JP3514580B2 - Shape measuring device - Google Patents

Shape measuring device

Info

Publication number
JP3514580B2
JP3514580B2 JP3294596A JP3294596A JP3514580B2 JP 3514580 B2 JP3514580 B2 JP 3514580B2 JP 3294596 A JP3294596 A JP 3294596A JP 3294596 A JP3294596 A JP 3294596A JP 3514580 B2 JP3514580 B2 JP 3514580B2
Authority
JP
Japan
Prior art keywords
objective lens
focus
measured
initial position
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3294596A
Other languages
Japanese (ja)
Other versions
JPH09203618A (en
Inventor
斗美子 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP3294596A priority Critical patent/JP3514580B2/en
Publication of JPH09203618A publication Critical patent/JPH09203618A/en
Application granted granted Critical
Publication of JP3514580B2 publication Critical patent/JP3514580B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、形状測定装置、よ
り詳細には、レンズ、ミラー等の光学素子の形状測定、
特に、非球面形状の測定装置に関する。 【0002】 【従来の技術】従来、非球面レンズ等の面形状測定方法
としては、接触式プローブにより被測定物表面を走査
し、プローブの移動量により被測定物の形状を求める方
法が一般的であった。しかし、被測定物表面に傷がつく
などの問題があり、被測定物表面の損傷が問題となるよ
うな測定の場合は、非接触プローブを用いた非接触式測
定方法が用いられるようになってきている。 【0003】非接触式測定方法は、非接触プローブに設
けられた対物レンズを被測定面にフォーカシングさせ、
被測定面を走査し、対物レンズの移動量から面形状を測
定するものである。この非接触測定方法においては、走
査開始位置にて非接触プローブの対物レンズを非測定面
に対して、フォーカス状態に引き込む動作が必要にな
る。フォーカス引き込み動作としては、フォーカス引き
込み範囲に対物レンズを設定し、被測定面の反射光の受
光量からフォーカス状態に設定する。しかし、このフォ
ーカス引き込み範囲は大変狭く、その範囲内に対物レン
ズの初期位置を設定することは非常に困難であり、時間
がかかり、測定時間が短縮でない一要因であった。 【0004】上記問題に対し、特開平2−254634
号公報では、対物レンズの初期位置をフォーカス引き込
み範囲の外部近傍に設定し、対物レンズを移動させてフ
ォーカス引き込み範囲内に位置設定している。これは、
フォーカス状態判別領域の上方約2.0mmの範囲に対
物レンズを設定し、対物レンズを下降させてフォーカス
引き込み範囲内に設定するものである。 【0005】 【発明が解決しようとする課題】前述のように、非接触
測定方法において、特開平2−254634号公報で
は、走査開始位置にて非接触プローブの対物レンズを被
測定面に対してフォーカス状態に引き込む動作におい
て、対物レンズの初期位置をフォーカス引き込み範囲の
外部近傍に設定し、対物レンズを移動させてフォーカス
引き込み範囲内に位置設定している。これは、フォーカ
ス引き込み範囲の上方約2.0mmの範囲に対物レンズ
を設定し、対物レンズを下降させてフォーカス引き込み
範囲内に設定することにより、フォーカス引き込み動作
における対物レンズの初期位置に設定を容易に行おうと
するものである。 【0006】これは、旋回走査による極座標測定におい
ては、何れの点においても回転中心からの距離は等し
く、図4(A)に示すように、対物レンズ11と非測定
物1は常にほぼ垂直に面しているためレンズ端の接触等
に危険性が少なく、また、図4(B)に示すように、被
測定物の頂点でフォーカス引き込みをするような場合も
同様に有効である。しかし、直線走査による直交座標測
定においては、被測定物の端でフォーカス引き込み動作
を行うことが多く、被測定物1に対して対物レンズ11
に傾きがある。被測定物に寄せていく方向でフォーカス
引き込み範囲を探索するような方法では、初期位置の設
定ミスや、その他何らかの影響で、フォーカス引き込み
範囲を認識できなかった場合に、非測定物に衝突してし
まう危険性が生じる。 【0007】上記問題点に鑑、非接触プローブの対物
レンズを被測定面に対してフォーカス状態に引き込む動
作において、被測定物に衝突する危険性を防止し、安
全、且つ容易に対物レンズの初期位置設定を行える形状
測定装置を提供することを目的とする。 【0008】また、上記対物レンズの初期位置設定にお
いて、フォーカス引き込み範囲の近傍に手動で対物レン
ズを設定することは熟練を要し、困難である。そのた
、熟練を要さなくても、容易に対物レンズの初期位置
設定が行える形状測定装置を提供することを目的とす
る。 【0009】 【課題を解決するための手段】請求項1の発明は、光学
式変位計を非接触プローブとして備え、該非接触プロー
ブを被測定物表面に沿って走査させて被測定物の表面形
状を測定するプローブ走査式形状測定装置において、
一形状の被測定物に対して、同じ対物レンズを使って大
量に測定する場合、該被測定物に対する走査方向を固定
する固定位置と、対物レンズの合焦位置から被測定物の
方向に、衝突の恐れのない程度の僅かな距離だけ近接さ
せたフォーカス方向の初期位置とを絶対座標系で表して
記憶する記憶手段と、メカ原点から対物レンズを前記固
定位置へ移動して走査方向を固定した後、前記フォーカ
ス方向の初期位置へ移動する対物レンズ位置設定手段
と、前記初期位置へ移動した後、被測定物との距離を広
げる方向に相対移動させながらフォーカス引き込み範囲
に対物レンズを移動させ、合焦位置を探索する合焦位置
設定手段とを有することを特徴としたものである。 【0010】 【0011】 【発明の実施の形態】図1は、本発明による形状測定装
置の一例を説明するための概略構成図(図1(A)は平
面図、図1(B)は側面図)で、図1では、X,Y,Z
軸の3軸(3,4,5)とし、6は被測定物取付治具で
ある。被測定物1と非接触プローブ2は水平に配置され
ている。したがって、Y軸方向がフォーカス方向であ
り、XあるいはZ方向に走査する。他に、被測定物と非
接触プローブを垂直(上下)に配置し、Z方向をフォー
カス方向とし、X,Y方向に走査してもかまわない。ま
た、フォーカス方向と1走査方向の2軸でもかまわな
い。 【0012】非接触プローブの変位に対する応答は、図
2に示すようなS字カーブを描き、bがフォーカス引き
込み範囲であり、ゼロクロス点aがフォーカス状態であ
る。このフォーカス引き込み範囲は精度をあげるため一
般に、非常に狭く設定されている。被測定物の形状を測
定するにあたり、位置制御により、フォーカス引き込み
範囲近傍に非接触プローブを設定し、フォーカス追従制
御に切り替える。この状態で走査を開始する。それによ
り、非接触プローブの位置変化と、フォーカス信号より
形状を測定する。 【0013】記測定における非接触プローブの対物レ
ンズをフォーカス状態に引き込む動作について、図3を
用いて説明する。被測定物1に対して、非接触プローブ
移動ステージ10上の非接触プローブ2の対物レンズ1
1がフォーカス状態であり、対物レンズと被測定物の距
離が合焦距離である。フォーカス引き込み動作として
は、まず、非接触プローブ2の対物レンズを走査方向に
移動し、走査開始位置cに設定する。その位置で走査方
向をロックしフォーカス方向を設定する。フォーカス方
向の初期位置は合焦点dと被測定物の間に設定する。合
焦距離は非常に狭いので対物レンズ11を被測定物に衝
突しないように寄せる。初期設定位置は図3の11´
(点線)となる。この位置から位置情報に基づき、対物
レンズ11を被測定物1から離す方向(矢印)に移動
し、フォーカス引き込み範囲に設定する。フォーカス引
き込み範囲に設定された点で、反射光の受光量による制
御に切り替え、フォーカス引き込みを行う。 【0014】記のように、対物レンズのフォーカス引
き込み動作における初期位置を、被測定物と合焦点の間
の位置に設定するが、被測定物に衝突しないように慎重
に行わなければならず、時間がかかるうえ、操作ミスに
よる衝突の危険性も否定できない。ここで、本形状測定
装置の用途として、同一形状の物体を大量に測定するこ
とは十分に考えうることであり、同一形状であれば、フ
ォーカス引き込み動作の対物レンズの初期位置は、測定
装置の絶対位置としては一定である。従って、対物レン
ズのフォーカス引き込み動作における初期位置を絶対座
標系で表記し、被測定物の種類毎にファイル化して記憶
しておく。初期設定で、被測定物の種類に合わせてファ
イルを選択し、初期位置情報を読み込む。メカ原点に復
帰して、対物レンズのフォーカス引き込み動作における
初期位置情報に基づいて、対物レンズをフォーカス引き
込み動作における初期位置に設定する。この初期位置か
ら被測定物との距離が広がる方向に対物レンズを移動
し、フォーカス引き込み範囲内に設定する。 【0015】なお、対物レンズのフォーカス引き込み動
作における初期位置情報のない被測定物を測定する場合
には、手動により慎重に、上述のように対物レンズをフ
ォーカス引き込み動作における初期位置に設定しなけれ
ばならない。このように新しい被測定物を測定する場合
は、手動により対物レンズをフォーカス引き込み動作に
おける初期位置に設定した後、必要に応じて設定位置の
絶対座標を記憶させる。それ以後は、新しく記憶した情
報に基づいて、自動に初期位置に設定可能となる。 【0016】 【発明の効果】以上説明したように本発明によると、
物レンズと被測定面との間隔を合焦点距離よりも十分に
近づけて設定する対物レンズ位置設定手段と、対物レン
ズと被測定面間の距離を広げる方向に相対移動させなが
ら、合焦位置を探索する合焦位置設定手段とを有してい
るので、被測定物の端でフォーカス引き込み動作を行う
ことが多く、被測定面に対する対物レンズに傾きがある
直線走査による直交座標測定においても、非接触プロー
ブの対物レンズを被測定面に対してフォーカス状態に引
き込む動作において、初期位置の設定ミスや、その他何
らかの影響で、フォーカス引き込み範囲を認識できなか
った場合などに被測定物に衝突する危険性を防止し、安
全、且つ、容易に対物レンズの初期位置設定できる。 【0017】また、被測定物の種類毎に対物レンズのフ
ォーカス引き込み動作における初期位置を記憶する手段
を有し、フォーカス引き込み時にあらかじめ記憶された
フォーカス引き込み動作における初期位置情報に基づい
て自動的に対物レンズをフォーカス引き込み動作におけ
る初期位置に移動する制御手段を有する対物レンズ位置
設定手段を有しているので、熟練を要さなくても、容易
に対物レンズの初期位置設定が行える。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shape measuring device, and more particularly, to a shape measuring device for optical elements such as lenses and mirrors.
In particular, it relates to an aspherical shape measuring device. Conventionally, as a method of measuring the surface shape of an aspherical lens or the like, a method of scanning the surface of an object to be measured by a contact probe and obtaining the shape of the object to be measured based on the amount of movement of the probe is generally used. Met. However, in cases where there is a problem such as scratching of the surface of the DUT and damage to the surface of the DUT is a problem, a non-contact measurement method using a non-contact probe has been used. Is coming. In the non-contact measurement method, an objective lens provided on a non-contact probe is focused on a surface to be measured.
This scans the surface to be measured and measures the surface shape from the amount of movement of the objective lens. In this non-contact measurement method, an operation of pulling the objective lens of the non-contact probe into a focus state with respect to the non-measurement surface at the scanning start position is required. As the focus pull-in operation, the objective lens is set in the focus pull-in range, and the focus state is set based on the amount of reflected light received on the surface to be measured. However, the focus pull-in range is very narrow, and it is extremely difficult to set the initial position of the objective lens within the range, it takes time, and this is one factor that does not shorten the measurement time. [0004] To solve the above problem,
In the publication, the initial position of the objective lens is set near the outside of the focus pull-in range, and the objective lens is moved to set the position within the focus pull-in range. this is,
The objective lens is set in a range of about 2.0 mm above the focus state determination area, and the objective lens is lowered to set the focus lens within the focus pull-in range. [0005] As described above, in the non-contact measurement method, Japanese Patent Laid-Open No. 2-254634 discloses that the objective lens of the non-contact probe is positioned at the scanning start position with respect to the surface to be measured. In the operation of pulling in the focus state, the initial position of the objective lens is set near the outside of the focus pull-in range, and the objective lens is moved and set in the focus pull-in range. This is because the objective lens is set in a range of about 2.0 mm above the focus pull-in range, and the objective lens is lowered to be set in the focus pull-in range, so that the initial position of the objective lens in the focus pull-in operation can be easily set. It is going to go to. [0006] In polar coordinate measurement by swiveling scanning, the distance from the center of rotation is equal at any point, and as shown in FIG. 4A, the objective lens 11 and the non-measurement object 1 are always substantially perpendicular. Since they face each other, there is little danger of contact of the lens ends and the like. Also, as shown in FIG. 4B, it is similarly effective when focusing is performed at the vertex of the measured object. However, in the orthogonal coordinate measurement by linear scanning, the focus pull-in operation is often performed at the end of the object to be measured, and
Has a tilt. In a method that searches for the focus pull-in range in the direction approaching the DUT, if the focus pull-in range cannot be recognized due to a mistake in setting the initial position or some other effect, it may collide with a non-measurement object. There is a risk of [0007] viewed Kan the above problems, in the operation of pulling in the focus state of the objective lens of the non-contact probe to the measurement surface, to prevent the risk of collision with the workpiece, the safety, and easily objective lens It is an object of the present invention to provide a shape measuring device capable of setting an initial position. In setting the initial position of the objective lens, it is difficult and difficult to manually set the objective lens near the focus pull-in range. Other <br/> Me, without requiring the ripening kneading, and to provide a shape measuring apparatus capable of performing the initial position setting of readily objective lens. According to a first aspect of the present invention, an optical displacement meter is provided as a non-contact probe, and the non-contact probe is scanned along the surface of the object to be measured to thereby form a surface of the object to be measured. in the probe scanning shape measuring apparatus for measuring, the
Use the same objective lens for large objects
When measuring in quantity, fix the scanning direction for the measured object
From the fixed position to be measured and the in-focus position of the objective lens.
Direction only a short distance without risk of collision
And the initial position of the focus direction in the absolute coordinate system.
Storage means for storing, and the objective lens is fixed from the mechanical origin.
After moving to the home position and fixing the scanning direction,
An objective lens position setting means for moving the scan direction of the initial position, after moving to the initial position, range focus pull while relatively moving in a direction to widen the distance between the object to be measured
Focus position setting means for moving the objective lens to search for a focus position. FIG. 1 is a schematic diagram for explaining an example of a shape measuring apparatus according to the present invention (FIG. 1A is a plan view, and FIG. 1B is a side view). In FIG. 1, X, Y, Z
There are three axes (3, 4, 5), and 6 is a jig for mounting an object to be measured. The DUT 1 and the non-contact probe 2 are arranged horizontally. Therefore, the Y-axis direction is the focus direction, and scanning is performed in the X or Z direction. Alternatively, the object to be measured and the non-contact probe may be arranged vertically (up and down), the Z direction may be the focus direction, and scanning may be performed in the X and Y directions. Further, two axes of the focus direction and one scanning direction may be used. The response to the displacement of the non-contact probe draws an S-shaped curve as shown in FIG. 2, where b is the focus pull-in range and zero-cross point a is the focus state. Generally, the focus pull-in range is set to be very narrow in order to increase accuracy. In measuring the shape of the object to be measured, a non-contact probe is set near the focus pull-in range by position control, and the mode is switched to focus tracking control. Scanning is started in this state. Thereby, the shape is measured from the position change of the non-contact probe and the focus signal. [0013] The operation of pulling the objective lens of the non-contact probe in the focus state in the upper Symbol measurement will be described with reference to FIG. The object lens 1 of the non-contact probe 2 on the non-contact probe moving stage 10 with respect to the DUT 1
Reference numeral 1 denotes a focus state, and a distance between the objective lens and the object to be measured is a focusing distance. As the focus pull-in operation, first, the objective lens of the non-contact probe 2 is moved in the scanning direction, and is set to the scanning start position c. At that position, the scanning direction is locked and the focus direction is set. The initial position in the focus direction is set between the focal point d and the object to be measured. Since the focusing distance is very narrow, the objective lens 11 is moved so as not to collide with the object to be measured. The initial setting position is 11 'in FIG.
(Dotted line). Based on the position information from this position, the objective lens 11 is moved in a direction (arrow) away from the DUT 1 to set a focus pull-in range. At the point set in the focus pull-in range, control is switched to the control based on the amount of reflected light received to perform focus pull-in. [0014] As above SL, the initial position in the focus pull-in operation of the objective lens, but set at a position between the object to be measured and the focal point must be done carefully so as not to collide with the object to be measured However, it takes time and the danger of collision due to an operation error cannot be denied. Here, as an application of the present shape measuring apparatus, it is sufficiently conceivable to measure a large number of objects having the same shape, and if the shape is the same, the initial position of the objective lens in the focus pull-in operation is determined by the measuring device. The absolute position is constant. Therefore, the initial position in the focus pull-in operation of the objective lens is expressed in the absolute coordinate system, and is stored in a file for each type of the measured object. In the initial setting, a file is selected according to the type of the device under test, and the initial position information is read. After returning to the mechanical origin, the objective lens is set to the initial position in the focus pull-in operation based on the initial position information in the focus pull-in operation of the objective lens. The objective lens is moved from this initial position in a direction in which the distance from the object to be measured increases, and set within the focus pull-in range. When measuring an object having no initial position information in the focusing operation of the objective lens, the objective lens must be manually and carefully set to the initial position in the focusing operation as described above. No. When measuring a new DUT, the objective lens is manually set to the initial position in the focus pull-in operation, and the absolute coordinates of the set position are stored as necessary. Thereafter, the initial position can be automatically set based on the newly stored information. As described above, according to the present invention, the objective lens position setting means for setting the distance between the objective lens and the surface to be measured sufficiently close to the focal length, and the objective lens and the objective lens. It has focus position setting means for searching for a focus position while relatively moving in the direction of increasing the distance between the measurement surfaces, so that the focus pull-in operation is often performed at the end of the measured object, Even in the orthogonal coordinate measurement by linear scanning with the objective lens inclined to the surface, in the operation of pulling the objective lens of the non-contact probe into the focus state with respect to the measured surface, the initial position may be set incorrectly or some other effect The risk of collision with the object to be measured when the pull-in range cannot be recognized can be prevented, and the initial position of the objective lens can be set safely and easily. Further , there is provided a means for storing an initial position in the focus pull-in operation of the objective lens for each type of the object to be measured, and the objective is automatically set based on the initial position information in the focus pull-in operation previously stored at the time of the focus pull-in. Since the objective lens position setting means having the control means for moving the lens to the initial position in the focus pull-in operation is provided, the initial position of the objective lens can be easily set without any skill.

【図面の簡単な説明】 【図1】 本発明による形状測定装置の一実施例を説明
するための概略平面図及び側面図である。 【図2】 非接触プローブの変位に対する応等を示す図
である。 【図3】 対物レンズの初期設定を説明するための図で
ある。 【図4】 従来の形状測定装置における被測定面と対物
レンズの関係を説明するための図である。 【符号の説明】 1…被測定物、2…非接触プローブ、3,4,5…軸、
6…被測定物取付治具、10…非接触プローブ移動ステ
ージ、11…対物レンズ。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic plan view and a side view for explaining an embodiment of a shape measuring apparatus according to the present invention. FIG. 2 is a diagram showing a response to a displacement of a non-contact probe. FIG. 3 is a diagram for describing initial setting of an objective lens. FIG. 4 is a view for explaining a relationship between a surface to be measured and an objective lens in a conventional shape measuring apparatus. [Description of Signs] 1 ... DUT, 2 ... Non-contact probe, 3, 4, 5 ... axis,
Reference numeral 6 denotes an object mounting jig, 10 denotes a non-contact probe moving stage, and 11 denotes an objective lens.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−281413(JP,A) 特開 昭63−167313(JP,A) 特開 平6−294926(JP,A) 特開 平2−254634(JP,A) 特開 昭61−198432(JP,A) 特開 平5−238025(JP,A) 特開 昭63−32728(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01B 11/00 - 11/30 G02B 7/28 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-1-281413 (JP, A) JP-A-63-167313 (JP, A) JP-A-6-294926 (JP, A) JP-A-2- 254634 (JP, A) JP-A-61-198432 (JP, A) JP-A-5-238025 (JP, A) JP-A-63-32728 (JP, A) (58) Fields investigated (Int. 7 , DB name) G01B 11/00-11/30 G02B 7/28

Claims (1)

(57)【特許請求の範囲】 【請求項1】 光学式変位計を非接触プローブとして備
え、該非接触プローブを被測定物表面に沿って走査させ
て被測定物の表面形状を測定するプローブ走査式形状測
定装置において、同一形状の被測定物に対して、同じ対
物レンズを使って大量に測定する場合、該被測定物に対
する走査方向を固定する固定位置と、対物レンズの合焦
位置から被測定物の方向に、衝突の恐れのない程度の僅
かな距離だけ近接させたフォーカス方向の初期位置とを
絶対座標系で表して記憶する記憶手段と、メカ原点から
対物レンズを前記固定位置へ移動して走査方向を固定し
た後、前記フォーカス方向の初期位置へ移動する対物レ
ンズ位置設定手段と、前記初期位置へ移動した後、被測
物との距離を広げる方向に相対移動させながらフォー
カス引き込み範囲に対物レンズを移動させ、合焦位置を
探索する合焦位置設定手段とを有することを特徴とする
形状測定装置。
(57) [Claim 1] An optical displacement meter is provided as a non-contact probe, and probe scanning is performed by scanning the non-contact probe along the surface of the object to measure the surface shape of the object. In the type profile measuring device, the same pair
When measuring large quantities using an object lens,
Fixed position to fix the scanning direction and focus of the objective lens
In the direction from the position to the measured object,
And the initial position in the focus direction
From the storage means to represent and store in absolute coordinate system and from the mechanical origin
Move the objective lens to the fixed position to fix the scanning direction.
After an objective lens position setting means for moving to the initial position of the focus direction, after moving to the initial position, while relatively moving in a direction to widen the distance between the object to be measured Four
A focus position setting unit that moves an objective lens to a ditch pull-in range and searches for a focus position.
JP3294596A 1996-01-26 1996-01-26 Shape measuring device Expired - Lifetime JP3514580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3294596A JP3514580B2 (en) 1996-01-26 1996-01-26 Shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3294596A JP3514580B2 (en) 1996-01-26 1996-01-26 Shape measuring device

Publications (2)

Publication Number Publication Date
JPH09203618A JPH09203618A (en) 1997-08-05
JP3514580B2 true JP3514580B2 (en) 2004-03-31

Family

ID=12373096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3294596A Expired - Lifetime JP3514580B2 (en) 1996-01-26 1996-01-26 Shape measuring device

Country Status (1)

Country Link
JP (1) JP3514580B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6193218B2 (en) * 2011-05-20 2017-09-06 ユニベルシタート ポリテクニカ デ カタルーニャ Method and apparatus for non-contact measurement of surfaces

Also Published As

Publication number Publication date
JPH09203618A (en) 1997-08-05

Similar Documents

Publication Publication Date Title
JP3161602B2 (en) 3D scanning system
JP2943499B2 (en) Height measuring method and device
JPH10311711A (en) Optical profile sensor
US8184301B2 (en) Surface alignment and positioning method and apparatus
JP3514580B2 (en) Shape measuring device
JPH1151624A (en) Surface shape measuring instrument
JP2002257511A (en) Three dimensional measuring device
JP2002228421A (en) Scanning laser microscope
JP2002511575A (en) Method and coordinate measuring instrument for point-scan contour determination of material surfaces by the principle of auto-focusing
US6744510B2 (en) Ellipsometer and precision auto-alignment method for incident angle of the ellipsometer without auxiliary equipment
JP3180091B2 (en) Non-contact dimension measurement method by laser autofocus
JPH0755638A (en) Device and method for measuring focal length of optical system
JP3345149B2 (en) Aspherical lens eccentricity measuring device and centering device
JP3526122B2 (en) Shape measuring device
JP4057197B2 (en) Optical spot diameter measuring device for scanning optical system
JP2529526Y2 (en) Alignment device for optical components
JP2502476B2 (en) Surface shape measuring device
JPH0755640A (en) Device and method for measuring focal length of optical system
JPH11211611A (en) Eccentricity measuring apparatus
JPH05196563A (en) Hardness measurement method
JPS6052371B2 (en) Focal position measuring device
Li et al. Error analysis and improvements for using parallel-shift method to test a galvanometer-based laser scanning system
JPS6367508A (en) Method and instrument for measuring coordinates of tape end
Gerstorfer et al. Development of a low-cost measurement system for cutting edge profile detection
CN112880585A (en) Non-contact shape measuring device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100123

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110123

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140123

Year of fee payment: 10

EXPY Cancellation because of completion of term