JP3536558B2 - Immersion type membrane separation device - Google Patents

Immersion type membrane separation device

Info

Publication number
JP3536558B2
JP3536558B2 JP30930896A JP30930896A JP3536558B2 JP 3536558 B2 JP3536558 B2 JP 3536558B2 JP 30930896 A JP30930896 A JP 30930896A JP 30930896 A JP30930896 A JP 30930896A JP 3536558 B2 JP3536558 B2 JP 3536558B2
Authority
JP
Japan
Prior art keywords
hollow fiber
membrane
fiber membrane
raw water
water flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30930896A
Other languages
Japanese (ja)
Other versions
JPH10146520A (en
Inventor
晃士 堀
幹夫 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP30930896A priority Critical patent/JP3536558B2/en
Publication of JPH10146520A publication Critical patent/JPH10146520A/en
Application granted granted Critical
Publication of JP3536558B2 publication Critical patent/JP3536558B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、槽内液中に中空糸
膜エレメントを浸漬してなる膜分離装置に係り、特に、
活性汚泥や凝集汚泥等の懸濁液の膜濾過に好適な浸漬型
膜分離装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a membrane separation device in which a hollow fiber membrane element is immersed in a liquid in a tank.
The present invention relates to an immersion type membrane separation device suitable for membrane filtration of a suspension of activated sludge or coagulated sludge.

【0002】[0002]

【従来の技術】膜分離処理に使用される分離膜の一種と
して中空糸膜がある。この中空糸膜には、中空糸膜の内
部を原水流路とする内圧型中空糸膜と、中空糸膜の外部
を原水流路とする外圧型中空糸膜とがある。
2. Description of the Related Art Hollow fiber membranes are one type of separation membrane used for membrane separation. The hollow fiber membrane includes an internal pressure type hollow fiber membrane using the inside of the hollow fiber membrane as a raw water flow path, and an external pressure type hollow fiber membrane using the outside of the hollow fiber membrane as a raw water flow path.

【0003】内圧型中空糸膜は、原水の流路が狭く、短
時間で原水流路の閉塞を起こすため、懸濁物質の濾過に
適さないという欠点があった。一方、外圧型中空糸膜
は、原水を中空糸膜の外側に通し、内側は透過水を通す
ことによってこの問題を解決したものである。
[0003] The internal pressure type hollow fiber membrane has a drawback that the flow path of raw water is narrow and the raw water flow path is blocked in a short time, so that it is not suitable for filtering suspended substances. On the other hand, the external pressure type hollow fiber membrane solves this problem by passing raw water through the outside of the hollow fiber membrane and passing permeated water through the inside.

【0004】しかし、外圧型中空糸膜でも、隣接する中
空糸膜間に懸濁物質が濃縮され、ゲル化又はケーク化
し、中空糸膜の有効面積が減少する(以下、この現象を
「膜間流路閉塞」と称す。)という問題があった。
However, even in the external pressure type hollow fiber membrane, the suspended substance is concentrated between adjacent hollow fiber membranes, gelling or caked, and the effective area of the hollow fiber membrane is reduced. This is referred to as “flow path blockage.”

【0005】このため、膜間流路閉塞を起こしにくいモ
ジュール形態或いはモジュール設置方法について、種々
検討が行われている。例えば、図2(a)(正面図)及
び図2(b)(平面図)に示す如く、複数の中空糸膜1
をスクリーン状に並列配置した中空糸膜エレメント2が
市販されている。
[0005] For this reason, various studies have been made on a module form or a module installation method that does not easily cause blockage of the transmembrane flow path. For example, as shown in FIG. 2A (front view) and FIG. 2B (plan view), a plurality of hollow fiber membranes 1
Are commercially available.

【0006】この中空糸膜エレメント2は、多数本の中
空糸膜1がスクリーン面Sを形成するように並列に配置
され、中空糸膜1の両端を各々集水管3,3に埋設保持
させたものである。中空糸膜1を透過した濾過水は、集
水管3,3及び抜出管4,4を経て取り出される。
The hollow fiber membrane element 2 has a number of hollow fiber membranes 1 arranged in parallel so as to form a screen surface S, and both ends of the hollow fiber membrane 1 are buried and held in water collecting pipes 3 and 3, respectively. Things. The filtered water that has passed through the hollow fiber membrane 1 is taken out through the water collection pipes 3 and 3 and the extraction pipes 4 and 4.

【0007】このようなスクリーン状外圧型中空糸膜エ
レメントをモジュール化して用い原水の濾過を行う場合
において、モジュールの下方から気体を曝気することに
より、膜面に循環流を与え、中空糸膜を振動させて高フ
ラックスを得る技術も開発されている。
In the case of filtering raw water using such a screen-shaped external pressure type hollow fiber membrane element as a module, a circulating flow is given to the membrane surface by aerating gas from below the module, thereby forming the hollow fiber membrane. Techniques for obtaining high flux by vibrating have also been developed.

【0008】なお、従来、スクリーン状外圧型中空糸膜
エレメント2は、図2(a)に示す状態で処理槽に浸漬
され、下方から原水流や散気ガスが供給されたり、図3
に示す如く、そのスクリーン面が水平となるように複数
個積層してモジュール化した状態で処理槽内に浸漬さ
れ、原水流を上向流又は下向流としている。これは、こ
のように中空糸膜が原水流を横切るように配置すること
により、原水流のみならず、モジュールの下で曝気を
行った場合気泡が中空糸膜1の長手方向と垂直に当た
り、高フラックス及び高い膜面洗浄効果が得られると考
えられていたことによる。
Conventionally, the screen-shaped external pressure type hollow fiber membrane element 2 is immersed in a treatment tank in a state shown in FIG. 2 (a), and a raw water flow or a diffused gas is supplied from below, or as shown in FIG.
As shown in the figure, a plurality of the screens are stacked so as to be horizontal and immersed in a treatment tank in a modular state, and the raw water flow is set to an upward flow or a downward flow. This is because in this way the hollow fiber membrane is disposed across the raw water flow, not only raw water stream impinges on the perpendicular to the longitudinal direction of the bubble hollow fiber membrane 1 when performing aeration under side of the module , A high flux and a high film surface cleaning effect.

【0009】このスクリーン状外圧型中空糸膜エレメン
トは、膜間流路閉塞を起こしにくいものではあるが、中
空糸膜が原水流を横切るように設けた従来の膜分離装置
では、その膜間流路閉塞防止効果は十分ではない。特
に、エレメントの中空糸膜の中央部分以外の部分におい
て膜間流路閉塞が起き易い。この原因について図4,5
を参照して説明する。
Although the screen-shaped external pressure type hollow fiber membrane element is unlikely to cause clogging of the intermembrane flow path, in the conventional membrane separation device provided so that the hollow fiber membrane crosses the raw water flow, the membrane flow rate is reduced. The effect of preventing road blockage is not sufficient. In particular, blockage of the intermembrane flow passage is likely to occur in portions other than the central portion of the hollow fiber membrane of the element. This cause is shown in FIGS.
This will be described with reference to FIG.

【0010】図4は、スクリーン状外圧型中空糸膜エレ
メントをその中空糸膜長手方向が原水流を横切るように
且つスクリーン面を原水流と平行に設置した場合の模式
図であり、図4の横軸は中空糸膜の延在方向、縦軸は中
空糸膜の垂直方向の変位を示す。
FIG. 4 is a schematic view of a screen-like external pressure type hollow fiber membrane element in which the hollow fiber membrane longitudinal direction crosses the raw water flow and the screen surface is parallel to the raw water flow. The horizontal axis indicates the extending direction of the hollow fiber membrane, and the vertical axis indicates the vertical displacement of the hollow fiber membrane.

【0011】この図4より明らかなように、集水管保持
部に近いほど、中空糸膜が水平線に対してなす角度θが
大きくなる。ここで、θが一定と見なせる小区間Zをと
ると、図5に拡大して示す如く、中空糸膜に垂直な方向
の中空糸束の幅L′は、集水管保持部における中空糸束
の幅Lに対して、 L′=cosθ・L となる。即ち、L′方向の断面M′においては、L方向
の断面Mに比べ、中空糸膜同士の間隔はcosθ倍にな
り、中空糸膜に垂直な方向の膜充填密度が1/cosθ
倍になる。ここで、cosθ<1であるので、断面M′
では中空糸膜同士の間隔は狭くなる。従って、従来の設
置形態では、中空糸膜は、その集水管保持部に近づくに
つれ、中空糸膜が密集するようになり、原水流路閉塞を
起こし易い。
As is apparent from FIG. 4, the angle .theta. Formed by the hollow fiber membrane with respect to the horizontal line increases as the distance from the water collecting pipe holding portion increases. Here, taking a small section Z where θ can be regarded as constant, as shown in an enlarged view in FIG. 5, the width L ′ of the hollow fiber bundle in the direction perpendicular to the hollow fiber membrane is equal to the width of the hollow fiber bundle in the water collecting tube holding part. L ′ = cos θ · L with respect to the width L. That is, in the cross section M ′ in the L ′ direction, the interval between the hollow fiber membranes is cos θ times larger than in the cross section M in the L direction, and the membrane packing density in the direction perpendicular to the hollow fiber membrane is 1 / cos θ.
Double. Here, since cos θ <1, the cross section M ′
In this case, the interval between the hollow fiber membranes becomes narrow. Therefore, in the conventional installation mode, as the hollow fiber membrane approaches the water collecting pipe holding portion, the hollow fiber membrane becomes dense and the raw water flow path is easily blocked.

【0012】なお、中空糸膜を緊張させた状態で保持す
ることも考えられるが、中空糸膜を緊張させて保持する
ことは、中空糸膜の破損を招き易く、好ましいことでは
ない。
It is conceivable to hold the hollow fiber membrane in a tensioned state, but it is not preferable to hold the hollow fiber membrane in a tensioned state because the hollow fiber membrane is likely to be damaged.

【0013】この原因について、図6,7を参照して次
に説明する。
The cause will be described below with reference to FIGS.

【0014】図6は、中空糸膜の両端の集水管保持部間
の距離Kと最大間隔、即ち、中空糸膜を最も緊張した状
態で保持した場合の距離Kmax との比率K/Kmax を横
軸とし、集水管保持部近傍の中空糸膜の水平線に対する
角度θを縦軸とした相関図である。この図6から、中空
糸膜両端の集水管保持部間の距離Kはなるべく大きくと
った方が、即ち、中空糸膜のたるみが少ない方が、角度
θが小さくなり、中空糸膜の端部における充填密度が小
さくなることがわかる。
FIG. 6 shows the ratio K / K max between the distance K between the water collecting pipe holding portions at both ends of the hollow fiber membrane and the maximum distance, ie, the distance K max when the hollow fiber membrane is held in the most tensioned state. FIG. 5 is a correlation diagram in which the horizontal axis represents the horizontal axis and the angle θ of the hollow fiber membrane in the vicinity of the water collecting tube holding section with respect to the horizontal line is the vertical axis. From FIG. 6, the larger the distance K between the water collecting pipe holding portions at both ends of the hollow fiber membrane, that is, the smaller the slack of the hollow fiber membrane, the smaller the angle θ becomes. It can be seen that the packing density at

【0015】しかしながら、中空糸膜両端の集水管保持
部間の距離Kを大きくすると、それに比例して中空糸膜
に加えられる張力が大きくなる。中空糸膜両端の集水管
保持部間の距離と中空糸膜に加えられる張力との関係を
示す図7より明らかなように、中空糸膜両端の集水管保
持部間の距離Kが最大値Kmax に近づくほど、張力は急
激に増大する。張力が大きくなると、中空糸膜の破断及
び中空糸膜の集水管保持部の破断の危険性が大きくな
る。
However, when the distance K between the water collecting pipe holding portions at both ends of the hollow fiber membrane is increased, the tension applied to the hollow fiber membrane increases in proportion thereto. As is clear from FIG. 7, which shows the relationship between the distance between the water collecting tube holding parts at both ends of the hollow fiber membrane and the tension applied to the hollow fiber membrane, the distance K between the water collecting pipe holding parts at both ends of the hollow fiber membrane is the maximum value K. As it approaches max , the tension increases sharply. When the tension increases, the risk of breakage of the hollow fiber membrane and the breakage of the water collection tube holding portion of the hollow fiber membrane increases.

【0016】特開平6−198144号公報には、複数
の平膜モジュールを槽内に平行に浸漬配置してなる膜分
離装置において、膜先端部集水管の位置を、隣接モジュ
ール同士において異ならせることが記載されている。
Japanese Patent Application Laid-Open No. 6-198144 discloses that in a membrane separation apparatus in which a plurality of flat membrane modules are immersed and arranged in parallel in a tank, the position of a water collecting pipe at the tip of the membrane is made different between adjacent modules. Is described.

【0017】[0017]

【発明が解決しようとする課題】中空糸膜モジュールの
中空糸膜長手方向を原水流方向と平行に配置した場合で
あっても、図8に示す如く、隣接するエレメント2,2
の集水管3,3位置を原水流通方向において同一にした
ときには、集水管3,3同士の間隔が小さいものとな
り、この集水管3,3間を通過してエレメント2,2間
に流れ込む原水流が弱められ、これにより膜間流路閉塞
が起こり易くなる。
Even when the longitudinal direction of the hollow fiber membrane of the hollow fiber membrane module is arranged parallel to the raw water flow direction, as shown in FIG.
When the positions of the water collecting pipes 3 and 3 are the same in the raw water flow direction, the distance between the water collecting pipes 3 and 3 becomes small, and the raw water flowing through the water collecting pipes 3 and 3 and flowing between the elements 2 and 2 Is weakened, whereby the transmembrane flow path is easily blocked.

【0018】なお、特開平6−198144号の平膜型
膜分離装置の場合、板状の支持板に膜を張ったエレメン
トを集積し、モジュール化している。従って、液が流れ
る部位は膜同士の間となる。膜面積を大きくするという
観点からは、支持板を薄くし、流路間隔を小さくする必
要がある。しかしながら、流路間隔は液の流れやすさ、
ひいては膜間閉塞の点から大きく保たなければならな
い。
In the case of the flat membrane type membrane separation apparatus disclosed in JP-A-6-198144, elements in which a membrane is stretched on a plate-like support plate are integrated and modularized. Therefore, the portion where the liquid flows is between the films. From the viewpoint of increasing the membrane area, it is necessary to reduce the thickness of the support plate and reduce the flow path interval. However, the flow path interval is easy for the liquid to flow,
In turn, it must be kept large in terms of transmembrane occlusion.

【0019】中空糸膜エレメントは、同一規模の平膜エ
レメントの倍程度の膜面積を有するものの、中空糸膜端
部に集水管が設けられており、この集水管が原水流れの
障害になることがある。即ち、この中空糸膜エレメント
を液流通方向に水平方向として設置(縦置き)する場
合、膜端部の集水管が、槽の上下方向に位置する。槽の
下部は、散気装置からのエアーに伴い水流が発生し、上
向きの流れを作り出すが、集水管が水の流通を阻害し、
エレメント間に流れにくくなる。この対策として、膜エ
レメントの間隔を大きくとることが考えられるが、この
ようにすると、膜充填率が小さくなり、膜面積が小さく
なってしまう。
Although the hollow fiber membrane element has a membrane area about twice that of a flat membrane element of the same scale, a water collecting pipe is provided at the end of the hollow fiber membrane, and this water collecting pipe hinders the flow of raw water. There is. That is, when this hollow fiber membrane element is installed (vertically placed) in the horizontal direction in the liquid flow direction, the water collecting pipe at the end of the membrane is located in the vertical direction of the tank. In the lower part of the tank, a water flow is generated with the air from the air diffuser, creating an upward flow, but the water collection pipe hinders the flow of water,
It becomes difficult to flow between the elements. As a countermeasure against this, it is conceivable to increase the interval between the membrane elements. However, in this case, the membrane filling rate decreases and the membrane area decreases.

【0020】本発明は上記従来の問題点を解決し、中空
糸膜モジュールの膜充填率を高くして大きな膜面積を得
ることができ、しかも膜間流路閉塞を確実に防止するこ
とができ、常に高フラックスを得ることができる浸漬型
膜分離装置を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and can increase the membrane filling rate of the hollow fiber membrane module to obtain a large membrane area, and can surely prevent blockage of the intermembrane flow path. It is an object of the present invention to provide an immersion type membrane separation apparatus which can always obtain a high flux.

【0021】[0021]

【課題を解決するための手段】本発明の浸漬型膜分離装
置は、多数本の中空糸膜が並設され、該中空糸膜の両端
が集水管によって保持された中空糸膜エレメントを複数
個槽内に配設してなる浸漬型膜分離装置において、各エ
レメントは、その中空糸膜の長手方向が原水の流通方向
と平行方向となるように設置されており、かつ、隣接す
るエレメントの集水管の原水流通方向における間隔bが
該集水管の外径aの0.4〜2倍であり、隣接するエレ
メントの集水管の原水流通方向と直交方向における間隔
cが該集水管の外径aの0〜0.5倍であるように、
接するエレメントの原水流通方向上流側の端部の位置を
該原水流通方向に異ならせたことを特徴とする。
According to the immersion type membrane separation device of the present invention, a large number of hollow fiber membranes are provided in parallel , and both ends of the hollow fiber membranes are provided.
In the immersion type membrane separation apparatus in which a plurality of hollow fiber membrane elements held by a water collecting pipe are disposed in a tank, each element has a longitudinal direction of the hollow fiber membrane parallel to a flowing direction of raw water. It is installed so as, and adjacent to
The distance b in the raw water flow direction of the water collection pipe of the element
0.4 to 2 times the outer diameter a of the collecting pipe,
Of the water collection pipe in the direction perpendicular to the raw water flow direction
The position of the end of the adjacent element on the upstream side in the raw water flow direction is made different in the raw water flow direction so that c is 0 to 0.5 times the outer diameter a of the water collecting pipe .

【0022】本発明では、隣接するエレメントの原水流
通方向上流側の端部の位置を該原水流通方向に異ならせ
ているため、隣接するエレメント同士の間隔を小さくし
ても、集水管同士の間を通ってエレメント間に流れ込む
原水流が殆ど弱められない。これにより、膜面への懸濁
物質の濃縮・堆積が防止される。また、エレメント同士
の間の間隔を小さくすることにより、膜充填率を高め、
膜面積を大きくすることができる。なお、膜充填率を3
割以上高めることができる。
In the present invention, the position of the end of the adjacent element on the upstream side in the raw water flow direction is made different in the raw water flow direction. Therefore, even if the distance between the adjacent elements is reduced, the distance between the water collection pipes is reduced. The flow of raw water flowing between the elements through the element is hardly attenuated. This prevents concentration and accumulation of suspended matter on the film surface. Also, by reducing the interval between the elements, the film filling rate is increased,
The film area can be increased. Note that the film filling rate is 3
Can be increased by more than a percentage.

【0023】本発明では、原水流と中空糸膜の長手方向
とが平行になるように中空糸膜モジュールを設置するた
め、図4,5に示す従来例(中空糸膜長手方向と原水流
とを交叉させたもの)のような集水管保持部近傍での中
空糸膜の密集化が起こらず、モジュール全体にわたって
充填密度はほぼ同等となる。このため、局部的な中空糸
膜の密集化による膜間流路閉塞が防止される。
In the present invention, since the hollow fiber membrane module is installed so that the raw water flow and the longitudinal direction of the hollow fiber membrane are parallel to each other, the conventional example shown in FIGS. ), The density of the hollow fiber membranes in the vicinity of the water collecting tube holding portion does not occur, and the packing density becomes substantially equal over the entire module. For this reason, blockage of the transmembrane flow channel due to local densification of the hollow fiber membranes is prevented.

【0024】本発明では、中空糸膜が原水の流れ方向に
沿って延在するため、中空糸膜に加えられる張力が小さ
くても、集水管端部においても中空糸膜が局部的に密集
することにはならない。従って、本発明によると、中空
糸膜に大きな張力をかけることなく、膜間流路閉塞を防
止することができる。
In the present invention, since the hollow fiber membrane extends in the flow direction of the raw water, even if the tension applied to the hollow fiber membrane is small, the hollow fiber membrane is locally densely formed even at the end of the water collecting pipe. It doesn't matter. Therefore, according to the present invention, it is possible to prevent the inter-membrane channel from being blocked without applying a large tension to the hollow fiber membrane.

【0025】特に、本発明において、中空糸膜の長手方
向を鉛直方向とした中空糸膜モジュールの下部で曝気を
行った場合には、曝気により与えられる循環流が強力な
乱流となる上に、集水管自体が乱流化を促進し、膜間流
路閉塞が一層確実に防止される。
In particular, in the present invention, when aeration is performed at the lower part of the hollow fiber membrane module in which the longitudinal direction of the hollow fiber membrane is vertical, the circulating flow given by the aeration becomes a strong turbulent flow. In addition, the water collection pipe itself promotes turbulence, and the clogging of the transmembrane channel is more reliably prevented.

【0026】[0026]

【発明の実施の形態】以下、図面を参照して本発明の
漬型膜分離装置の実施の形態を説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, immersion of the invention with reference to the accompanying drawings
An embodiment of the immersion type membrane separation device will be described.

【0027】図1は本発明の浸漬型膜分離装置の外圧型
中空糸膜エレメント2の配置を示すものであり、(a)
図は平面図、(b)図は正面図、(c)図は(b)図の
C−C線に沿う側面図、(d)図は(c)図における原
水流れの説明図である。
FIG. 1 shows the arrangement of the external pressure type hollow fiber membrane element 2 of the immersion type membrane separation device of the present invention, wherein (a)
The figure is a plan view, the figure (b) is a front view, the figure (c) is a side view along the line CC of the figure (b), and the figure (d) is an explanatory view of the raw water flow in the figure (c).

【0028】多数本の中空糸膜1がスクリーン状に並設
され、各中空糸膜1の両端が集水管3,3に保持された
スクリーン状外圧型中空糸膜エレメント2を、複数個、
各エレメント2のスクリーン面が互いに平行でかつ中空
糸膜長手方向が原水流と平行となるように、隣接するエ
レメント2,2の間隔をあけて配設してある。
A large number of hollow fiber membranes 1 are arranged side by side in the form of a screen, and a plurality of screen-shaped external pressure type hollow fiber membrane elements 2 in which both ends of each hollow fiber membrane 1 are held by water collecting pipes 3, 3.
The adjacent elements 2 and 2 are arranged at intervals so that the screen surfaces of the elements 2 are parallel to each other and the longitudinal direction of the hollow fiber membrane is parallel to the raw water flow.

【0029】隣接するエレメント2の集水管3は、原水
流通方向(この実施の形態では上向流)において位置が
異なっている。この実施の形態では、図1(c)の左側
から奇数番目のエレメントの下側集水管3は偶数番目の
エレメントの下側集水管3よりも下方に位置している。
この奇数番目のエレメント2の下側集水管3は互いに同
一高さに位置し、偶数番目のエレメント2の下側集水管
3も互いに同一高さに位置している。
The water collecting pipes 3 of the adjacent elements 2 have different positions in the raw water flow direction (upward flow in this embodiment). In this embodiment, the lower collecting pipe 3 of the odd-numbered element from the left side in FIG. 1C is located lower than the lower collecting pipe 3 of the even-numbered element.
The lower collecting pipes 3 of the odd-numbered elements 2 are located at the same height, and the lower collecting pipes 3 of the even-numbered elements 2 are also located at the same height.

【0030】なお、各エレメント2の上側の集水管3も
図示の通り下側集水管3と同じ配列となっている。
The upper collecting pipe 3 of each element 2 has the same arrangement as the lower collecting pipe 3 as shown.

【0031】このエレメント2を原水槽に浸漬して使用
する場合には、エレメント2の一方の集水管3が下方に
位置し、他方の集水管3が上方に位置し、スクリーン面
及び中空糸膜1の延在方向が鉛直方向となるように設置
するのが好適である。
When the element 2 is used by being immersed in a raw water tank, one of the water collecting pipes 3 of the element 2 is located below and the other water collecting pipe 3 is located above, and the screen surface and the hollow fiber membrane are arranged. It is preferable to install the device so that the extending direction of the device 1 is vertical.

【0032】[0032]

【0033】なお、本発明においては、隣接する集水管
3の原水流通方向における間隔bは集水管3の外径aの
0.4〜2倍とし、隣接するエレメント2の集水管3
原水流通方向と直交方向における間隔cはaの0〜0.
5倍、好ましくは0.1〜0.2倍程度とする。
In the present invention, the distance b in the raw water flow direction between the adjacent water collecting pipes 3 is set to 0.4 to 2 times the outer diameter a of the water collecting pipes 3, and the distance b of the water collecting pipes 3 of the adjacent elements 2 is adjusted .
The interval c in the direction orthogonal to the raw water flow direction is 0 to 0.
5 times, preferably it shall be the order of 0.1 to 0.2 times.

【0034】集水管の外径aは通常30〜70mm程度
のものが用いられる。
The outer diameter a of the collecting pipe is usually about 30 to 70 mm.

【0035】中空糸膜の保持状態については、前述の如
く、中空糸膜を過度に緊張して保持すると、中空糸膜が
破損するおそれがあることから、中空糸膜両端の集水管
保持部間の距離Kが、最大間隔、即ち、中空糸膜を最も
緊張した状態で保持した場合の間隔Kmax の94〜98
%程度とするのが好ましい。
Regarding the holding state of the hollow fiber membrane, as described above, if the hollow fiber membrane is held with excessive tension, the hollow fiber membrane may be damaged. Is the maximum interval, that is, 94 to 98 of the interval K max when the hollow fiber membrane is held in the most tensioned state.
% Is preferable.

【0036】このようにエレメント2を隣接するエレメ
ントの集水管3が互い違い状となるように配設すること
により、エレメント2同士の間隔を小さくすることがで
き、膜充填率を高め、膜面積を大きくすることができ
る。また、エレメント2間に流入する水の流速を大きく
し、膜面への懸濁物質の付着を防止することができる。
By arranging the elements 2 in such a manner that the water collecting pipes 3 of the adjacent elements are alternately arranged, the interval between the elements 2 can be reduced, the film filling rate is increased, and the membrane area is increased. Can be larger. Further, the flow velocity of the water flowing between the elements 2 can be increased to prevent the suspended substance from adhering to the membrane surface.

【0037】即ち、図8(a)の比較例のようにエレメ
ント2の集水管3の高さをすべて均一にした場合には、
下側集水管3同士の間隔が狭くなり、上向水流が集水管
3で妨害されるようになる。これを防ぐためには、下側
集水管3同士の間隔を大きくしなければならないが、こ
のようにすると膜充填率が低下し、膜面積が小さくなっ
てしまう。また、図8(a)の比較例において上向流が
下側集水管3で妨害される結果、下側集水管3の上面部
付近に水流の滞留が生じ、図8(b)のように該上面部
及びその近傍の中空糸膜に懸濁物質が濃縮・堆積し、そ
の部分の膜が閉塞し、有効膜面積が低下する。有効膜面
積の低下は濾過水量の低下あるいは濾過差圧の上昇とな
って現れ、濾過処理を非効率化し、濾過継続時間を短く
する。また、このように濃縮・堆積した懸濁物質は洗浄
作業によっても剥離しにくく、洗浄作業の妨害となる。
That is, when the heights of the water collecting pipes 3 of the element 2 are all uniform as in the comparative example of FIG.
The distance between the lower collecting pipes 3 is reduced, and the upward water flow is obstructed by the collecting pipes 3. In order to prevent this, the interval between the lower collecting pipes 3 must be increased. However, in this case, the film filling rate decreases, and the film area decreases. In addition, in the comparative example of FIG. 8A, as a result of the upward flow being obstructed by the lower water collecting pipe 3, the water flow stagnates near the upper surface of the lower water collecting pipe 3, as shown in FIG. 8B. The suspended substance concentrates and accumulates on the upper surface portion and the hollow fiber membrane in the vicinity thereof, and the membrane in that portion is closed, and the effective membrane area decreases. A decrease in the effective membrane area appears as a decrease in the amount of filtered water or an increase in the differential pressure of filtration, making the filtration process inefficient and shortening the duration of filtration. Further, the suspended substance concentrated and deposited in this manner is difficult to be peeled off even by the washing operation, which hinders the washing operation.

【0038】これに対し、図1のように各エレメント2
を配設することにより、エレメント2同士の間隔を小さ
くし且つ隣接集水管3同士の間隔を大きくとることがで
き、膜充填率を向上させると共に各エレメント2間に原
水を高流速で流入させることができる。また、水流が図
1(d)のように集水管の間を縫うように流れることに
より、集水管3上部の膜面に懸濁物質が堆積しない。
On the other hand, as shown in FIG.
By disposing, the distance between the elements 2 can be reduced and the distance between the adjacent water collecting pipes 3 can be increased, so that the membrane filling rate is improved and the raw water flows between the elements 2 at a high flow rate. Can be. In addition, since the water flow is sewn between the collecting pipes as shown in FIG. 1D, no suspended matter is deposited on the film surface above the collecting pipe 3.

【0039】さらに、上記したような集水管の間を縫う
ような流れは、水流の乱流化を促進して膜面の撹拌を促
進するため、図8(a)のエレメントの如き膜面への懸
濁物質の濃縮・堆積を効果的に防ぐことができ、濾過効
率がアップする。
Further, such a flow as to sew between the collecting pipes promotes the turbulence of the water flow to promote the agitation of the membrane surface. Concentration and accumulation of suspended solids can be effectively prevented, and the filtration efficiency increases.

【0040】[0040]

【実施例】以下、実施例及び比較例を挙げて本発明を詳
細に説明する。
The present invention will be described below in detail with reference to examples and comparative examples.

【0041】実施例1は図1(a)〜(c)の構成と
し、a=50mm、b=30mm、c=5mmとした。
Example 1 has the configuration shown in FIGS. 1A to 1C, where a = 50 mm, b = 30 mm, and c = 5 mm.

【0042】比較例1は図8(a)の構成とし、a=5
0mm、c=5mmとした。
Comparative Example 1 has the configuration shown in FIG.
0 mm and c = 5 mm.

【0043】実施例1及び比較例1のいずれにおいて
も、膜エレメントをMLSS10000mg/lの活性
汚泥に浸漬し、膜透過フラックス0.3m3 /m2 /日
で濾過を行った。膜は公称孔径0.1μmのポリエチレ
ンMF膜を使用した。1エレメントの公称膜面積は4m
2 であり、これを5本集積したモジュールを試験に用い
た。このとき、膜モジュールの下部より、240NL/
min(膜濾過部空塔断面積当たり1Nm3 /m2 /m
in)で空気を曝気した。
In each of Example 1 and Comparative Example 1, the membrane element was immersed in activated sludge of MLSS10000 mg / l, and filtered at a membrane permeation flux of 0.3 m 3 / m 2 / day. The membrane used was a polyethylene MF membrane having a nominal pore size of 0.1 μm. Nominal membrane area of one element is 4m
2 , and a module in which five of these were integrated was used for the test. At this time, 240 NL /
min (1 Nm 3 / m 2 / m per cross-sectional area of an empty tower in the membrane filtration unit)
In) the air was aerated.

【0044】その結果、両者とも初期差圧は約5kPa
であったが、図8(a)のエレメントは約5日で50k
Pa以上まで差圧が上昇し、事実上濾過不能となった。
このとき、膜面には脱水ケーキ状の汚泥が大量に付着し
ていた。これに対し、本発明による図1のエレメントは
1ケ月経過後も差圧25kPa以下であり、十分に安定
運転できることが分かった。このエレメントを1ケ月経
過した時点で観察したところ、膜面にはほとんど汚泥の
付着が認められず、膜面の撹拌が十分に行われたことが
示された。
As a result, in both cases, the initial differential pressure was about 5 kPa
However, the element shown in FIG.
The differential pressure increased to Pa or more, and the filtration became practically impossible.
At this time, a large amount of dewatered cake-like sludge was attached to the membrane surface. On the other hand, it was found that the element of FIG. 1 according to the present invention had a differential pressure of 25 kPa or less even after the lapse of one month, and was able to operate sufficiently stably. Observation of this element one month later showed that almost no sludge adhered to the membrane surface, indicating that the membrane surface was sufficiently stirred.

【0045】[0045]

【発明の効果】以上詳述した通り、本発明の浸漬型膜分
離装置によれば、複数個のスクリーン状外圧型中空糸膜
エレメントを各エレメントのスクリーン面が原水の流通
方向と平行方向となるように配設し、かつ隣接するエレ
メントの原水流通方向上流側の端部の位置を原水流通方
向に異ならせたことにより、中空糸膜の破損の危険性を
増すことなく、膜間流路閉塞を効果的に防止して、長期
間にわたって高フラックスを得ることができる。
As described above in detail, according to the immersion type membrane separation device of the present invention, a plurality of screen-like external pressure type hollow fiber membrane elements are arranged such that the screen surface of each element is parallel to the flow direction of raw water. And the position of the end of the adjacent element on the upstream side in the raw water flow direction is made different in the raw water flow direction, thereby increasing the risk of breakage of the hollow fiber membranes, without blocking the flow path between the membranes. And a high flux can be obtained over a long period of time.

【0046】このような本発明の浸漬型膜分離装置は、
特に、懸濁溶液の膜濾過効率の向上及び安定化に極めて
有効である。
The immersion type membrane separation device of the present invention has the following features.
In particular, it is extremely effective in improving and stabilizing the membrane filtration efficiency of the suspension solution.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の膜分離装置における中空糸膜エレメン
トの配置を示すものであり、(a)図は平面図、(b)
図は正面図、(c)図は側面図である。(d)図は原水
の流れを示す模式図である。
FIG. 1 shows the arrangement of hollow fiber membrane elements in a membrane separation device of the present invention, wherein FIG. 1 (a) is a plan view and FIG.
The figure is a front view and the figure (c) is a side view. (D) is a schematic diagram showing the flow of raw water.

【図2】(a)図はスクリーン状外圧型中空糸膜エレメ
ントを示す正面図、(b)図は同平面図である。
FIG. 2 (a) is a front view showing a screen-shaped external pressure type hollow fiber membrane element, and FIG. 2 (b) is a plan view thereof.

【図3】従来のモジュールの設置方法を示す正面図であ
る。
FIG. 3 is a front view showing a conventional module installation method.

【図4】中空糸膜エレメントの原水流中での状態を示す
模式図である。
FIG. 4 is a schematic diagram showing a state of a hollow fiber membrane element in a raw water flow.

【図5】図4のZ部分の拡大図である。FIG. 5 is an enlarged view of a portion Z in FIG. 4;

【図6】中空糸膜両端の集水管保持部間の距離と、集水
管保持部近傍の中空糸膜の水平線に対する角度との関係
図である。
FIG. 6 is a diagram showing the relationship between the distance between the water collecting pipe holding parts at both ends of the hollow fiber membrane and the angle of the hollow fiber membrane near the water collecting pipe holding part with respect to the horizontal line.

【図7】中空糸膜両端の集水管保持部間の距離と中空糸
膜の張力との関係図である。
FIG. 7 is a diagram showing the relationship between the distance between the water collecting tube holding portions at both ends of the hollow fiber membrane and the tension of the hollow fiber membrane.

【図8】(a)図は比較例に係るエレメント配置を示す
正面図である。(b)図は懸濁物質の付着状況を示す模
式図である。
FIG. 8A is a front view showing an element arrangement according to a comparative example. (B) is a schematic diagram showing the state of adhesion of the suspended substance.

【符号の説明】[Explanation of symbols]

1 中空糸膜 2 スクリーン状外圧型中空糸膜エレメント 3 集水管 S スクリーン面 1 hollow fiber membrane 2 Screen type external pressure type hollow fiber membrane element 3 Water collection pipe S screen surface

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B01D 63/02 C02F 1/44 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) B01D 63/02 C02F 1/44

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 多数本の中空糸膜が並設され、該中空糸
膜の両端が集水管によって保持された中空糸膜エレメン
トを複数個槽内に配設してなる浸漬型膜分離装置におい
て、 各エレメントは、その中空糸膜の長手方向が原水の流通
方向と平行方向となるように設置されており、かつ、隣接するエレメントの集水管の原水流通方向における間
隔bが該集水管の外径aの0.4〜2倍であり、隣接す
るエレメントの集水管の原水流通方向と直交方向におけ
る間隔cが該集水管の外径aの0〜0.5倍であるよう
に、 隣接するエレメントの原水流通方向上流側の端部の
位置を該原水流通方向に異ならせたことを特徴とする
漬型膜分離装置。
1. A large number of hollow fiber membranes is arranged, the hollow fiber
In a submerged membrane separation device having a plurality of hollow fiber membrane elements in which both ends of a membrane are held by a water collecting pipe are arranged in a tank, the longitudinal direction of each element is parallel to the flow direction of raw water. In the direction of raw water flow of the water collection pipe of the adjacent element.
The distance b is 0.4 to 2 times the outer diameter a of the collecting pipe, and
Element in the direction perpendicular to the raw water flow direction
Interval c is 0 to 0.5 times the outer diameter a of the collecting pipe.
, The immersion is characterized in that at different positions of the end portion of the raw water flow direction upstream side of the adjacent elements to raw water flow direction
Pickled membrane separation device.
【請求項2】 請求項1において、該中空糸膜両端の保
持部間の距離Kが、中空糸膜を最も緊張した状態で保持
した場合の間隔K maxの94〜98%であることを特
徴とする浸漬型膜分離装置。
2. The method according to claim 1, wherein both ends of said hollow fiber membrane are maintained.
The distance K between the holding parts keeps the hollow fiber membrane in the most tensioned state
Is between 94% and 98% of the interval K max
Immersion type membrane separation equipment.
JP30930896A 1996-11-20 1996-11-20 Immersion type membrane separation device Expired - Lifetime JP3536558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30930896A JP3536558B2 (en) 1996-11-20 1996-11-20 Immersion type membrane separation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30930896A JP3536558B2 (en) 1996-11-20 1996-11-20 Immersion type membrane separation device

Publications (2)

Publication Number Publication Date
JPH10146520A JPH10146520A (en) 1998-06-02
JP3536558B2 true JP3536558B2 (en) 2004-06-14

Family

ID=17991455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30930896A Expired - Lifetime JP3536558B2 (en) 1996-11-20 1996-11-20 Immersion type membrane separation device

Country Status (1)

Country Link
JP (1) JP3536558B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0913814B1 (en) * 2008-10-03 2019-06-18 Vlaamse Instelling Voor Technologisch Onderzoek (Vito) DEVICE FOR FILTERING LIQUIDS AND USING THE DEVICE
CN103118769A (en) * 2010-07-13 2013-05-22 川崎重工业株式会社 Immersion type membrane filtration unit and immersion type membrane filtration apparatus

Also Published As

Publication number Publication date
JPH10146520A (en) 1998-06-02

Similar Documents

Publication Publication Date Title
EP1043276B1 (en) Apparatus and method for treating water
JP5561354B2 (en) Filtration device
JP3645814B2 (en) Circulating aeration system for submerged thin film modules
TW320661B (en)
JP3322206B2 (en) Immersion type membrane separation device
JP5073076B2 (en) Membrane separation unit
JPH084722B2 (en) Membrane separation device
JPH0975682A (en) Hollow fiber membrane integrated module
JP5497309B2 (en) Hollow fiber membrane module and water treatment device
JP2004344848A (en) Membrane separation method and device
JP3536558B2 (en) Immersion type membrane separation device
JP4431682B2 (en) Activated sludge treatment equipment
JP2009240911A (en) Air diffusion apparatus and water treatment facility having membrane concentrator provided with the air diffusion apparatus
JP3167531B2 (en) Septic tank
JP2000271457A (en) Operation of spiral type membrane element and spiral type membrane module and spiral type membrane module
JP2013000714A (en) Filtering device and method for suspension water
JPH09131517A (en) Hollow fiber membrane module and method for using the same
JP4216373B2 (en) Activated sludge treatment equipment
JP4285805B2 (en) Membrane separation device and membrane separation method
JP3608353B2 (en) Membrane module and water treatment apparatus using the same
JP3418443B2 (en) Membrane module
JP2000084554A (en) Method for operating water treating apparatus having membrane separator
JP2001038178A (en) Separation membrane module
JP3863263B2 (en) Filtration method using hollow fiber membrane module
JP2000342935A (en) Filter apparatus

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040308

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080326

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 9