JP3532182B2 - Ground fault detection device for ungrounded electric circuit, ground fault protection relay using the same, and ground fault detection method - Google Patents

Ground fault detection device for ungrounded electric circuit, ground fault protection relay using the same, and ground fault detection method

Info

Publication number
JP3532182B2
JP3532182B2 JP2001361227A JP2001361227A JP3532182B2 JP 3532182 B2 JP3532182 B2 JP 3532182B2 JP 2001361227 A JP2001361227 A JP 2001361227A JP 2001361227 A JP2001361227 A JP 2001361227A JP 3532182 B2 JP3532182 B2 JP 3532182B2
Authority
JP
Japan
Prior art keywords
zero
ground fault
phase current
phase voltage
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001361227A
Other languages
Japanese (ja)
Other versions
JP2003164055A (en
Inventor
力 八木
博昭 上垣
Original Assignee
財団法人 関西電気保安協会
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人 関西電気保安協会 filed Critical 財団法人 関西電気保安協会
Priority to JP2001361227A priority Critical patent/JP3532182B2/en
Publication of JP2003164055A publication Critical patent/JP2003164055A/en
Application granted granted Critical
Publication of JP3532182B2 publication Critical patent/JP3532182B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば6.6kV
高圧の非接地系電路で発生した地絡事故を検出し、その
地絡事故の発生箇所が構内あるいは構外のいずれである
かを判定する地絡検出装置とこれを用いた地絡保護継電
器および地絡検出方法に関する。
TECHNICAL FIELD The present invention relates to, for example, 6.6 kV.
A ground fault detection device that detects a ground fault accident that occurs in a high-voltage ungrounded electric circuit and determines whether the location of the ground fault accident is on the premises or outside the premises, and a ground fault protective relay and a ground fault protection relay using the ground fault detection device. A method for detecting a fault.

【0002】[0002]

【従来の技術】例えば、6.6kVの高圧配電線からな
る非接地系電路において、抵抗地絡や間欠地絡などの地
絡事故が発生した場合、地絡事故を検出すると共に、そ
の地絡事故の発生箇所が構内あるいは構外のいずれであ
るかを判定する地絡保護継電器を設けることにより、構
内における電気設備の保護を図る必要がある。
2. Description of the Related Art For example, when a ground fault, such as a resistance ground fault or an intermittent ground fault, occurs in an ungrounded electric circuit composed of a 6.6 kV high-voltage distribution line, the ground fault is detected and the ground fault is detected. It is necessary to protect the electrical equipment on the premises by providing a ground fault protection relay that determines whether the location of the accident is on the premises or outside the premises.

【0003】図9は、例えば6.6kVの高圧配電線か
らなる非接地系電路1を示す。この非接地系電路1で
は、高圧配電線(系統母線)に開閉器2を介して各種の
負荷3が接続されており、その受電点である開閉器2か
ら負荷側の電路を構内と称して保護範囲とし、系統側の
電路を構外と称して保護範囲外としているのが一般的で
ある。この非接地系電路1の構内では、地絡事故を検出
してその地絡事故の発生箇所が構内あるいは構外のいず
れであるかを判定する地絡検出装置5と、その地絡検出
装置5から出力される判定結果に基づいて開閉器2を選
択的に開閉動作させるリレー4とからなり、受電する負
荷設備を保護するための地絡保護継電器10が設置され
ている。
FIG. 9 shows an ungrounded electric circuit 1 made of, for example, a 6.6 kV high-voltage distribution line. In this non-grounded electric circuit 1, various loads 3 are connected to a high-voltage distribution line (system bus) via a switch 2, and the electric circuit on the load side from the switch 2 which is the power receiving point is called the premises. It is common to set the protection range, and the electric circuit on the system side is referred to as "outside the building" and is outside the protection range. In the ground of this non-grounded electric circuit 1, a ground fault detection device 5 that detects a ground fault and determines whether the location of the ground fault is on the premises or outside the ground, and from the ground fault detection device 5. A ground fault protection relay 10 for protecting the load equipment that receives power is installed, which is composed of a relay 4 that selectively opens and closes the switch 2 based on the output determination result.

【0004】地絡事故の発生により非接地系電路1に現
出した零相電圧Voを検出する計器用変圧器(ZPC)
6と、その地絡事故の発生により非接地系電路1に流れ
る零相電流Ioを検出する零相変流器(ZCT)7とが
地絡検出装置5に接続されている。この地絡検出装置5
は、零相電圧Voおよび零相電流Ioの大きさ、および
零相電圧Voに対する零相電流Ioの位相差を監視する
位相差検出回路8と、その検出結果に基づいて地絡事故
の発生箇所が構内あるいは構外のいずれであるかを判定
する判定回路9とで主要部が構成されている。なお、位
相差検出回路8では、零相電圧Voに対する零相電流I
oの位相差の監視を容易にするため、零相電圧Vo及び
零相電流Ioの双方について波形整形回路を用いるのが
通例である。
An instrument transformer (ZPC) for detecting the zero-phase voltage Vo appearing in the ungrounded electric circuit 1 due to the occurrence of a ground fault accident.
6 and a zero-phase current transformer (ZCT) 7 that detects the zero-phase current Io flowing in the non-grounded electric circuit 1 due to the occurrence of the ground fault, are connected to the ground fault detection device 5. This ground fault detection device 5
Is a phase difference detection circuit 8 that monitors the magnitudes of the zero-phase voltage Vo and the zero-phase current Io and the phase difference of the zero-phase current Io with respect to the zero-phase voltage Vo, and the location of the ground fault accident based on the detection result. The main part is composed of a decision circuit 9 for deciding whether it is inside or outside the premises. In the phase difference detection circuit 8, the zero phase current I with respect to the zero phase voltage Vo is
It is customary to use a waveform shaping circuit for both the zero-phase voltage Vo and the zero-phase current Io in order to facilitate monitoring of the phase difference of o.

【0005】この地絡保護継電器10では、非接地系電
路1において地絡事故が発生した場合、その非接地系電
路1に現出した零相電圧Voを計器用変圧器6により検
出すると共に、その地絡事故の発生により非接地系電路
1に流れる零相電流Ioを零相変流器7により検出す
る。位相差検出回路8では、この検出された零相電圧V
oを所定の角度だけ移相し、その移相後の零相電圧Vo
および零相電流Ioを波形整形した上で、その波形整形
後の零相電圧Voおよび零相電流IoをAND回路に入
力し、そのAND回路の出力を位相角に変換することに
より、零相電圧Voに対する零相電流Ioの位相差を監
視する。判定回路9では、零相電圧Voおよび零相電流
Ioの双方が所定の大きさを超えたという条件に加え
て、零相電圧Voに対して零相電流Ioが例えば遅れ3
0度から進み120度の範囲内であれば、地絡事故の発
生箇所が構内であると判定し、その他の位相差の時は、
地絡事故の発生箇所が構外であると判定する。
In this ground fault protection relay 10, when a ground fault occurs in the non-grounded electric circuit 1, the zero-phase voltage Vo appearing in the non-grounded electric circuit 1 is detected by the instrument transformer 6 and The zero-phase current Io flowing in the non-grounded electric circuit 1 due to the occurrence of the ground fault is detected by the zero-phase current transformer 7. In the phase difference detection circuit 8, the detected zero phase voltage V
o by a predetermined angle, and the zero-phase voltage Vo after the phase shift
And the zero-phase current Io are waveform-shaped, the zero-phase voltage Vo and the zero-phase current Io after the waveform shaping are input to the AND circuit, and the output of the AND circuit is converted into a phase angle. The phase difference of the zero-phase current Io with respect to Vo is monitored. In the determination circuit 9, in addition to the condition that both the zero-phase voltage Vo and the zero-phase current Io exceed a predetermined magnitude, the zero-phase current Io is delayed by 3 with respect to the zero-phase voltage Vo, for example.
If it goes from 0 degree and is within the range of 120 degrees, it is determined that the location of the ground fault accident is on the premises, and at other phase differences,
It is determined that the location of the ground fault is off-site.

【0006】この判定回路9からの判定出力に基づい
て、地絡事故の発生箇所が構内である場合には、リレー
4を動作させることにより開閉器2を開放して負荷側を
系統から切り離し、構内における負荷設備を保護すると
共に、構内での地絡事故の復旧作業を実行する。一方、
地絡事故の発生箇所が構外である場合には、構内での地
絡事故発生の場合と異なり、リレー4を動作させる必要
がないことから、開閉器2を開放することなく系統から
の切り離しはない。
Based on the judgment output from the judgment circuit 9, when the location of the ground fault accident is on the premises, the relay 4 is operated to open the switch 2 to disconnect the load side from the grid. Protect the load equipment on the premises and also perform ground fault recovery work on the premises. on the other hand,
When the location of the ground fault is outside the building, unlike the case of the ground fault inside the building, it is not necessary to operate the relay 4, so it is possible to disconnect from the system without opening the switch 2. Absent.

【0007】[0007]

【発明が解決しようとする課題】ところで、前述した地
絡検出装置5では、地絡事故の発生時、零相電圧Voお
よび零相電流Ioの大きさに加え、零相電圧Voに対す
る零相電流Ioの位相差を監視することにより、その地
絡事故の発生箇所が構内あるいは構外のいずれであるか
を判定することから以下のような問題があった。
By the way, in the ground fault detection device 5 described above, when a ground fault occurs, in addition to the magnitudes of the zero phase voltage Vo and the zero phase current Io, the zero phase current with respect to the zero phase voltage Vo. There is the following problem because it is determined whether the location of the ground fault accident is inside or outside the building by monitoring the phase difference of Io.

【0008】前述した地絡事故が抵抗地絡の場合、零相
電圧Voおよび零相電流Ioが正弦波状の波形となるた
め、零相電圧Voに対する零相電流Ioの位相差を監視
することは容易であるが、地絡事故が間欠地絡の場合に
は、非接地系電路1と大地間に形成された対地静電容量
に充電された電荷が間欠地絡により瞬時に放電する現象
を繰り返すため、零相電圧Voおよび零相電流Ioが正
弦波状の波形とはならず、急峻なパルス状の波形とな
る。
When the above-mentioned ground fault accident is a resistance ground fault, the zero-phase voltage Vo and the zero-phase current Io have sinusoidal waveforms. Therefore, it is not possible to monitor the phase difference of the zero-phase current Io with respect to the zero-phase voltage Vo. It is easy, but if the ground fault is an intermittent ground fault, the phenomenon in which the electric charge charged to the ground capacitance formed between the ungrounded electric circuit 1 and the ground is instantaneously discharged due to the intermittent ground fault is repeated. Therefore, the zero-phase voltage Vo and the zero-phase current Io do not have a sinusoidal waveform but a steep pulse waveform.

【0009】特に、6.6kVの高圧配電線からなる非
接地系電路1では、間欠地絡が発生する場合が多いとい
うのが現状である。これに対して、従来の地絡検出装置
5では、位相差検出回路8の波形整形回路が基本周波数
に対応して整形された波形を出力するものであって、不
規則かつ高周波成分を含む波形、つまり、間欠地絡にお
ける急峻なパルス状の波形を持つ零相電圧Voおよび零
相電流Ioでは、その零相電圧Voに対する零相電流I
oの位相差を監視することで、地絡事故の発生箇所が構
内あるいは構外のいずれであるかを判定することが困難
であった。
In particular, in the current situation, in the ungrounded electric circuit 1 composed of a 6.6 kV high-voltage distribution line, an intermittent ground fault often occurs. On the other hand, in the conventional ground fault detection device 5, the waveform shaping circuit of the phase difference detection circuit 8 outputs a waveform shaped corresponding to the fundamental frequency, and a waveform including an irregular and high frequency component. That is, with the zero-phase voltage Vo and the zero-phase current Io having a steep pulse-like waveform in the intermittent ground fault, the zero-phase current I with respect to the zero-phase voltage Vo is
By monitoring the phase difference of o, it is difficult to determine whether the location of the ground fault accident is on the premises or outside the premises.

【0010】なお、前述した間欠地絡の場合だけでな
く、抵抗地絡の場合でも零相電流Ioが短時間で間欠的
に流れることがあり、この場合も、不規則かつ高周波成
分を含む波形を持つ零相電圧Voおよび零相電流Ioと
なるため、零相電圧Voに対する零相電流Ioの位相差
を監視することで、地絡事故の発生箇所が構内あるいは
構外のいずれであるかを判定することが困難であった。
The zero-phase current Io may flow intermittently in a short time not only in the case of the intermittent ground fault described above but also in the case of the resistance ground fault. Also in this case, the waveform including the irregular and high frequency components is also present. Since the zero-phase voltage Vo and the zero-phase current Io have the following, the phase difference of the zero-phase current Io with respect to the zero-phase voltage Vo is monitored to determine whether the location of the ground fault accident is on the premises or outside the premises. It was difficult to do.

【0011】また、零相電圧Voおよび零相電流Ioの
高周波成分の極性から、地絡事故の発生箇所が構内ある
いは構外のいずれであるかを判定する手段がある。つま
り、零相電圧Voおよび零相電流Ioの高周波成分の立
上がりまたは立下りが同一方向であれば、地絡事故の発
生箇所が構内であり、その立上りまたは立下りが異なる
方向であれば、地絡事故の発生箇所が構外であると判定
するようにしている。
There is also means for determining whether the location of the ground fault is on the premises or outside the premises based on the polarities of the high frequency components of the zero phase voltage Vo and the zero phase current Io. That is, if the rising or falling of the high-frequency components of the zero-phase voltage Vo and the zero-phase current Io is in the same direction, the location of the ground fault is on the premises, and if the rising or falling is in different directions, the ground It is decided that the location of the accident is off-site.

【0012】しかしながら、この零相電圧Voおよび零
相電流Ioの高周波成分の極性に基づく判定では、高周
波成分において零相電流Ioが大きいにもかかわらず、
零相電圧Voが小さい場合が多い。つまり、高圧の非接
地系電路1において形成される零相回路では、地絡抵抗
のほかに高圧ケーブルによる対地静電容量が形成されて
いることから、地絡事故により零相電圧Voの高周波成
分が発生した場合、零相電流Ioが対地静電容量に流れ
ることになり、その零相電流Ioの周波数が高いほどよ
く流れることから、零相電流Ioが大きいにもかかわら
ず、零相電圧Voが小さい。
However, in the determination based on the polarities of the high frequency components of the zero phase voltage Vo and the zero phase current Io, the zero phase current Io is large in the high frequency components,
The zero-phase voltage Vo is often small. That is, in the zero-phase circuit formed in the high-voltage ungrounded electric circuit 1, the ground capacitance is formed by the high-voltage cable in addition to the ground fault resistance. Therefore, a high-frequency component of the zero-phase voltage Vo due to a ground fault occurs. Occurs, the zero-phase current Io flows to the ground capacitance, and the higher the frequency of the zero-phase current Io, the better the flow. Therefore, even if the zero-phase current Io is large, the zero-phase voltage Vo is large. Is small.

【0013】一方、地絡保護継電器10は、零相電圧V
oおよび零相電流Ioについてその動作可能範囲が規定
されているため、前述したように零相電圧Voが小さく
なると、地絡保護継電器10の動作可能範囲を逸脱する
ことになり、地絡事故の発生箇所が構内あるいは構外の
いずれであるかを判定することが困難となってくる。特
に、最近の配電系統では規模が大きくなる傾向にあり、
地絡事故時に零相電圧Voが出にくい傾向もあり、事故
判定のための零相電圧Voの閾値が定めにくくなってい
るという課題もある。
On the other hand, the ground fault protection relay 10 has a zero phase voltage V
Since the operable range of o and the zero-phase current Io is defined, when the zero-phase voltage Vo becomes small as described above, the range of the ground fault protection relay 10 is deviated, and a ground fault accident occurs. It becomes difficult to determine whether the occurrence location is inside or outside the premises. Especially in recent distribution systems, the scale tends to increase,
There is also a problem that the zero-phase voltage Vo is unlikely to be generated at the time of a ground fault, and there is also a problem that it is difficult to set the threshold value of the zero-phase voltage Vo for the accident determination.

【0014】そこで、本発明は前記問題点に鑑みて提案
されたもので、その目的とするところは、正弦波状の零
相電圧および零相電流に基づいて地絡発生箇所が構内で
あるか否かを判定できるだけでなく、急峻なパルス状ま
たは間欠状の零相電圧および零相電流に基づいても地絡
発生箇所が構内であるか否かを容易かつ確実に判定し、
また、配電系統の規模が大きくなって零相電圧が出にく
い状況下にあっても、地絡事故が構内で発生したかどう
かを確実に判定し得る非接地系電路の地絡検出装置とこ
れを用いた地絡保護継電器及び地絡検出方法を提供する
ことにある。
Therefore, the present invention has been proposed in view of the above problems, and an object of the present invention is to determine whether or not the ground fault occurrence location is on the premises based on the sinusoidal zero-phase voltage and zero-phase current. It is not only possible to determine whether or not it is also possible to easily and reliably determine whether the ground fault occurrence location is on the premises based on the steep pulse or intermittent zero-phase voltage and zero-phase current,
In addition, even if the scale of the distribution system is large and it is difficult to generate zero-phase voltage, it is possible to reliably determine whether or not a ground fault has occurred on the premises and a ground fault detection device for an ungrounded electric circuit. An object of the present invention is to provide a ground fault protection relay and a ground fault detection method using the same.

【0015】[0015]

【課題を解決するための手段】前記目的を達成するため
の技術的手段として、本発明装置は、非接地系電路で発
生した地絡事故によりその非接地系電路に現出した零相
電圧を検出する零相電圧検出手段と、前記地絡事故の発
生時に非接地系電路に流れる零相電流を検出する零相電
流検出手段とが接続された地絡検出装置において、前記
零相電圧検出手段により得られた零相電圧の瞬時値を時
間で微分する零相電圧微分手段と、その零相電圧微分手
段により算出された微分値を前記零相電流に対して所定
の演算式でもって演算する演算手段と、その演算結果に
基づいて前記地絡事故の発生箇所が構内あるいは構外の
いずれであるかを判定する判定手段とを具備したことを
特徴とする。
As a technical means for achieving the above object, the device of the present invention provides a zero-phase voltage developed in a non-grounded electric circuit due to a ground fault occurring in the non-grounded electric circuit. In the ground fault detecting device, the zero phase voltage detecting means for detecting and the zero phase current detecting means for detecting the zero phase current flowing in the non-grounded electric circuit at the time of occurrence of the ground fault are connected. The zero-phase voltage differentiating means for differentiating the instantaneous value of the zero-phase voltage obtained by the above, and the differential value calculated by the zero-phase voltage differentiating means are calculated with respect to the zero-phase current by a predetermined calculation formula. It is characterized by comprising a computing means and a determining means for deciding whether the location of the ground fault accident is on-premises or off-site based on the computation result.

【0016】なお、前記地絡検出装置に、その地絡検出
装置の出力でもって、非接地系電路に設けられた開閉器
を動作させるリレーを付加すれば、地絡保護継電器を構
成することが可能である。
A ground fault protection relay can be constructed by adding a relay for operating the switch provided in the non-grounded electric circuit to the ground fault detection device by the output of the ground fault detection device. It is possible.

【0017】また、本発明方法は、非接地系電路で発生
した地絡事故によりその非接地系電路に現出した零相電
圧および零相電流を検出し、その検出された零相電圧の
瞬時値を時間で微分した微分値を前記零相電流に対して
所定の演算式でもって演算し、その演算結果に基づいて
前記地絡事故の発生箇所が構内あるいは構外のいずれで
あるかを判定することを特徴とする。
Further, the method of the present invention detects the zero-phase voltage and the zero-phase current appearing in the non-grounded electric circuit due to a ground fault occurring in the non-grounded electric circuit, and detects the detected zero-phase voltage instantaneously. A differential value obtained by differentiating the value with respect to time is calculated by a predetermined calculation formula with respect to the zero-phase current, and it is determined whether the location of the ground fault accident is on-premises or off-site based on the calculation result. It is characterized by

【0018】前記本発明装置および本発明方法における
演算は、零相電流を、前記零相電圧の瞬時値を時間で微
分した微分値で除算する演算式に基づいて処理すること
が望ましく、また、零相電流と、前記零相電圧の瞬時値
を時間で微分した微分値とを乗算する演算式に基づいて
処理することも可能である。
It is desirable that the calculation in the apparatus and method of the present invention is performed based on an arithmetic expression for dividing the zero-phase current by a differential value obtained by differentiating the instantaneous value of the zero-phase voltage with time. It is also possible to perform processing based on an arithmetic expression that multiplies the zero-phase current and the differential value obtained by differentiating the instantaneous value of the zero-phase voltage with time.

【0019】本発明では、零相電圧の瞬時値を時間で微
分した微分値を零相電流に対して所定の演算式、つま
り、零相電流を、前記零相電圧の瞬時値を時間で微分し
た微分値で除算する演算式、あるいは、零相電流と、前
記零相電圧の瞬時値を時間で微分した微分値とを乗算す
る演算式でもって演算することにより、その演算結果
は、地絡事故の発生箇所が構内であれば、常に正の値と
なり、地絡事故の発生箇所が構外であれば、常に負の値
となる。これは、零相電圧および零相電流が商用周波数
に限らず任意の周波数について成立するため、急峻なパ
ルス状または間欠状の波形を持つ零相電圧および零相電
流が現出しても、地絡事故の発生箇所が構内あるいは構
外のいずれであるかを容易かつ確実に判定することがで
きる。
In the present invention, the differential value obtained by differentiating the instantaneous value of the zero-phase voltage with respect to time is subjected to a predetermined arithmetic expression with respect to the zero-phase current, that is, the zero-phase current is differentiated with respect to the instantaneous value of the zero-phase voltage with respect to time. The operation result is divided by the calculated differential value, or the calculation result is calculated by multiplying the zero-phase current and the differential value obtained by differentiating the instantaneous value of the zero-phase voltage with time. If the location of the accident is on the premises, it will always be a positive value, and if the location of the ground fault is off-site, it will always be a negative value. This is because the zero-phase voltage and zero-phase current are satisfied not only at the commercial frequency but also at any frequency, so even if a zero-phase voltage and zero-phase current with steep pulse or intermittent waveforms appear, the ground fault occurs. It is possible to easily and reliably determine whether the location of the accident is inside or outside the premises.

【0020】また、この非接地系電路では、地絡電流が
零で、しかも零相電圧が無い場合でも残留零相電流が存
在する場合がある。これは、非接地系電路の構内におけ
る対地静電容量(対地アドミタンス)の不平衡によって
生じるもので、この不平衡は、例えば非接地系電路に接
続される電気設備によって生じ、この接続または切り離
しにより零相電流が変動する。従って、零相電流を検出
しても地絡電流自体を検出していることにはならず、地
絡していない状態で発生している残留零相電流の大きさ
だけ誤差が生じる。そこで、本発明では、前記零相電流
検出手段および零相電圧検出手段に接続され、非接地系
電路の構内における対地静電容量の不平衡により流れる
零相電流の不平衡成分を検出する不平衡成分検出手段
と、その不平衡成分検出手段により検出された不平衡成
分を前記零相電流から差し引いた値を算出する減算手段
とを具備することが望ましい。
Further, in this non-grounded circuit, there may be a residual zero-phase current even when the ground fault current is zero and there is no zero-phase voltage. This is caused by the imbalance of the ground capacitance (ground admittance) in the premises of the ungrounded electric circuit. This unbalance is caused by, for example, electrical equipment connected to the ungrounded electric circuit, and by this connection or disconnection. Zero-phase current fluctuates. Therefore, even if the zero-phase current is detected, the ground-fault current itself is not detected, and an error occurs by the magnitude of the residual zero-phase current generated in the state where there is no ground fault. Therefore, in the present invention, an unbalanced element that is connected to the zero-phase current detection means and the zero-phase voltage detection means and detects the unbalanced component of the zero-phase current that flows due to the unbalanced capacitance to ground in the ground of the ungrounded electric circuit. It is preferable to include a component detecting means and a subtracting means for calculating a value obtained by subtracting the unbalanced component detected by the unbalanced component detecting means from the zero-phase current.

【0021】このように非接地系電路の構内における対
地静電容量の不平衡により流れる零相電流の不平衡成分
を検出し、前記零相電流からその不平衡成分を差し引い
た値に対して零相電圧の微分値を所定の演算式でもって
演算することにより、対地静電容量の不平衡による零相
電流の不平衡成分を除外することができるので、演算精
度が高くなり、微小な地絡事故の検出が可能となる。
As described above, the unbalanced component of the zero-phase current flowing due to the unbalanced capacitance to ground in the ground of the ungrounded electric circuit is detected, and the value obtained by subtracting the unbalanced component from the zero-phase current is zero. By calculating the differential value of the phase voltage with a predetermined calculation formula, it is possible to exclude the unbalanced component of the zero-phase current due to the unbalanced capacitance to ground. It is possible to detect an accident.

【0022】[0022]

【発明の実施の形態】図1は本発明の実施形態で、例え
ば6.6kVの高圧配電線からなる非接地系電路1に設
けられた地絡検出装置20を有する地絡保護継電器21
を示す。非接地系電路1においては、高圧配電線(系統
母線)に開閉器2を介して各種の負荷3が接続され、そ
の受電点である開閉器2から負荷側の電路を構内と称し
て保護範囲とするのに対してその系統側の電路を構外と
称して保護範囲外とする。この非接地系電路1の構内に
設置された地絡検出装置20は、地絡事故を検出してそ
の地絡事故の発生箇所が構内あるいは構外のいずれであ
るかを判定する。受電する負荷設備を保護するため、非
接地系電路1に設置された地絡保護継電器21は、前記
地絡検出装置20と、その地絡検出装置20から出力さ
れる判定結果に基づいて開閉器2を選択的に開閉動作さ
せるリレー4とからなる。なお、地絡検出装置20は、
前述した高圧配電線以外の特別高圧配電線や低圧配電線
からなる他の非接地系電路にも適用可能である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment of the present invention. For example, a ground fault protection relay 21 having a ground fault detection device 20 provided in an ungrounded electric circuit 1 made of a 6.6 kV high voltage distribution line.
Indicates. In the non-grounded electric circuit 1, various loads 3 are connected to a high-voltage distribution line (system busbar) via a switch 2, and the electric circuit on the load side from the switch 2 which is the power receiving point is called a premises. On the other hand, the electric circuit on the system side is called off-site and out of the protection range. The ground fault detection device 20 installed on the premises of the non-grounded electric circuit 1 detects a ground fault and determines whether the location of the ground fault is on the premises or outside the premises. The ground fault protection relay 21 installed in the non-grounded electric circuit 1 in order to protect the load facility that receives the power is a switch based on the ground fault detection device 20 and a determination result output from the ground fault detection device 20. And a relay 4 for selectively opening and closing 2. The ground fault detection device 20 is
It can also be applied to other non-grounded electric circuits that include special high-voltage distribution lines and low-voltage distribution lines other than the above-mentioned high-voltage distribution lines.

【0023】図1のハードウェア構成で示すように地絡
事故の発生により非接地系電路1に現出した零相電圧V
oを検出する零相電圧検出手段である計器用変圧器(Z
PC)6と、地絡事故の発生により流れる零相電流Io
を検出する零相電流検出手段である零相変流器(ZC
T)7とが地絡検出装置20に接続されている。
As shown in the hardware configuration of FIG. 1, the zero-phase voltage V appearing in the ungrounded electric circuit 1 due to the occurrence of a ground fault.
A transformer for an instrument (Z
PC) 6 and zero-phase current Io flowing due to occurrence of ground fault
Zero phase current transformer (ZC
T) 7 is connected to the ground fault detection device 20.

【0024】この地絡検出装置20は、計器用変圧器6
から出力される零相電圧Voの瞬時値を時間で微分する
零相電圧微分手段である微分回路11と、零相変流器7
から出力される零相電流Ioを、微分回路11により算
出された微分値で除算する演算手段である除算回路12
と、その除算値に基づいて地絡事故の発生箇所が構内あ
るいは構外のいずれであるかを判定する判定手段である
判定回路14とで主要部が構成されている。なお、この
実施形態の地絡検出装置20では、除算回路12と判定
回路14との間に、除算回路12から出力される除算値
を所定の時間内で積分する積分回路13を介挿してい
る。
This ground fault detection device 20 includes a transformer 6 for instruments.
And a zero-phase current transformer 7, which is a zero-phase voltage differentiating means for differentiating the instantaneous value of the zero-phase voltage Vo output from
The zero-phase current Io output from the division circuit 12 that is a calculation unit that divides the zero-phase current Io by the differential value calculated by the differentiation circuit 11.
And a determination circuit 14 that is a determination means for determining whether the location of the ground fault accident is on the premises or on the outside based on the division value. In the ground fault detection device 20 of this embodiment, an integration circuit 13 that integrates the division value output from the division circuit 12 within a predetermined time is inserted between the division circuit 12 and the determination circuit 14. .

【0025】図2はこの実施形態の地絡検出装置20を
デジタル処理により実現する場合の制御アルゴリズムを
示す。この地絡検出装置20では、非接地系電路1にお
いて地絡事故が発生した場合、その非接地系電路1に現
出した零相電圧Voを計器用変圧器6により検出すると
共に、その零相電圧Voの発生により非接地系電路1に
流れる零相電流Ioを零相変流器7により検出する(ST
EP1)。この検出された零相電圧Voおよび零相電流I
oをA/D変換(STEP2)した上でメモリに格納する
(STEP3)。
FIG. 2 shows a control algorithm when the ground fault detection device 20 of this embodiment is realized by digital processing. In the ground fault detection device 20, when a ground fault occurs in the non-grounded electric line 1, the zero-phase voltage Vo appearing in the non-grounded electric line 1 is detected by the instrument transformer 6, and the zero phase is detected. The zero-phase current Io flowing in the non-grounded electric circuit 1 due to the generation of the voltage Vo is detected by the zero-phase current transformer 7 (ST
EP1). The detected zero-phase voltage Vo and zero-phase current I
A is A / D converted (STEP2) and then stored in the memory (STEP3).

【0026】なお、従来の場合と同様、地絡事故の発生
箇所が構内あるいは構外のいずれであるかを判定するに
際しては、所定の演算処理に移行するに先立って、これ
ら零相電圧Voおよび零相電流Ioの双方が所定の大き
さを超えたという条件を加味することも可能である。
As in the conventional case, when determining whether the location of the ground fault accident is on the premises or outside the premises, these zero-phase voltage Vo and zero are applied prior to proceeding to a predetermined calculation process. It is also possible to take into consideration the condition that both of the phase currents Io exceed a predetermined magnitude.

【0027】次に、零相電圧Voの瞬時値を微分回路1
1により時間微分する。この微分回路11では、ある時
間tにおける零相電圧Voの瞬時値Vo(t)と、所定
数のサンプリング時間経過後t’の零相電圧Voの瞬時
値Vo(t’)との差を算出することにより、零相電圧
Voの微分値dVo/dtを得る(STEP4)。なお、零
相電圧Voの時間微分は、その零相電圧Voのフリーエ
変換を行った後に逆フリーエ変換を行い、その関数を微
分することによっても可能である。
Next, the instantaneous value of the zero-phase voltage Vo is differentiated by the differentiating circuit 1.
Differentiate time by 1. The differentiating circuit 11 calculates the difference between the instantaneous value Vo (t) of the zero-phase voltage Vo at a certain time t and the instantaneous value Vo (t ') of the zero-phase voltage Vo at t ′ after the elapse of a predetermined number of sampling times. By doing so, the differential value dVo / dt of the zero-phase voltage Vo is obtained (STEP 4). Note that the zero-phase voltage Vo can be differentiated with time by performing a Freeer conversion of the zero-phase voltage Vo, then performing an inverse Freeer conversion, and differentiating the function.

【0028】そして、除算回路12では、零相電流Io
を零相電圧Voの微分値dVo/dtで除算する(STEP
5)。ここで、除算値Io/(dVo/dt)の分母と
なる零相電圧Voの微分値dVo/dtがゼロとなる場
合には除算処理が不可能となる。その場合には、除算処
理の結果である除算値Io/(dVo/dt)がゼロと
なるような例外的な処理が必要となる。
Then, in the division circuit 12, the zero-phase current Io
Is divided by the differential value dVo / dt of the zero-phase voltage Vo (STEP
5). Here, when the differential value dVo / dt of the zero-phase voltage Vo, which is the denominator of the division value Io / (dVo / dt), becomes zero, the division process becomes impossible. In that case, exceptional processing is required so that the division value Io / (dVo / dt), which is the result of the division processing, becomes zero.

【0029】この除算値Io/(dVo/dt)に基づ
いて地絡事故の発生箇所が構内あるいは構外のいずれで
あるかを判定する。つまり、地絡事故の発生箇所が構内
である場合、零相電圧Voに対して零相電流Ioが90
°進み位相となっている。そこで、計器用変圧器6によ
り検出される零相電圧VoをVsinωtとすると、零
相変流器7により検出される零相電流Ioは、Isin
(ωt+90°)=Icosωtとなる。
Based on this division value Io / (dVo / dt), it is determined whether the location of the ground fault accident is on-premises or off-premises. That is, when the location of the ground fault accident is on the premises, the zero-phase current Io is 90 with respect to the zero-phase voltage Vo.
° Leading phase. Therefore, assuming that the zero-phase voltage Vo detected by the instrument transformer 6 is Vsinωt, the zero-phase current Io detected by the zero-phase current transformer 7 is Isin.
(Ωt + 90 °) = Icosωt.

【0030】一方、前述したように計器用変圧器6によ
り検出された零相電圧Voの瞬時値を微分回路11によ
り時間微分した微分値dVo/dtは、d(Vsinω
t)/dt=ωVcosωtとなり、前述の零相電流I
oと同じ関数(cosωt)となって両者の違いは係数
ωだけである。従って、前述の零相電流Ioを除算回路
12により微分値dVo/dtで除算すると、その除算
値Io/(dVo/dt)は、I/ωVとなり、常に正
の値となる。
On the other hand, as described above, the differential value dVo / dt obtained by time-differentiating the instantaneous value of the zero-phase voltage Vo detected by the instrument transformer 6 by the differentiating circuit 11 is d (Vsinω
t) / dt = ωVcosωt and Do Ri, the above-described zero-phase current I
It becomes the same function (cosωt) as o and the difference between the two is the coefficient
Ru ω Dakedea. Therefore, when the above-mentioned zero-phase current Io is divided by the differential value dVo / dt by the division circuit 12, the divided value Io / (dVo / dt) becomes I / ωV, which is always a positive value.

【0031】このようにして除算値Io/(dVo/d
t)が正の値となれば、判定回路14では地絡事故の発
生箇所が構内であると判定し、その判定出力に基づいて
リレー4を動作させることにより、開閉器2を開放して
負荷側を系統から切り離し、構内における負荷設備を保
護すると共に、構内での地絡事故の復旧作業を実行す
る。
In this way, the division value Io / (dVo / d
If t) is a positive value, the determination circuit 14 determines that the location of the ground fault accident is on the premises, and operates the relay 4 based on the determination output to open the switch 2 and load. The side will be disconnected from the grid to protect the load equipment on the premises and to perform the ground fault accident recovery work on the premises.

【0032】図3は高圧ケーブルに地絡事故が発生した
箇所が構内である場合を例示し、上段が零相電流Io、
中段が零相電圧Vo、下段が判定出力をそれぞれ示す実
測波形および判定出力である。同図に示すように急峻な
パルス状の波形を持つ零相電流Ioおよび零相電圧Vo
が現出した場合であっても、前述したように零相電流I
oを零相電圧Voの微分値dVo/dtで除算した結果
が正の値となることから、地絡事故の発生箇所が構内で
あることを容易かつ確実に判定することができる。
FIG. 3 exemplifies a case where the ground fault occurs in the high voltage cable in the premises, and the upper stage shows the zero phase current Io.
The middle stage is the zero-phase voltage Vo, and the lower stage is the measured waveform and the determination output indicating the determination output, respectively. As shown in the figure, the zero-phase current Io and the zero-phase voltage Vo having a steep pulse-like waveform are shown.
Even when the current appears, as described above, the zero-phase current I
Since the result of dividing o by the differential value dVo / dt of the zero-phase voltage Vo is a positive value, it can be easily and reliably determined that the location of the ground fault accident is on the premises.

【0033】なお、図4は小動物(ネズミ)接触による
地絡事故の発生箇所が構内である場合において、零相電
流Io、零相電圧Voおよび判定出力の各実測波形およ
び判定出力を例示する。同図に示すように正弦波状の波
形を持つ零相電流Ioおよび零相電圧Voが現出した場
合であっても、前記急峻なパルス状波形の場合と同様、
零相電流Ioを零相電圧Voの微分値dVo/dtで除
算した結果が正の値となることから、正弦波状波形の場
合であっても地絡事故の発生箇所が構内であると判定す
ることが容易かつ確実である。
FIG. 4 exemplifies the measured waveforms of the zero-phase current Io, the zero-phase voltage Vo, and the judgment output and the judgment output when the ground fault due to the contact with a small animal (rat) is on the premises. As shown in the figure, even when the zero-phase current Io and the zero-phase voltage Vo having a sinusoidal waveform appear, as in the case of the steep pulse-shaped waveform,
Since the result of dividing the zero-phase current Io by the differential value dVo / dt of the zero-phase voltage Vo is a positive value, it is determined that the location of the ground fault accident is on the premises even in the case of a sinusoidal waveform. Easy and certain to be.

【0034】また、地絡事故の発生箇所が構外である場
合、零相電圧Voに対して零相電流Ioが90°遅れ位
相となっている。そこで、計器用変圧器6により検出さ
れる零相電圧VoをVsinωtとすると、零相変流器
7により検出される零相電流Ioは、Isin(ωt−
90°)=−Icosωtとなる。
Further, when the location of the ground fault accident is outside the building, the zero-phase current Io is delayed by 90 ° with respect to the zero-phase voltage Vo. Therefore, assuming that the zero-phase voltage Vo detected by the instrument transformer 6 is Vsinωt, the zero-phase current Io detected by the zero-phase current transformer 7 is Isin (ωt-
90 °) = − Icosωt.

【0035】一方、計器用変圧器6により検出された零
相電圧Voの瞬時値を微分回路11により時間微分した
微分値dVo/dtは、d(Vsinωt)/dt=ω
Vcosωtとなり、前述の零相電流Ioと同じ関数
(cosωt)となって両者の違いは係数ωだけであ
る。従って、前述の零相電流Ioを除算回路12により
微分値dVo/dtで除算すると、その除算値Io/
(dVo/dt)は、−I/ωVとなり、常に負の値と
なる。
On the other hand, the zero detected by the instrument transformer 6
The instantaneous value of the phase voltage Vo is time differentiated by the differentiating circuit 11.
The differential value dVo / dt is d (Vsinωt) / dt = ω
VcosωtThe same function as the zero-phase current Io described above.
(Cosωt), and the only difference between the two is the coefficient ω.
It Therefore, the zero-phase current Io described above is divided by the dividing circuit 12.
When divided by the differential value dVo / dt, the divided value Io /
(DVo / dt) becomes -I / ωV, which is always a negative value.
Become.

【0036】このようにして除算値Io/(dVo/d
t)が負の値となれば、判定回路13では地絡事故の発
生箇所が構外であると判定し、その判定出力に基づい
て、構内での地絡事故発生の場合と異なり、リレー4を
動作させる必要がないことから、開閉器2を開放するこ
となく系統との切り離しはない。
In this way, the divided value Io / (dVo / d
If t) is a negative value, the determination circuit 13 determines that the location of the ground fault accident is outside the building, and based on the determination output, unlike the case where the ground fault accident occurs on the premises, the relay 4 is turned on. Since it is not necessary to operate it, there is no disconnection from the system without opening the switch 2.

【0037】図5は高圧ケーブルに地絡事故が発生した
箇所が構外である場合を例示し、上段が零相電流Io、
中段が零相電圧Vo、下段が判定出力をそれぞれ示す実
測波形および判定出力である。同図に示すように急峻な
パルス状の波形を持つ零相電流Ioおよび零相電圧Vo
が現出した場合であっても、前述したように零相電流I
oを零相電圧Voの微分値dVo/dtで除算した結果
が負の値となることから、地絡事故の発生箇所が構外で
あることを容易かつ確実に判定することができる。
FIG. 5 exemplifies a case where the ground fault occurs in the high voltage cable outside the building, and the upper part shows the zero-phase current Io.
The middle stage is the zero-phase voltage Vo, and the lower stage is the measured waveform and the determination output indicating the determination output, respectively. As shown in the figure, the zero-phase current Io and the zero-phase voltage Vo having a steep pulse-like waveform are shown.
Even when the current appears, as described above, the zero-phase current I
Since the result of dividing o by the differential value dVo / dt of the zero-phase voltage Vo has a negative value, it can be easily and reliably determined that the location of the ground fault accident is outside the building.

【0038】なお、図6は気中放電による地絡事故の発
生箇所が構外である場合において、零相電流Io、零相
電圧Voおよび判定出力の各実測波形および判定出力を
例示する。同図に示すように正弦波状の波形を持つ零相
電流Ioおよび零相電圧Voが現出した場合であって
も、前記急峻なパルス状波形の場合と同様、零相電流I
oを零相電圧Voの微分値dVo/dtで除算した結果
が負の値となることから、正弦波状波形の場合であって
も地絡事故の発生箇所が構外であると判定することが容
易かつ確実である。
FIG. 6 exemplifies the measured waveforms of the zero-phase current Io, the zero-phase voltage Vo, and the judgment output and the judgment output when the ground fault accident due to the air discharge is outside the building. As shown in the figure, even when the zero-phase current Io and the zero-phase voltage Vo having a sinusoidal waveform appear, as in the case of the steep pulse-shaped waveform, the zero-phase current Io.
Since the result of dividing o by the differential value dVo / dt of the zero-phase voltage Vo is a negative value, it is easy to determine that the location of the ground fault accident is outside the building even in the case of a sinusoidal waveform. And certain.

【0039】なお、地絡事故の発生箇所が構内あるいは
構外のいずれの場合も、地絡事故の発生時には、その直
後に基本周波数よりも低く、かつ、振幅の大きな分数調
波が現出する。この分数調波は、零相電流Ioには現出
しにくく、零相電圧Voには現出しやすくなっている
(例えば図6参照)。従来の場合には、零相電圧に対す
る零相電流の位相差に基づいて地絡検出を行っていたこ
とから、分数調波が現出している間、地絡検出装置をロ
ック状態としていたため、地絡検出に遅れが生じていた
が、本発明に係る地絡検出装置の場合、前述した演算式
に基づいて地絡事故を検出するようにしたことから、分
数調波の現出により地絡検出に遅れが生じることなく、
迅速な地絡検出が可能となる。
Regardless of whether the ground fault occurs on the premises or outside the premises, a subharmonic having a lower amplitude than the fundamental frequency and a large amplitude appears immediately after the occurrence of the ground fault. This subharmonic is difficult to appear in the zero-phase current Io, and easily appears in the zero-phase voltage Vo (see, for example, FIG. 6). In the conventional case, since the ground fault was detected based on the phase difference of the zero-phase current with respect to the zero-phase voltage, the ground fault detection device was in the locked state while the subharmonic was appearing, Although there was a delay in the detection of the ground fault, in the case of the ground fault detection device according to the present invention, since the ground fault is detected based on the above-described arithmetic expression, the occurrence of the subharmonic causes the occurrence of the ground fault. Without delay in detection,
The ground fault can be detected quickly.

【0040】前述したように零相電圧Voの瞬時値を時
間微分した微分値dVo/dtは、ωVcosωtで表
されるようにωを係数とした値となっている。その係数
ωが基本周波数に関与するため、零相電圧Voの微分値
dVo/dtをωで除算した値を後段の演算処理、つま
り、除算回路12での処理で前記微分値dVo/dtの
代わりに使用するようにしてもよい。このようにすれ
ば、基本周波数が異なってもそれに影響されることな
く、基本周波数が異なる地域において地絡検出装置20
を使用することが容易となる。なお、前述した基本周波
数に関与するω以外に、高調波成分に関与するωが存在
する場合にもこれを除去することにより高精度の演算処
理が可能となってより一層正確な判定が実現容易とな
る。
As described above, the differential value dVo / dt obtained by time-differentiating the instantaneous value of the zero-phase voltage Vo is a value with ω as a coefficient as represented by ωVcosωt. Since the coefficient ω is related to the fundamental frequency, the value obtained by dividing the differential value dVo / dt of the zero-phase voltage Vo by ω is replaced with the differential value dVo / dt in the subsequent arithmetic processing, that is, the processing in the division circuit 12. May be used for. By doing so, even if the fundamental frequency is different, it is not affected by the difference, and the ground fault detection device 20 is provided in the area where the fundamental frequency is different.
Is easy to use. In addition to the above-mentioned ω related to the fundamental frequency, even if there is ω related to the harmonic component, by removing this, high-precision arithmetic processing becomes possible, and more accurate determination can be realized easily. Becomes

【0041】以上のように除算回路12で算出された除
算値Io/(dVo/dt)に基づいて、判定回路14
では、地絡事故の発生箇所が構内あるいは構外のいずれ
であるかを判定する。この実施形態では、図1に示すよ
うに除算回路12と判定回路14との間に積分回路13
を介挿している。
The determination circuit 14 is based on the division value Io / (dVo / dt) calculated by the division circuit 12 as described above.
Then, it is determined whether the location of the ground fault accident is on the premises or outside the premises. In this embodiment, as shown in FIG. 1, the integration circuit 13 is provided between the division circuit 12 and the determination circuit 14.
Is inserted.

【0042】この積分回路13では、図2に示すように
所定の時間内の除算値Io/(dVo/dt)を積分し
(STEP6)、その積分値Σ〔Io/(dVo/dt)〕
の絶対値が所定の設定値よりも大きいか否かを判断する
(STEP7)。積分値Σ〔Io/(dVo/dt)〕の絶
対値が設定値よりも小さければ、判定誤差の許容範囲内
であるとして地絡事故なしとし、積分値Σ〔Io/(d
Vo/dt)〕の絶対値が設定値よりも大きければ、地
絡事故ありとする。
In the integrating circuit 13, as shown in FIG. 2, the divided value Io / (dVo / dt) within a predetermined time is integrated (STEP 6), and the integrated value Σ [Io / (dVo / dt)].
It is determined whether or not the absolute value of is larger than a predetermined set value (STEP 7). If the absolute value of the integrated value Σ [Io / (dVo / dt)] is smaller than the set value, it is considered that the judgment error is within the allowable range, and there is no ground fault, and the integrated value Σ [Io / (d
If the absolute value of Vo / dt)] is larger than the set value, it is determined that there is a ground fault.

【0043】その上で、前述した除算値Io/(dVo
/dt)に基づく積分値Σ〔Io/(dVo/dt)〕
が正の値かどうかを判断し(STEP8)、正の値であれ
ば、地絡事故の発生箇所が構内である判定を出力し、負
の値であれば、地絡事故の発生箇所が構外である判定を
出力する(STEP9)。なお、積分回路13は、必ずしも
必要なものではなく、判定誤差を考慮する必要がない場
合には、積分回路13を省略することができる。従っ
て、判定回路14の判定出力は、原則的に零相電流Io
を零相電圧Voの微分値dVo/dtで除算した除算値
Io/(dVo/dt)に基づくものである。前述した
ように判定出力後は、異常時波形格納メモリに前記零相
電圧Voおよび零相電流Ioのデータを格納する(STEP
10)。
Then, the above-mentioned division value Io / (dVo)
/ Dt) integrated value Σ [Io / (dVo / dt)]
Is a positive value (STEP8), if it is a positive value, the judgment that the location of the ground fault accident is on the premises is output, and if it is a negative value, the location of the ground fault accident is on the premises. Is output (STEP 9). The integrating circuit 13 is not always necessary, and the integrating circuit 13 can be omitted if it is not necessary to consider the determination error. Therefore, the determination output of the determination circuit 14 is basically the zero-phase current Io.
Is divided by a differential value dVo / dt of the zero-phase voltage Vo, based on a division value Io / (dVo / dt). As described above, after the determination output, the data of the zero-phase voltage Vo and the zero-phase current Io is stored in the abnormal waveform storage memory (STEP
10).

【0044】以上の実施形態では、地絡検出装置20を
地絡保護継電器21に組み込んだ構成としたが、地絡検
出装置20を図7に示す実施形態で使用することも可能
である。つまり、地絡検出装置20を現地に設置し、そ
の地絡検出装置20の出力を取り出せるようにすれば、
その現地で得られた地絡検出装置20の出力を判定デー
タとして作業員が現地から持ち帰り、あるいは通信回線
により伝送し、別の場所に設置された解析装置に入力す
ることにより、現地での判定データに基づく判断処理が
別の場所に設けられた解析装置で可能となる。
In the above embodiment, the ground fault detection device 20 is incorporated in the ground fault protection relay 21, but the ground fault detection device 20 can be used in the embodiment shown in FIG. In other words, if the ground fault detection device 20 is installed on site and the output of the ground fault detection device 20 can be taken out,
The worker can take the output of the ground fault detection device 20 obtained at the site as the determination data from the site, or transmit it through a communication line and input it to an analysis device installed at another place to make the determination at the site. Judgment processing based on data can be performed by an analysis device provided in another place.

【0045】また、他の実施形態における地絡検出装置
20’を有する地絡保護継電器21’を図8に示す。こ
の地絡保護継電器21’に組み込まれた地絡検出装置2
0’では、非接地系電路1の構内における対地静電容量
(対地アドミタンス)の不平衡によって生じる零相電流
Ioの不平衡成分を除去するため、計器変圧器6および
零相変流器7の後段に、非接地系電路1の構内における
対地静電容量の不平衡により流れる零相電流Ioの不平
衡成分を検出する不平衡成分検出手段である検出回路1
5と、零相電流Ioからその不平衡成分を差し引いた値
を算出する減算手段である減算回路16とを具備してい
る。なお、この零相電流Ioの不平衡成分を検出する検
出回路については、特開平11−271384号公報に
開示されているように公知の技術であるため、詳細な説
明は省略する。
FIG. 8 shows a ground fault protection relay 21 'having a ground fault detection device 20' according to another embodiment. Ground fault detection device 2 incorporated in this ground fault protection relay 21 '
At 0 ', in order to remove the unbalanced component of the zero-phase current Io caused by the unbalance of the electrostatic capacitance (ground admittance) to the ground in the ground of the ungrounded electric circuit 1, the instrument transformer 6 and the zero-phase current transformer 7 are removed. In the subsequent stage, a detection circuit 1 which is an unbalanced component detection means for detecting an unbalanced component of the zero-phase current Io flowing due to an unbalanced capacitance to ground in the ground of the ungrounded electric circuit 1.
5 and a subtraction circuit 16 which is a subtraction means for calculating a value obtained by subtracting the unbalanced component from the zero-phase current Io. The detection circuit for detecting the unbalanced component of the zero-phase current Io is a known technique as disclosed in Japanese Patent Application Laid-Open No. 11-271384, and a detailed description thereof will be omitted.

【0046】この実施形態の地絡検出装置20’によれ
ば、非接地系電路1の構内における対地静電容量の不平
衡により流れる零相電流Ioの不平衡成分を検出回路1
5で検出し、零相電流Ioからその不平衡成分を差し引
いた値を減算回路16で算出することにより、零相電流
Ioの不平衡成分、つまり、地絡していない状態で発生
している残留零相電流の大きさだけの誤差を除外するこ
とができ、実際の地絡電流自体が得られる。不平衡成分
を差し引いた零相電流Ioを用いることにより、その零
相電流Ioを零相電圧Voの微分値dVo/dtで除算
する処理において、演算精度が高くなり、その除算値に
基づく判定回路14での判定結果がより一層正確にな
る。
According to the ground fault detection device 20 'of this embodiment, the unbalanced component of the zero-phase current Io flowing due to the unbalanced capacitance to ground in the ground of the ungrounded electric circuit 1 is detected.
5, the value obtained by subtracting the unbalanced component from the zero-phase current Io is calculated by the subtraction circuit 16 to generate an unbalanced component of the zero-phase current Io, that is, a state in which there is no ground fault. The error of the magnitude of the residual zero-phase current can be excluded, and the actual ground fault current itself can be obtained. By using the zero-phase current Io from which the unbalanced component is subtracted, the accuracy of the calculation is increased in the process of dividing the zero-phase current Io by the differential value dVo / dt of the zero-phase voltage Vo, and the determination circuit based on the divided value. The determination result in 14 becomes more accurate.

【0047】ところで、前述した実施形態では、零相電
圧Voの微分値dVo/dtと零相電流Ioの所定の演
算式として、零相電流Ioを零相電圧Voの微分値dV
o/dtで除算する場合について説明したが、本発明は
これに限定されることなく、零相電流Ioと零相電圧V
oの微分値dVo/dtとを乗算する演算式に基づいて
判定するようにしてもよい。
By the way, in the above-described embodiment, the zero-phase current Io is differentiated by the differential value dV of the zero-phase voltage Vo as a predetermined arithmetic expression of the differential value dVo / dt of the zero-phase voltage Vo and the zero-phase current Io.
The case of dividing by o / dt has been described, but the present invention is not limited to this, and the zero-phase current Io and the zero-phase voltage Vo.
The determination may be made based on an arithmetic expression that is multiplied by the differential value dVo / dt of o.

【0048】前述の実施形態と同様、地絡事故の発生箇
所が構内である場合、零相電圧VoをVsinωtとす
ると、零相電流Ioは、Isin(ωt+90°)=I
cosωtとなることから、零相電圧Voの微分値dV
o/dtは、d(Vsinωt)/dt=ωVcosω
tとなり、前述の零相電流Ioと同じ関数(cosω
t)となって両者の違いは係数ωだけである。従って、
前述の零相電流Ioと零相電圧Voの微分値dVo/d
tとを乗算回路(図示せず)により乗算すると、その乗
算値は、ωVI(cosωt)2となり、常に正の値と
なる。この乗算値が正の値となれば、前述の除算処理の
場合と同様、判定回路14では地絡事故の発生箇所が構
内であると判定し、その判定出力に基づいてリレー4を
動作させることにより、開閉器2を開放して負荷側を系
統から切り離し、構内における負荷設備を保護すると共
に、構内での地絡事故の復旧作業を実行する。
Similar to the above-described embodiment, when the ground fault accident is on the premises, and the zero-phase voltage Vo is Vsinωt, the zero-phase current Io is Isin (ωt + 90 °) = I
Since cosωt, the differential value dV of the zero-phase voltage Vo
o / dt is d (Vsinωt) / dt = ωVcosω
t and Do Ri, the same function as the zero-phase current Io of the above-mentioned (cosω
The difference between the two becomes t) is Ru coefficient ω Dakedea. Therefore,
Differential value dVo / d of the zero-phase current Io and the zero-phase voltage Vo described above.
When t is multiplied by a multiplication circuit (not shown), the multiplication value becomes ωVI (cosωt) 2 , which is always a positive value. If this multiplication value is a positive value, the determination circuit 14 determines that the location of the ground fault accident is on the premises, and operates the relay 4 based on the determination output, as in the case of the division processing described above. Thus, the switch 2 is opened to disconnect the load side from the system to protect the load equipment on the premises and to perform the ground fault recovery work on the premises.

【0049】また、地絡事故の発生箇所が構外である場
合、零相電圧VoをVsinωtとすると、零相電流I
oは、Isin(ωt−90°)=−Icosωtとな
ることから、零相電圧Voの微分値dVo/dtは、d
(Vsinωt)/dt=ωVcosωtとなり、前述
の零相電流Ioと同じ関数(cosωt)となって両者
の違いは係数ωだけである。従って、前述の零相電流I
oと零相電圧Voの微分値dVo/dtとを乗算回路
(図示せず)により乗算すると、その乗算値は、−ωV
I(cosωt)2となり、常に負の値となる。この乗
算値が負の値となれば、前述の除算処理の場合と同様、
判定回路14では地絡事故の発生箇所が構外であると判
定し、その判定出力に基づいて、リレー4を動作させる
必要がないことから、開閉器2を開放することなく系統
との切り離しはない。
When the location of the ground fault accident is outside the building and the zero-phase voltage Vo is Vsinωt, the zero-phase current I
Since o becomes Isin (ωt−90 °) = − Icosωt, the differential value dVo / dt of the zero-phase voltage Vo is d
(Vsinωt) / dt = ωVcosωt and Do Ri, above
The same function (cosωt) as the zero-phase current Io of
Difference is Ru coefficient ω Dakedea. Therefore, the above-mentioned zero-phase current I
When o and the differential value dVo / dt of the zero-phase voltage Vo are multiplied by a multiplication circuit (not shown), the multiplication value is −ωV.
It becomes I (cosωt) 2 , which is always a negative value. If this multiplication value is a negative value, as in the case of the division processing described above,
The judgment circuit 14 judges that the location of the ground fault accident is outside the building, and there is no need to operate the relay 4 based on the judgment output, so there is no disconnection from the system without opening the switch 2. .

【0050】なお、前述した除算処理または乗算処理に
おいては、正の値が出力されるべきサンプリング時に何
等かの原因により負の値が一部に現出する場合があり、
逆に、負の値が出力されるべきサンプリング時に何等か
の原因により正の値が一部に現出する場合があり、これ
が地絡検出装置の誤動作の原因となるおそれがある。こ
のような現象の発生回数は全サンプリング回数に対して
非常に少ないものであることから、地絡検出装置の誤動
作を未然に防止するため、除算処理または乗算処理後に
平均値を算出することにより、その演算結果が正負反転
することを回避することができる。この平均値を短い時
間間隔で算出すれば、判定精度の向上が図れるが、高い
判定精度が要求されない場合には、平均値を算出する際
の時間間隔を長くすればよい。
In the above-described division processing or multiplication processing, a negative value may appear in part due to some cause at the time of sampling when a positive value should be output.
On the contrary, a positive value may partially appear due to some cause at the time of sampling when a negative value should be output, which may cause a malfunction of the ground fault detection device. Since the number of occurrences of such a phenomenon is extremely small with respect to the total number of samplings, in order to prevent a malfunction of the ground fault detection device in advance, by calculating an average value after division processing or multiplication processing, It is possible to prevent the calculation result from being inverted between positive and negative. If the average value is calculated at short time intervals, the determination accuracy can be improved, but if high determination accuracy is not required, the time interval for calculating the average value can be lengthened.

【0051】前述した零相電圧Voの微分値dVo/d
tと零相電流Ioとの所定の演算については、乗算処理
よりも除算処理の方が有効である。つまり、地絡事故の
発生箇所が構内あるいは構外のいずれであるかを判定す
るに際しては、乗算処理または除算処理による演算結果
が正の値か負の値かで判断しているが、除算処理の場
合、さらに、除算結果の絶対値の大きさによっても、地
絡事故の発生箇所が構内あるいは構外のいずれであるか
を判定することができる。
Differential value dVo / d of the zero-phase voltage Vo described above.
For the predetermined calculation of t and the zero-phase current Io, the division process is more effective than the multiplication process. In other words, when determining whether the location of the ground fault accident is on the premises or outside the premises, it is determined whether the operation result of the multiplication process or the division process is a positive value or a negative value. In this case, it is further possible to determine whether the location of the ground fault is on the premises or on the premises, depending on the magnitude of the absolute value of the division result.

【0052】非接地系電路1において形成される零相回
路では、地絡抵抗や高圧ケーブルにより対地静電容量が
形成されるが、一般的に、構外の対地静電容量は構内の
対地静電容量の数十倍以上ある。従って、その零相回路
における対地アドミタンス(零相電流Ioを零相電圧V
oで除算したもの)は対地静電容量に比例することか
ら、その対地アドミタンスの大きさから、地絡事故の発
生箇所が構内あるいは構外のいずれであるかを判定する
ことができる。
In the zero-phase circuit formed in the non-grounded electric circuit 1, the ground capacitance is formed by the ground resistance and the high voltage cable. Generally, the ground capacitance outside the building is the ground capacitance inside the building. It is more than tens of times the capacity. Therefore, the ground admittance (zero-phase current Io to zero-phase voltage V
(divided by o) is proportional to the electrostatic capacitance to the ground, so it is possible to determine whether the location of the ground fault accident is on-premises or off-site from the magnitude of the ground admittance.

【0053】一方、前述した地絡検出装置20における
除算処理は、零相電流Ioを零相電圧Voの微分値dV
o/dtで除算するもので、分子を零相電流Ioとし、
分母を零相電圧Voの微分値dVo/dtとする。ここ
で、零相電圧Voの微分値dVo/dtは零相電圧Vo
に比例することから、前記対地アドミタンスの代わり
に、地絡検出装置20における除算処理による演算結
果、つまり零相電流Ioを零相電圧Voの微分値dVo
/dtで除算した除算値Io/(dVo/dt)の大き
さから、地絡事故の発生箇所が構内あるいは構外のいず
れであるかを判定することができることになる。このよ
うに除算値Io/(dVo/dt)の正負とその絶対値
の大きさの両者に基づいて判定することにより、二重の
チェック機能を発揮させることができて信頼性が大幅に
向上する。
On the other hand, in the division processing in the ground fault detection device 20 described above, the zero-phase current Io is differentiated by the differential value dV of the zero-phase voltage Vo.
Dividing by o / dt, the numerator is the zero-phase current Io,
The denominator is the differential value dVo / dt of the zero-phase voltage Vo. Here, the differential value dVo / dt of the zero-phase voltage Vo is the zero-phase voltage Vo.
Therefore, instead of the ground admittance, the calculation result by the division process in the ground fault detection device 20, that is, the zero-phase current Io, is a differential value dVo of the zero-phase voltage Vo.
Based on the magnitude of the division value Io / (dVo / dt) divided by / dt, it is possible to determine whether the place where the ground fault accident occurs is on the premises or on the premises. In this way, by making a determination based on both the positive / negative of the division value Io / (dVo / dt) and the magnitude of its absolute value, a double check function can be exerted and the reliability is greatly improved. .

【0054】前述したように零相電圧Voの微分値dV
o/dtが零相電圧Voに比例することから、例えば零
相電圧Voが大きくなれば、零相電圧Voの微分値dV
o/dtも大きくなる。地絡事故の発生箇所が構内の場
合、地絡検出装置20の計器用変圧器6で検出される零
相電圧Voが小さくても、零相変流器7で検出される零
相電流Ioが大きいため、零相電流Ioを零相電圧Vo
の微分値dVo/dtで除算した除算値Io/(dVo
/dt)が大きな値となる。このことから、除算値Io
/(dVo/dt)が所定の基準値よりも大きな値とな
れば、地絡事故の発生箇所が構内であると判定すること
ができる。
As described above, the differential value dV of the zero-phase voltage Vo
Since o / dt is proportional to the zero-phase voltage Vo, if the zero-phase voltage Vo becomes large, for example, the differential value dV of the zero-phase voltage Vo.
o / dt also becomes large. When the location of the ground fault accident is on the premises, the zero phase current Io detected by the zero phase current transformer 7 is detected even if the zero phase voltage Vo detected by the instrument transformer 6 of the ground fault detection device 20 is small. Therefore, the zero-phase current Io is equal to the zero-phase voltage Vo.
Divided value Io / (dVo
/ Dt) has a large value. From this, the divided value Io
If / (dVo / dt) becomes a value larger than a predetermined reference value, it can be determined that the location of the ground fault accident is on the premises.

【0055】また、地絡事故の発生箇所が構外の場合、
零相変流器7で検出される零相電流Ioが小さくなるた
め、零相電流Ioを零相電圧Voの微分値dVo/dt
で除算した除算値Io/(dVo/dt)が小さな値と
なる。このことから、除算値Io/(dVo/dt)が
所定の基準値よりも小さな値となれば、地絡事故の発生
箇所が構外であると判定することができる。
If the location of the ground fault accident is outside the building,
Since the zero-phase current Io detected by the zero-phase current transformer 7 becomes smaller, the zero-phase current Io is differentiated from the zero-phase voltage Vo by the differential value dVo / dt.
The divided value Io / (dVo / dt) divided by is a small value. From this, if the divided value Io / (dVo / dt) becomes a value smaller than the predetermined reference value, it can be determined that the location of the ground fault accident is outside the building.

【0056】前述したように零相電圧Voの微分値dV
o/dtを用いることにより、零相電圧Voと零相電流
Ioとが同相となり、零相電圧Voと零相電流Ioの瞬
時値同士の除算により正確な演算結果が得られて判定精
度の向上が図れる。ここで、前述した演算結果の大小に
より構内または構外のいずれかを判断する所定の基準値
は、非接地系電路1において構外の電路長さと構内の電
路長さとの比率から規定されるものであり、地絡検出装
置20が適用される非接地系電路1に応じて適宜設定さ
れる。
As described above, the differential value dV of the zero-phase voltage Vo
By using o / dt, the zero-phase voltage Vo and the zero-phase current Io have the same phase, and an accurate calculation result is obtained by dividing the instantaneous values of the zero-phase voltage Vo and the zero-phase current Io to improve the determination accuracy. Can be achieved. Here, the predetermined reference value for judging whether it is on-premises or off-premises based on the magnitude of the above-mentioned calculation result is defined by the ratio of the off-premises electrical path length to the on-premises electrical path length in the non-grounded electrical path 1. The ground fault detection device 20 is appropriately set according to the non-grounded electric circuit 1.

【0057】前述した実施形態では、零相電圧Voを時
間で微分した微分値dVo/dtを利用しているが、逆
に、零相電流Ioを時間で微分した微分値dIo/dt
で演算処理することは、正弦波状の零相電流Ioの場合
には可能であるが、急峻なパルス状の零相電流Ioの場
合には不適である。すなわち、地絡事故の発生時、零相
電圧Voにおける波形の乱れは比較的少ないが、零相電
流Ioは高周波成分が多く含まれているのでその波形の
乱れが大きすぎるため、その零相電流Ioの微分値dI
o/dtを演算処理に使用することは、正確な判定が困
難となるからである。
In the above-described embodiment, the differential value dVo / dt obtained by differentiating the zero-phase voltage Vo with time is used, but conversely, the differential value dIo / dt obtained by differentiating the zero-phase current Io with time is used.
The calculation process is possible in the case of a sinusoidal zero-phase current Io, but is not suitable in the case of a steep pulse-shaped zero-phase current Io. That is, when a ground fault occurs, the waveform disturbance in the zero-phase voltage Vo is relatively small, but since the zero-phase current Io contains many high-frequency components, the waveform disturbance is too large. Differential value dI of Io
This is because using o / dt for the arithmetic processing makes it difficult to make an accurate determination.

【0058】[0058]

【発明の効果】本発明によれば、零相電圧の瞬時値を時
間で微分した微分値を零相電流に対して所定の演算式、
つまり、零相電流を、前記零相電圧の瞬時値を時間で微
分した微分値で除算する演算式、あるいは、零相電流
と、前記零相電圧の瞬時値を時間で微分した微分値とを
乗算する演算式でもって演算することにより、その地絡
事故の発生箇所が構内であれば、演算結果が常に正の値
となり、地絡事故の発生箇所が構外であれば、常に負の
値となる。これは、零相電圧および零相電流の本発明に
よる演算式が商用周波数に限らず任意の周波数について
成立するため、急峻なパルス状または間欠状の波形を持
つ零相電圧および零相電流に基づいて地絡事故の発生箇
所が構内あるいは構外のいずれであるかを容易かつ確実
に判定することができ、信頼性が大幅に向上する。ま
た、地絡事故の発生時には大きな分数調波を伴う場合が
多いが、このような場合にも地絡事故の発生箇所が構内
あるいは構外のいずれであるかを迅速に判定することが
できる。
According to the present invention, the differential value obtained by differentiating the instantaneous value of the zero-phase voltage with respect to time is used as a predetermined arithmetic expression for the zero-phase current,
That is, the zero-phase current is divided by the differential value obtained by differentiating the instantaneous value of the zero-phase voltage with time, or the zero-phase current and the differential value obtained by differentiating the instantaneous value of the zero-phase voltage with time are calculated. By calculating with the multiplication formula, if the location of the ground fault accident is on the premises, the calculation result will always be a positive value, and if the location of the ground fault accident is off-site, it will always be a negative value. Become. This is because the equations for calculating the zero-phase voltage and the zero-phase current according to the present invention are satisfied not only at the commercial frequency but also at any frequency, and therefore based on the zero-phase voltage and the zero-phase current having a steep pulse-like or intermittent waveform. As a result, it is possible to easily and surely determine whether the location of the ground fault accident is on the premises or outside the premises, and the reliability is greatly improved. Further, when a ground fault accident occurs, a large number of subharmonics are often involved. Even in such a case, it is possible to quickly determine whether the place where the ground fault accident occurs is on the premises or outside the premises.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態で、非接地系電路に設置され
た地絡検出装置を有する地絡保護継電器を示す概略構成
ブロック図である。
FIG. 1 is a schematic configuration block diagram showing a ground fault protection relay having a ground fault detection device installed in an ungrounded electric circuit according to an embodiment of the present invention.

【図2】本発明の実施形態で、地絡検出装置をデジタル
処理により実現する場合の制御アルゴリズムを示すフロ
ーチャートである。
FIG. 2 is a flowchart showing a control algorithm when the ground fault detection device is realized by digital processing in the embodiment of the present invention.

【図3】本発明の実施形態で、地絡事故の発生箇所が構
内である場合について、急峻なパルス状の零相電流およ
び零相電圧と演算結果を示す波形図である。
FIG. 3 is a waveform diagram showing a steep pulse-shaped zero-phase current and zero-phase voltage and a calculation result in the case where the place where the ground fault occurs is the premises in the embodiment of the present invention.

【図4】本発明の実施形態で、地絡事故の発生箇所が構
内である場合について、正弦波状の零相電流および零相
電圧と演算結果を示す波形図である。
FIG. 4 is a waveform diagram showing a sinusoidal zero-phase current and zero-phase voltage and a calculation result in the case where the place where the ground fault occurs is the premises in the embodiment of the present invention.

【図5】本発明の実施形態で、地絡事故の発生箇所が構
外である場合について、急峻なパルス状の零相電流およ
び零相電圧と演算結果を示す波形図である。
FIG. 5 is a waveform diagram showing a steep pulse-shaped zero-phase current and zero-phase voltage and a calculation result in the case where the location of the ground fault is off-site in the embodiment of the present invention.

【図6】本発明の実施形態で、地絡事故の発生箇所が構
外である場合について、正弦波状の零相電流および零相
電圧と演算結果を示す波形図である。
FIG. 6 is a waveform diagram showing a sinusoidal zero-phase current and zero-phase voltage and a calculation result in the case where the location of the ground fault is off-site in the embodiment of the present invention.

【図7】本発明の他の実施形態で、非接地系電路に設置
された地絡検出装置を示す概略構成ブロック図である。
FIG. 7 is a schematic block diagram showing a ground fault detection device installed in a non-grounded electric line according to another embodiment of the present invention.

【図8】本発明の他の実施形態で、非接地系電路に設置
された地絡検出装置を有する地絡継電器を示す概略構成
ブロック図である。
FIG. 8 is a schematic block diagram showing a ground fault relay having a ground fault detection device installed in a non-grounded electric circuit according to another embodiment of the present invention.

【図9】非接地系電路に設置された地絡検出装置を有す
る地絡継電器の従来例を示す概略構成ブロック図であ
る。
FIG. 9 is a schematic configuration block diagram showing a conventional example of a ground fault relay having a ground fault detection device installed in an ungrounded electric circuit.

【符号の説明】[Explanation of symbols]

4 リレー 6 零相電圧検出手段(計器用変圧器) 7 零相電流検出手段(零相変流器) 11 零相電圧微分手段(微分回路) 12 演算手段(除算回路) 14 判定手段(判定回路) 15 不平衡成分検出手段(検出回路) 16 減算手段(減算回路) 20 地絡検出装置 21 地絡保護継電器 4 relays 6 Zero-phase voltage detection means (instrument transformer) 7 Zero-phase current detection means (zero-phase current transformer) 11 Zero-phase voltage differentiating means (differential circuit) 12 Operation means (division circuit) 14 Judgment means (judgment circuit) 15 Unbalanced component detection means (detection circuit) 16 Subtraction means (subtraction circuit) 20 Ground fault detector 21 Ground fault protection relay

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−262023(JP,A) 特開 平5−76132(JP,A) (58)調査した分野(Int.Cl.7,DB名) H02H 3/38,3/44 H02H 7/26 G01R 31/08 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-63-262023 (JP, A) JP-A-5-76132 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H02H 3 / 38,3 / 44 H02H 7/26 G01R 31/08

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 非接地系電路で発生した地絡事故により
その非接地系電路に現出した零相電圧を検出する零相電
圧検出手段と、前記地絡事故の発生時に非接地系電路に
流れる零相電流を検出する零相電流検出手段とが接続さ
れた地絡検出装置において、前記零相電圧検出手段によ
り得られた零相電圧の瞬時値を時間で微分する零相電圧
微分手段と、その零相電圧微分手段により算出された微
分値を前記零相電流に対して所定の演算式でもって演算
する演算手段と、その演算結果に基づいて前記地絡事故
の発生箇所が構内あるいは構外のいずれであるかを判定
する判定手段とを具備したことを特徴とする非接地系電
路の地絡検出装置。
1. A zero-phase voltage detecting means for detecting a zero-phase voltage appearing in a non-grounded electric circuit due to a ground fault occurring in the non-grounded electric circuit, and a non-grounded circuit in the non-grounded electric circuit when the ground fault occurs. In a ground fault detecting device connected to a zero-phase current detecting means for detecting a flowing zero-phase current, a zero-phase voltage differentiating means for differentiating an instantaneous value of the zero-phase voltage obtained by the zero-phase voltage detecting means with respect to time. Calculating means for calculating the differential value calculated by the zero-phase voltage differentiating means with a predetermined arithmetic expression with respect to the zero-phase current, and the place where the ground fault accident occurs on the premises or outside the premises based on the calculation result. A ground fault detection device for a non-grounded electric circuit, comprising: a determination unit that determines which of the two.
【請求項2】 前記演算手段は、零相電流を、前記零相
電圧の瞬時値を時間で微分した微分値で除算する演算式
に基づいて処理することを特徴とする請求項1に記載の
非接地系電路の地絡検出装置。
2. The calculation means processes the zero-phase current based on an arithmetic expression that divides the instantaneous value of the zero-phase voltage by a differential value obtained by differentiating with time. Ground fault detection device for non-grounded electric circuits.
【請求項3】 前記演算手段は、零相電流と、前記零相
電圧の瞬時値を時間で微分した微分値とを乗算する演算
式に基づいて処理することを特徴とする請求項1に記載
の非接地系電路の地絡検出装置。
3. The arithmetic unit according to claim 1, wherein the arithmetic unit performs processing based on an arithmetic expression that multiplies a zero-phase current and a differential value obtained by differentiating an instantaneous value of the zero-phase voltage with time. Ground fault detection device for non-grounded electric circuits.
【請求項4】 前記零相電流検出手段および零相電圧検
出手段に接続され、非接地系電路の構内における対地静
電容量の不平衡により流れる零相電流の不平衡成分を検
出する不平衡成分検出手段と、その不平衡成分検出手段
により検出された不平衡成分を前記零相電流から差し引
いた値を算出する減算手段とを具備したことを特徴とす
る請求項1乃至3のいずれかに記載の非接地系電路の地
絡検出装置。
4. An unbalanced component connected to the zero-phase current detecting means and the zero-phase voltage detecting means and detecting an unbalanced component of a zero-phase current flowing due to an unbalanced capacitance to ground in the ground of an ungrounded electric circuit. 4. The detecting means and the subtracting means for calculating a value obtained by subtracting the unbalanced component detected by the unbalanced component detecting means from the zero-phase current. Ground fault detection device for non-grounded electric circuits.
【請求項5】 前記請求項1乃至4のいずれかに記載の
地絡検出装置と、その地絡検出装置の出力でもって、非
接地系電路に設けられた開閉器を動作させるリレーとを
具備したことを特徴とする地絡保護継電器。
5. The ground fault detection device according to claim 1, and a relay for operating a switch provided in an ungrounded electric circuit by the output of the ground fault detection device. A ground fault protection relay that is characterized.
【請求項6】 非接地系電路で発生した地絡事故により
その非接地系電路に現出した零相電圧および零相電流を
検出し、その検出された零相電圧の瞬時値を時間で微分
した微分値を前記零相電流に対して所定の演算式でもっ
て演算し、その演算結果に基づいて前記地絡事故の発生
箇所が構内あるいは構外のいずれであるかを判定するこ
とを特徴とする非接地系電路の地絡検出方法。
6. A zero-phase voltage and a zero-phase current appearing in the non-grounded electric circuit due to a ground fault occurring in the non-grounded electric circuit are detected, and the instantaneous value of the detected zero-phase voltage is differentiated with respect to time. It is characterized in that the differentiated value is calculated with respect to the zero-phase current by a predetermined calculation formula, and whether the location of the ground fault accident is on-premises or off-site is determined based on the operation result. Ground fault detection method for non-grounded circuits.
【請求項7】 前記演算は、零相電流を、前記零相電圧
の瞬時値を時間で微分した微分値で除算する演算式に基
づいて処理することを特徴とする請求項6に記載の非接
地系電路の地絡検出方法。
7. The non-operation according to claim 6, wherein the operation is performed based on an operation expression that divides the zero-phase current by a differential value obtained by differentiating the instantaneous value of the zero-phase voltage with time. Ground fault detection method for earthed circuits.
【請求項8】 前記演算は、零相電流と、前記零相電圧
の瞬時値を時間で微分した微分値とを乗算する演算式に
基づいて処理することを特徴とする請求項6に記載の非
接地系電路の地絡検出方法。
8. The calculation according to claim 6, wherein the calculation is performed based on a calculation formula for multiplying a zero-phase current by a differential value obtained by differentiating an instantaneous value of the zero-phase voltage with time. Ground fault detection method for non-grounded circuits.
【請求項9】 前記非接地系電路の対地静電容量の不平
衡により流れる零相電流の不平衡成分を検出し、前記零
相電流からその不平衡成分を差し引いた値に対して零相
電圧の微分値を所定の演算式でもって演算することを特
徴とする請求項6乃至8のいずれかに記載の非接地系電
路の地絡検出方法。
9. An unbalanced component of a zero-phase current flowing due to an unbalanced capacitance to ground of the ungrounded electric circuit is detected, and a zero-phase voltage is calculated with respect to a value obtained by subtracting the unbalanced component from the zero-phase current. 9. The method for detecting a ground fault in an ungrounded electric circuit according to claim 6, wherein the differential value of is calculated by a predetermined arithmetic expression.
JP2001361227A 2001-11-27 2001-11-27 Ground fault detection device for ungrounded electric circuit, ground fault protection relay using the same, and ground fault detection method Expired - Fee Related JP3532182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001361227A JP3532182B2 (en) 2001-11-27 2001-11-27 Ground fault detection device for ungrounded electric circuit, ground fault protection relay using the same, and ground fault detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001361227A JP3532182B2 (en) 2001-11-27 2001-11-27 Ground fault detection device for ungrounded electric circuit, ground fault protection relay using the same, and ground fault detection method

Publications (2)

Publication Number Publication Date
JP2003164055A JP2003164055A (en) 2003-06-06
JP3532182B2 true JP3532182B2 (en) 2004-05-31

Family

ID=19171925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001361227A Expired - Fee Related JP3532182B2 (en) 2001-11-27 2001-11-27 Ground fault detection device for ungrounded electric circuit, ground fault protection relay using the same, and ground fault detection method

Country Status (1)

Country Link
JP (1) JP3532182B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105116279A (en) * 2015-07-03 2015-12-02 华中科技大学 Method for accurately positioning single-phase earth fault of generator stator

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100458456C (en) * 2006-06-02 2009-02-04 北京四方继保自动化股份有限公司 Method for realizing single-end fault range finding by utilizing long-line equation
CN100588066C (en) * 2006-06-02 2010-02-03 北京四方继保自动化股份有限公司 Method for realizing line differential protection based on long line equation
JP5444122B2 (en) * 2010-03-16 2014-03-19 一般財団法人 関西電気保安協会 Non-grounded circuit ground fault detection device, ground fault protection relay using the same, and ground fault detection method
JP5529300B1 (en) * 2013-01-23 2014-06-25 一般財団法人 関西電気保安協会 High voltage insulation monitoring method and high voltage insulation monitoring device
CN103472356A (en) * 2013-10-12 2013-12-25 长沙威胜信息技术有限公司 Cable type fault detector
CN104793101B (en) * 2015-02-03 2017-10-24 广西电网有限责任公司电力科学研究院 A kind of transient state travelling wave Small Electric Current Earthing And Routing Device
JP6324629B2 (en) * 2015-06-19 2018-05-16 三菱電機株式会社 Leakage current detector
CN106485009B (en) * 2016-10-18 2019-07-09 三峡大学 The simulation method of transformer winding fault situation under a kind of lightning impulse voltage
CN111817273B (en) * 2020-07-08 2022-06-03 国网福建省电力有限公司检修分公司 Extra-high voltage same-tower double-circuit line ground fault relay protection method based on six-sequence component method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105116279A (en) * 2015-07-03 2015-12-02 华中科技大学 Method for accurately positioning single-phase earth fault of generator stator
CN105116279B (en) * 2015-07-03 2017-12-12 华中科技大学 A kind of generator stator single-phase earthing fault accurate positioning method

Also Published As

Publication number Publication date
JP2003164055A (en) 2003-06-06

Similar Documents

Publication Publication Date Title
US8350573B2 (en) Method and apparatus for generalized AC and DC arc fault detection and protection
US7196884B2 (en) Apparatus and method for detecting the loss of a current transformer connection coupling a current differential relay to an element of a power system
US5659453A (en) Arc burst pattern analysis fault detection system
EP2200139B1 (en) Arc detection using detailed and approximate coefficients from discrete wavelet transforms
JP3468817B2 (en) Field ground fault detector
EP2485354B1 (en) Protection System for an Electrical Power Network Based on the inductance of a network section
JP3532182B2 (en) Ground fault detection device for ungrounded electric circuit, ground fault protection relay using the same, and ground fault detection method
EP2953225B1 (en) Method of detection and isolation of faults within power conversion and distribution systems
EP3312621B1 (en) Leak current detecting device
WO2013066914A2 (en) Methods for detecting an open current transformer
JP4994140B2 (en) Ratio differential relay and ratio differential relay malfunction prevention method
US8395871B2 (en) Device and method for detecting faulted phases in a multi-phase electrical network
JP5444122B2 (en) Non-grounded circuit ground fault detection device, ground fault protection relay using the same, and ground fault detection method
US10871513B2 (en) Differential protection method in an electrical power supply system and protective apparatus for carrying out a differential protection method
JP3218163B2 (en) Ground fault detection method
JP2001028829A (en) Digital protection relay
JP4121979B2 (en) Non-grounded circuit insulation monitoring method and apparatus
JP3160612B2 (en) Power system insulation deterioration detection method and apparatus
JP3656824B2 (en) Ground fault direction relay device
EP4346039A1 (en) Arc-fault detection apparatus and method and electrical installation
JP3546396B2 (en) Ground fault discriminator in high voltage distribution system
JP3187856B2 (en) Micro ground fault distribution line recognition device
JP2979813B2 (en) Distance relay
JP3240479B2 (en) Micro ground fault section location device
JPH02280619A (en) Control device of switch

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040302

R150 Certificate of patent or registration of utility model

Ref document number: 3532182

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080312

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees