JP4994140B2 - Ratio differential relay and ratio differential relay malfunction prevention method - Google Patents

Ratio differential relay and ratio differential relay malfunction prevention method Download PDF

Info

Publication number
JP4994140B2
JP4994140B2 JP2007187974A JP2007187974A JP4994140B2 JP 4994140 B2 JP4994140 B2 JP 4994140B2 JP 2007187974 A JP2007187974 A JP 2007187974A JP 2007187974 A JP2007187974 A JP 2007187974A JP 4994140 B2 JP4994140 B2 JP 4994140B2
Authority
JP
Japan
Prior art keywords
circuit
phase
current
value
differential relay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007187974A
Other languages
Japanese (ja)
Other versions
JP2009027824A (en
Inventor
正実 竹中
義明 伊達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2007187974A priority Critical patent/JP4994140B2/en
Publication of JP2009027824A publication Critical patent/JP2009027824A/en
Application granted granted Critical
Publication of JP4994140B2 publication Critical patent/JP4994140B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Protection Of Transformers (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

本発明は、比率差動継電器および比率差動継電器誤動作防止方法に関し、特に、作業員の人為的ミスなどによる誤動作を防止するのに好適な比率差動継電器および比率差動継電器誤動作防止方法に関する。   The present invention relates to a ratio differential relay and a ratio differential relay malfunction prevention method, and more particularly, to a ratio differential relay and a ratio differential relay malfunction prevention method suitable for preventing malfunction due to human error of an operator.

電力系統の変圧器保護用の比率差動継電器は、比率差動継電器用の変流器回路(CT回路)を作業員が人為的に誤って短絡したり開放したりしてしまうと、誤動作して変圧器を停電させてしまう。
この対策として変流器回路に試験用端子(CTT)を挿入して作業を行う場合には、試験用端子の挿入時に瞬間的に変流器回路が遮断される(瞬断される)ため、作業員が比率差動継電器をロックしている。また、「比率差動継電器がある」ことを注意喚起用シールなどで試験用端子に表示して、作業員が不用意に試験用端子を挿入しないようにしている。
このように、比率差動継電器用の変流器回路に関わる作業時には、比率差動継電器をロックする必要があるため、保護信頼度を低下させてしまう。
また、作業員がケーブル作業などで比率差動継電器用の変流器回路のケーブルを切り離してしまった場合にも、比率差動継電器が誤動作して変圧器を停電させてしまう。
Proportional differential relays for power system transformer protection will malfunction if an operator accidentally shorts or opens a current transformer circuit (CT circuit) for the proportional differential relay. Power out of the transformer.
As a countermeasure, when the test terminal (CTT) is inserted into the current transformer circuit and the work is performed, the current transformer circuit is momentarily interrupted (instantaneously interrupted) when the test terminal is inserted. An operator has locked the ratio differential relay. In addition, "there is a ratio differential relay" is displayed on the test terminal with a warning sticker, etc., so that the operator does not inadvertently insert the test terminal.
In this way, when working on the current transformer circuit for the ratio differential relay, it is necessary to lock the ratio differential relay, which lowers the protection reliability.
In addition, even when an operator disconnects the cable of the current transformer circuit for the ratio differential relay due to cable work or the like, the ratio differential relay malfunctions, causing a power failure of the transformer.

従来、比率差動継電器の誤動作防止対策としては、変圧器を充電する際の突入電流(第2高調波成分)を検出して誤動作を防止する方法がある。また、比率差動継電器の信頼度の向上対策として、事故検出用に過電流要素付きとした方法がある。さらに、ディジタル継電器の場合には、3相電流不平衡を監視する方法、差電流を監視する方法、電流変化などにより電流入力回路を監視する方法がある。   Conventionally, as a countermeasure for preventing malfunction of the ratio differential relay, there is a method of preventing malfunction by detecting an inrush current (second harmonic component) when charging the transformer. As a measure for improving the reliability of the ratio differential relay, there is a method with an overcurrent element for detecting an accident. Further, in the case of a digital relay, there are a method of monitoring a three-phase current imbalance, a method of monitoring a difference current, and a method of monitoring a current input circuit by a current change.

下記の特許文献1には、変圧器の1次電流と2次電流の差をリレー演算部で演算してトリップ信号を出力する比率差動継電器においてリレー要素やアナログ入力部を二重化しなくてもミストリップが発生しないようにするために、1次電流および2次電流のうちいずれか1つが一定値以上減少したらリレー演算部をロックするΔIリレーと、1次電流が一定値以上増加したらΔIリレーの動作をロックする主変圧器一次用交流過電流継電器を設けた比率差動継電器が開示されている。   In Patent Document 1 below, a relay element and an analog input unit do not have to be duplicated in a differential relay that outputs a trip signal by calculating a difference between a primary current and a secondary current of a transformer by a relay calculation unit. In order to prevent the occurrence of mistripping, a ΔI relay that locks the relay operation unit when any one of the primary current and the secondary current decreases by a certain value or more, and a ΔI relay that locks the relay current when the primary current increases by a certain value or more. The ratio differential relay which provided the AC overcurrent relay for the main transformer primary which locks the operation | movement of this is disclosed.

また、下記の特許文献2には、本来保護すべき監視対象が正常であるにもかかわらず異常と判断することを防いで無用に電力の安定な供給を妨げる要因を取り除くために、監視対象を流れる3相交流の電流を検出する電流検出部により検出された信号を受付ける入力部と、検出された信号をディジタル信号に変換する入力変換部と、ディジタル信号を処理して監視対象の異常を判別する演算部と、その判別結果を外部へ出力する出力部を有するディジタル式保護継電装置において、演算部が、3相分の電流のベクトル和がゼロのときには電流検出部が正常と判断し、ゼロでないときには電流検出部が異常と判断する検出部異常判定手段を有し、出力部が、電流検出部の異常を検知したときに監視対象を異常と判別した判別結果を外部へ出力しないようにしたディジタル式保護継電装置が開示されている。
実開平5−39138号公報 特開平5−161249号公報
In addition, in Patent Document 2 below, in order to prevent a factor that hinders the stable supply of power unnecessarily by preventing an abnormality even though the monitoring target to be originally protected is normal, the monitoring target is not included. An input unit that receives a signal detected by a current detection unit that detects a flowing three-phase AC current, an input conversion unit that converts the detected signal into a digital signal, and processes the digital signal to determine an abnormality to be monitored In the digital protection relay device having the calculation unit and the output unit for outputting the determination result to the outside, the calculation unit determines that the current detection unit is normal when the vector sum of currents for three phases is zero, When it is not zero, the current detection unit has a detection unit abnormality determination means that determines that the current detection unit is abnormal, and when the output unit detects an abnormality of the current detection unit, the determination result that the monitoring target is determined to be abnormal is output to the outside. Digital protective relay device is disclosed in which the odd.
Japanese Utility Model Publication No. 5-39138 JP-A-5-161249

しかしながら、上述した従来の方法では、運用中の比率差動継電器用の変流器回路が人為的ミスなどで1〜3相の短絡または断線状態になった場合には、以下に示す問題から、すべてのケースを瞬時に判断して比率差動継電器の誤動作を防止することはできない。
(1)過電流要素付きとした方法では、整定タップ値が小さい場合や負荷電流が大きい場合に過電流要素が動作してしまう。
(2)3相電流不平衡を監視する方法や差電流を監視する方法では、実際の事故との判別が必要になるため、ある程度の検出時間が必要であるので、比率差動継電器を瞬時にロックすることはできない。
(3)上記特許文献1記載の比率差動継電器では、すべての回路のうちいずれか1相の電流のΔI減少により検出する方法であるので、2相または3相異常時の検出ができない。
(4)上記特許文献2記載のディジタル式保護継電装置では、3相電流不平衡を監視する方法と差電流を監視する方法とを組み合わせて検出しているので、3相異常時の検出ができない。
However, in the conventional method described above, when the current transformer circuit for the ratio differential relay in operation is short-circuited or disconnected in 1 to 3 phases due to human error, from the following problems, All cases cannot be judged instantaneously to prevent the malfunction of the ratio differential relay.
(1) In the method with an overcurrent element, the overcurrent element operates when the settling tap value is small or the load current is large.
(2) In the method of monitoring the three-phase current imbalance and the method of monitoring the difference current, it is necessary to discriminate from an actual accident. Therefore, a certain amount of detection time is required. It cannot be locked.
(3) Since the ratio differential relay described in Patent Document 1 is a method of detecting by reducing ΔI of the current of any one of all the circuits, it cannot detect when the two-phase or three-phase abnormality occurs.
(4) Since the digital protective relay device described in Patent Document 2 detects a combination of the method for monitoring the three-phase current imbalance and the method for monitoring the difference current, detection at the time of three-phase abnormality is possible. Can not.

本発明の目的は、運用中の比率差動継電器用の変流器回路が人為的ミスなどで1〜3相の短絡または断線状態になっても誤動作することがない比率差動継電器および比率差動継電器誤動作防止方法を提供することにある。   An object of the present invention is to provide a ratio differential relay and a ratio difference in which a current transformer circuit for a ratio differential relay in operation does not malfunction even if it is short-circuited or disconnected in one to three phases due to human error or the like. The object is to provide a method for preventing malfunction of a relay.

本発明の比率差動継電器は、複数の母線の相ごとに設置された変圧器(1)保護用の遮断器(31X〜33X)をそれぞれ遮断させるトリップ信号(T1X〜T3X)を出力する比率差動継電器(10)であって、前記変圧器の近傍に設置された変流器(21X〜23X)から変流器回路(51X〜53X)を介して入力される該変流器の2次電流(i1X〜i3X)に基づいて該変圧器に関する事故を検出すると前記トリップ信号を出力する比率差動継電回路(11)と、前記2次電流のスカラー電流値(|i1X|〜|i3X|)および該2次電流のスカラー電流値の変化率(Δ|i1X|〜Δ|i3X|)を算出する電流値/変化率算出回路(12)と、該電流値/変化率算出回路から入力される前記2次電流のスカラー電流値および変化率に基づいて、前記トリップ信号が出力されないように該比率差動継電回路をロックするためのロック信号(L)を生成するロック回路(13)とを具備することを特徴とする。
ここで、前記ロック回路が、前記2次電流が瞬時に“0”になったか前記変化率が自回路電流無変化検出値(β)以上になり、かつ、自回路の該当相に対応する前記母線の相に設置された前記遮断器が投入状態であり、かつ、他回路の該当相における前記変化率が他回路電流無変化検出値(α)以下である場合に、該自回路の該当相に対応する母線の相に設置された前記遮断器を遮断させる前記トリップ信号を出力させないようにするための前記ロック信号を生成して、該生成したロック信号を前記比率差動継電回路に出力してもよい。
前記他回路電流無変化検出値が事前スカラー電流値の20%の値であり、前記自回路電流無変化検出値が前記事前スカラー電流値の50%の値であり、前記事前スカラー電流値が、前記2次電流をサンプリングしている場合には、該サンプリングの0.5周期または1周期前のスカラー電流値であってもよい。
前記2次電流をサンプリングしている場合には、1ビットの変化検出量を20%未満にして該2次電流を“0”として扱ってもよい。
前記変流器回路の前記変流器の近傍に設けられた、かつ、該変流器の2次側を相ごとに短絡させるための短絡装置(201〜203)をさらに具備し、前記ロック回路が、前記2次電流のスカラー電流値および変化率に基づいて前記変流器回路の相について異常を検出すると、該異常を検出した変流器回路の相に対応する前記変流器の相の2次側を短絡させる短絡指令信号(S)を生成して、該生成した短絡指令信号を前記短絡装置に出力してもよい。
前記短絡装置が、前記ロック回路から入力される前記短絡指令信号に応じてオン/オフされるスイッチ(211X〜213X)を備えてもよい。
前記ロック回路が、前記2次電流のスカラー電流値および変化率に基づいて前記変流器回路の相について異常を検出すると、外部に出力する警報信号(ALM)をさらに生成してもよい。
The ratio differential relay of the present invention is provided with a trip signal (T 1X to T 3X ) that respectively shuts off a transformer (1) protective circuit breaker (3 1X to 3 3X ) installed for each phase of a plurality of busbars. A ratio differential relay (10) for output, which is input from a current transformer (2 1X to 2 3X ) installed in the vicinity of the transformer via a current transformer circuit (5 1X to 5 3X ). A ratio differential relay circuit (11) that outputs the trip signal when an accident relating to the transformer is detected based on a secondary current (i 1X to i 3X ) of the current transformer, and a scalar current of the secondary current Current value / change rate calculation circuit (12) for calculating the value (| i 1X | ˜ | i 3X |) and the change rate (Δ | i 1X | ˜Δ | i 3X |) of the scalar current value of the secondary current On the basis of the scalar current value and the change rate of the secondary current input from the current value / change rate calculation circuit. Characterized by comprising a locking circuit (13) for generating a lock signal for trip signal to lock the said ratio differential relay circuit so as not to output (L).
In this case, the lock circuit is configured such that the secondary current instantaneously becomes “0” or the rate of change is equal to or greater than the own circuit current no change detection value (β) and corresponds to the corresponding phase of the own circuit. When the circuit breaker installed in the phase of the bus is in the on state and the rate of change in the corresponding phase of the other circuit is equal to or less than the other circuit current no change detection value (α), the corresponding phase of the own circuit Generating the lock signal for not outputting the trip signal for interrupting the circuit breaker installed in the phase of the bus corresponding to the output, and outputting the generated lock signal to the ratio differential relay circuit May be.
The other circuit current no change detection value is a value of 20% of the pre-scalar current value, the own circuit current no change detection value is a value of 50% of the pre-scalar current value, and the pre-scalar current value However, when the secondary current is sampled, it may be a scalar current value of 0.5 period or 1 period before the sampling.
When the secondary current is sampled, the change detection amount of 1 bit may be less than 20% and the secondary current may be handled as “0”.
And further comprising a short-circuit device (20 1 to 20 3 ) provided in the vicinity of the current transformer of the current transformer circuit and for short-circuiting the secondary side of the current transformer for each phase, When the lock circuit detects an abnormality with respect to the phase of the current transformer circuit based on the scalar current value and the rate of change of the secondary current, the current transformer of the current transformer corresponding to the phase of the current transformer circuit that has detected the abnormality is detected. A short-circuit command signal (S) for short-circuiting the secondary side of the phase may be generated, and the generated short-circuit command signal may be output to the short-circuit device.
The short-circuit device may include a switch (21 1X to 21 3X ) that is turned on / off in response to the short-circuit command signal input from the lock circuit.
When the lock circuit detects an abnormality in the phase of the current transformer circuit based on the scalar current value and change rate of the secondary current, an alarm signal (ALM) to be output to the outside may be further generated.

本発明の比率差動継電器誤動作防止方法は、複数の母線の相ごとに設置された変圧器(1)保護用の遮断器(31X〜33X)をそれぞれ遮断させるトリップ信号(T1X〜T3X)を出力する比率差動継電回路(11)の誤動作を防止するための比率差動継電器誤動作防止方法であって、ロック回路(13)が、前記変圧器の近傍に設置された変流器(21X〜23X)の2次電流のスカラー電流値(|i1X|〜|i3X|)および該2次電流のスカラー電流値の変化率(Δ|i1X|〜Δ|i3X|)に基づいて、前記2次電流が瞬時に“0”になったか、また、前記変化率が自回路電流無変化検出値(β)以上であるかを監視するステップ(S11)と、前記ロック回路が、前記2次電流が瞬時に“0”になったか前記変化率が前記自回路電流無変化検出値以上になった場合には、自回路の該当相に対応する前記母線の相に設置された前記遮断器が投入状態であるか否かを調べるステップ(S12)と、前記ロック回路が、前記自回路の該当相に対応する前記母線の相に設置された前記遮断器が投入状態である場合には、他回路の該当相における前記変化率が他回路電流無変化検出値(α)以下であるか否かを調べるステップ(S13)と、前記ロック回路が、前記他回路の該当相における前記変化率が前記他回路電流無変化検出値以下である場合には、前記自回路の該当相に対応する前記母線の相に設置された前記遮断器を遮断させる前記トリップ信号を出力させないようにするためのロック信号(L)を生成して、該生成したロック信号を前記比率差動継電回路に出力するステップ(S14)とを具備することを特徴とする。
ここで、前記他回路電流無変化検出値が事前スカラー電流値の20%の値であり、前記自回路電流無変化検出値が前記事前スカラー電流値の50%の値であり、前記事前スカラー電流値が、前記2次電流をサンプリングしている場合には、該サンプリングの0.5周期または1周期前のスカラー電流値であってもよい。
前記ロック回路が、前記2次電流のスカラー電流値および変化率に基づいて前記自回路の該当相について異常を検出すると、外部に出力する警報信号(ALM)を生成するとともに、該自回路の該当相に対応する前記変流器の相の2次側を短絡させるための短絡装置(201〜203)に出力する短絡指令信号(S)を生成するステップ(S14,S15)をさらに具備してもよい。
The ratio differential relay malfunction prevention method according to the present invention includes a trip signal (T 1X to T) that respectively shuts off a transformer (1) protective circuit breaker (3 1X to 3 3X ) installed for each phase of a plurality of buses. 3X ) is a ratio differential relay malfunction prevention method for preventing malfunction of the ratio differential relay circuit (11), wherein the lock circuit (13) is installed in the vicinity of the transformer. Secondary current scalar current value (| i 1X | ˜ | i 3X |) and the change rate (Δ | i 1X | ˜Δ | i 3X ) of the secondary current scalar current value of the secondary current (2 1X to 2 3X ) |), Monitoring whether the secondary current instantaneously becomes “0” and whether the rate of change is equal to or greater than the own circuit current no-change detection value (β) (S11), Whether the secondary current instantaneously becomes “0” or the rate of change does not change the current of the own circuit. If the detected value is greater than or equal to the detected value, the step (S12) of checking whether or not the circuit breaker installed in the phase of the bus corresponding to the corresponding phase of the own circuit is in the on state, and the lock circuit, When the circuit breaker installed in the phase of the bus corresponding to the corresponding phase of the own circuit is in the on state, the change rate in the corresponding phase of the other circuit is equal to or less than the other circuit current no change detection value (α). A step (S13) for checking whether or not the current phase of the lock circuit is equal to or less than the detected value of the other circuit current unchanged when the rate of change in the phase of the other circuit And generating a lock signal (L) for preventing the trip signal output from the circuit breaker installed in the phase of the bus corresponding to the output from being output, and using the generated lock signal as the ratio differential relay Output to the circuit (S Characterized by comprising 4) and the.
Here, the other circuit current no change detection value is a value of 20% of the pre-scalar current value, the own circuit current no change detection value is a value of 50% of the pre-scalar current value, When the secondary current is sampled as the scalar current value, it may be the scalar current value of 0.5 period or 1 period before the sampling.
When the lock circuit detects an abnormality in the corresponding phase of the own circuit based on the scalar current value and change rate of the secondary current, it generates an alarm signal (ALM) to be output to the outside and generating a short-circuit command signal to be output the short circuit device for short-circuiting the secondary side of the phase of the current transformer (20 1 to 20 3) corresponding to the phase (S) (S14, S15) further comprises a May be.

本発明の比率差動継電器および比率差動継電器誤動作防止方法は、以下に示す効果を奏する。
(1)運用中の比率差動継電器用の変流器回路が作業員の人為的ミスなどで1〜3相の短絡または断線状態になっても、比率差動継電回路は瞬時にロックされるので、比率差動継電器の誤動作を防止することができる。
(2)電流入力回路の新たな監視手段としても有効である。
The ratio differential relay and the ratio differential relay malfunction prevention method of the present invention have the following effects.
(1) Even if the current transformer circuit for the ratio differential relay in operation becomes short-circuited or disconnected from 1 to 3 due to human error, the ratio differential relay is instantly locked. Therefore, malfunction of the ratio differential relay can be prevented.
(2) It is also effective as a new monitoring means for the current input circuit.

上記の目的を、電流値/変化率算出回路から入力される2次電流のスカラー電流値および変化率に基づいて、トリップ信号が出力されないように比率差動継電回路をロックするためのロック信号を生成することにより実現した。   Based on the scalar current value and change rate of the secondary current input from the current value / change rate calculating circuit, the lock signal for locking the ratio differential relay circuit so that the trip signal is not output is provided for the above purpose. Realized by generating

以下、本発明の比率差動継電器および比率差動継電器誤動作防止方法の実施例について、図面を参照して説明する。
本発明の一実施例による比率差動継電器10は、図1に示すように、比率差動継電回路11と、電流値/変化率算出回路12と、ロック回路13とを備える。
また、比率差動継電器10は、図2に示すように、一次乃至三次母線の変圧器1の近傍にそれぞれ設置された一次乃至三次変流器21〜23の2次側と一次乃至三次変流器回路51〜53を介して接続されている。
Hereinafter, embodiments of the ratio differential relay and the ratio differential relay malfunction prevention method of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the proportional differential relay 10 according to an embodiment of the present invention includes a proportional differential relay circuit 11, a current value / change rate calculation circuit 12, and a lock circuit 13.
Further, as shown in FIG. 2, the ratio differential relay 10 includes a primary side to a tertiary side current transformers 2 1 to 2 3 installed in the vicinity of the transformer 1 of the primary to tertiary bus, and primary to tertiary. The current transformer circuits 5 1 to 5 3 are connected to each other.

ここで、一次変流器21は、一次母線のR相、S相およびT相にそれぞれ設置されたR相、S相およびT相一次変流器21R,21S,21T(以下、まとめて「各相一次変流器21X」とも称する。)を備え、二次変流器22は、二次母線のR相、S相およびT相にそれぞれ設置されたR相、S相およびT相二次変流器22R,22S,22T(以下、まとめて「各相二次変流器22X」とも称する。)を備え(図3参照)、三次変流器23は、三次母線のR相、S相およびT相にそれぞれ設置されたR相、S相およびT相三次変流器23R,23S,23T(以下、まとめて「各相三次変流器23X」とも称する。)を備える。
また、一次変流器回路51は、各相一次変流器21Xの2次側と比率差動継電器10とをそれぞれ接続するR相、S相およびT相一次変流器回路51R,51S,51T(以下、まとめて「各相一次変流器回路51X」とも称する。)からなり、二次変流器回路52は、各相二次変流器22Xの2次側と比率差動継電器10とをそれぞれ接続するR相、S相およびT相二次変流器回路52R,52S,52T(以下、まとめて「各相二次変流器回路52X」とも称する。)からなり、三次変流器回路53は、各相三次変流器23Xの2次側と比率差動継電器10とをそれぞれ接続するR相、S相およびT相三次変流器回路53R,53S,53T(以下、まとめて「各相三次変流器回路53X」とも称する。)からなる。
Here, the primary current transformer 2 1, R-phase of the primary bus, R-phase are respectively installed in the S-phase and T-phase, S-phase and T-phase primary current transformer 2 1R, 2 1S, 2 1T (hereinafter, Collectively referred to as “each phase primary current transformer 2 1X ”), and the secondary current transformer 2 2 is installed in the R phase, S phase and T phase of the secondary bus, respectively. And T-phase secondary current transformers 2 2R , 2 2S , 2 2T (hereinafter collectively referred to as “each phase secondary current transformer 2 2X ”) (see FIG. 3), and tertiary current transformer 2 3 Are the R-phase, S-phase, and T-phase tertiary current transformers 2 3R , 2 3S , 2 3T (hereinafter collectively referred to as “three-phase current transformers for each phase” respectively installed in the R-phase, S-phase, and T-phase of the tertiary bus. 2 3X ").
The primary current transformer circuit 5 1, each phase primary current transformer 2 1X secondary side and the ratio differential relay 10 and the connecting respectively R phase, S phase and T-phase primary current transformer circuit 5 1R, 5 1S, 5 1T made (hereinafter collectively also referred to as "phase primary current transformer circuit 5 1X".), the secondary current transformer circuit 5 2, 2-order phase secondary current transformer 2 2X R-phase, S-phase, and T-phase secondary current transformer circuits 5 2R , 5 2S , 5 2T (hereinafter collectively referred to as “each phase secondary current transformer circuit 5 2X "and also referred to.) a three-the primary current transformer circuit 5 3, R-phase phase tertiary current transformer 2 3X the secondary side and the ratio differential relay 10 and the connecting respectively, S-phase and T-phase tertiary strange It consists of a current transformer circuit 5 3R , 5 3S , 5 3T (hereinafter collectively referred to as “each phase tertiary current transformer circuit 5 3X ”).

一次母線のR相、S相およびT相を流れる第1のR相、S相およびT相1次電流I1R,I1S,I1T(以下、まとめて「第1の各相1次電流I1X」とも称する。)は、各相一次変流器21Xの1次側に入力されたのち所定の変流比で変換されて、各相一次変流器21Xの2次側から第1のR相、S相およびT相2次電流i1R,i1S,i1T(以下、まとめて「第1の各相2次電流i1X」とも称する。)として出力される。二次母線のR相、S相およびT相を流れる第2のR相、S相およびT相1次電流I2R,I2S,I2T(以下、まとめて「第2の各相1次電流I2X」とも称する。)は、各相二次変流器22Xの1次側に入力されたのち所定の変流比で変換されて、各相二次変流器22Xの2次側から第2のR相、S相およびT相2次電流i2R,i2S,i2T(以下、まとめて「第2の各相2次電流i2X」とも称する。)として出力される。三次母線のR相、S相およびT相を流れる第3のR相、S相およびT相1次電流I3R,I3S,I3T(以下、まとめて「第3の各相1次電流I3X」とも称する。)は、各相三次変流器23Xの1次側に入力されたのち所定の変流比で変換されて、各相三次変流器23Xの2次側から第3のR相、S相およびT相2次電流i3R,i3S,i3T(以下、まとめて「第3の各相2次電流i3X」とも称する。)として出力される。 First R-phase, S-phase, and T-phase primary currents I 1R , I 1S , I 1T flowing through the R-phase, S-phase, and T-phase of the primary bus (hereinafter collectively referred to as “first-phase primary current I also referred to as 1X. "), after being inputted to the primary side of each phase primary current transformer 2 1X is converted at a predetermined current transformer ratio, first from the secondary side of each phase primary current transformer 2 1X R-phase, S-phase, and T-phase secondary currents i 1R , i 1S , i 1T (hereinafter collectively referred to as “first phase secondary current i 1X ”). Second R-phase, S-phase, and T-phase primary currents I 2R , I 2S , I 2T flowing through the R-phase, S-phase, and T-phase of the secondary bus (hereinafter collectively referred to as “second-phase primary currents”) I 2X ”) is input to the primary side of each phase secondary current transformer 2 2X , and then converted at a predetermined current transformation ratio to obtain the secondary side of each phase secondary current transformer 2 2X. To R-phase, S-phase, and T-phase secondary currents i 2R , i 2S , i 2T (hereinafter collectively referred to as “second phase secondary current i 2X ”). Third R-phase, S-phase, and T-phase primary currents I 3R , I 3S , I 3T flowing through the R-phase, S-phase, and T-phase of the tertiary bus (hereinafter collectively referred to as “third-phase primary current I also referred to as 3X. "), after being inputted to the primary side of each phase tertiary current transformer 2 3X is converted at a predetermined current transformer ratio, the third from the secondary side of each phase tertiary current transformer 2 3X R phase, S phase, and T phase secondary currents i 3R , i 3S , i 3T (hereinafter collectively referred to as “third phase secondary current i 3X ”).

一次乃至三次変流器回路51〜53の一次乃至三次変流器21〜23の近傍には、異常時に一次乃至三次変流器21〜23の2次側を相ごとに短絡させるための第1乃至第3の短絡装置201〜203がそれぞれ設けられている。 In the vicinity of the primary to tertiary current transformer circuits 5 1 to 5 3 of primary or tertiary current transformers 2 1 to 2 3, the secondary side of the primary to tertiary current transformers 2 1 to 2 3 for each phase at the time of abnormality First to third short-circuit devices 20 1 to 20 3 for short-circuiting are provided, respectively.

ここで、図3(a)に第2の短絡装置202について示すように、第1の短絡装置201は、一次変流器21の2次側をR相、S相およびT相ごとに短絡させるためのR相、S相およびT相一次スイッチ211R,211S,211T(以下、まとめて「各相一次スイッチ211X」とも称する。)を備え、第2の短絡装置202は、二次変流器22の2次側をR相、S相およびT相ごとに短絡させるためのR相、S相およびT相二次スイッチ212R,212S,212T(以下、まとめて「各相二次スイッチ212X」とも称する。)を備え、第3の短絡装置203は、三次変流器23の2次側をR相、S相およびT相ごとに短絡させるためのR相、S相およびT相三次スイッチ213R,213S,213T(以下、まとめて「各相三次スイッチ213X」とも称する。)を備える。
なお、図3(a)は、一次乃至三次変流器回路51〜53がY結線である場合における第2の短絡装置202の構成を示し、図3(b)は、一次乃至三次変流器回路51〜がΔ結線である場合における第2の短絡装置202の構成を示す。
Here, as shown for 2 second short device 20 in FIG. 3 (a), the first short device 20 1, the primary current transformer 2 1 secondary side R-phase, each S-phase and T-phase R-phase, S-phase, and T-phase primary switches 21 1R , 21 1S , 21 1T (hereinafter collectively referred to as “each phase primary switch 21 1X ”), and a second short-circuit device 20 2. , the secondary current transformer 2 2 on the secondary side of the R-phase, R-phase for short-circuiting each S-phase and T-phase, S-phase and T-phase secondary switch 21 2R, 21 2S, 21 2T ( hereinafter, collectively also referred to as "phase secondary switch 21 2X".) comprises a third short circuit device 20 3 is shorting the secondary of tertiary current transformer 2 3 R-phase, for each S-phase and T-phase R phase for, S-phase and T-phase tertiary switch 21 3R, 21 3S, 21 3T ( hereinafter, collectively "phase tertiary switch 21 3X" Provided with the also referred to.).
Incidentally, FIG. 3 (a) shows a second shorting device 20 2 in the structure when the primary to tertiary current transformer circuits 5 1 to 5 3 are Y-connected, FIG. 3 (b), a primary or tertiary current transformer circuits 51 to indicate a second shorting device 20 2 in the structure in case of a Δ connection.

各相一次乃至三次スイッチ211X〜213Xは、比率差動継電器10のロック回路13から入力される後述の短絡指令信号Sに応じてオン/オフされる。 Each phase primary to tertiary switch 21 1X to 21 3X is turned on / off in response to a short-circuit command signal S (described later) input from the lock circuit 13 of the ratio differential relay 10.

一次乃至三次母線の変圧器1の近傍には、変圧器1保護用の一次乃至三次遮断器31〜33がそれぞれ設置されている。ここで、一次遮断器31は、一次母線のR相、S相およびT相ごとに設置されたR相、S相およびT相一次遮断器31R,31S,31T(以下、まとめて「各相一次遮断器31X」とも称する。)を備え、二次遮断器32は、二次母線のR相、S相およびT相ごとに設置されたR相、S相およびT相二次遮断器32R,32S,32T(以下、まとめて「各相二次遮断器32X」とも称する。)を備え、三次遮断器33は、三次母線のR相、S相およびT相ごとに設置されたR相、S相およびT相三次遮断器33R,33S,33T(以下、まとめて「各相三次遮断器33X」とも称する。)を備える。
各相一次遮断器31Xは、比率差動継電回路11から入力される第1のR相、S相およびT相トリップ信号T1R,T1S,T1T(以下、まとめて「第1の各相トリップ信号T1X」とも称する。)によってそれぞれ遮断され、各相二次遮断器32Xは、比率差動継電回路11から入力される第2のR相、S相およびT相トリップ信号T2R,T2S,T2T(以下、まとめて「第2の各相トリップ信号T2X」とも称する。)によってそれぞれ遮断され、各相三次遮断器33Xは、比率差動継電回路11から入力される第3のR相、S相およびT相トリップ信号T3R,T3S,T3T(以下、まとめて「第3の各相トリップ信号T3X」とも称する。)によってそれぞれ遮断される。
In the vicinity of the transformer 1 of the primary to tertiary buses, primary to tertiary circuit breakers 3 1 to 3 3 for protecting the transformer 1 are installed, respectively. Here, the primary circuit breaker 3 1, R-phase of the primary bus, S-phase and T the installed R phase for each phase, S-phase and T-phase primary circuit breaker 3 1R, 3 1S, 3 1T (hereinafter collectively also referred to as "phase primary breaker 3 1X".) equipped with a secondary breaker 3 2, R-phase of the secondary bus, R-phase, which is installed in each S-phase and T-phase, S-phase and T-phase to two Secondary circuit breakers 3 2R , 3 2S , 3 2T (hereinafter also referred to as “each phase secondary circuit breaker 3 2X ”), and the tertiary circuit breaker 3 3 includes the R phase, S phase and T of the tertiary bus. R phase, S phase, and T phase tertiary circuit breakers 3 3R , 3 3S , 3 3T (hereinafter collectively referred to as “each phase tertiary circuit breaker 3 3X ”) provided for each phase.
Each phase primary circuit breaker 3 1X has a first R-phase, S-phase, and T-phase trip signal T 1R , T 1S , T 1T (hereinafter collectively referred to as “first output”) input from the ratio differential relay circuit 11. also referred to as phase trip signal T 1X ".) is blocked respectively by respective phase secondary breaker 3 2X, the second R-phase inputted from the ratio differential relay circuit 11, S-phase and T-phase trip signal T 2R , T 2S , T 2T (hereinafter collectively referred to as “second phase trip signal T 2X ”) are respectively disconnected, and each phase tertiary circuit breaker 33 X is connected to the ratio differential relay circuit 11. They are blocked by the inputted third R-phase, S-phase and T-phase trip signals T 3R , T 3S , T 3T (hereinafter collectively referred to as “third phase trip signal T 3X ”).

比率差動継電回路11は、第1乃至第3の各相2次電流i1X〜i3Xに基づいて、従来の比率差動継電継電器と同様の動作を行う。すなわち、第1乃至第3の各相2次電流i1X〜i3Xのベクトル和idX(X=R,S,T)は常時“0”(idR=i1R+i2R+i3R=0、idS=i1S+i2S+i3S=0、idT=i1T+i2T+i3T=0)であるが変圧器1の内部事故時には“0”でなくなるため、比率差動継電回路11は、第1乃至第3の各相2次電流i1X〜i3Xのベクトル和idR,idS,idTが所定の動作整定値k以上になると、変圧器1の内部事故が発生したと判定して、第1乃至第3の各相トリップ信号T1X,T2X,T3Xを出力して各相一次乃至三次遮断器31X〜33Xをそれぞれ遮断させる。また、比率差動継電回路11は、変圧器1の誤差などにより外部事故時に誤動作することを防止するために、動作電流と変圧器通過電流の比率がある一定以上になったときに動作するように設計されている。 The ratio differential relay circuit 11 performs the same operation as that of the conventional ratio differential relay based on the first to third phase secondary currents i 1X to i 3X . That is, the vector sum i dX (X = R, S, T) of the first to third phase secondary currents i 1X to i 3X is always “0” (i dR = i 1R + i 2R + i 3R = 0, i dS = i 1S + i 2S + i 3S = 0, i dT = i 1T + i 2T + i 3T = 0) However, since it is not “0” in the case of an internal fault of the transformer 1, the ratio differential relay circuit 11 is When the vector sums i dR , i dS , i dT of the first to third phase secondary currents i 1X to i 3X are equal to or higher than a predetermined operation set value k, it is determined that an internal fault has occurred in the transformer 1. Thus, the first to third phase trip signals T 1X , T 2X , T 3X are output to block the phase primary to tertiary circuit breakers 3 1X to 3 3X , respectively. Further, the ratio differential relay circuit 11 operates when the ratio between the operating current and the transformer passing current becomes a certain value or more in order to prevent malfunction due to an error of the transformer 1 or the like in the event of an external accident. Designed to be

電流値/変化率算出回路12は、第1乃至第3の各相2次電流i1X〜i3Xのスカラー電流値|i1X|〜|i3X|と、第1乃至第3の各相2次電流i1X〜i3Xのスカラー電流値|i1X|〜|i3X|の変化率Δ|i1X|〜Δ|i3X|とを算出する。 Current / change rate calculating circuit 12, first to the scalar current value of the third phase secondary current i 1X ~i 3X | i 1X | ~ | i 3X | a, first to third phases 2 A change rate Δ | i 1X | ˜Δ | i 3X | of the scalar current values | i 1X | ˜ | i 3X | of the secondary currents i 1X to i 3X is calculated.

ロック回路13は、電流値/変化率算出回路12から入力される第1乃至第3の各相2次電流i1X〜i3Xのスカラー電流値|i1X|〜|i3X|および変化率Δ|i1X|〜Δ|i3X|に基づいて第1乃至第3の各相トリップ信号T1X,T2X,T3Xが出力されないように比率差動継電回路11をロックするためのロック信号Lを生成する。
また、ロック回路13は、第1乃至第3の各相2次電流i1X〜i3Xのスカラー電流値|i1X|〜|i3X|および変化率Δ|i1X|〜Δ|i3X|に基づいて一次乃至三次変流器回路51〜53のR相、S相およびT相の短絡および断線などの異常を検出すると、常時監視箇所に警報を表示させるとともに現地に警報を鳴動させるための警報信号ALMと、異常を検出した変流器回路の相に対応する一次、二次または三次母線の相に設置された一次、二次または三次各相変流器21X〜23Xの2次側を短絡させる短絡指令信号Sとを生成する。
The lock circuit 13 includes scalar current values | i 1X | ˜ | i 3X | and change rates Δ of the first to third phase secondary currents i 1X to i 3X input from the current value / change rate calculation circuit 12. Lock signal for locking the ratio differential relay circuit 11 so that the first to third phase trip signals T 1X , T 2X , T 3X are not output based on | i 1X | ˜Δ | i 3X | L is generated.
The lock circuit 13 also includes scalar current values | i 1X | ˜ | i 3X | and change rates Δ | i 1X | ˜Δ | i 3X | of the first to third phase secondary currents i 1X to i 3X. When an abnormality such as a short circuit or disconnection of the R-phase, S-phase, and T-phase of the primary to tertiary current transformer circuits 5 1 to 5 3 is detected based on the above, an alarm is always displayed at the monitoring point and an alarm is sounded locally. Alarm signal ALM for the primary, secondary or tertiary phase current transformers 2 1X to 2 3X installed in the phase of the primary, secondary or tertiary bus corresponding to the phase of the current transformer circuit which detected the abnormality A short-circuit command signal S for short-circuiting the secondary side is generated.

次に、比率差動継電器10のロック回路13における異常検出方法について、図4に示すフローチャートを参照して説明する。
ロック回路13は、電流値/変化率算出回路12から入力される第1乃至第3の各相2次電流i1X〜i3Xのスカラー電流値|i1X|〜|i3X|および変化率Δ|i1X|〜Δ|i3X|に基づいて、第1乃至第3の各相2次電流i1X〜i3Xが瞬時に“0”になったか、また、変化率Δ|i1X|〜Δ|i3X|が自回路電流無変化検出値β以上であるかを監視する(ステップS11)。
Next, an abnormality detection method in the lock circuit 13 of the ratio differential relay 10 will be described with reference to a flowchart shown in FIG.
The lock circuit 13 includes scalar current values | i 1X | ˜ | i 3X | and change rates Δ of the first to third phase secondary currents i 1X to i 3X input from the current value / change rate calculation circuit 12. Based on | i 1X | ˜Δ | i 3X |, the secondary currents i 1X to i 3X of the first to third phases instantaneously become “0”, and the rate of change Δ | i 1X | ˜ It is monitored whether Δ | i 3X | is equal to or greater than the own circuit current no change detection value β (step S11).

その結果、第1乃至第3の各相2次電流i1X〜i3Xが瞬時に“0”になったか、変化率Δ|i1X|〜Δ|i3X|が自回路電流無変化検出値β以上になった場合には、ロック回路13は、自回路の該当相に対応する一次、二次または三次母線のR相、S相またはT相に設置された遮断器(各相一次乃至三次遮断器31X〜33Xのうちの一つ)が投入状態であるか否かを調べる(ステップS12)。
ここで、自回路の該当相とは、第1乃至第3の各相2次電流i1X〜i3Xが瞬時に“0”になったか変化率Δ|i1X|〜Δ|i3X|が自回路電流無変化検出値β以上になった一次、二次または三次変流器回路51〜53のR相、S相またはT相をいう。
As a result, the secondary currents i 1X to i 3X of each of the first to third phases instantaneously become “0”, or the change rate Δ | i 1X | to Δ | i 3X | When β is greater than or equal to β, the lock circuit 13 is connected to a circuit breaker installed in the R phase, S phase, or T phase of the primary, secondary, or tertiary bus corresponding to the corresponding phase of the circuit (primary to tertiary for each phase). It is checked whether one of the circuit breakers 3 1X to 3 3X is in the on state (step S12).
Here, the corresponding phase of the own circuit is the change rate Δ | i 1X | ˜Δ | i 3X | of whether the first to third phase secondary currents i 1X to i 3X instantaneously become “0”. primary became more self circuit current non-change detection value beta, secondary or tertiary current transformer circuits 5 1 to 5 3 R-phase refers to the S phase or T phase.

その結果、自回路の該当相に対応する一次、二次または三次母線のR相、S相またはT相に設置された遮断器が投入状態である場合には、ロック回路13は、他回路の該当相における変化率Δ|i1X|〜Δ|i3X|が他回路電流無変化検出値α以下であるか否かを調べる(ステップS13)。
ここで、他回路の該当相とは、第1乃至第3の各相2次電流i1X〜i3Xが瞬時に“0”になったか変化率Δ|i1X|〜Δ|i3X|が自回路電流無変化検出値β以上になった一次、二次または三次変流器回路51〜53以外の一次、二次または三次変流器回路51〜53のR相、S相またはT相をいう。
As a result, when the circuit breaker installed in the R phase, S phase, or T phase of the primary, secondary, or tertiary bus corresponding to the corresponding phase of the own circuit is in the on state, the lock circuit 13 It is checked whether or not the change rate Δ | i 1X | ˜Δ | i 3X | in the corresponding phase is equal to or less than the other circuit current no change detection value α (step S13).
Here, the corresponding phase of the other circuit is the change rate Δ | i 1X | ˜Δ | i 3X | that the secondary currents i 1X to i 3X of the first to third phases instantaneously become “0”. primary became more β own circuit current unchanged detection value, secondary or tertiary current transformer circuits 5 1 to 5 3 other than the primary, secondary or tertiary current transformer circuits 5 1 to 5 3 of R phase, S phase Or the T phase.

その結果、他回路の該当相における変化率Δ|i1X|〜Δ|i3X|が他回路電流無変化検出値α以下である場合には、ロック回路13は、自回路の該当相に対応する一次、二次または三次母線のR相、S相またはT相に設置された遮断器を遮断させるトリップ信号(第1乃至第3の各相トリップ信号T1X〜T3Xのうちの一つ)を出力させないようにするためのロック信号Lを生成して、生成したロック信号Lを比率差動継電回路11に出力する(ステップS14)。これにより、変圧器1の該当相の遮断器が不要に遮断されることを防止することができる。 As a result, when the change rate Δ | i 1X | ˜Δ | i 3X | in the corresponding phase of the other circuit is equal to or less than the other circuit current no-change detection value α, the lock circuit 13 corresponds to the corresponding phase of the own circuit. Trip signal (one of the first to third phase trip signals T 1X to T 3X ) that shuts off the circuit breaker installed in the R phase, S phase, or T phase of the primary, secondary, or tertiary bus Is generated, and the generated lock signal L is output to the ratio differential relay circuit 11 (step S14). Thereby, it can prevent that the circuit breaker of the applicable phase of the transformer 1 is interrupted | blocked unnecessarily.

また、ロック回路13は、「自回路の該当相において異常が生じた」旨の警報を通知する警報信号ALMを生成して、生成した警報信号ALMを外部に出力する(ステップS14)。これにより、「自回路の該当相において異常が生じた」旨の警報を常時監視箇所に表示させて監視員に知らせたり、作業現場に警報音を鳴動させて作業員に知らせたりすることができる。   Further, the lock circuit 13 generates an alarm signal ALM that notifies an alarm that “an abnormality has occurred in the corresponding phase of its own circuit”, and outputs the generated alarm signal ALM to the outside (step S14). As a result, an alarm stating that “an abnormality has occurred in the corresponding phase of the own circuit” is always displayed on the monitoring point to notify the monitoring person, or an alarm sound can be sounded at the work site to notify the worker. .

さらに、ロック回路13は、自回路の該当相に対応する一次、二次または三次母線のR相、S相またはT相に設置された変流器(各相一次乃至三次変流器21X〜23Xのうちの一つ)の2次側を短絡させる短絡指令信号Sを生成して、生成した短絡指令信号Sを第1乃至第3の短絡装置201〜203に出力する(ステップS15)。これにより、第1乃至第3の短絡装置201〜203の各相一次乃至三次スイッチ211X〜213Xのうちの該当する一つが閉じられて、自回路の該当相に対応する一次、二次または三次母線のR相、S相またはT相に設置された変流器の2次側が短絡される。 Further, the lock circuit 13 is a current transformer installed in the R phase, S phase or T phase of the primary, secondary or tertiary bus corresponding to the corresponding phase of its own circuit (each phase primary to tertiary current transformer 2 1X- A short-circuit command signal S for short-circuiting the secondary side of 2 3X is generated, and the generated short-circuit command signal S is output to the first to third short-circuit devices 201 to 203 (step S15). ). Thus, the first to be one is closed the corresponding one of the third short circuit devices 20 1 to 20 3 of each phase primary to tertiary switch 21 1X through 21 3X, one corresponding to the relevant phase of the self-circuit primary, the secondary The secondary side of the current transformer installed in the R phase, S phase or T phase of the next or tertiary bus is short-circuited.

なお、他回路電流無変化検出値αは、事前スカラー電流値(第1乃至第3の各相2次電流i1X〜i3Xをサンプリングしている場合には、このサンプリングの0.5周期または1周期前のスカラー電流値)の20%の値とし、自回路電流無変化検出値βは、事前スカラー電流値の50%の値とする。
また、第1乃至第3の各相2次電流i1X〜i3Xをサンプリングしている場合のフルスケールを163.84Aとすると、1ビット当りのスカラー電流値(LSB)は50mAとなるため、たとえば1ビットの変化検出量を20%未満にするためには、0.03A以上の電流値を検出する必要があるので、異常検出時には、0.03A未満をデッドゾーンとして、第1乃至第3の各相2次電流i1X〜i3Xを“0”として扱う。
The other circuit current no change detection value α is a pre-scalar current value (in the case where the first to third phase secondary currents i 1X to i 3X are sampled, 0.5 sampling period or The value of 20% of the scalar current value 1 cycle before) is assumed, and the self-circuit current no-change detection value β is 50% of the previous scalar current value.
Further, if the full scale when sampling the first to third phase secondary currents i 1X to i 3X is 163.84A, the scalar current value (LSB) per bit is 50 mA. For example, in order to make the change detection amount of 1 bit less than 20%, it is necessary to detect a current value of 0.03 A or more. Therefore, when an abnormality is detected, the first to third are set to be less than 0.03 A as a dead zone. Each phase secondary current i 1X to i 3X is treated as “0”.

次に、本実施例による比率差動継電器10の動作の一例について、R相二次変流器回路52Rにおいて時刻t0に作業員の人為的ミスによって断線または短絡が生じた場合を例として、R相一次乃至三次変流器回路51R〜53Rを流れる第1乃至第3のR相2次電流i1R〜i3Rのスカラー電流値|i1R|〜|i3R|および第1乃至第3のR相2次電流i1R〜i3Rのベクトル和idR(=i1R+i2R+i3R)のスカラー値|idR|の時間的変化を示す図5を参照して説明する。 Next, as an example of the operation of the ratio differential relay 10 according to the present embodiment, a case where a disconnection or a short circuit occurs due to human error at time t 0 in the R-phase secondary current transformer circuit 52 R is taken as an example. , Scalar current values | i 1R | to | i 3R | and first to third R-phase secondary currents i 1R to i 3R flowing through the R-phase primary to tertiary current transformer circuits 5 1R to 5 3R. A description will be given with reference to FIG. 5 showing the temporal change of the scalar value | i dR | of the vector sum i dR (= i 1R + i 2R + i 3R ) of the third R-phase secondary currents i 1R to i 3R .

比率差動継電器10のロック回路13は、電流値/変化率算出回路12から入力されてくる第2のR相2次電流i2Rのスカラー電流値|i2R|に基づいて、時刻t0においてR相二次変流器回路52Rを流れる第2のR相2次電流i2Rが瞬時に“0”になったことを検出すると、二次母線のR相に設置されたR相二次遮断器32Rが投入状態か否かを調べる。 The lock circuit 13 of the ratio differential relay 10 is based on the scalar current value | i 2R | of the second R-phase secondary current i 2R input from the current value / change rate calculation circuit 12 at time t 0 . When it is detected that the second R-phase secondary current i 2R flowing through the R-phase secondary current transformer circuit 5 2R instantaneously becomes “0”, the R-phase secondary installed in the R-phase of the secondary bus Check whether the breaker 3 2R is in the on state.

その結果、R相二次遮断器32Rが投入状態であると、ロック回路13は、R相一次および三次変流器回路51R,53R(他回路)を流れる第1および第3のR相2次電流i1R,i3Rのスカラー電流値|i1R|,|i3R|の変化率Δ|i1R|,Δ|i3R|がともに他回路電流無変化検出値α以下であるか否かを調べる。 As a result, when the R-phase secondary circuit breaker 3 2R is in the on state, the lock circuit 13 causes the first and third Rs to flow through the R-phase primary and tertiary current transformer circuits 5 1R and 5 3R (other circuits). Whether the change rates Δ | i 1R |, Δ | i 3R | of the scalar current values | i 1R |, | i 3R | of the phase secondary currents i 1R , i 3R are less than the other circuit current no-change detection value α Check for no.

その結果、これらの変化率Δ|i1R|,Δ|i3R|がともに他回路電流無変化検出値α以下であると、ロック回路13は、ロック信号Lを比率差動継電回路11に出力して、R相二次遮断器32Rを遮断させる第2のR相トリップ信号T2Rを出力させないようにするとともに、警報信号ALMを外部に出力して「R相二次変流器回路52Rにおいて断線または短絡が生じた」旨を通知する。これにより、R相二次遮断器32Rが不要に遮断されることを防止することができるとともに、「R相二次変流器回路52Rにおいて断線または短絡が生じた」旨を常時監視箇所に警報を表示させて監視員に知らせたり作業現場に警報音を鳴動させて作業員に知らせたりすることができる。 As a result, if these change rates Δ | i 1R |, Δ | i 3R | are both equal to or less than the other circuit current no-change detection value α, the lock circuit 13 sends the lock signal L to the ratio differential relay circuit 11. The second R-phase trip signal T 2R that outputs and shuts off the R-phase secondary circuit breaker 3 2R is not output, and the alarm signal ALM is output to the outside to output the “R-phase secondary current transformer circuit”. 5 2R is disconnected or short-circuited. As a result, it is possible to prevent the R-phase secondary circuit breaker 3 2R from being interrupted unnecessarily, and to constantly monitor the fact that the R-phase secondary current transformer circuit 52 R has a break or short circuit. An alarm can be displayed on the monitor to notify the monitoring staff, or an alarm sound can be sounded at the work site to notify the worker.

また、ロック回路13は、R相二次変流器回路52Rに対応する二次母線のR相に設置されたR相二次変流器22Rの2次側を短絡させる短絡指令信号Sを第2の短絡装置202に出力する。これにより、第2の短絡装置202のR相二次スイッチ212Rが閉じられて、R相二次変流器22Rの2次側が短絡される。 The lock circuit 13, short-circuit command signal to short the secondary side of the R-phase secondary current transformer circuit 5 of the corresponding secondary bus to 2R R phase to the installed R-phase secondary current transformer 2 2R S Is output to the second short-circuit device 20 2 . As a result, the R-phase secondary switch 21 2R of the second short-circuit device 20 2 is closed and the secondary side of the R-phase secondary current transformer 2 2R is short-circuited.

本発明の一実施例による比率差動継電器10の構成を示す図である。It is a figure which shows the structure of the ratio differential relay 10 by one Example of this invention. 図1に示した比率差動継電器10と一次乃至三次変流器21〜23との接続関係について説明するための図である。It is a figure for demonstrating the connection relation of the ratio differential relay 10 shown in FIG. 1, and primary thru | or the tertiary current transformers 2 1 to 2 3 . 図2に示した第1乃至第3の短絡装置201〜203の構成を示す図である。Is a diagram showing the first through third short devices 20 1 to 20 3 of the configuration shown in FIG. 図1に示した比率差動継電器10の動作について説明するためのフローチャートである。It is a flowchart for demonstrating operation | movement of the ratio differential relay 10 shown in FIG. 図2に示したR相二次変流器回路52において時刻t0に作業員の人為的ミスによって断線または短絡が生じた場合における比率差動継電器10の動作について説明するためのグラフである。Is a graph for explaining the operation of the ratio differential relay 10 when the disconnection or short-circuited by human error of the worker in the R-phase secondary current transformer circuits 5 2 at time t 0 has occurred as shown in FIG. 2 .

符号の説明Explanation of symbols

1 変圧器
1〜23 一次乃至三次変流器
1R,21S,21T R相、S相およびT相一次変流器
2R,22S,22T R相、S相およびT相二次変流器
3R,23S,23T R相、S相およびT相三次変流器
1X〜23X 各相一次乃至三次変流器
1〜33 一次乃至三次遮断器
1R,31S,31T R相、S相およびT相一次遮断器
2R,32S,32T R相、S相およびT相二次遮断器
3R,33S,33T R相、S相およびT相三次遮断器
1X〜33X 各相一次乃至三次遮断器
1〜53 一次乃至三次変流器回路
1R,51S,51T R相、S相およびT相一次変流器回路
2R,32S,32T R相、S相およびT相二次変流器回路
3R,33S,33T R相、S相およびT相三次変流器回路
1X〜53X 各相一次乃至三次変流器回路
10 比率差動継電器
11 比率差動継電回路
12 電流値/変化率算出回路
13 ロック回路
201〜203 第1乃至第3の短絡装置
211R,211S,211T R相、S相およびT相一次スイッチ
212R,212S,212T R相、S相およびT相二次スイッチ
213R,213S,213T R相、S相およびT相三次スイッチ
211X〜213X 各相一次乃至三次スイッチ
1R,I1S,I1T 第1のR相、S相およびT相1次電流
2R,I2S,I2T 第2のR相、S相およびT相1次電流
3R,I3S,I3T 第3のR相、S相およびT相1次電流
1X〜I3X 第1乃至第3の各相1次電流
1R,i1S,i1T 第1のR相、S相およびT相2次電流
2R,i2S,i2T 第2のR相、S相およびT相2次電流
3R,i3S,i3T 第3のR相、S相およびT相2次電流
1 X〜i3X 第1乃至第3の各相2次電流
RX ベクトル和
|i1X|〜|i3X| スカラー電流値
Δ|i1X|〜Δ|i3X| 変化率
|idR| スカラー値
k 動作整定値
ALM 警報信号
L ロック信号
S 短絡指令信号
1R,T1S,T1T 第1のR相、S相およびT相トリップ信号
2R,T2S,T2T 第2のR相、S相およびT相トリップ信号
3R,T3S,T3T 第3のR相、S相およびT相トリップ信号
1X〜T3X 第1乃至第3の各相トリップ信号
S11〜S15 ステップ
0 時刻
1 transformer 2 1 to 2 3 primary to tertiary current transformer 2 1R , 2 1S , 2 1T R phase, S phase and T phase primary current transformer 2 2R , 2 2S , 2 2T R phase, S phase and T phase Secondary current transformers 2 3R , 2 3S , 2 3T R-phase, S-phase and T-phase tertiary current transformers 2 1X to 2 3X primary to tertiary current transformers 3 1 to 3 3 primary to tertiary circuit breakers 3 1R , 3 1S , 3 1T R phase, S phase and T phase primary circuit breakers 3 2R , 3 2S , 3 2T R phase, S phase and T phase secondary circuit breakers 3 3R , 3 3S , 3 3T R phase, S phase And T-phase tertiary circuit breakers 3 1X to 3 3X primary to tertiary circuit breakers 5 1 to 5 3 primary to tertiary current transformer circuits 5 1R , 5 1S , 5 1T R-phase, S-phase and T-phase primary current transformers Circuits 3 2R , 3 2S , 3 2T R-phase, S-phase and T-phase secondary current transformer circuits 3 3R , 3 3S , 3 3T R-phase, S-phase and T-phase tertiary current transformer circuits 5 1X to 5 3X each Phase primary to tertiary current transformer circuit 10 ratio differential relay 11 ratio SadoTsugi conductive circuit 12 current / change rate calculating circuit 13 lock circuit 20 1 to 20 3 first through third short device 21 1R, 21 1S, 21 1T R phase, S phase and T-phase primary switch 21 2R, 21 2S , 21 2T R-phase, S-phase and T-phase secondary switches 21 3R , 21 3S , 21 3T R-phase, S-phase and T-phase tertiary switches 21 1X to 21 3X primary to tertiary switches I 1R , I 1S for each phase , I 1T first R phase, S phase and T phase primary currents I 2R , I 2S , I 2T second R phase, S phase and T phase primary currents I 3R , I 3S , I 3T R-phase, S-phase and T-phase primary currents I 1X to I 3X first to third phase primary currents i 1R , i 1S and i 1T first R-phase, S-phase and T-phase secondary currents i 2R, i 2S, i 2T second R phase, S phase and T-phase secondary current i 3R, i 3S, i 3T third R phase, S phase and T-phase secondary current i 1 X ~i 3X first 1st to 3rd Secondary current i RX vector sum | i 1X | ˜ | i 3X | Scalar current value Δ | i 1X | ˜Δ | i 3X | Rate of change | i dR | Scalar value k Operation set value ALM Alarm signal L Lock signal S short-circuit command signals T 1R , T 1S , T 1T first R phase, S phase and T phase trip signals T 2R , T 2S , T 2T second R phase, S phase and T phase trip signals T 3R , T 3S , T 3T Third R-phase, S-phase and T-phase trip signals T 1X to T 3X First to third phase trip signals S11 to S15 Step t 0 Time

Claims (10)

複数の母線の相ごとに設置された変圧器(1)保護用の遮断器(31X〜33X)をそれぞれ遮断させるトリップ信号(T1X〜T3X)を出力する比率差動継電器(10)であって、
前記変圧器の近傍に設置された変流器(21X〜23X)から変流器回路(51X〜53X)を介して入力される該変流器の2次電流(i1X〜i3X)に基づいて該変圧器に関する事故を検出すると前記トリップ信号を出力する比率差動継電回路(11)と、
前記2次電流のスカラー電流値(|i1X|〜|i3X|)および該2次電流のスカラー電流値の変化率(Δ|i1X|〜Δ|i3X|)を算出する電流値/変化率算出回路(12)と、
該電流値/変化率算出回路から入力される前記2次電流のスカラー電流値および変化率に基づいて、前記トリップ信号が出力されないように該比率差動継電回路をロックするためのロック信号(L)を生成するロック回路(13)と、
を具備することを特徴とする、比率差動継電器。
A plurality of transformers installed in each phase of the bus (1) breaker for protection (3 1X to 3 3X) a trip signal for interrupting the respective (T 1X through T 3X) ratio differential relay for outputting (10) Because
The secondary current (i 1X to i) of the current transformer input from the current transformer (2 1X to 2 3X ) installed in the vicinity of the transformer via the current transformer circuit (5 1X to 5 3X ). 3X ), the ratio differential relay circuit (11) that outputs the trip signal when an accident relating to the transformer is detected,
Current value // to calculate the scalar current value (| i 1X | ˜ | i 3X |) of the secondary current and the rate of change (Δ | i 1X | ˜Δ | i 3X |) of the scalar current value of the secondary current Change rate calculation circuit (12);
Based on the scalar current value and change rate of the secondary current input from the current value / change rate calculating circuit, a lock signal (for locking the ratio differential relay circuit so that the trip signal is not output) L) generating a lock circuit (13);
A ratio differential relay comprising:
前記ロック回路が、前記2次電流が瞬時に“0”になったか前記変化率が自回路電流無変化検出値(β)以上になり、かつ、自回路の該当相に対応する前記母線の相に設置された前記遮断器が投入状態であり、かつ、他回路の該当相における前記変化率が他回路電流無変化検出値(α)以下である場合に、該自回路の該当相に対応する前記母線の相に設置された前記遮断器を遮断させる前記トリップ信号を出力させないようにするための前記ロック信号を生成して、該生成したロック信号を前記比率差動継電回路に出力することを特徴とする、請求項1記載の比率差動継電器。   The lock circuit is configured such that the secondary current instantaneously becomes “0” or the rate of change is equal to or greater than the own circuit current no change detection value (β) and the phase of the bus corresponding to the corresponding phase of the own circuit. Corresponds to the corresponding phase of the own circuit when the circuit breaker installed in the circuit is in the on state and the rate of change in the corresponding phase of the other circuit is equal to or less than the other circuit current no change detection value (α). Generating the lock signal not to output the trip signal that interrupts the circuit breaker installed in the phase of the bus, and outputting the generated lock signal to the ratio differential relay circuit The ratio differential relay according to claim 1, wherein: 前記他回路電流無変化検出値が事前スカラー電流値の20%の値であり、
前記自回路電流無変化検出値が前記事前スカラー電流値の50%の値であり、
前記事前スカラー電流値が、前記2次電流をサンプリングしている場合には、該サンプリングの0.5周期または1周期前のスカラー電流値である、
ことを特徴とする、請求項2記載の比率差動継電器。
The other circuit current no change detection value is a value of 20% of the previous scalar current value,
The self-circuit current no change detection value is a value of 50% of the prior scalar current value;
When the pre-scalar current value is sampling the secondary current, it is a scalar current value of 0.5 cycle or 1 cycle before the sampling,
The ratio differential relay according to claim 2, wherein:
前記2次電流をサンプリングしている場合には、1ビットの変化検出量を20%未満にして該2次電流を“0”として扱うことを特徴とする、請求項3記載の比率差動継電器。   4. The ratio differential relay according to claim 3, wherein when the secondary current is sampled, a change detection amount of one bit is less than 20% and the secondary current is treated as “0”. . 前記変流器回路の前記変流器の近傍に設けられた、かつ、該変流器の2次側を相ごとに短絡させるための短絡装置(201〜203)をさらに具備し、
前記ロック回路が、前記2次電流のスカラー電流値および変化率に基づいて前記変流器回路の相について異常を検出すると、該異常を検出した変流器回路の相に対応する前記変流器の相の2次側を短絡させる短絡指令信号(S)を生成して、該生成した短絡指令信号を前記短絡装置に出力する、
ことを特徴とする、請求項1乃至4いずれかに記載の比率差動継電器。
A short-circuit device (20 1 to 20 3 ) provided in the vicinity of the current transformer of the current transformer circuit and for short-circuiting the secondary side of the current transformer for each phase;
When the lock circuit detects an abnormality in the phase of the current transformer circuit based on the scalar current value and change rate of the secondary current, the current transformer corresponding to the phase of the current transformer circuit that detected the abnormality Generating a short-circuit command signal (S) for short-circuiting the secondary side of the phase of the phase, and outputting the generated short-circuit command signal to the short-circuit device,
The ratio differential relay according to any one of claims 1 to 4, wherein
前記短絡装置が、前記ロック回路から入力される前記短絡指令信号に応じてオン/オフされるスイッチ(211X〜213X)を備えることを特徴とする、請求項5記載の比率差動継電器。 The ratio differential relay according to claim 5, wherein the short-circuit device includes a switch (21 1X to 21 3X ) that is turned on / off in response to the short-circuit command signal input from the lock circuit. 前記ロック回路が、前記2次電流のスカラー電流値および変化率に基づいて前記変流器回路の相について異常を検出すると、外部に出力する警報信号(ALM)をさらに生成することを特徴とする、請求項5または6記載の比率差動継電器。   When the lock circuit detects an abnormality in the phase of the current transformer circuit based on a scalar current value and a change rate of the secondary current, the lock circuit further generates an alarm signal (ALM) to be output to the outside. The ratio differential relay according to claim 5 or 6. 複数の母線の相ごとに設置された変圧器(1)保護用の遮断器(31X〜33X)をそれぞれ遮断させるトリップ信号(T1X〜T3X)を出力する比率差動継電回路(11)の誤動作を防止するための比率差動継電器誤動作防止方法であって、
ロック回路(13)が、前記変圧器の近傍に設置された変流器(21X〜23X)の2次電流のスカラー電流値(|i1X|〜|i3X|)および該2次電流のスカラー電流値の変化率(Δ|i1X|〜Δ|i3X|)に基づいて、前記2次電流が瞬時に“0”になったか、また、前記変化率が自回路電流無変化検出値(β)以上であるかを監視するステップ(S11)と、
前記ロック回路が、前記2次電流が瞬時に“0”になったか前記変化率が前記自回路電流無変化検出値以上になった場合には、自回路の該当相に対応する前記母線の相に設置された前記遮断器が投入状態であるか否かを調べるステップ(S12)と、
前記ロック回路が、前記自回路の該当相に対応する前記母線の相に設置された前記遮断器が投入状態である場合には、他回路の該当相における前記変化率が他回路電流無変化検出値(α)以下であるか否かを調べるステップ(S13)と、
前記ロック回路が、前記他回路の該当相における前記変化率が前記他回路電流無変化検出値以下である場合には、前記自回路の該当相に対応する前記母線の相に設置された前記遮断器を遮断させる前記トリップ信号を出力させないようにするためのロック信号(L)を生成して、該生成したロック信号を前記比率差動継電回路に出力するステップ(S14)と、
を具備することを特徴とする、比率差動継電器誤動作防止方法。
A plurality of transformers installed in each phase of the bus (1) breaker (3 1X to 3 3X) a trip signal for interrupting the respective (T 1X through T 3X) and outputs the ratio differential relay circuit for protecting ( 11) a ratio differential relay malfunction prevention method for preventing malfunction of 11),
The lock circuit (13) includes a scalar current value (| i 1X | to | i 3X |) of the secondary current of the current transformer (2 1X to 2 3X ) installed in the vicinity of the transformer and the secondary current. Based on the change rate (Δ | i 1X | ˜Δ | i 3X |) of the scalar current value, whether the secondary current instantaneously became “0”, or the change rate was detected as no change in the own circuit current Monitoring whether it is greater than or equal to the value (β) (S11);
When the secondary current instantaneously becomes “0” or the rate of change is equal to or greater than the detected value of no change in the own circuit current, the lock circuit causes the phase of the bus corresponding to the corresponding phase of the own circuit. A step (S12) of checking whether the circuit breaker installed in the battery is in an on state;
When the circuit breaker installed in the phase of the bus corresponding to the corresponding phase of the own circuit is in the on state, the change rate in the corresponding phase of the other circuit is detected as no change in other circuit current. A step (S13) of checking whether or not the value (α) or less;
When the rate of change in the corresponding phase of the other circuit is equal to or less than the detected value of no change in other circuit current, the lock circuit is installed in the phase of the bus corresponding to the corresponding phase of the own circuit. Generating a lock signal (L) not to output the trip signal for shutting off the device, and outputting the generated lock signal to the ratio differential relay circuit (S14);
A ratio differential relay malfunction prevention method comprising:
前記他回路電流無変化検出値が事前スカラー電流値の20%の値であり、
前記自回路電流無変化検出値が前記事前スカラー電流値の50%の値であり、
前記事前スカラー電流値が、前記2次電流をサンプリングしている場合には、該サンプリングの0.5周期または1周期前のスカラー電流値である、
ことを特徴とする、請求項8記載の比率差動継電器誤動作防止方法。
The other circuit current no change detection value is a value of 20% of the previous scalar current value,
The self-circuit current no change detection value is a value of 50% of the prior scalar current value;
When the pre-scalar current value is sampling the secondary current, it is a scalar current value of 0.5 cycle or 1 cycle before the sampling,
The ratio differential relay malfunction prevention method according to claim 8, wherein:
前記ロック回路が、前記2次電流のスカラー電流値および変化率に基づいて前記自回路の該当相について異常を検出すると、外部に出力する警報信号(ALM)を生成するとともに、該自回路の該当相に対応する前記変流器の相の2次側を短絡させるための短絡装置(201〜203)に出力する短絡指令信号(S)を生成するステップ(S14,S15)をさらに具備することを特徴とする、請求項8または9記載の比率差動継電器誤動作防止方法。 When the lock circuit detects an abnormality in the corresponding phase of the own circuit based on the scalar current value and change rate of the secondary current, it generates an alarm signal (ALM) to be output to the outside and generating a short-circuit command signal to be output the short circuit device for short-circuiting the secondary side of the phase of the current transformer (20 1 to 20 3) corresponding to the phase (S) (S14, S15) further comprising 10. The ratio differential relay malfunction prevention method according to claim 8 or 9, wherein:
JP2007187974A 2007-07-19 2007-07-19 Ratio differential relay and ratio differential relay malfunction prevention method Expired - Fee Related JP4994140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007187974A JP4994140B2 (en) 2007-07-19 2007-07-19 Ratio differential relay and ratio differential relay malfunction prevention method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007187974A JP4994140B2 (en) 2007-07-19 2007-07-19 Ratio differential relay and ratio differential relay malfunction prevention method

Publications (2)

Publication Number Publication Date
JP2009027824A JP2009027824A (en) 2009-02-05
JP4994140B2 true JP4994140B2 (en) 2012-08-08

Family

ID=40399101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007187974A Expired - Fee Related JP4994140B2 (en) 2007-07-19 2007-07-19 Ratio differential relay and ratio differential relay malfunction prevention method

Country Status (1)

Country Link
JP (1) JP4994140B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107546718A (en) * 2017-08-02 2018-01-05 许继集团有限公司 A kind of recognition methods of TA abnormalities in protection positioned at multiple differential and device
CN107579506A (en) * 2017-08-02 2018-01-12 许继集团有限公司 The recognition methods of TA abnormalities in multiple differential protection and device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5578888B2 (en) * 2010-03-09 2014-08-27 株式会社東芝 Current differential relay
CN108429248A (en) * 2018-05-22 2018-08-21 淅川县电业局 A kind of new-type no-load voltage ratio adjustable line breaker
JP6880329B2 (en) * 2018-07-13 2021-06-02 三菱電機株式会社 Electronic circuit breakers and breakers
CN112290508A (en) * 2020-10-26 2021-01-29 淮浙煤电有限责任公司凤台发电分公司 Device for preventing CT secondary circuit ground connection leads to protection maloperation
CN113991606B (en) * 2021-10-18 2024-01-02 国电南瑞科技股份有限公司 Excitation surge current misoperation prevention method and device for transformer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01231621A (en) * 1988-03-11 1989-09-14 Toshiba Corp Protective relay for transformer
JP2695079B2 (en) * 1991-12-05 1997-12-24 株式会社日立製作所 Digital protective relay
JP3362462B2 (en) * 1993-08-04 2003-01-07 株式会社明電舎 Protective relay
JP3462033B2 (en) * 1997-03-05 2003-11-05 三菱電機株式会社 Ratio differential relay
JP3746493B2 (en) * 2003-06-11 2006-02-15 三菱電機株式会社 Ratio differential relay

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107546718A (en) * 2017-08-02 2018-01-05 许继集团有限公司 A kind of recognition methods of TA abnormalities in protection positioned at multiple differential and device
CN107579506A (en) * 2017-08-02 2018-01-12 许继集团有限公司 The recognition methods of TA abnormalities in multiple differential protection and device

Also Published As

Publication number Publication date
JP2009027824A (en) 2009-02-05

Similar Documents

Publication Publication Date Title
JP4994140B2 (en) Ratio differential relay and ratio differential relay malfunction prevention method
US7196884B2 (en) Apparatus and method for detecting the loss of a current transformer connection coupling a current differential relay to an element of a power system
KR101421564B1 (en) Electrical leakage detection apparatus with unexpected motion blocking function
KR101803431B1 (en) Real-time recovery transformer system and its method of construction in case of single-phase power line failure
JP7263251B2 (en) Real-time detection/recovery system for power line failures in power distribution system and its construction method
KR101273144B1 (en) Over current relay for diagnosing open condition of current transformer secondary circuit and method thereof
KR100246203B1 (en) A control system and method for high impedance ground fault of power line in a power system
KR102005080B1 (en) Automatic control system capable of detecting and recovering faulty power
US10613132B2 (en) Arc fault detection unit
KR20200018514A (en) Real-time detection and recovery system and its construction method in case of power line failure in distribution system
KR100920113B1 (en) OCGR protection algorithm for preventing mal-operation by Reverse power
JP3792888B2 (en) Power system monitoring and control equipment
JP2007318951A (en) Bus protection relay system with comprehensive backup protection function
KR20140121593A (en) Power quality recovery relay
KR101999606B1 (en) Protective Apparatus and Method for Zero Harmonic Filter
KR100664897B1 (en) Digital protection relay and control method thereof
KR20120000053U (en) Simplified protection relay apparatus for three phase equipment with monitoring electric power
JP6604882B2 (en) Transformer high voltage side phase loss detection system
JPH0847165A (en) Bidirectional protection relaying system and bidirectional protection distance relay in the power line
KR102127471B1 (en) Total AI Backup Protection System for Substation
KR101832108B1 (en) Distributions Board Built in Zero Harmonic Reduction Apparatus equipped with Protective Functions of Electric Power Comparison
KR20190034879A (en) Protective Apparatus and Method for Power System
KR101825891B1 (en) Distributions Board Built in Zero Harmonic Reduction Apparatus equipped with Protective Functions of Phase Comparison
JP3097030B2 (en) Apparatus for detecting the soundness / unhealthyness of the power supply system in private power generation facilities
JP3830884B2 (en) Protective relay device for grid interconnection system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120502

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120508

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4994140

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees