JP3526122B2 - Shape measuring device - Google Patents

Shape measuring device

Info

Publication number
JP3526122B2
JP3526122B2 JP3294496A JP3294496A JP3526122B2 JP 3526122 B2 JP3526122 B2 JP 3526122B2 JP 3294496 A JP3294496 A JP 3294496A JP 3294496 A JP3294496 A JP 3294496A JP 3526122 B2 JP3526122 B2 JP 3526122B2
Authority
JP
Japan
Prior art keywords
focus
measured
contact probe
state
shape measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3294496A
Other languages
Japanese (ja)
Other versions
JPH09203623A (en
Inventor
斗美子 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP3294496A priority Critical patent/JP3526122B2/en
Publication of JPH09203623A publication Critical patent/JPH09203623A/en
Application granted granted Critical
Publication of JP3526122B2 publication Critical patent/JP3526122B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、形状測定装置及び
方法に係り、より詳細には、レンズ,ミラー等の光学素
子の形状測定、特に、非球面形状の測定装置及び方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shape measuring apparatus and method, and more particularly to a shape measuring apparatus and method for measuring the shape of optical elements such as lenses and mirrors.

【0002】[0002]

【従来の技術】従来、非球面レンズ等の面形状測定方法
としては、接触式プローブにより被測定物表面を走査
し、プローブの移動量により被測定物の形状を求める方
法が一般的であるが、この測定方法によると、被測定物
の表面に傷がつくという問題があった。そのため、被測
定物の表面の損傷が問題となるような測定の場合は、非
接触プローブを用いた非接触式測定方法が用いられるよ
うになってきている。この非接触測定方法は、非接触プ
ローブに設けられた物対レンズを被測定物の表面にフォ
ーカシングさせ、被測定面を走査し、物対レンズの移動
量から面形状を測定するものである。
2. Description of the Related Art Conventionally, as a method for measuring the surface shape of an aspherical lens or the like, a method in which the surface of the object to be measured is scanned by a contact probe and the shape of the object to be measured is determined by the amount of movement of the probe is generally used. According to this measuring method, there is a problem that the surface of the object to be measured is scratched. Therefore, in the case of measurement in which damage to the surface of the object to be measured poses a problem, a non-contact measurement method using a non-contact probe has come to be used. In this non-contact measuring method, the object-to-lens provided on the non-contact probe is focused on the surface of the object to be measured, the surface to be measured is scanned, and the surface shape is measured from the amount of movement of the object-to-lens.

【0003】上述のごとき非接触測定方法において、被
測定面上にゴミや傷等があると、光が散乱し、受光され
る反射光が減少し、フォーカスはずれとなり、フォーカ
ス状態判別動作が不能となる場合が生じる。これは、形
状測定が不能になるだけでなく、非接触プローブが被測
定物に衝突してしまうなどの危険性が生じ、また、走査
方向へ移動した結果、被測定面上に傷,ゴミ等のない状
態になっても、フォーカス状態に復帰することができ
ず、測定を続行することが不可能になるなどの問題があ
った。
In the non-contact measuring method as described above, if dust or scratches are present on the surface to be measured, the light is scattered, the reflected light received is reduced, the focus is lost, and the focus state determination operation becomes impossible. It may happen. This not only makes the shape measurement impossible, but also creates the risk of the non-contact probe colliding with the object to be measured, and as a result of moving in the scanning direction, scratches, dust, etc. on the surface to be measured. Even if there is no light, there is a problem that it is impossible to return to the focus state and it becomes impossible to continue the measurement.

【0004】そこで、特開昭63−223513号公報
記載の発明では、フォーカス引き込み範囲をはずれたと
き、自動的に位置決めサーボ機構ループに切り替え、オ
ートフォーカス顕微鏡をその位置にロックし、これによ
り、対物レンズの焦点位置を、傷,ゴミ等を通過する直
前の位置にロックし、この状態で、非接触式プローブを
走査し、傷,ゴミ等を通過した時点で、再び、フォーカ
ス引き込み範囲に復し、これを検知することにより、自
動的にオートフォーカシングサーボ機構ループに復帰さ
せている。また、フォーカス状態判別は、受光素子の信
号が受光素子の中心付近にあることによって、フォーカ
ス状態を判別している。
Therefore, in the invention disclosed in Japanese Patent Laid-Open No. 63-223513, when the focus pulling range is out of the range, the loop is automatically switched to the positioning servomechanism loop, and the autofocus microscope is locked at that position. The focus position of the lens is locked at the position just before passing through scratches, dust, etc., and in this state, the non-contact probe is scanned, and when it passes through scratches, dust, etc., it returns to the focus pull-in range again. By detecting this, it automatically returns to the autofocusing servo mechanism loop. In the focus state determination, the focus state is determined by the signal of the light receiving element being near the center of the light receiving element.

【0005】また、特開平3−110406号公報記載
の発明では、フォーカス引き込み範囲を越えるような段
差によりフォーカスがはずれた場合を想定し、フォーカ
スがはずれたときに位置制御系に切り替え、その位置を
保持し、対物レンズを上下してフォーカス引き込み範囲
を探し、フォーカス位置に復帰するようにしている。
In the invention described in Japanese Patent Laid-Open No. 3-110406, it is assumed that the focus is out of focus due to a step that exceeds the focus pull-in range. The lens is held, the objective lens is moved up and down to search for the focus pull-in range, and the focus position is restored.

【0006】[0006]

【発明が解決しようとする課題】上述のように、フォー
カスがはずれた時に、フオーカス引き込み範囲に復帰さ
せる場合において、特開昭63−223513号公報の
発明では、対物レンズの焦点位置を傷,ゴミ等を通過す
る直前の位置にロックし、この状態で、非接触式プロー
ブを走査し、傷,ゴミ等を通過した時点で、再び、フォ
ーカス引き込み範囲に復している。これは、旋回走査に
よる極座標測定であるから、微小走査範囲においては、
被測定面のフォーカス方向における変位は微小であり、
無視できるためである。
As described above, in the case of returning to the focus pull-in range when the focus is out of focus, in the invention of Japanese Patent Laid-Open No. 63-223513, the focus position of the objective lens is scratched or dusted. It is locked at the position immediately before passing through the same, and in this state, the non-contact type probe is scanned, and when it passes through scratches, dust, etc., it returns to the focus pull-in range again. Since this is polar coordinate measurement by swivel scanning, in the minute scanning range,
The displacement of the measured surface in the focus direction is very small,
This is because it can be ignored.

【0007】一方、直線走査による直交座標測定におい
ては、微小走査範囲における被測定面のフォーカス方向
における変位は微小ではなく、無視できない。従って、
特開昭63−223513号公報に記載の発明のよう
に、対物レンズをフォーカスがはずれる直前の位置に保
持して、微少量走査方向に移動しても、フォーカス状態
に復帰できるとは限らない。
On the other hand, in the orthogonal coordinate measurement by linear scanning, the displacement in the focus direction of the surface to be measured in the minute scanning range is not minute and cannot be ignored. Therefore,
As in the invention described in JP-A-63-223513, even if the objective lens is held at the position immediately before defocusing and moved in the minute scanning direction, it is not always possible to return to the focus state.

【0008】また、特開平3−110406号公報に記
載の発明では、フォーカス引き込み範囲を越えるような
段差によりフォーカスがはずれた場合を想定し、フォー
カスがはずれたときに位置制御系に切り替え、その位置
を保持し、対物レンズを上下してフォーカス引き込み範
囲を探し、フォーカス位置に復帰するようにしている
が、段差のエッジを通過する際、エッジで光が散乱し、
反射光が減少してしまうので、エッジ上でフォーカス引
き込み範囲に復帰することは不可能である。
Further, in the invention disclosed in Japanese Patent Laid-Open No. 3-110406, it is assumed that the focus is out of focus due to a step that exceeds the focus pull-in range. Is held, and the objective lens is moved up and down to search for the focus pull-in range to return to the focus position, but when passing through the edge of the step, light is scattered at the edge,
Since the reflected light decreases, it is impossible to return to the focus pull-in range on the edge.

【0009】請求項の発明は、上記の問題点を鑑み、
直線走査による直交座標測定においても、フォーカスが
はずれたときに、被測定物との衝突を防ぎ、フォーカス
引き込み範囲に復帰することが可能な形状測定装置を
供することを目的としてなされたものである。
In view of the above problems, the invention of claim 1 is
Also in the orthogonal coordinate measurement by linear scan, when the focus is off, for the purpose of preventing the collision with the object to be measured, provides a shape measuring equipment capable of returning to the focus capture range Hisage <br/> It was made.

【0010】また、被測定表面の傷やゴミ,段差による
フォーカスはずれ以外にも、振動等の外乱、或いは、走
査開始位置の誤差による終了位置のずれなど、被測定物
に起因しない原因により、フォーカスがはずれることが
あり、フォーカス状態復帰動作を行っても、フォーカス
引き込み範囲に復帰できない場合がある。このような場
合、暴走を防ぐため、測定を停止するが、その際、再
度、測定し直さなければならず、時間や労力がかかって
いた。
In addition to the out-of-focus caused by scratches, dust, and steps on the surface to be measured, the focus is not caused by the object to be measured, such as a disturbance such as vibration or a deviation of the end position due to an error in the scanning start position. There is a case where the lens is out of focus, and it may not be possible to return to the focus pull-in range even if the focus state return operation is performed. In such a case, in order to prevent runaway, the measurement is stopped, but at that time, the measurement has to be performed again, which takes time and labor.

【0011】請求項の発明は、フォーカス状態復帰動
作を行っても、フォーカス引き込み範囲に復帰できなか
った場合、それまでの形状測定データを無駄にすること
なく利用することのできる形状測定装置を提供すること
を目的としてなされたものである。
According to a second aspect of the invention, there is provided a shape measuring apparatus which can use the shape measurement data up to that point without wasting it if the focus state cannot be restored even after the focus state returning operation. It was made for the purpose of providing.

【0012】また、フォーカス状態判別手段に関し、旋
回走査による極座標測定では、走査方向における被測定
面の傾きの変化が小さく、反射光の受光量の変化も小さ
いため、受光量によってフォーカス状態を判別してい
る。しかし、直線走査による直交座標測定では、走査方
向における被測定面の傾きが変化し、反射光の受光量の
変化も無視できず、受光量によってフォーカス状態を判
別することは不可能である。
With respect to the focus state determination means, in polar coordinate measurement by swivel scanning, the change in the inclination of the surface to be measured in the scanning direction is small and the change in the amount of received reflected light is small, so the focus state is determined by the amount of received light. ing. However, in the orthogonal coordinate measurement by linear scanning, the inclination of the surface to be measured in the scanning direction changes and the change in the amount of reflected light received cannot be ignored, and it is impossible to determine the focus state based on the amount of received light.

【0013】請求項の発明は、直線走査による直交座
標測定においても有効な、フォーカス状態判別手段を提
供することを目的としてなされたものである。
A third aspect of the present invention has been made for the purpose of providing a focus state discriminating means which is effective even in the measurement of rectangular coordinates by linear scanning.

【0014】[0014]

【0015】[0015]

【課題を解決するための手段】 請求項の発明は、光学
式変位計を非接触プローブとして備え、該非接触プロー
ブを被測定物の表面に沿って直線走査させて、該被測定
物の表面形状を測定するプローブ走査式形状測定装置
おいて、前記非接触プローブの対物レンズを位置信号に
より制御する第一の制御手段と、被測定物の表面からの
反射光を受光して被測定表面に前記非接触プローブの対
物レンズをフォーカス状態に引き込み、引き込んだフォ
ーカス状態を維持し、前記非接触プローブと被測定表面
を一定距離に保つ第二のフォーカス追従制御手段と、前
記非接触プローを被測定物の表面に沿って直線走査さ
せる手段と、フォーカス引き込み状態にあるかどうかを
判断するフォーカス状態判別手段とを有し、前記フォー
カス状態判別信号に基づいて、フォーカスはずれ信号を
検知した場合は、前記非接触プローブをフォーカスがは
ずれる直前の位置に維持し、走査方向に微少距離移動し
た点において、前記対物レンズをフォーカス方向に前後
させて、再度フォーカス引き込み動作を実行し、フォー
カス引き込み状態に復帰させることを特徴とするもので
ある。
According to a first aspect of the present invention, an optical displacement gauge is provided as a non-contact probe, and the non-contact probe is linearly scanned along the surface of the object to be measured to obtain the surface of the object to be measured. In a probe scanning type shape measuring device for measuring a shape, a first control means for controlling the objective lens of the non-contact probe by a position signal and a reflected light from the surface of the object to be measured are received. Second focus tracking control means for keeping the non-contact probe and the surface to be measured at a constant distance by pulling the objective lens of the non-contact probe into the focused state on the surface to be measured, and maintaining the retracted focus state. comprising means for linearly scanning the contact probe along the surface of the object to be measured, and a focus state determination means for determining whether the focus pull-state, pre-Symbol focus status determination Based on the item, if it is detected defocus signal, said maintaining non-contact probe to a position immediately before the focus deviates in that the fine distance in the scanning direction, by front and rear the objective lens in the focusing direction, It is characterized in that the focus pull-in operation is executed again to restore the focus pull-in state.

【0016】請求項の発明は、請求項1に記載の形状
測定装置において、前記フォーカスがはずれた位置を記
憶する手段,フォーカスがはずれるまでの形状測定デー
タを記憶する手段,エラー信号を発生する手段のうちい
ずれかを備えたことを特徴とするものである。
According to a second aspect of the present invention, in the shape measuring apparatus according to the first aspect, the means for storing the out-of-focus position, the means for storing the shape measurement data until the out-of-focus, and the error signal are generated. One of the means is provided.

【0017】請求項の発明は、請求項1に記載の形状
測定装置において、前記フォーカス引き込み状態にある
かどうかを判別するフォーカス状態判別手段は、受光素
子の受光量の変化率に基づいてフォーカス状態を判別す
ることを特徴とするものである。
According to a third aspect of the present invention, in the shape measuring apparatus according to the first aspect, the focus state determination means for determining whether or not the focus is in the pull-in state is based on the rate of change in the amount of light received by the light receiving element. It is characterized by determining the state.

【0018】[0018]

【発明の実施の形態】図1は、本発明の一実施例を説明
するための概略構成図(図1(A)は平面図、図1
(B)は側面図)で、図中、1は被測定物、2は非接触
プローブで、該非接触プローブ2は、ここでは、X,
Y,Z軸の3軸(3,4,5)とし、被測定物1と非接
触プローブ2は水平に配置されている。従って、Y軸方
向がフォーカス方向であり、X、或いは、Z方向に走査
する。他に、被測定物1と非接触プローブ2を垂直(上
下)に配置し、Z方向をフォーカス方向とし、X,Y方
向に走査してもかまわない。また、フォーカス方向と1
走査方向の2軸でもかまわない。なお、6は被測定物1
の取付治具である。
1 is a schematic configuration diagram for explaining an embodiment of the present invention (FIG. 1 (A) is a plan view, FIG.
(B) is a side view), in which 1 is an object to be measured, 2 is a non-contact probe, and the non-contact probe 2 is X,
There are three axes of Y and Z (3, 4, 5), and the DUT 1 and the non-contact probe 2 are arranged horizontally. Therefore, the Y-axis direction is the focus direction, and scanning is performed in the X or Z direction. Alternatively, the DUT 1 and the non-contact probe 2 may be arranged vertically (up and down), and the Z direction may be the focus direction and scanning may be performed in the X and Y directions. Also, focus direction and 1
Two axes in the scanning direction may be used. 6 is the DUT 1
It is a mounting jig.

【0019】非接触プローブ2の変位に対する応答は、
図2に示すようなS字カーブを描き、bがフォーカス引
き込み範囲であり、ゼロクロス点aがフォーカ状態であ
る。被測定物の形状を測定するにあたり、位置制御によ
り、フォーカス引き込み範囲近傍に非接触プローブを設
定し、フォーカス追従制御に切り替える。この状態で走
査を開始する。それにより、非接触プローブの位置変化
と、フォーカス信号とにより形状を測定する。
The response to the displacement of the non-contact probe 2 is
An S-shaped curve as shown in FIG. 2 is drawn, b is the focus pull-in range, and the zero cross point a is the focus state. When measuring the shape of the object to be measured, position control sets a non-contact probe in the vicinity of the focus pull-in range and switches to focus tracking control. Scanning is started in this state. Thereby, the shape is measured by the position change of the non-contact probe and the focus signal.

【0020】上述のように、測定中或いはその他いかな
る場合においても、フォーカス追従制御を行いつつ、走
査方向へ非接触プローブを移動させているとき、被測定
面上に傷,ゴミ或いは段差等何らかの影響により、図2
に示すフォーカス引き込み範囲をはずれた場合の処理フ
ローを図3に示す。
As described above, during the measurement or in any other case, when the non-contact probe is moved in the scanning direction while the focus follow-up control is performed, some influence such as scratches, dust or steps on the surface to be measured is exerted. 2
FIG. 3 shows a processing flow when the focus pulling range shown in FIG.

【0021】図3及び図4により説明する。今、図4の
被測定面1のc点でフォーカスエラーが発生したとする
と、非接触プローブ2のフォーカス追従制御はフォーカ
スはずれ信号を出力し(S1)、フォーカス追従制御を
位置制御に切り替え(S3)、非接触プローブ2は、現
在位置を維持する(Rc)。これにより、非接触プロー
ブ2がフォーカスを失って暴走し、被測定物に衝突する
危険性を防止している。走査方向は、フォーカスはずれ
信号を受けて、走査を一時停止(S2)する(Xc)。
This will be described with reference to FIGS. 3 and 4. Now, assuming that a focus error occurs at point c on the measured surface 1 in FIG. 4, the focus tracking control of the non-contact probe 2 outputs a focus defocus signal (S1), and switches the focus tracking control to the position control (S3). ), The non-contact probe 2 maintains the current position (Rc). This prevents the non-contact probe 2 from losing focus and running out of control and colliding with the object to be measured. In the scanning direction, the out-of-focus signal is received, and the scanning is temporarily stopped (S2) (Xc).

【0022】フォーカス位置を維持した状態(S4)
で、走査方向に微少量(ΔX)移動(S5)させる(X
d)。この点において、フォーカス方向の変化量ΔRは
無視できないので、再度フォーカス状態引き込み動作を
行(S6)う。フォーカス方向の変化量ΔRは無視でき
ないが微少であるため、非接触プローブはフォーカス引
き込み範囲の近傍に位置しているので、フォーカス方向
に変動させることにより、容易にフォーカス状態に設定
(S7)できる(Rd)。
State in which the focus position is maintained (S4)
Then, move a small amount (ΔX) in the scanning direction (S5) (X
d). At this point, the change amount ΔR in the focus direction cannot be ignored, so the focus state pull-in operation is performed again (S6). The amount of change ΔR in the focus direction cannot be ignored, but is small, so the non-contact probe is located in the vicinity of the focus pull-in range. Therefore, it can be easily set to the focus state by changing it in the focus direction (S7) ( Rd).

【0023】上述は一例で、走査方向は停止せず、所定
量(微少量)移動した後停止してもよく、また、減速し
所定量移動した後、フォーカス引き込み可能な低速度と
してもよい。上述のように、フォーカス状態に復帰可能
であれば、フォーカス状態に復帰したことにより、測定
モードに戻り(S8)、走査しながらフォーカス追従制
御し形状測定を行う。
The above is an example, and the scanning direction may not be stopped, but may be stopped after moving by a predetermined amount (a minute amount), or may be slowed down after decelerating and moving by a predetermined amount so that the focus can be pulled in. As described above, if it is possible to return to the focus state, the state is returned to the measurement mode by returning to the focus state (S8), focus tracking control is performed while scanning, and shape measurement is performed.

【0024】(請求項の発明) 上述のように、フォーカス状態復帰動作を実行しても、
フォーカス状態に復帰不可能な場合が生じる。その場合
は、測定続行は不可能であり、エラー信号(フォーカス
はずれ信号とは異なる)を出力し(S10)、非接触プ
ローブ(フォーカス方向)をロックする(S11)。走
査方向のコントローラはエラー信号を受けて、走査方向
もロック(S12)すると同時に、フォーカスがはずれ
る直前の走査方向の位置、及び、測定データを記憶し保
存する(S13,S14)。形状測定装置としては、こ
の状態で待機(初期状態)となる(S15)。再度、同
一の被測定物を測定する場合、保存した位置に非接触プ
ローブを移動し、その点から計測を再開する。これによ
り、フォーカスがはずれるまでの測定データを有効に利
用することができる。
(Invention of Claim 2 ) As described above, even if the focus state returning operation is executed,
There are cases where it is impossible to return to the focus state. In that case, the measurement cannot be continued, an error signal (different from the out-of-focus signal) is output (S10), and the non-contact probe (focus direction) is locked (S11). The controller in the scanning direction receives the error signal, locks the scanning direction (S12), and at the same time stores and saves the position in the scanning direction immediately before defocusing and the measurement data (S13, S14). In this state, the shape measuring device is in a standby state (initial state) (S15). When the same object to be measured is measured again, the non-contact probe is moved to the saved position and the measurement is restarted from that point. As a result, it is possible to effectively use the measurement data until the focus is lost.

【0025】(請求項の発明) 次に、上述のフォーカス状態判別手段について説明す
る。図5は、非接触プローブの変位に対する応答と受光
量の関係を示す図で、非接触プローブの変位に対する応
答eに対し、受光量は、対物レンズと被測定面が垂直な
場合fに対し、傾きgがある場合は少なくなっている。
よって、旋回走査による極座標測定では走査方向におけ
る被測定面の傾きは小さく、ほぼ垂直なので、受光量の
変化は小さく、受光量に対してスレッショルドhを設け
てフォーカス状態を判別している。しかし、直線走査に
よる直交座標測定では、走査方向における傾きは変化
し、反射光の受光量の変化も無視できないので、受光量
によってフォーカス状態を判別することは不可能であ
る。そのため、測定時に受光量の変化率を求め、受光量
の変化率の所定の値をスレッショルドとして設け、フォ
ーカス状態を判別する。
(Invention of Claim 3 ) Next, the above-mentioned focus state determining means will be described. FIG. 5 is a diagram showing the relationship between the response to the displacement of the non-contact probe and the amount of received light. For the response e to the displacement of the non-contact probe, the amount of received light is compared to f when the objective lens and the surface to be measured are perpendicular to each other. When there is a slope g, it is small.
Therefore, in polar coordinate measurement by swivel scanning, the inclination of the surface to be measured in the scanning direction is small and almost vertical, so the change in the amount of received light is small, and the threshold h is provided for the amount of received light to determine the focus state. However, in the orthogonal coordinate measurement by linear scanning, the inclination in the scanning direction changes and the change in the amount of received reflected light cannot be ignored, so it is impossible to determine the focus state based on the amount of received light. Therefore, the rate of change of the amount of received light is obtained during measurement, a predetermined value of the rate of change of the amount of received light is set as a threshold, and the focus state is determined.

【0026】[0026]

【0027】[0027]

【発明の効果】 請求項の発明によると、光学式変位計
を非接触プローブとして備え、該非接触プローブを被測
定物の表面に沿って直線走査させて、該被測定物の表面
形状を測定するプローブ走査式形状測定装置において、
前記非接触プローブの対物レンズを位置信号により制御
する第一の制御手段と、被測定物の表面からの反射光を
受光して被測定表面に前記非接触プローブの対物レンズ
をフォーカス状態に引き込み、引き込んだフォーカス状
態を維持し、前記非接触プローブと被測定表面を一定距
離に保つ第二のフォーカス追従制御手段と、前記非接触
プローを被測定物の表面に沿って直線走査させる手段
と、フォーカス引き込み状態にあるかどうかを判断する
フォーカス状態判別手段とを有し、前記フォーカス状態
判別信号に基づいて、フォーカスはずれ信号を検知した
場合は、前記非接触プローブをフォーカスがはずれる直
前の位置に維持し、走査方向に微少距離移動した点にお
いて、前記対物レンズをフォーカス方向に前後させて、
再度フォーカス引き込み動作を実行し、フォーカス引き
込み状態に復帰させることを特徴とし、フォーカス判別
信号に基づいて、フォーカスはずれ信号を検知した場合
は、非接触プローブをフォーカスがはずれる直前の位置
に維持し、走査方向に微少距離移動した点において、対
物レンズをフォーカス方向に前後させて、再度フォーカ
ス引き込み動作を実行し、フォーカス引き込み状態に復
帰させているので、フォーカスはずれによる非接触プロ
ーブの暴走や、被測定物との衝突を防止でき、かつ、
線走査による直交座標測定において走査方向の微少な変
動に対するフォーカス方向の変動を補正してフォーカス
状態に復帰でき、測定を続行することができる。また、
段差などにより、フォーカスがはずれた場合にも、その
エッジによる光の散乱の影響を回避することができ、フ
ォーカス状態に復帰でき、測定を続行することができ
る。
[Effect of the Invention] According to the invention of claim 1, comprising an optical displacement gage as the non-contact probe, the non-contact probe by linear scanning along the surface of the object to be measured, the surface shape of該被measured measurement In the probe scanning type profile measuring device ,
First control means for controlling the objective lens of the non-contact probe by a position signal, and receives reflected light from the surface of the object to be measured and pulls the objective lens of the non-contact probe to the measured surface in a focused state, maintaining the focused state has been drawn, the a second focus tracking control means for maintaining a non-contact probe and the measurement surface at a constant distance, the linear scanning the non-contact <br/> probe along the surface of the object to be measured and means for, and a focus state determination means for determining whether the focus pull state, based on the previous SL focus state determination signal, when it is detected defocus signal, the focus is out of the non-contact probe The objective lens is moved back and forth in the focus direction at a point that is maintained at the position immediately before and moved a small distance in the scanning direction,
The focus pull-in operation is performed again to return to the focus pull-in state.When the out-of-focus signal is detected based on the focus determination signal, the non-contact probe is maintained at the position immediately before the focus is removed, and scanning is performed. The objective lens is moved back and forth in the focus direction at the point slightly moved in the direction, and the focus pull-in operation is executed again to restore the focus pull-in state. it is possible to prevent a collision with, and, straight
Small changes in the scanning direction in Cartesian coordinate measurement by line scanning
It is possible to recover the focus state by correcting the fluctuation of the focus direction due to the movement, and to continue the measurement. Also,
Even when the focus is out of focus due to a step or the like, it is possible to avoid the influence of light scattering due to the edge, return to the focus state, and continue the measurement.

【0028】請求項の発明によると、請求項1記載の
形状測定装置において、フォーカスがはずれた位置を記
憶する手段、及び、フォーカスがはずれるまでの形状測
定データを記憶する手段,エラー信号を発生する手段の
うちいずれかを備えているので、フォーカス状態復帰動
作を行っても、フォーカス状態に復帰できないエラーの
場合、同一の被測定物を測定し直す場合にも、エラーの
生じた位置までの測定データが保存されているので、エ
ラーの生じた位置に非接触プローブを移動し、そこから
計測を開始すればよく、フォーカスがはずれるまでの測
定データを有効に利用でき、時間の短縮が図れる。
According to a second aspect of the present invention, in the shape measuring apparatus according to the first aspect, means for storing the out-of-focus position, means for storing the shape measurement data until the out-of-focus, and an error signal are generated. Since any of the above means are provided, even if the focus state return operation is performed and the error cannot return to the focus state, even when re-measurement of the same DUT is performed, the position up to the position where the error occurred Since the measurement data is stored, it is sufficient to move the non-contact probe to the position where the error has occurred and start the measurement from that position, the measurement data until the focus is removed can be effectively used, and the time can be shortened.

【0029】請求項の発明によると、請求項1記載の
形状測定装置において、フォーカス引き込み状態にある
かどうかを判別するのに、受光素子の受光量の変化率に
基づいてフォーカス状態を判別しているので、走査方向
における被測定面の傾きが変化し、反射光の受光量の変
化が無視できない直線走査による直交座標測定において
も、フォーカス状態を判別することができる。
According to the third aspect of the present invention, in the shape measuring apparatus according to the first aspect, the focus state is determined based on the rate of change in the amount of light received by the light receiving element in order to determine whether or not the focus is in the pull-in state. Therefore, the focus state can be determined even in the orthogonal coordinate measurement by linear scanning in which the inclination of the surface to be measured in the scanning direction changes and the change in the amount of received reflected light cannot be ignored.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例を説明するための要部概略
構成図である。
FIG. 1 is a schematic configuration diagram of a main part for explaining an embodiment of the present invention.

【図2】 非接触プローブの変位に対する応答を示す図
である。
FIG. 2 is a diagram showing a response to displacement of a non-contact probe.

【図3】 フォーカス引き込み範囲をはずれた場合の処
理のフロー図である。
FIG. 3 is a flowchart of a process when the focus is outside the pull-in range.

【図4】 本発明の動作原理を説明するための要部詳細
図である。
FIG. 4 is a detailed view of a main part for explaining the operation principle of the present invention.

【図5】 非接触プローブの変位に対する応答と受光量
の関係を示す図である。
FIG. 5 is a diagram showing the relationship between the response of the non-contact probe to the displacement and the amount of received light.

【符号の説明】[Explanation of symbols]

1…被測定物、2…非接触プローブ、3,4,5…軸、
6…被測定物取付治具。
1 ... Object to be measured, 2 ... Non-contact probe, 3, 4, 5 ... Shaft,
6 ... An object mounting jig.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 光学式変位計を非接触プローブとして備
え、該非接触プローブを被測定物の表面に沿って直線
査させて、該被測定物の表面形状を測定するプローブ走
査式形状測定装置において、前記非接触プローブの対物
レンズを位置信号により制御する第一の制御手段と、被
測定物の表面からの反射光を受光して被測定表面に前記
非接触プローブの対物レンズをフォーカス状態に引き込
み、引き込んだフォーカス状態を維持し、前記非接触プ
ローブと被測定表面を一定距離に保つ第二のフォーカス
追従制御手段と、前記非接触プローを被測定物の表面
に沿って直線走査させる手段と、フォーカス引き込み状
態にあるかどうかを判断するフォーカス状態判別手段と
を有し、前記フォーカス状態判別信号に基づいて、フォ
ーカスはずれ信号を検知した場合は、前記非接触プロー
ブをフォーカスがはずれる直前の位置に維持し、走査方
向に微少距離移動した点において、前記対物レンズをフ
ォーカス方向に前後させて、再度フォーカス引き込み動
作を実行し、フォーカス引き込み状態に復帰させること
を特徴とする形状測定装置
1. A probe scan for measuring the surface shape of an object to be measured by linearly scanning the surface of the object to be measured by providing the optical displacement gauge as a non-contact probe. Type shape measuring apparatus , the first control means for controlling the objective lens of the non-contact probe by a position signal, and the objective lens of the non-contact probe on the surface to be measured by receiving the reflected light from the surface of the object to be measured. pull the focus state, to maintain the focused state has been drawn, and the second focus tracking control means for maintaining said non-contact probe and the measurement surface at a constant distance, the non-contact probe along the surface of the object to be measured comprising means for linearly scanning, the focus state determination means for determining whether the focus pull state, based on the previous SL focus state determination signal, defocus Shin The case of detecting, maintaining the position immediately before the focus of the non-contact probe is out, in that the minute distance in the scanning direction, wherein by back and forth objective lens in the focusing direction to perform focusing pull-in operation again, A shape measuring device characterized by returning to a focus retracted state.
【請求項2】 請求項1記載の形状測定装置におい
て、前記フォーカスがはずれた位置を記憶する手段,フ
ォーカスがはずれるまでの形状測定データを記憶する手
段,エラー信号を発生する手段のうちいずれかを備えた
ことを特徴とする形状測定装置。
2. The shape measuring device according to claim 1, wherein any one of a means for storing the out-of-focus position, a means for storing shape measurement data until the out-of-focus, and a means for generating an error signal. A shape measuring device comprising:
【請求項3】 請求項1記載の形状測定装置におい
て、前記フォーカス引き込み状態にあるかどうかを判別
するフォーカス状態判別手段は、受光素子の受光量の変
化率に基づいてフォーカス状態を判別することを特徴と
する形状測定装置。
3. The shape measuring device according to claim 1, wherein the focus state determination means for determining whether or not the focus pull-in state is, determines the focus state based on a rate of change in the amount of light received by the light receiving element. Shape measuring device characterized by.
JP3294496A 1996-01-26 1996-01-26 Shape measuring device Expired - Lifetime JP3526122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3294496A JP3526122B2 (en) 1996-01-26 1996-01-26 Shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3294496A JP3526122B2 (en) 1996-01-26 1996-01-26 Shape measuring device

Publications (2)

Publication Number Publication Date
JPH09203623A JPH09203623A (en) 1997-08-05
JP3526122B2 true JP3526122B2 (en) 2004-05-10

Family

ID=12373069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3294496A Expired - Lifetime JP3526122B2 (en) 1996-01-26 1996-01-26 Shape measuring device

Country Status (1)

Country Link
JP (1) JP3526122B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4974062B2 (en) * 2008-03-07 2012-07-11 横河電機株式会社 Drug discovery screening method

Also Published As

Publication number Publication date
JPH09203623A (en) 1997-08-05

Similar Documents

Publication Publication Date Title
JP2943499B2 (en) Height measuring method and device
US5386294A (en) Pattern position measuring apparatus
KR940003918B1 (en) Shape measuring instrument
JP5272186B2 (en) Laser processing method and laser processing apparatus
US20050012936A1 (en) Scanning probe microscope and measurement method using the same
JPH09101317A (en) Approach apparatus for scan type probe microscope
JP6056798B2 (en) Edge detection device
US20080087820A1 (en) Probe control method for scanning probe microscope
JP3526122B2 (en) Shape measuring device
JPH0914921A (en) Non-contact three-dimensional measuring instrument
JPS61111402A (en) Position detector
JP2014174047A (en) Measuring device, measurement method and article manufacturing method
JPH1123952A (en) Automatic focusing device and laser beam machining device using the same
JP4557848B2 (en) Shape measuring method and shape measuring apparatus
US20040114824A1 (en) Method of adjusting the level of a specimen surface
JP2003097938A (en) Control device, control means, shape measuring device and robot
JPS5811803A (en) Method and device for measuring film thickness
JPH06210580A (en) Workpiece gripping compensating device
JP3514580B2 (en) Shape measuring device
US20240139934A1 (en) Teaching method, program stored in the medium for executing the teaching method and transfer system
JPH06218570A (en) Laser beam machine
US20010019100A1 (en) Focusing method
US7130057B2 (en) Method and apparatus for controlling the position of a probe location relative to a fixed reference point of a probe processing equipment
JP2732561B2 (en) Inspection device with automatic focusing device for microscope
JPS6367508A (en) Method and instrument for measuring coordinates of tape end

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 10

EXPY Cancellation because of completion of term