JPS62140620A - Production of thin membrane - Google Patents

Production of thin membrane

Info

Publication number
JPS62140620A
JPS62140620A JP28108485A JP28108485A JPS62140620A JP S62140620 A JPS62140620 A JP S62140620A JP 28108485 A JP28108485 A JP 28108485A JP 28108485 A JP28108485 A JP 28108485A JP S62140620 A JPS62140620 A JP S62140620A
Authority
JP
Japan
Prior art keywords
membrane
water
gas separation
coated
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28108485A
Other languages
Japanese (ja)
Inventor
Isamu Sakuma
勇 佐久間
Kunitaka Jiyou
邦恭 城
Tokuo Tazaki
田崎 徳雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP28108485A priority Critical patent/JPS62140620A/en
Publication of JPS62140620A publication Critical patent/JPS62140620A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PURPOSE:To continuously and easily form the titled uniform and thin gas separation membrane by forming a substrate layer consisting of an air-permeable polymer on the surface of a water-impregnated supporting membrane, and then forming the film membrane of a gas separation membrane forming material. CONSTITUTION:A polysulfone porous membrane 4, etc., are laminated on the porous layer 3 of polyester nonwoven fabric, etc., by a wet membrane forming method. The water droplets 5 on the front and rear surfaces of the membrane 1 are removed, and then a soln. 11 consisting essentially of an air-permeable polymer is coated. The inside of the membrane 1 is filled with water, and the infiltration of the soln. 11 can be prevented. the material is instantaneously dried in an oven to vaporize and remove the water in the membrane 1, and the substrate layer 18 is formed. The substrate layer of double structure can also be formed. Then the org. solvent soln. 25 consisting essentially of the gas separation membrane forming material is coated. The material is instantaneously dried in an oven to form the gas separation layer 27 of a thin membrane. The layer of double structure can also be formed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、薄膜の製造方法に関し、とくにガス分離膜形
成性N材の薄膜を均一な厚みで連続的に製造する方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a thin film, and particularly to a method for continuously manufacturing a thin film of N material capable of forming a gas separation membrane with a uniform thickness.

[従来の技術] ガス分離膜、たとえば、酸素を他の気体よりも多く透過
させる酸素富化膜、炭酸ガスを他の気体よりも多く透過
させる炭酸ガス分離膜等においては、その性能を向上さ
けるために膜厚を(へ力博くすることが望まれる。すな
わら、ガス分離膜におけるガス透過のメカニズムは、一
般に膜表面でガスが溶解され、膜内部ではガスの拡散が
行われると考えられており、膜表面におけるガスの分離
[生能はその膜を形成している物質固有の分離係数によ
り定まるか、膜内部においては、膜厚が厚くなると拡散
抵抗が大きくなり、その分ガス透過能力が低減覆るので
、能力を高めるためには膜厚を(へカ薄くすることが望
まれる。
[Prior Art] Gas separation membranes, such as oxygen-enriching membranes that allow more oxygen to pass through than other gases, carbon dioxide gas separation membranes that allow more carbon dioxide to pass through than other gases, etc., have their performance improved. Therefore, it is desirable to increase the membrane thickness.In other words, the mechanism of gas permeation in gas separation membranes is generally thought to be that gas is dissolved on the membrane surface and gas is diffused inside the membrane. Gas separation on the membrane surface [bioactivity is determined by the separation coefficient specific to the material forming the membrane, or inside the membrane, the thicker the membrane, the greater the diffusion resistance, and the gas permeation rate increases accordingly. Since the performance is reduced, it is desirable to reduce the film thickness in order to increase the performance.

薄膜の製造方法として、水面上に高分子の非水溶性溶媒
溶液を展延して該溶液の薄味層を形成せしめ、次いでこ
れを脱溶媒する、いわゆる水面展開法か知られている。
As a method for manufacturing a thin film, a so-called water surface spreading method is known, in which a solution of a non-aqueous polymeric solvent is spread on a water surface to form a thin layer of the solution, and then the solvent is removed.

その方法は、水面上に前記溶液の小滴を滴下したときに
生ずる界面現象に基づく溶液の展延を利用するものであ
るか、かかる方法による場合には、前記溶液の滴下量の
コントロールの難かしぎに起因する膜の不均一性や、大
面積の薄膜は得がたいという欠点があり、工業的に利用
するにはかなり回動である。
The method utilizes the spreading of the solution based on the interfacial phenomenon that occurs when small droplets of the solution are dropped onto the water surface, or if such a method is used, it is difficult to control the amount of the solution dropped. It has the disadvantages of non-uniformity of the film due to stiffness and that it is difficult to obtain a thin film over a large area, and it requires considerable rotation for industrial use.

近年、大面積の薄膜のMAのために種々の方法が提案さ
れており、とくに高分子溶液を液)内としてではなく線
状に水面上に供給することにより従来法の欠点を補J5
うとしているものでおる。たとえば、■水面上に一対の
仕切棒を設置し、該仕切棒て区切られた領域内に高分子
溶液を滴下りるとともに仕切棒の間隔を増大せしめると
いう方法(特公昭58−33086号公報)、■溶媒と
して水よりも高密度のものを使用し、水面下に設置した
溶液溜内に回転ロールのごとき可動面を通過させて、ぞ
のロール面に溶液を付着させ、水面上に引上げることに
より強制的に溶液を水面上に展延せしめる方法(米国特
許3767737号)、■水面上への高分子溶液の展延
を水相と高分子溶液相との相対的4γ液面位首の制御に
より行わしめる方法(特開tgr58−92526号公
報)、■ポリマ溶液を、 G2を水中に浸漬した板状体
に沿って水面へ供給づる方法(特開[M’+ 59−2
2724号公+Fi>などである。
In recent years, various methods have been proposed for MA of large-area thin films.
That's what I'm trying to do. For example, (1) a method in which a pair of partition rods is installed above the water surface and a polymer solution is dripped into the area divided by the partition rods, and the distance between the partition rods is increased (Japanese Patent Publication No. 58-33086); ■Using a solvent with a higher density than water, passing a movable surface such as a rotating roll through a solution reservoir installed below the water surface, causing the solution to adhere to the roll surface and pulling it above the water surface. (U.S. Patent No. 3,767,737), (1) Spreading the polymer solution onto the water surface by controlling the relative 4γ liquid level between the water phase and the polymer solution phase. (Japanese Patent Application Laid-Open No. TGR58-92526); (2) A method in which a polymer solution is supplied to the water surface along a plate in which G2 is immersed in water (Japanese Patent Application Laid-Open No. [M'+ 59-2).
No. 2724+Fi> etc.

[発明か解決しようとする問題点] ところが、薄膜を工業的に製造するには、均一な膜厚の
ものが容易にかつ連続的に製造される必要がおる。上述
の■の方法においては、薄膜が連続的に1qられないと
いう制約がおり、■の方法においては、可動ロール表面
に付着した溶液の水面上への移行が必ずしも完全に行わ
れにくいため薄膜の均一さが損われるという欠点を有し
ている。
[Problems to be Solved by the Invention] However, in order to industrially produce thin films, it is necessary to easily and continuously produce films of uniform thickness. In method (2) above, there is a restriction that the thin film cannot be continuously formed by 1q, and in method (2), the solution adhering to the movable roll surface is not necessarily completely transferred to the water surface, so the thin film cannot be formed. This has the disadvantage that uniformity is impaired.

ざらに、■および■の方法を用いて連続的な薄膜の製造
を行うにあたっては、形成された薄膜を水面から取り出
す速度と、ポリマ溶液を注入する速度とのバランスを極
めて精密にコントロールフる必要があるという問題が必
る。
In general, when manufacturing thin films continuously using methods ① and ②, it is necessary to control the balance between the speed at which the formed thin film is removed from the water surface and the speed at which the polymer solution is injected with extreme precision. The problem is that there is.

また、酸素富化膜や炭酸ガス分離膜等のガス分離膜は、
たとえば0.05μ程度の極薄膜に形成されることが望
まれるが、実際の使用にあたっては、0.05μ程度の
極薄膜を単体で使用することは極めて回動であるので極
薄膜はガス透過性を有する支持膜上に支持された状態で
使用される。
In addition, gas separation membranes such as oxygen enrichment membranes and carbon dioxide separation membranes are
For example, it is desirable to form an ultra-thin film of about 0.05 μm, but in actual use, since using an ultra-thin film of about 0.05 μm alone requires extremely rotational movement, the ultra-thin film is gas permeable. It is used while being supported on a support membrane having a

したがって、製造段階で所定の支持膜との積層構造とし
て製造されたとしてもガス分離膜製品としてはなんら支
障はない。
Therefore, even if it is manufactured as a laminated structure with a predetermined support membrane at the manufacturing stage, there will be no problem as a gas separation membrane product.

本発明は、上記のような従来装置、従来方法に43ける
問題点および上記支持膜との関連に看目し、酸素富化膜
等の薄膜形成が要求されるガス分離膜の装)貴方法にお
いて、容易にかつ確実に均一な厚みの薄膜を形成でき、
しかも大面積で連続的に形成可能な′d、膜の製造方法
を提供することを目的とする。
In view of the above-mentioned problems with the conventional apparatus and conventional method, and the relationship with the support membrane described above, the present invention provides a method for mounting a gas separation membrane that requires the formation of a thin film such as an oxygen-enriching membrane. can easily and reliably form a thin film of uniform thickness,
Moreover, it is an object of the present invention to provide a method for manufacturing a film that can be continuously formed over a large area.

[問題点を解決するための手段] この目的に沿う本発明の薄膜の製造方法は、つぎの方法
からなる。すなわち、多孔質構造の水含浸支持膜を連続
的に搬送し、まザ該水含浸支持膜の表面−りの水滴を除
去し、水滴の除去された水含浸支持膜表面上に通気性を
有するポリマを主成分とする溶液をコーティングし、該
ポリマ溶液がコーティングされた水含浸支持膜を瞬間乾
燥して水含浸支持膜中の水を蒸発除去するとともに該支
持膜表面上に通気性を有するポリマからなる下地層を形
成し、該下地層の表面にガス分離膜形成性素材を主成分
とする有機溶媒溶液をコーティングし、該有は溶媒溶液
がコーティングされた支持膜および下地層を瞬間乾燥し
て下地層表面上に前記ガス分離膜形成性素材の薄膜を形
成する方法である。
[Means for Solving the Problems] The thin film manufacturing method of the present invention that meets this objective consists of the following method. That is, a water-impregnated support membrane having a porous structure is continuously conveyed, water droplets on the surface of the water-impregnated support membrane are removed, and air permeability is formed on the surface of the water-impregnated support membrane from which the water droplets have been removed. A solution containing a polymer as a main component is coated, and the water-impregnated support membrane coated with the polymer solution is instant-dried to remove water in the water-impregnated support membrane by evaporation, and at the same time, a breathable polymer is coated on the surface of the support membrane. forming a base layer, coating the surface of the base layer with an organic solvent solution containing a gas separation membrane-forming material as a main component, and instantly drying the support film and base layer coated with the solvent solution. In this method, a thin film of the gas separation membrane-forming material is formed on the surface of the base layer.

本発明において、ガス分離膜形成性素材としては、一般
に溶媒注型によって実質的に無孔性のフィルムを形成し
得るガス分離性能を有する重合体(重合体混合物、グラ
フト車合体、ブロック千合体おJ:び共重合体も含む)
が挙げられる。たとえば酸素富化膜においては、ポリ(
4−メチルペンテン−1〉が挙げられる。他に気体分離
膜素材としては、ポリアクリロニトリル、ポリアクリロ
ニトリル、Lopac (Monsanto、Co。
In the present invention, the material capable of forming a gas separation membrane is generally a polymer (polymer mixture, graft vehicle assembly, block assembly, etc.) having gas separation performance that can form a substantially non-porous film by solvent casting. J: also includes copolymers)
can be mentioned. For example, in an oxygen-enriched film, poly(
4-methylpentene-1>. Other gas separation membrane materials include polyacrylonitrile, polyacrylonitrile, Lopac (Monsanto, Co.).

)、ポリ塩化ビニリデン、Barex (3oh iO
,Co、)、ポリエチレンテレフタレート、ナイロン−
6、ポリ塩化ビル(前回?)、ポリエチレン、(密度0
.964>、酢酸セルロース、ブブルゴム、ポリカーボ
ネート、ポリプロピレン(密度0.907>、ボリスヂ
レン、ポリエチレン密度0.922)、ネオプレン、テ
フ[」ン、ポリ(2,6−ジメヂルフエニレンオキシド
)、天然ゴム、ポリ−4−メチルペンテン−1、ポリジ
メチルシロキサンいずれも使用可能である。また、多孔
質構造の水含浸支持膜としては、いわゆる水分比(1膜
か使用でき、たとえば多孔質構造の不織イ1iの上にジ
メヂルホルムアミドで溶解したポリスルホンを水中で脱
溶媒したいわゆる湿式製膜法で積層さけた多孔質膜が用
いられる。さらに、通気性を有するポリマとしては、通
気能力の而からシリコン系ポリマが最適である。
), polyvinylidene chloride, Barex (3oh iO
, Co, ), polyethylene terephthalate, nylon-
6. Polychloride (last time?), polyethylene, (density 0
.. 964>, cellulose acetate, bubble rubber, polycarbonate, polypropylene (density 0.907>, borisdylene, polyethylene density 0.922), neoprene, teflon, poly(2,6-dimethylphenylene oxide), natural rubber, Both poly-4-methylpentene-1 and polydimethylsiloxane can be used. In addition, as a water-impregnated support membrane with a porous structure, a so-called moisture ratio (1 membrane) can be used. A porous membrane that is laminated using a film forming method is used.Furthermore, as the breathable polymer, a silicone polymer is most suitable because of its breathability.

[作用] このように構成された製造方法においては、表面上から
水滴が除去された水含浸支持膜上に通気性を有するポリ
マがコーティングされるので、支持膜中に含浸されてい
る水によってコーティングポリマが支持膜中に浸み込む
ことは防止され、]−ティング後の瞬間乾燥により支持
膜中の水が除去されて支持膜は空孔を有する多孔質構造
とされる。したがってこの段階では、表面か孔のない通
気性を有JるポリマのA9層からなり内部か通気抵抗の
小さな多孔質構造の支持体からなる基伺か構成される。
[Function] In the manufacturing method configured as described above, the water-impregnated support film from which water droplets have been removed is coated with an air-permeable polymer, so that the water impregnated in the support film prevents the coating from occurring. The polymer is prevented from penetrating into the support membrane, and the water in the support membrane is removed by instant drying after drying, so that the support membrane has a porous structure with pores. Therefore, at this stage, the surface is composed of the A9 layer of an air-permeable polymer without pores, and the interior is composed of a support having a porous structure with low ventilation resistance.

この通気性を有するポリマ層を下地層として、ガス分離
膜形成性素材を主成分とする有機溶媒溶液が口金等から
シート状に吐出されて薄膜でコーティングされ、瞬間乾
燥により溶媒が除去されて、下地層表面上にガス分離膜
形成性素材の薄膜が形成される。
Using this breathable polymer layer as a base layer, an organic solvent solution containing gas separation membrane-forming material as the main component is discharged from a nozzle etc. in the form of a sheet and coated with a thin film, and the solvent is removed by instant drying. A thin film of a gas separation membrane-forming material is formed on the surface of the underlayer.

水含浸支持膜は連続的に送り出され、ガス分離膜形成性
素材の薄膜形成およびその後の巻取等までが連続的に行
われるので、薄膜の連続的な製造が可能である。そして
、ガス分離膜形成性素材を主成分とする有機溶媒溶液は
平面の下地層上にコーティングされるので、確実で均一
な厚みの塗イ[が可能であり、乾燥接には均一な薄膜が
形成される。また、連続的に移動する下地層−ヒての形
成で必るから、大面積の薄膜も容易に形成される。
The water-impregnated support membrane is continuously fed out, and the thin film formation and subsequent winding of the gas separation membrane forming material are performed continuously, so that continuous production of thin films is possible. Since the organic solvent solution containing the gas separation membrane-forming material as the main component is coated onto the flat base layer, it is possible to apply the coating to a reliable and uniform thickness, and a uniform thin film is formed when dry. It is formed. Further, since the formation of the base layer is necessary to continuously move, a thin film over a large area can be easily formed.

[実施例] 以下に本発明の望ましい実施例を図面を参照して説明す
る。
[Embodiments] Preferred embodiments of the present invention will be described below with reference to the drawings.

第1図は、本発明の一実施例に係る薄膜の製造方法を実
施するための薄膜製造装置およびその工程を示しており
、酸素富化膜の製造工程に本発明を適用したものを示し
ている。第2図は、第1図の各工程に対応して薄膜がど
のように形成されていくかを示す各層の断面図である。
FIG. 1 shows a thin film manufacturing apparatus and its process for carrying out a thin film manufacturing method according to an embodiment of the present invention, and shows an application of the present invention to the manufacturing process of an oxygen enriched film. There is. FIG. 2 is a cross-sectional view of each layer showing how a thin film is formed corresponding to each step of FIG. 1.

図において、1は、連続的に搬送される多孔質構造の水
含浸支持膜を示しており、水含浸支持膜1は、シート状
のものが適当な巻出し装置2から送り出される。
In the figure, reference numeral 1 indicates a water-impregnated support membrane having a porous structure that is continuously conveyed, and the water-impregnated support membrane 1 is fed out in a sheet form from a suitable unwinding device 2.

水含浸支持膜1は、第2図(イ)に示づように、ポリエ
ステル不8イ5またはタフタからなる多孔質層3の上に
湿式製膜法による、やはり多孔質構造のポリスルホン多
孔質膜4等が積層された積層構造からなっている。この
水含浸支持膜1は、湿式製膜法て製造されたものである
ため、必然的に内部に水が含浸されており、巻出し装置
2から送り出される状態では保存用水槽から取出したも
のであるので表裏面に水滴5が付着している。
As shown in FIG. 2(a), the water-impregnated support membrane 1 is made of a polysulfone porous membrane also having a porous structure, which is formed by wet film forming on a porous layer 3 made of polyester fluoride 5 or taffeta. It consists of a laminated structure in which 4 etc. are laminated. Since this water-impregnated support membrane 1 is manufactured using a wet film forming method, it is inevitably impregnated with water, and when it is sent out from the unwinding device 2, it is not removed from the storage water tank. Therefore, water droplets 5 are attached to the front and back surfaces.

巻出し装置2から送り出された水含浸支持膜1は、搬送
途中でエアナイフ6等の手段により表裏面の水滴5が除
去される。この状態では第2図(C+ )に示すように
、水含浸支持膜1は内部には水が充満しているが表面に
は水滴のない状態となる。
Water droplets 5 on the front and back surfaces of the water-impregnated support film 1 sent out from the unwinding device 2 are removed by means such as an air knife 6 during transportation. In this state, as shown in FIG. 2 (C+), the inside of the water-impregnated support membrane 1 is filled with water, but there are no water droplets on the surface.

水滴の除去された水含浸支持膜1は、搬送[1−ルア、
ドラム8上を搬送され、ドラム8上方に設けられた口金
9のスリット10から、通気性を有するポリマを主成分
とづる溶液11か水含浸支持+r焚1表面上に吐出され
コーティングされる(第2図(ハ))。口金9は、アー
ム12を介してウェイト13と手足的にバランスされる
浮動口金に構成されており、水含浸支持膜1の厚みむら
等に良好に追従しつつ軽い押圧力で水含浸支持膜1の表
面側の両端部に接触できるようになっている。水滴か除
去された表面上へのコーティングで必るから、溶液11
の均一なコーティングか可能であり、しかも内部には水
が充満しているので、溶液11の水含浸支持膜1中への
浸透は防止される。通気性を有するポリマとしては、シ
リコン系ポリマか1役もガス透過性か優れていることか
知られている。
The water-impregnated support membrane 1 from which water droplets have been removed is transported [1-Lua,
It is conveyed on a drum 8, and is discharged from a slit 10 of a mouthpiece 9 provided above the drum 8 onto the surface of the water-impregnated support + r-burner 1 and coated with a solution 11 mainly composed of an air-permeable polymer. Figure 2 (c)). The base 9 is configured as a floating base that is balanced in a limb-like manner with a weight 13 via an arm 12, and can easily follow the thickness unevenness of the water-impregnated support membrane 1 while applying a light pressing force to the water-impregnated support membrane 1. Both ends of the front surface can be touched. Solution 11 is necessary since the coating on the surface from which water droplets have been removed
A uniform coating is possible, and since the interior is filled with water, penetration of the solution 11 into the water-impregnated support membrane 1 is prevented. As a polymer having air permeability, silicon-based polymer is known to have excellent gas permeability.

溶液11が表面にコーティングされた水含浸支持膜1は
、第1オーブン14中に通される。第1オーブン14は
、熱風オーブンからなり、給気口15から熱風が供給さ
れ、排気口16から排出される。17はオーブン14中
の1般送ロールでおる。
The water-impregnated support membrane 1, whose surface is coated with the solution 11, is passed into a first oven 14. The first oven 14 is a hot air oven, and hot air is supplied from an air supply port 15 and discharged from an exhaust port 16. 17 is passed through the first general feed roll in the oven 14.

この第1オーブン14中で、溶液11が表面にコーティ
ングされた水含浸支持膜1が瞬間的に乾燥され、水含浸
支持膜1中の水が蒸発除去されるとともに、該支持膜表
面上に通気性を有するポリマからなる下地層18が形成
される(第2図(ニ))。この下地層18は、一層ても
よいか、積層することによりピンボールの発生の確率が
極端に低下されるため、本実施例では二層に形成される
。すなわち、 I?Liの下地層18が形成された、水
が蒸発除去された支持膜19には、再度浮動型口金2O
から通気性を有するポリマを主成分とする溶液21かコ
ーティングされ、それか第2A−アン22中に通されて
瞬間乾燥され、下地層23に形成される(第2図(ニ)
(ホ))。
In this first oven 14, the water-impregnated support membrane 1 whose surface is coated with the solution 11 is instantaneously dried, the water in the water-impregnated support membrane 1 is evaporated and removed, and air is bubbled onto the surface of the support membrane. A base layer 18 made of a polymer having properties is formed (FIG. 2(d)). The base layer 18 may be formed in one layer, or in this embodiment, it is formed in two layers because the probability of pinball occurrence is extremely reduced by stacking layers. That is, I? The support film 19 on which the Li underlayer 18 was formed and from which the water was removed by evaporation is re-attached to the floating die 2O.
A solution 21 containing an air-permeable polymer as a main component is coated with the solution 21, which is then passed through a second A-an 22 and dried instantly to form a base layer 23 (FIG. 2(d)).
(e)).

下地層18、下地層23の形成された支持膜19は、さ
らに連続的に搬送され、下地層23上に浮動型口金24
から、ガス分離膜形成性素材を主成分とする有機溶媒溶
液25がコーティングされる(第2図(ホ))。ガス分
離膜形成性素材としては、たとえば酸素富化膜に対して
はポリ(4−メチルペンテン−1)が用いられる。この
右は溶媒溶液25がコーティングされた支持膜19は、
第3オーブン26中を通され、瞬間乾燥される。
The support film 19 on which the base layer 18 and the base layer 23 have been formed is further conveyed continuously, and a floating die 24 is placed on the base layer 23.
Then, an organic solvent solution 25 containing a gas separation membrane-forming material as a main component is coated (FIG. 2 (e)). As a material capable of forming a gas separation membrane, for example, poly(4-methylpentene-1) is used for an oxygen enrichment membrane. On the right, the support membrane 19 coated with the solvent solution 25 is
It is passed through the third oven 26 and dried instantly.

乾燥後には、溶媒が除去され、コーティングされた有機
溶媒溶液25は、ガス分離膜形成性素材が残されて薄膜
のガス分離膜層27として形成される(第2図(ホ) 
(へ))。このガス分離膜層も本実施例ではピンホール
防止のため二層に形成される。すなわち、■度浮動型口
金28から、ガス分離膜形成性素材を主成分と覆る有機
溶媒溶液29かコーティングされ、それが第4A−アン
30中に通されて瞬間乾燥され、薄膜のガス分離膜層3
1として形成される(第2図(へ)(ト))。
After drying, the solvent is removed, and the coated organic solvent solution 25 is formed as a thin gas separation membrane layer 27 with the gas separation membrane forming material remaining (Fig. 2 (E)).
(fart)). In this embodiment, this gas separation membrane layer is also formed into two layers to prevent pinholes. That is, an organic solvent solution 29 covering the gas separation membrane-forming material as a main component is coated from the floating type cap 28, and then passed through the No. 4 A-An 30 and instantly dried to form a thin gas separation membrane. layer 3
1 (see Figure 2).

その後、念のため、ざらに第5オーブン32中に通され
て水分が除去され、適当な巻取機33に巻き取られる。
Then, just to be sure, it is roughly passed through a fifth oven 32 to remove moisture, and then wound up on a suitable winding machine 33.

このようにしてjdられた酸素富化膜は、第3図に示す
ような断面構造を有する。
The oxygen-enriched film thus prepared has a cross-sectional structure as shown in FIG.

図において、3はポリニスデル不織布またはタック、4
はポリスルホン多孔質膜を示しており、これらの積層、
構造からなる塁44341に、トータルI″$ざ0.1
μのシリコン系ポリマからなる二層の下地層35かコー
ティングされ、その上にたとえば厚さ0.05μのポリ
(4−メチルペンテン−1)からなるガス分離膜として
の二層構成の酸素富化膜36か形成される。このPli
素富素膜化膜36溶剤に溶かした塗料状態では水よりも
低粘度である。シリコン系ポリマからなる下地層35は
、低粘度のlv2索富化摸36か多孔質の基材34内に
浸み込むのを防止しており、二段塗りするのは、前述の
如く、もし−mの下地層にピンホールが必った場合、二
If塗りすればピンホール同士か重なる確率は極めて低
くなるので、下地層35に酸素富化膜36が浸透するよ
うなピンホールの発生を防止できるからでおる。
In the figure, 3 is polynisdel nonwoven fabric or tack, 4
shows a polysulfone porous membrane, and these laminations,
Total I″$za0.1 for base 44341 consisting of structure
A two-layer base layer 35 made of a silicon-based polymer having a thickness of 0.05 μ is coated thereon, and a two-layer oxygen enrichment membrane is coated thereon as a gas separation membrane made of poly(4-methylpentene-1) having a thickness of 0.05 μ. A film 36 is formed. This Pli
The viscosity of the enriched film 36 in the form of a paint dissolved in a solvent is lower than that of water. The base layer 35 made of silicone-based polymer prevents the low-viscosity lv2 fiber enrichment layer 36 from seeping into the porous base material 34, and the two-stage coating is, as mentioned above, - If a pinhole occurs in the base layer 35, the probability that the pinholes will overlap is extremely low if the second If coating is applied, thereby preventing the occurrence of pinholes that would cause the oxygen enrichment film 36 to penetrate into the base layer 35. It happens because it can be prevented.

上記のように本実施例においては、薄膜の酸素富化膜3
6が連続的にしかも均一な厚みで形成される。
As mentioned above, in this embodiment, the thin oxygen enriched film 3
6 is formed continuously and with a uniform thickness.

なお、上記実施例は酸素富化膜についてのしのであるが
、本発明はガス分離膜全般を対象としており、炭酸ガス
分離膜等の製造にも適用できることは勿論のことでおる
Although the above embodiments are about oxygen enrichment membranes, the present invention is directed to gas separation membranes in general, and it goes without saying that it can also be applied to the manufacture of carbon dioxide gas separation membranes and the like.

[発明の効果1 以上説明したように、本発明の薄膜の製造方法によると
ぎは、多孔質構造の水含浸支持膜を連続的に搬送し、そ
の上に通気陣を有するポリマからなる下地層を形成し、
該下地層の上にガス分離膜形成性素材を主成分とするイ
j)人情媒溶液をコーディングして瞬間乾燥により均一
な平面の下地層表面上に1膜のガス分離膜を形成するに
うにしだので、均一な薄膜のガス分離膜を連続的にかつ
容“易に形成することができ、しかし連続形成であるか
ら大面積で必っても容易に目標とする面積の摸形成が可
能であり、工業的にも利用価値の高い製造方法か得られ
る。
[Effects of the Invention 1] As explained above, the thin film manufacturing method of the present invention involves continuously transporting a water-impregnated support film with a porous structure, and depositing a base layer made of a polymer having a ventilation layer thereon. form,
Coating a chemical medium solution containing a gas separation membrane-forming material as the main component on the base layer and instantly drying it to form one gas separation membrane on the uniform and flat surface of the base layer. Since it is made of Nishida, it is possible to form a uniform thin gas separation membrane continuously and easily.However, since it is formed continuously, it is possible to easily form a replica of the target area even if it is a large area. Therefore, a production method with high industrial value can be obtained.

そして、本発明を酸素富化膜のコーディングに適用すれ
ば、基材上に0.05μ程度のごく薄い酸素富化膜のコ
ーティング層が均一に形成でき、酸素富化膜の酸素透過
性能は膜厚に逆比例するので、俺めて高性能のre、素
膜化膜が実現できる。
If the present invention is applied to coating an oxygen-enriched membrane, a very thin coating layer of oxygen-enriched membrane of about 0.05 μm can be uniformly formed on the substrate, and the oxygen permeability of the oxygen-enriched membrane can be improved. Since it is inversely proportional to the thickness, it is possible to realize a high-performance re, single-layer film.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る薄膜の製造方法を実施
するための薄膜製造装置(Bよび工程フローを示す概念
図、 第2図は第1図の工程に対応する膜の断面図、第3図は
ガス分離膜の一例としての酸素富化膜の断面図、 で必る。 1・・・・・・水含浸支持膜 2・・・・・・巻出し装置 3・・・・・・多孔質j苫 4・・・・・・ポリスルポン多孔質j漠5・・・・・・
水滴 6・・・・・・エアナイフ 8・・・・・・ドラム 9.20.24.28・・・・・・口金11.21・・
・・・・通気性を有するポリマを主成分とする溶液 14.22.26.30.32・・団・A−ブン18.
23・・・・・・下地層 19・・・・・・支持膜 25.29・・・・・・有機溶媒溶液 27.31・・・・・・ガス分離膜層 33・・・・・・巻取機 34・・・・・・基材 35・・・・・・下地層
FIG. 1 is a conceptual diagram showing a thin film manufacturing apparatus (B) and a process flow for carrying out a thin film manufacturing method according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view of a film corresponding to the process shown in FIG. 1. , FIG. 3 is a cross-sectional view of an oxygen enrichment membrane as an example of a gas separation membrane. 1. Water-impregnated support membrane 2. Unwinding device 3.・・Porous material 4・・・・・・Polysulpon porous material 5・・・・・・
Water droplet 6... Air knife 8... Drum 9.20.24.28... Base 11.21...
...Solution whose main component is a breathable polymer 14.22.26.30.32...Dan A-Bun 18.
23... Base layer 19... Support membrane 25.29... Organic solvent solution 27.31... Gas separation membrane layer 33... Winding machine 34... Base material 35... Base layer

Claims (1)

【特許請求の範囲】[Claims] (1)多孔質構造の水含浸支持膜を連続的に搬送し、ま
ず該水含浸支持膜の表面上の水滴を除去し、水滴の除去
された水含浸支持膜表面上に通気性を有するポリマを主
成分とする溶液をコーティングし、該ポリマ溶液がコー
ティングされた水含浸支持膜を瞬間乾燥して水含浸支持
膜中の水を蒸発除去するとともに該支持膜表面上に通気
性を有するポリマからなる下地層を形成し、該下地層の
表面にガス分離膜形成性素材を主成分とする有機溶媒溶
液をコーティングし、該有機溶媒溶液がコーティングさ
れた支持膜および下地層を瞬間乾燥して下地層表面上に
前記ガス分離膜形成性素材の薄膜を形成することを特徴
とする薄膜の製造方法。
(1) A water-impregnated support membrane with a porous structure is continuously conveyed, water droplets on the surface of the water-impregnated support membrane are first removed, and a breathable polymer is placed on the surface of the water-impregnated support membrane from which the water droplets have been removed. The water-impregnated support membrane coated with the polymer solution is instantly dried to remove the water in the water-impregnated support membrane by evaporation, and at the same time remove the air-permeable polymer from the surface of the support membrane. A base layer is formed, the surface of the base layer is coated with an organic solvent solution containing a material capable of forming a gas separation membrane as a main component, and the support film and base layer coated with the organic solvent solution are flash-dried to form a base layer. A method for producing a thin film, comprising forming a thin film of the gas separation membrane-forming material on the surface of a geological formation.
JP28108485A 1985-12-16 1985-12-16 Production of thin membrane Pending JPS62140620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28108485A JPS62140620A (en) 1985-12-16 1985-12-16 Production of thin membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28108485A JPS62140620A (en) 1985-12-16 1985-12-16 Production of thin membrane

Publications (1)

Publication Number Publication Date
JPS62140620A true JPS62140620A (en) 1987-06-24

Family

ID=17634105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28108485A Pending JPS62140620A (en) 1985-12-16 1985-12-16 Production of thin membrane

Country Status (1)

Country Link
JP (1) JPS62140620A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2786710A1 (en) * 1998-12-04 2000-06-09 Ceramiques Tech Soc D MEMBRANE COMPRISING A POROUS SUPPORT AND A LAYER OF A MODULAR SIEVE AND ITS PREPARATION METHOD
EP1163949A3 (en) * 2000-06-13 2005-03-30 Praxair Technology, Inc. Method of preparing composite gas separation membranes from perfluoropolymers
WO2012135065A2 (en) * 2011-03-25 2012-10-04 Porifera, Inc. Membranes having aligned 1-d nanoparticles in a matrix layer for improved fluid separation
JP2013533370A (en) * 2010-08-13 2013-08-22 エスケー イノベーション シーオー., エルティーディー. Multilayer composite separation membrane with protected pores and method for producing the same
WO2014156173A1 (en) * 2013-03-29 2014-10-02 富士フイルム株式会社 Method for producing complex for separating oxidizing gas
WO2014156162A1 (en) * 2013-03-29 2014-10-02 富士フイルム株式会社 Production method for acid gas separation complex
WO2014192883A1 (en) * 2013-05-30 2014-12-04 東レ株式会社 Composite semipermeable membrane
US8920654B2 (en) 2010-09-30 2014-12-30 Porifera, Inc. Thin film composite membranes for forward osmosis, and their preparation methods
WO2015098839A1 (en) * 2013-12-27 2015-07-02 富士フイルム株式会社 Process for producing composite, and composite
US9227360B2 (en) 2011-10-17 2016-01-05 Porifera, Inc. Preparation of aligned nanotube membranes for water and gas separation applications
US9636635B2 (en) 2012-12-21 2017-05-02 Porifera, Inc. Separation systems, elements, and methods for separation utilizing stacked membranes and spacers
US9861937B2 (en) 2013-03-15 2018-01-09 Porifera, Inc. Advancements in osmotically driven membrane systems including low pressure control
US10183257B2 (en) 2014-02-04 2019-01-22 Fujifilm Corporation Method of producing composite
US10384169B2 (en) 2014-10-31 2019-08-20 Porifera, Inc. Supported carbon nanotube membranes and their preparation methods
US11541352B2 (en) 2016-12-23 2023-01-03 Porifera, Inc. Removing components of alcoholic solutions via forward osmosis and related systems
US11571660B2 (en) 2015-06-24 2023-02-07 Porifera, Inc. Methods of dewatering of alcoholic solutions via forward osmosis and related systems
US12005396B2 (en) 2019-11-14 2024-06-11 Porifera, Inc. Advancements in osmotically driven membrane systems including multi-stage purification

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000033948A1 (en) * 1998-12-04 2000-06-15 Societe Des Ceramiques Techniques Membrane comprising a porous support and a molecular sieve layer and method for preparing same
US6472016B1 (en) 1998-12-04 2002-10-29 Societe Des Ceramiques Techniques Membrane comprising a porous carrier and a layer of a molecular sieve and its preparation
FR2786710A1 (en) * 1998-12-04 2000-06-09 Ceramiques Tech Soc D MEMBRANE COMPRISING A POROUS SUPPORT AND A LAYER OF A MODULAR SIEVE AND ITS PREPARATION METHOD
EP1163949A3 (en) * 2000-06-13 2005-03-30 Praxair Technology, Inc. Method of preparing composite gas separation membranes from perfluoropolymers
JP2013533370A (en) * 2010-08-13 2013-08-22 エスケー イノベーション シーオー., エルティーディー. Multilayer composite separation membrane with protected pores and method for producing the same
US8920654B2 (en) 2010-09-30 2014-12-30 Porifera, Inc. Thin film composite membranes for forward osmosis, and their preparation methods
US9216391B2 (en) 2011-03-25 2015-12-22 Porifera, Inc. Membranes having aligned 1-D nanoparticles in a matrix layer for improved fluid separation
WO2012135065A2 (en) * 2011-03-25 2012-10-04 Porifera, Inc. Membranes having aligned 1-d nanoparticles in a matrix layer for improved fluid separation
WO2012135065A3 (en) * 2011-03-25 2013-01-03 Porifera, Inc. Membranes having aligned 1-d nanoparticles in a matrix layer for improved fluid separation
US9227360B2 (en) 2011-10-17 2016-01-05 Porifera, Inc. Preparation of aligned nanotube membranes for water and gas separation applications
US11759751B2 (en) 2012-12-21 2023-09-19 Porifera, Inc. Separation systems, elements, and methods for separation utilizing stacked membranes and spacers
US11090611B2 (en) 2012-12-21 2021-08-17 Porifera, Inc. Separation systems, elements, and methods for separation utilizing stacked membranes and spacers
US9636635B2 (en) 2012-12-21 2017-05-02 Porifera, Inc. Separation systems, elements, and methods for separation utilizing stacked membranes and spacers
US9861937B2 (en) 2013-03-15 2018-01-09 Porifera, Inc. Advancements in osmotically driven membrane systems including low pressure control
US10500544B2 (en) 2013-03-15 2019-12-10 Porifera, Inc. Advancements in osmotically driven membrane systems including multi-stage purification
JP2014195761A (en) * 2013-03-29 2014-10-16 富士フイルム株式会社 Method for producing composite for acidic gas separation
JP2014195762A (en) * 2013-03-29 2014-10-16 富士フイルム株式会社 Method for producing composite for acidic gas separation
WO2014156173A1 (en) * 2013-03-29 2014-10-02 富士フイルム株式会社 Method for producing complex for separating oxidizing gas
US9987598B2 (en) 2013-03-29 2018-06-05 Fujifilm Corporation Method of producing composite for acid gas separation
WO2014156162A1 (en) * 2013-03-29 2014-10-02 富士フイルム株式会社 Production method for acid gas separation complex
WO2014192883A1 (en) * 2013-05-30 2014-12-04 東レ株式会社 Composite semipermeable membrane
JPWO2014192883A1 (en) * 2013-05-30 2017-02-23 東レ株式会社 Composite semipermeable membrane
US10974206B2 (en) 2013-05-30 2021-04-13 Toray Industries, Inc. Composite semipermeable membrane
JP2015127036A (en) * 2013-12-27 2015-07-09 富士フイルム株式会社 Process for producing composite, and composite
US10173180B2 (en) 2013-12-27 2019-01-08 Fujifilm Corporation Method of producing composite, and composite
WO2015098839A1 (en) * 2013-12-27 2015-07-02 富士フイルム株式会社 Process for producing composite, and composite
US10183257B2 (en) 2014-02-04 2019-01-22 Fujifilm Corporation Method of producing composite
US10384169B2 (en) 2014-10-31 2019-08-20 Porifera, Inc. Supported carbon nanotube membranes and their preparation methods
US11571660B2 (en) 2015-06-24 2023-02-07 Porifera, Inc. Methods of dewatering of alcoholic solutions via forward osmosis and related systems
US11541352B2 (en) 2016-12-23 2023-01-03 Porifera, Inc. Removing components of alcoholic solutions via forward osmosis and related systems
US12005396B2 (en) 2019-11-14 2024-06-11 Porifera, Inc. Advancements in osmotically driven membrane systems including multi-stage purification

Similar Documents

Publication Publication Date Title
JPS62140620A (en) Production of thin membrane
US4155793A (en) Continuous preparation of ultrathin polymeric membrane laminates
US5733663A (en) Composite membrane and process for its production
KR910001901B1 (en) Process for making highly premeable coated composite hollow fiber membranes
US5242636A (en) Method of making a multilayer capillary membrane
US5156888A (en) Method and apparatus for applying polymeric coating
US3625734A (en) Ultra-thin liquid membrane construction
US5344702A (en) Coated fibers
Mccullough Iii et al. Don't forget Langmuir–Blodgett films
JPH026828A (en) Method for continuously applying an uniform semipermeable coating onto a hollow fiber wed
JP6979612B2 (en) Method for Producing Porous Membrane Support, Gas Separation Membrane Complex, Porous Membrane Support and Method for Producing Gas Separation Membrane Complex
JPS6251670B2 (en)
JPS5966308A (en) Gas permeable composite membrane
JP3633276B2 (en) Method for producing gas barrier material
JPH0626711B2 (en) Coding film manufacturing method
JPS5835722B2 (en) Ultra-thin film manufacturing method and device
KR100221360B1 (en) Process and apparatus for preparing hollow fiber membrane complex used for separating gases
JPS63278525A (en) Production of vapor-liquid separation membrane
JPS5835723B2 (en) Composite membrane manufacturing method and device
JP3278953B2 (en) Method for producing gas separation composite membrane
JP3539599B2 (en) Gas separation membrane
JP5405308B2 (en) Multi-layer film and method for producing the same
JPS62117811A (en) Production of conjugated hollow fiber membrane
JPS5892430A (en) Preparation of composite membrane
JPS62227409A (en) Method for repairing permselective composite membrane