubber, chloroprene rubber, EPDM and the like are preferably used, and the blend ratio thereof is about 1 to 40% by weight in the total amount with PMSP. %, Preferably in the range of about 5-15% by weight. At a blending ratio lower than this, there is almost no difference from the separation and permeation performance of the PMSP alone membrane. On the other hand, when blended at a higher ratio, not only the gas permeation speed becomes too small, but also the membrane becomes heterogeneous, Also, the mechanical strength is significantly reduced.
[0008]
The film formation of the blended product is performed by using PMSP and the rubber-like substance in a solvent common to both, for example, chloroform, n-hexane, n-heptane, benzene, toluene, and n-paraffin having a vapor pressure of 0.1 to 30 mmHg / 25 ° C. , specifically was dissolved in n- paraffins (see JP-a-6-339,618), etc. C 8 -C 12, glass plates and the solution, a flat substrate or on a porous polysulfone Teflon sheet or the like, porous Generally performed by a casting method of casting on a porous substrate such as polyvinylidene fluoride and evaporating the solvent, film formation is also performed by a water surface spreading method. In addition to the flat membrane thus obtained, the blend solution is uniformly applied to a nonwoven fabric, a porous flat substrate, or the like by a casting method, a spin coating method, or the like, and is used as a composite hollow fiber formed by drying. You can also. Further, these flat membranes or composite flat membranes can be used in a form incorporated in a separation apparatus as a spiral type, a plate and frame type, or the like.
[0009]
Further, the blend solution is discharged from the double tubular nozzle, and the blend solution is applied by a method such as immersion, spraying, or brushing as a spun hollow fiber or on a separately manufactured porous hollow fiber substrate, followed by drying. It can also be used as a composite hollow fiber formed by film formation. Further, after the blend solution is fed into the porous hollow fiber and dried, it can be used as a composite hollow fiber having a coating layer formed inside the hollow fiber. These coating operations are performed not only once but also a plurality of times.
[0010]
The resulting blend film is formed to a thickness of about 0.1 to 100 μm, preferably about 1 to 50 μm. Although this film can be used alone, it is also used as a composite film formed on a support as described above. Further, the blend film is dissolved in a chlorine-based organic solvent having a concentration of about 10 to 5000 ppm, preferably about 100 to 1000 ppm, for example, in an aqueous solution of 1,1,1-trichloroethane, trichloroethylene, or the like, at about 10 to 50 ° C., preferably about 20 to 50 ppm. It is preferable that the immersion treatment is performed at about 30 ° C. for about 50 to 150 hours, preferably for about 60 to 80 hours.
[0011]
【The invention's effect】
By blending poly [1- (trimethylsilyl) -1-propyne] with a small amount of a rubber-like substance having an unsaturated bond in the molecule to form a film, poly [1- (trimethylsilyl) -1-propyne] A gas separation membrane having an increased separation coefficient can be obtained without substantially lowering the gas permeation rate. Further, when such a blend membrane is immersed in an aqueous solution of a chlorine-based organic solvent, a gas separation membrane having an improved permeation rate can be obtained without substantially impairing the separability of the membrane.
[0012]
【Example】
Next, the present invention will be described with reference to examples.
[0013]
Example 1
PMSP (polystyrene equivalent weight average molecular weight: about 1.5 million) 0.18 g
Polybutadiene (Aldrich product, weight average molecular weight 420,000) 0.02 g
19.80 g n-heptane
Was used to dissolve PMSP and polybutadiene at room temperature for 48 hours. This solution was cast on a glass plate, air-dried all day and night, peeled off from the glass plate in water, and vacuum-dried for 2 days to obtain a blend film having a thickness of about 30 μm.
[0014]
Examples 2 to 4, Comparative Examples 1 and 2
In Example 1, the amount of PMSP and the amount of polybutadiene were changed as follows, and a blend film was formed.
Figure 0003539599
[0015]
The oxygen and nitrogen permeation rates (unit: m 3 / m 2 · Pa) of the blend membranes formed in each of the above Examples and Comparative Examples were measured, and the separation coefficient α (O 2 / N 2 ) was calculated. The results obtained are shown in the following table. Note that the blend film of Comparative Example 2 was not measured because it was not a uniform film. Comparative Examples 3 and 4 are measurement results of blend films obtained using the same amount of dioctyl phthalate or polydimethylsiloxane instead of polybutadiene, respectively.
[0016]
Figure 0003539599
[0017]
Example 5
The solution used in Example 2 was coated on the outer surface of a polyetherimide hollow fiber membrane (outer diameter 0.86 mm, inner diameter 0.71 mm, average pore diameter 0.03 μm) to form a 5.5 μm-thick blend membrane layer. I let it. The obtained composite hollow fiber membrane was immersed in a 1,000 ppm 1,1,1-trichloroethane aqueous solution at room temperature for 3 days. No change was found in the thickness of the blend film layer.
About the obtained composite hollow fiber membrane, the permeation rate of oxygen and nitrogen (unit: m 3 / m 2 · sec · Pa) was measured in the same manner as described above, and the separation coefficient was calculated from the value. The values in parentheses are the values for the case where the immersion treatment was not performed.
O 2 transmission speed: 7.1 × 10 -9 (4.9 × 10 -9 )
N 2 transmission speed: 4.6 × 10 -9 (3.0 × 10 -9 )
Separation coefficient α: 1.56 (1.63)

Claims (2)

ポリ[1-(トリメチルシリル)-1-プロピン]99〜60重量%および分子中に不飽和結合を有するゴム状物質1〜40重量%のブレンド物から製膜された気体分離膜。A gas separation membrane formed from a blend of 99 to 60% by weight of poly [1- (trimethylsilyl) -1-propyne] and 1 to 40% by weight of a rubbery substance having an unsaturated bond in a molecule. ポリ[1-(トリメチルシリル)-1-プロピン]99〜60重量%および分子中に不飽和結合を有するゴム状物質1〜40重量%のブレンド物から製膜され、塩素系有機溶媒水溶液中で浸漬処理された気体分離膜。A film is formed from a blend of poly [1- (trimethylsilyl) -1-propyne] 99 to 60% by weight and a rubbery substance having an unsaturated bond in a molecule of 1 to 40% by weight, and immersed in an aqueous solution of a chlorine-based organic solvent. Treated gas separation membrane.
JP29621395A 1995-03-24 1995-10-19 Gas separation membrane Expired - Fee Related JP3539599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29621395A JP3539599B2 (en) 1995-03-24 1995-10-19 Gas separation membrane

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-91666 1995-03-24
JP9166695 1995-03-24
JP29621395A JP3539599B2 (en) 1995-03-24 1995-10-19 Gas separation membrane

Publications (2)

Publication Number Publication Date
JPH08323170A JPH08323170A (en) 1996-12-10
JP3539599B2 true JP3539599B2 (en) 2004-07-07

Family

ID=26433110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29621395A Expired - Fee Related JP3539599B2 (en) 1995-03-24 1995-10-19 Gas separation membrane

Country Status (1)

Country Link
JP (1) JP3539599B2 (en)

Also Published As

Publication number Publication date
JPH08323170A (en) 1996-12-10

Similar Documents

Publication Publication Date Title
Ong et al. Recent membrane development for pervaporation processes
Tsai et al. Heat-treatment effect on the morphology and pervaporation performances of asymmetric PAN hollow fiber membranes
US4933082A (en) Gas-permeable laminate
US5733663A (en) Composite membrane and process for its production
US20130026091A1 (en) Method to improve forward osmosis membrane performance
Chung A review of microporous composite polymeric membrane technology for air-separation
JPH0457372B2 (en)
US4631075A (en) Composite membrane for gas separation
KR101035717B1 (en) A preparation of asymmetric porous PEBA membrane for composite membrane
JPS62140620A (en) Production of thin membrane
Chung et al. Fabrication of composite hollow fibers for air separation
JP3539599B2 (en) Gas separation membrane
JPS588517A (en) Preparation of composite film with selective permeability for gas
EP0564045A1 (en) Composite membrane and its use for the dehydratation of organic solvents or concetrated acetic acid solutions
US5320754A (en) Pan composite membranes
JPS6028803A (en) Selective permeable membrane and its manufacture
JPH02207827A (en) Anisotropic hollow fiber composite membrane
JPS5840102A (en) Separation of mixed liquid
JPH0157604B2 (en)
JPH01258724A (en) Production of gas separation membrane
JPH0380047B2 (en)
JPS6391123A (en) Porous hollow yarn composite membrane and its production
JPS61278329A (en) Composite membrane for gas separation
JP2958030B2 (en) Separation method of organic solvent mixture
JPS6333410B2 (en)

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040318

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees