JP3522532B2 - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP3522532B2
JP3522532B2 JP12490198A JP12490198A JP3522532B2 JP 3522532 B2 JP3522532 B2 JP 3522532B2 JP 12490198 A JP12490198 A JP 12490198A JP 12490198 A JP12490198 A JP 12490198A JP 3522532 B2 JP3522532 B2 JP 3522532B2
Authority
JP
Japan
Prior art keywords
region
base
drain
source
pickup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12490198A
Other languages
Japanese (ja)
Other versions
JPH11330451A (en
Inventor
明夫 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP12490198A priority Critical patent/JP3522532B2/en
Publication of JPH11330451A publication Critical patent/JPH11330451A/en
Application granted granted Critical
Publication of JP3522532B2 publication Critical patent/JP3522532B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0856Source regions
    • H01L29/0865Disposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/7823Lateral DMOS transistors, i.e. LDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】この発明は、DMOS(Do
uble diffused Metal Oxide
Semiconductor)構造の横型MOSFE
Tを集積したパワーICなどの半導体装置に関する。 【0002】 【従来の技術】DMOS構造で横型の高耐圧MOSFE
Tなどを集積したパワーICなどの半導体装置におい
て、ソース領域、ベース領域およびドレイン領域の平面
パターンをストライプ状に形成する場合がある。図3
は、従来のストライプ状の横型MOSFETで、同図
(a)は平面図、同図(b)は同図(a)のX−X線で
切断した要部断面図、図(c)は同図(a)のY−Y線
で切断した要部断面図である。 【0003】図3において、p基板1の表面層にnドレ
イン領域2を形成し、nドレイン領域2の表面層にpベ
ース領域3を形成し、pベース領域3の表面層にnソー
ス領域4を形成し、nソース領域4に接してpベースピ
ックアップ領域5を形成する。nソース領域4とnドレ
イン領域2に挟まれたpベース領域3の表面にゲート酸
化膜6を介してゲート電極8を形成する。pベース領域
3と離してnドレイン領域2の表面とp基板1の表面に
LOCOS酸化膜7を形成する。 【0004】また、nドレイン領域2の表面層にpベー
ス領域と離して、nドレイン領域2のオーミックコンタ
クトをとるためのn+ ドレイン領域21を形成する。n
ソース領域4はソースコンタクト領域9を介してソース
電極11と接続し、pベースピックアップ領域5はピッ
クアップコンタクト領域10を介してベース電極12と
接続し、n+ ドレイン領域21はドレインコンタクト領
域22を介してドレイン電極23と接続する。 【0005】尚、2aはnドレイン領域端、3aはpベ
ース領域端、4aはnソース領域端、5aはpベースピ
ックアップ領域端、7aはLOCOS酸化膜端、8a、
8bはゲート電極端、13はnソース領域とpベースピ
ックアップ領域の接合個所である。この横型MOSFE
Tは、DMOS構造で、nソース領域4、pベース領域
3およびnドレイン領域2をオーミックコンタクトさせ
るためのn+ ドレイン領域2aの各平面パターンがスト
ライプ状をしている。ストライプ状をしたnソース領域
4の端部Aにはソースコンタクト領域9が配置される。
この端部Aでは、nソース領域4とpベース領域3およ
びnドレイン領域で、寄生のnpnトランジスタ(図3
(c)にトランジスタ記号を示す)が形成される。ま
た、pベース領域3には寄生抵抗(図3(c)に抵抗記
号で示す)も形成される。 【0006】つぎに、この横型MOSFETの動作を説
明する。図3(b)において、ソース電極11に対して
ドレイン電極23にプラスの電圧を印加し、ゲート電極
8にプラスの電圧を印加すると、pベース領域3の表面
にチャネルが形成されて、ドレイン電極23からソース
電極11に電流が流れる。ゲート電極8の電圧をゲート
しきい値電圧以下にするとチャネルが閉じてこの横型M
OSFETはオフ状態となる。ソース電極11とピック
アップ電極12は通常接続されている。 【0007】この横型MOSFETがオフ状態で、ソー
ス電極11とドレイン電極23の間にサージ電圧が印加
されると、nドレイン領域2とpベース領域3に空乏層
が形成され、このサージ電圧が横型MOSFETのアバ
ランシェ電圧を超えると、アバランシェ電流が、nドレ
イン領域2−pベース領域3−pベースピックアップ領
域5の経路で流れる。このアバランシェ電流と前記の寄
生抵抗の積で電圧降下が生じ、その電圧降下により、前
記の寄生npnトランジスタが動作する。しかし、従来
の横型MOSFETでは、この寄生npnトランジスタ
のhFEが50以下と小さく、そのため、アバランシェ電
流とhFEの積であるコレクタ電流は小さく、MOSFE
Tが破壊することはなかった。 【0008】 【発明が解決しようとする課題】しかし、パワーICに
集積される横型MOSFETは、同時に集積される低耐
圧のバイポーラ素子と同一プロセスで製作されるため
に、pベース領域3の厚さが薄くなり、従って、横型M
OSFETに形成される寄生npnトランジスタのhFE
が50以上と大きくなる。 【0009】従来の横型MOSFETはnソース領域の
長手方向の端部Aにソースコンタクト領域9を配置して
おり、また、nソース領域4を囲むように、pベース領
域3が形成される。このような平面パターンをもつDM
OS構造のMOSFETでは、寄生npnトランジスタ
のhFEが50以上と高い場合、pベース領域3の横方向
の寄生抵抗が高くなる。この横型MOSFETにサージ
電圧などが印加されると、端部Aにおいて、寄生npn
トランジスタが動作して、MOSFETが破壊する特
に、従来の横型MOSFETではサージ電圧試験である
ESD試験で充電電圧が1000V以下とサージ耐量が
低く、また、信頼性試験である高温電圧印加試験でも数
時間で破壊するものがあった。 【0010】尚、ESD試験とは、コンデンサCと直列
抵抗Rsとスイッチおよび供試素子で閉ループつくり、
Cに充電した電荷をスイッチを閉じて供試素子で放電さ
せて、供試素子の破壊の有無を調べる試験である。通
常、条件例として、C=100pF、Rs =1.5kΩ
で所定の電圧をCに充電して行う。このときの充電電圧
が高い程、サージ耐量が高いことになる。 【0011】この発明の目的は、前記課題を解決して、
サージ耐量が高く、高温電圧印加に対する信頼性を確保
できる高耐圧の横型MOSFETなどの半導体装置を提
供することにある。 【0012】 【課題を解決するための手段】前記の目的を達成するた
めに、第1導電形半導体基板上に、第2導電形ドレイン
領域を選択的に形成し、該ドレイン領域の表面層に第1
導電形ベース領域を選択的に形成し、該ベース領域の表
面層に第2導電形ソース領域を選択的に形成し、該ソー
ス領域に前記ベース領域と接する第1導電形ベースピッ
クアップ領域を形成し、該ソース領域と前記ドレイン領
域に挟まれる前記ベース領域上にゲート酸化膜を介して
ゲート電極を形成し、前記ソース領域の平面パターンを
ストライプ状に形成した半導体装置において、該ストラ
イプ状のソース領域の長手方向の端部に前記第1導電形
ベースピックアップ領域を形成し、前記ソース領域、ド
レイン領域およびベース領域で形成される寄生バイポー
ラトランジスタのh FE が50以上であるものとする。
の構成とすることで、ストライプ状の端部に寄生バイポ
ーラトランジスタが形成されず、サージ耐量や高温電圧
印加での信頼性を向上させることができる。 【0013】前記ソース領域の長手方向の端部以外の領
域にも、前記ベースピックアップ領域を形成し、該ベー
スピックアップ領域上に金属配線を形成することで、寄
生バイポーラトランジスタの動作を弱めることができ
る。それによって、サージ耐量や高温電圧印加での信頼
性を向上させることができる。 【0014】 【発明の実施の形態】以下の実施例の説明では、第1導
電形をp形、第2導電形をn形としたが、逆にしてもよ
い。図1は、この発明の第1実施例の横型MOSFET
で、同図(a)は平面図、図(b)は同図(a)のY−
Y線で切断した要部断面図である。図中の符号は図3と
同一部分については同一とした。また、図1(a)のX
−X線で切断した要部断面図は図3(b)と同一であ
り、ここでは図1(a)のX−X線で切断した要部断面
図とその説明は省略する。 【0015】図1において、比抵抗150Ωcm程度の
p基板1の表面層に表面濃度が3×1016cm-3程度、
Xj(拡散深さ)が約4μmのnドレイン領域2(nチ
ャネルDMOS構造のMOSFETのnドレイン領域の
こと)を形成し、nドレイン領域2の表面層に、表面濃
度が2×1017cm-3程度、Xjが約1μmのpベース
領域3を形成し、pベース領域3の表面層に、表面濃度
が1×1021cm-3程度、Xjが約0.2μmのnソー
ス領域4を形成し、nソース領域4に接してpベースピ
ックアップ領域5を形成する。このpベースピックアッ
プ領域5はnソース領域4から離して形成してもよい。 【0016】つぎに、nソース領域4とnドレイン領域
2に挟まれたpベース領域3の表面に、200Å厚のゲ
ート酸化膜6を介してゲート電極8を形成する(図3
(b)参照のこと)。pベース領域3と離して、nドレ
イン領域2の表面とp基板1の表面とにLOCOS酸化
膜7を形成する。また、nドレイン領域2の表面層にp
ベース領域3と離して、nドレイン領域2のオーミック
コンタクトをとるためのn+ ドレイン領域21を形成す
る。 【0017】nソース領域4はソースコンタクト領域9
を介してソース電極11と接続し、pベースピックアッ
プ領域5はピックアップコンタクト領域10を介してベ
ース電極12と接続し、n+ ドレイン領域21はドレイ
ンコンタクト領域22を介してドレイン電極23と接続
する。またソース電極11、ドレイン電極24およびベ
ース電極12は金属配線50に接続する。また、ゲート
電極8はストライプ状のnソース領域4、n+ ドレイン
領域21を囲むように形成される。 【0018】尚、2aはnドレイン領域端、3aはpベ
ース領域端、4aはnソース領域端、5aはpベースピ
ックアップ領域端、7aはLOCOS酸化膜端、8a、
8bはゲート電極端、13はnソース領域4とpベース
ピックアップ領域5の接合個所である。図1のMOSF
ETにおいて、nソース領域4−pベース領域3−nド
レイン領域2で形成される寄生npnトランジスタ(寄
生バイポーラトランジスタ)のhFEは50、そのBVce
o (ゲートオープンのコレクタ・エミッタ間耐圧)は2
0Vである。またnチャネルDMOSのソース・ドレイ
ン間の耐圧は100Vである。 【0019】また、寄生npnトランジスタのhFEを5
0としたのは、これ以下では、前記したように、寄生n
pnトランジスタの働きが弱く、サージ耐量が低下する
ことはない。しかし、50以上の場合では、寄生npn
トランジスタの働きが強く、そのため、この実施例で示
した横型MOSFETの構造が、サージ耐量を向上させ
る効果をもつ。 【0020】また、図1の横型MOSFETでは、nソ
ース領域4の長手方向の端部Bが、ソースコンタクト領
域9で終端せず、ピックアップコンタクト領域10で終
端する。この構造により、図3に示した従来構造の横型
MOSFETでは、nソース領域4の長手方向の終端A
で、形成されていた寄生npnトランジスタが、図1の
横型MOSFETでは消失し、サージ電圧などにより、
pベース領域3にアバランシェ電流が流入した場合で
も、このアバランシェ電流は、ベースピックアップ領域
5を経由してピックアップコンタクト領域10へ流出す
る。 【0021】従って、図1の横型MOSFETでは、n
ソース領域4の長手方向の端部Bで、nソース領域4が
形成されないために、寄生npnトランジスタの動作が
起こらない。そのため、前記のサージ電圧試験であるE
SD試験では、充電電圧が、図3の横型MOSFETと
比べて2倍以上の値を示し、サージ耐量を大きく向上さ
せることができる。また、高温電圧印加などの信頼性試
験において、1000時間の規格を十分満足することが
できる。 【0022】また、図1(a)のように、pベースピッ
クアップ領域5をnソース領域4の端部B以外にも設け
ることで、寄生npnトランジスタの働きを弱め、サー
ジ耐量を高めることができる。図2は、この発明の第2
実施例の横型MOSFETで、同図(a)は平面図、同
図(b)は同図(a)のX−X線で切断した要部断面
図、同図(c)は同図(a)のY−Y線で切断した要部
断面図である。尚、図中の符号は図1と同一部分につい
ては同一とした。 【0023】図2において、p基板1の比抵抗は15Ω
・cm程度、その表面にnチャネルDMOSが形成され
るが、nチャネルDMOSの下にはnドレイン埋め込み
領域31が形成される。その表面層にエピタキシャル成
長により、nドレイン領域2dが不純物濃度5×1015
cm-3程度、厚さ4μm程度で形成される。nドレイン
領域2dの表面層にはpベース領域3が表面濃度2×1
17cm-3程度、Xjは約1μmで形成される。その表
面層にはnソース領域4が表面濃度1×1021cm-3
度、Xj は約0.2μmで形成される。また、nソース
領域4とnドレイン領域2dに挟まれるpベース領域3
の表面には200Å厚のゲート酸化膜6を介してゲート
電極8が形成される。 【0024】また、nドレインウォール領域32が形成
され、ドレイン領域の一部となる。このnドレインウォ
ール32の表面層にn+ ドレイン領域21が形成され
る。nソース領域4上、pベースピックアップ領域5
上、n+ ドレイン領域21上にはソース電極11、ピッ
クアップ電極12、ドレイン電極22が形成され、これ
らの電極上には金属配線50が形成される。pベース領
域3の表面には200Å厚のゲート酸化膜6を介してゲ
ート電極8が形成される。 【0025】ここで、nソース領域4−pベース領域3
−nドレイン領域2dで形成される寄生npnトランジ
スタのhFEは50、そのVceo は20Vである。またn
チャネルDMOSのソース・ドレイン間の耐圧は100
Vである。平面パターンは図3(a)に示すように、ス
トライプ状にnソース領域3、n+ ドレイン領域21が
形成される。またゲート電極8はnソース領域4、n+
ドレイン領域21を囲むように形成される。 【0026】また、図2の横型MOSFETも図1の横
型MOSFETと同様に、nソース領域4の端部Bはソ
ースコンタクト領域9で終端せず、ピックアップコンタ
クト領域10で終端する。この構造により、図3に示し
た従来構造の横型MOSFETでは、nソース領域4の
長手方向の端部Aで、形成されていた寄生npnトラン
ジスタが、図1の横型MOSFETの端部Bでは消失
し、サージ電圧などにより、pベース領域3にアバラン
シェ電流が流入した場合でも、このアバランシェ電流
は、ベースピックアップ領域5を経由してピックアップ
コンタクト領域10へ流出する。 【0027】従って、図2の横型MOSFETでは、n
ソース領域4の長手方向の端部Bでnソース領域4が形
成されないために、寄生npnトランジスタの動作が起
こらない。そのため、前記のサージ電圧試験であるES
D試験では、充電電圧が図3の横型MOSFETと比べ
て2倍以上の値を示し、サージ耐量が大きく向上するこ
とが判った。また、高温電圧印加などの信頼性試験にお
いて、1000時間の規格を十分満足することができ
た。 【0028】尚、図2の横型MOSFETでは、nドレ
イン埋め込み層31やnドレインウォール32を通して
ドレイン電流が流れるので、MOSFETのオン抵抗が
図1横型MOSFETよりも小さくなる。また、半導体
装置として、横型MOSFETを例に説明したが、他の
横型MOSデバイスにもこの実施例は適用できる。 【0029】 【発明の効果】この発明により、ストライプ状のnソー
ス領域の長手方向の端部をpベースピックアップ領域と
することで、この端部での、サージ耐量が従来の2倍以
上に向上させることができる。また、高温電圧印加の信
頼性を高めることができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a DMOS (Do
uble diffused Metal Oxide
(Semiconductor) structure lateral MOSFET
The present invention relates to a semiconductor device such as a power IC in which T is integrated. 2. Description of the Related Art A lateral high voltage MOSFE having a DMOS structure is used.
In a semiconductor device such as a power IC in which T is integrated, a planar pattern of a source region, a base region, and a drain region may be formed in a stripe shape. FIG.
FIG. 1 (a) is a plan view, FIG. 2 (b) is a cross-sectional view of an essential part taken along line XX of FIG. 1 (a), and FIG. FIG. 5 is a cross-sectional view of a main part taken along line YY in FIG. In FIG. 3, an n drain region 2 is formed in a surface layer of a p substrate 1, a p base region 3 is formed in a surface layer of the n drain region 2, and an n source region 4 is formed in a surface layer of the p base region 3. Is formed, and ap base pickup region 5 is formed in contact with n source region 4. A gate electrode 8 is formed via a gate oxide film 6 on the surface of p base region 3 sandwiched between n source region 4 and n drain region 2. LOCOS oxide film 7 is formed on the surface of n drain region 2 and the surface of p substrate 1 apart from p base region 3. Further, an n + drain region 21 for forming an ohmic contact with the n drain region 2 is formed on the surface layer of the n drain region 2 at a distance from the p base region. n
Source region 4 is connected to source electrode 11 via source contact region 9, p base pickup region 5 is connected to base electrode 12 via pickup contact region 10, and n + drain region 21 is via drain contact region 22. To the drain electrode 23. 2a is an end of an n drain region, 3a is an end of a p base region, 4a is an end of an n source region, 5a is an end of a p base pickup region, 7a is an end of a LOCOS oxide film, 8a,
8b is a gate electrode end, and 13 is a junction between the n source region and the p base pickup region. This horizontal MOSFET
T is a DMOS structure, and each of the n + drain regions 2a for making ohmic contact between the n source region 4, the p base region 3, and the n drain region 2 has a stripe pattern. A source contact region 9 is disposed at an end A of the striped n source region 4.
At the end A, a parasitic npn transistor (FIG. 3) is formed by the n source region 4, the p base region 3, and the n drain region.
((C) shows a transistor symbol). A parasitic resistance (indicated by a resistance symbol in FIG. 3C) is also formed in the p base region 3. Next, the operation of the lateral MOSFET will be described. In FIG. 3B, when a positive voltage is applied to the drain electrode 23 and a positive voltage is applied to the gate electrode 8 with respect to the source electrode 11, a channel is formed on the surface of the p base region 3, and a drain electrode is formed. A current flows from 23 to the source electrode 11. When the voltage of the gate electrode 8 is made lower than the gate threshold voltage, the channel closes and the horizontal M
The OSFET is turned off. The source electrode 11 and the pickup electrode 12 are usually connected. When a surge voltage is applied between the source electrode 11 and the drain electrode 23 in the off state of the lateral MOSFET, a depletion layer is formed in the n drain region 2 and the p base region 3, and the surge voltage is reduced. When the avalanche voltage exceeds the avalanche voltage of the MOSFET, an avalanche current flows through the path of the n-drain region 2-p base region 3-p base pickup region 5. A voltage drop occurs due to the product of the avalanche current and the parasitic resistance, and the parasitic npn transistor operates due to the voltage drop. However, in the conventional lateral MOSFET, the hFE of the parasitic npn transistor is as small as 50 or less, so that the collector current, which is the product of the avalanche current and the hFE, is small.
T did not break. However, since the lateral MOSFET integrated in the power IC is manufactured in the same process as the low-voltage bipolar element integrated simultaneously, the thickness of the p base region 3 is reduced. Becomes thinner, and therefore the horizontal M
HFE of parasitic npn transistor formed in OSFET
Is as large as 50 or more. In the conventional lateral MOSFET, a source contact region 9 is arranged at an end A in a longitudinal direction of an n source region, and a p base region 3 is formed so as to surround the n source region 4. DM with such a plane pattern
In MOSFET of OS structure, if h FE of the parasitic npn transistor 50 or more and high lateral parasitic resistance of the p base region 3 becomes high. When a surge voltage or the like is applied to this lateral MOSFET, a parasitic npn
In particular, the conventional lateral MOSFET has a low surge withstand voltage of 1000 V or less in an ESD test, which is a surge voltage test, and several hours even in a high-temperature voltage application test, which is a reliability test. There was something to destroy. In the ESD test, a closed loop is formed by a capacitor C, a series resistor Rs, a switch, and a device under test.
In this test, the charge charged in C is closed by a switch and discharged by the device under test to check whether the device under test is broken. Usually, as an example of the condition, C = 100 pF, Rs = 1.5 kΩ
To charge C to a predetermined voltage. The higher the charging voltage at this time, the higher the surge withstand capability. An object of the present invention is to solve the above problems,
It is an object of the present invention to provide a semiconductor device such as a lateral MOSFET having a high withstand voltage and a high withstand voltage capable of securing reliability against application of a high temperature voltage. [0012] In order to achieve the above object, a second conductivity type drain region is selectively formed on a first conductivity type semiconductor substrate, and a drain region is formed on a surface layer of the drain region. First
A conductive type base region is selectively formed, a second conductive type source region is selectively formed in a surface layer of the base region, and a first conductive type base pickup region in contact with the base region is formed in the source region. A semiconductor device in which a gate electrode is formed on the base region sandwiched between the source region and the drain region via a gate oxide film, and a planar pattern of the source region is formed in a stripe shape; Forming the first conductivity type base pickup region at an end portion in the longitudinal direction of the source region;
Parasitic bipolar formed by rain region and base region
It is assumed that the hFE of the transistor is 50 or more. With this configuration, no parasitic bipolar transistor is formed at the end of the stripe, and the surge withstand voltage and the reliability when a high-temperature voltage is applied can be improved. The operation of the parasitic bipolar transistor can be reduced by forming the base pickup region in a region other than the longitudinal end of the source region and forming a metal wiring on the base pickup region. . As a result, it is possible to improve the surge resistance and the reliability when a high-temperature voltage is applied . DESCRIPTION OF THE PREFERRED EMBODIMENTS In the following description of the embodiments, the first conductivity type is p-type and the second conductivity type is n-type. FIG. 1 shows a lateral MOSFET according to a first embodiment of the present invention.
(A) is a plan view, and (b) is a line Y- in FIG.
It is principal part sectional drawing cut | disconnected by the Y line. The same reference numerals in the drawing denote the same parts as in FIG. Also, X in FIG.
The cross-sectional view of the main part taken along line -X is the same as that of FIG. 3B. Here, the cross-sectional view of the main part taken along line XX of FIG. 1A and the description thereof are omitted. In FIG. 1, a surface concentration of about 3 × 10 16 cm −3 is applied to a surface layer of a p-substrate 1 having a specific resistance of about 150 Ωcm.
An n-drain region 2 having a diffusion depth of about 4 μm (the n-drain region of an n-channel DMOS structure MOSFET) is formed, and the surface concentration of the n-drain region 2 is 2 × 10 17 cm A p base region 3 of about 3 and Xj of about 1 μm is formed, and an n source region 4 of a surface concentration of about 1 × 10 21 cm −3 and Xj of about 0.2 μm is formed on the surface layer of the p base region 3. Then, p base pickup region 5 is formed in contact with n source region 4. The p base pickup region 5 may be formed apart from the n source region 4. Next, a gate electrode 8 is formed on the surface of the p base region 3 sandwiched between the n source region 4 and the n drain region 2 with a 200.degree. Thick gate oxide film 6 therebetween (FIG. 3).
(See (b)). LOCOS oxide film 7 is formed on the surface of n drain region 2 and the surface of p substrate 1 apart from p base region 3. Also, p is added to the surface layer of the n drain region 2.
An n + drain region 21 for forming an ohmic contact with the n drain region 2 is formed apart from the base region 3. The n source region 4 is a source contact region 9
, P base pickup region 5 is connected to base electrode 12 via pickup contact region 10, and n + drain region 21 is connected to drain electrode 23 via drain contact region 22. The source electrode 11, the drain electrode 24 and the base electrode 12 are connected to the metal wiring 50. The gate electrode 8 is formed so as to surround the stripe-shaped n source region 4 and n + drain region 21. 2a is an end of an n drain region, 3a is an end of a p base region, 4a is an end of an n source region, 5a is an end of a p base pickup region, 7a is an end of a LOCOS oxide film, 8a,
8b is a gate electrode end, and 13 is a junction between the n source region 4 and the p base pickup region 5. MOSF of FIG.
In ET, the hFE of the parasitic npn transistor (parasitic bipolar transistor) formed by the n source region 4-p base region 3-n drain region 2 is 50, and its BVce
o (Gate-open collector-emitter withstand voltage) is 2
0V. The breakdown voltage between the source and the drain of the n-channel DMOS is 100V. The hFE of the parasitic npn transistor is set to 5
In the following, the value n is set to 0 as described above.
The function of the pn transistor is weak, and the surge resistance is not reduced. However, in the case of 50 or more, the parasitic npn
The function of the transistor is strong, and therefore, the structure of the lateral MOSFET shown in this embodiment has an effect of improving the surge resistance. In the lateral MOSFET shown in FIG. 1, the end B in the longitudinal direction of the n source region 4 does not terminate at the source contact region 9 but terminates at the pickup contact region 10. According to this structure, in the lateral MOSFET having the conventional structure shown in FIG.
Then, the formed parasitic npn transistor disappears in the lateral MOSFET of FIG. 1, and due to a surge voltage or the like,
Even when an avalanche current flows into p base region 3, the avalanche current flows out to pickup contact region 10 via base pickup region 5. Therefore, in the lateral MOSFET shown in FIG.
Since the n source region 4 is not formed at the longitudinal end B of the source region 4, the operation of the parasitic npn transistor does not occur. Therefore, the surge voltage test E
In the SD test, the charging voltage is twice or more the value of the lateral MOSFET of FIG. 3, and the surge withstand capability can be greatly improved. Further, in a reliability test such as application of a high-temperature voltage, the standard for 1000 hours can be sufficiently satisfied. Also, as shown in FIG. 1A, by providing the p base pickup region 5 at a position other than the end B of the n source region 4, the function of the parasitic npn transistor can be reduced and the surge withstand capability can be increased. . FIG. 2 shows a second embodiment of the present invention.
1A is a plan view, FIG. 2B is a cross-sectional view of an essential part taken along line XX of FIG. 1A, and FIG. 1C is a horizontal MOSFET of the embodiment. FIG. 5 is a sectional view of a main part taken along line YY of FIG. Note that the reference numerals in the figure are the same for the same parts as those in FIG. In FIG. 2, the specific resistance of the p substrate 1 is 15Ω.
An n-channel DMOS is formed on the surface by about cm, and an n-drain buried region 31 is formed below the n-channel DMOS. The n-drain region 2d has an impurity concentration of 5 × 10 15 by epitaxial growth on the surface layer.
cm -3 or so, it is formed with a thickness of 4μm about. The p base region 3 has a surface concentration of 2 × 1 in the surface layer of the n drain region 2d.
Xj is formed at about 0 17 cm -3 and Xj is about 1 μm. An n source region 4 is formed on the surface layer at a surface concentration of about 1 × 10 21 cm −3 and Xj is about 0.2 μm. The p base region 3 sandwiched between the n source region 4 and the n drain region 2d
A gate electrode 8 is formed on the surface of the substrate with a 200-nm thick gate oxide film 6 interposed therebetween. Further, an n drain wall region 32 is formed and becomes a part of the drain region. The n + drain region 21 is formed on the surface layer of the n drain wall 32. Above n source region 4, p base pickup region 5
Above, the source electrode 11, the pickup electrode 12, and the drain electrode 22 are formed on the n + drain region 21, and the metal wiring 50 is formed on these electrodes. A gate electrode 8 is formed on the surface of p base region 3 via a gate oxide film 6 having a thickness of 200 °. Here, n source region 4-p base region 3
The hFE of the parasitic npn transistor formed by the -n drain region 2d is 50, and its Vceo is 20V. And n
The breakdown voltage between the source and drain of the channel DMOS is 100
V. As shown in FIG. 3A, the planar pattern has an n source region 3 and an n + drain region 21 formed in a stripe shape. The gate electrode 8 is connected to the n source region 4, n +
It is formed so as to surround the drain region 21. Also, in the lateral MOSFET of FIG. 2, similarly to the lateral MOSFET of FIG. 1, the end B of the n source region 4 does not terminate at the source contact region 9 but terminates at the pickup contact region 10. With this structure, in the lateral MOSFET of the conventional structure shown in FIG. 3, the parasitic npn transistor formed at the longitudinal end A of the n source region 4 disappears at the lateral end B of the lateral MOSFET of FIG. Even when an avalanche current flows into the p base region 3 due to a surge voltage or the like, the avalanche current flows out to the pickup contact region 10 via the base pickup region 5. Therefore, in the lateral MOSFET shown in FIG.
Since the n source region 4 is not formed at the longitudinal end B of the source region 4, the operation of the parasitic npn transistor does not occur. Therefore, the surge voltage test ES
In the D test, the charging voltage was twice or more the value of the lateral MOSFET of FIG. 3, and it was found that the surge withstand capability was greatly improved. Further, in a reliability test such as application of a high-temperature voltage, the standard for 1000 hours was sufficiently satisfied. In the lateral MOSFET of FIG. 2, since the drain current flows through the n-drain buried layer 31 and the n-drain wall 32, the on-resistance of the MOSFET is smaller than that of the lateral MOSFET of FIG. Further, although the lateral MOSFET has been described as an example of the semiconductor device, this embodiment can be applied to other lateral MOS devices. According to the present invention, the end of the stripe-shaped n source region in the longitudinal direction is set as the p base pickup region, so that the surge withstand capability at this end is more than doubled compared with the conventional case. Can be done. In addition, the reliability of high-temperature voltage application can be improved.

【図面の簡単な説明】 【図1】この発明の第1実施例の横型MOSFETで、
(a)は平面図、(b)は(a)のY−Y線で切断した
要部断面図 【図2】この発明の第2実施例の横型MOSFETで、
(a)は平面図、(b)は(a)のX−X線で切断した
要部断面図、(c)は(a)のY−Y線で切断した要部
断面図 【図3】従来のストライプ状の横型MOSFETで、
(a)は平面図、(b)は(a)のX−X線で切断した
要部断面図、(c)は(a)のY−Y線で切断した要部
断面図 【符号の説明】 1 p基板 2 nドレイン領域 2a nドレイン領域端 2d nドレイン 3 pベース領域 3a pベース領域端 4 nソース領域 4a nソース領域端 5 pベースピックアップ領域 5a pベースピックアップ領域端 6 ゲート酸化膜 7 LOCOS酸化膜 7a LOCOS酸化膜 8 ゲート電極 8a ゲート電極端 8b ゲート電極端 9 ソースコンタクト領域 10 ピックアップコンタクト領域 11 ソース電極 12 ピックアップ電極 13 接合個所 21 n+ ドレイン領域 21a n+ ドレイン領域端 22 ドレインコンタクト領域 23 ドレイン電極 31 nドレイン埋め込み層 32 nドレインウォール 50 金属配線 A 端部 B 端部
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a lateral MOSFET according to a first embodiment of the present invention;
2A is a plan view, and FIG. 2B is a cross-sectional view of a main part taken along line YY in FIG. 2A. FIG. 2 is a lateral MOSFET according to a second embodiment of the present invention.
(A) is a plan view, (b) is a cross-sectional view of a main part taken along line XX of (a), (c) is a cross-sectional view of a main part cut along line YY of (a). A conventional striped lateral MOSFET
(A) is a plan view, (b) is a cross-sectional view of a main part taken along line XX of (a), (c) is a cross-sectional view of a main part cut along line YY of (a). 1 p substrate 2 n drain region 2 a n drain region end 2 d n drain 3 p base region 3 a p base region end 4 n source region 4 a n source region end 5 p base pickup region 5 a p base pickup region end 6 gate oxide film 7 LOCOS oxide film 7a LOCOS oxide film 8 Gate electrode 8a Gate electrode end 8b Gate electrode end 9 Source contact region 10 Pickup contact region 11 Source electrode 12 Pickup electrode 13 Junction point 21 n + Drain region 21a n + Drain region end 22 Drain contact region 23 drain electrode 31 n drain buried layer 32 n drain wall 50 metal wiring A end B end

Claims (1)

(57)【特許請求の範囲】 【請求項1】第1導電形半導体基板上に、第2導電形ド
レイン領域を選択的に形成し、該ドレイン領域の表面層
に第1導電形ベース領域を選択的に形成し、該ベース領
域の表面層に第2導電形ソース領域を選択的に形成し、
該ソース領域に前記ベース領域と接する第1導電形ベー
スピックアップ領域を形成し、該ソース領域と前記ドレ
イン領域に挟まれる前記ベース領域上にゲート酸化膜を
介してゲート電極を形成し、前記ソース領域の平面パタ
ーンをストライプ状に形成した半導体装置において、該
ストライプ状のソース領域の長手方向の端部に前記第1
導電形ベースピックアップ領域を形成し、前記ソース領
域、ドレイン領域およびベース領域で形成される寄生バ
イポーラトランジスタのh FE が、50以上であることを
特徴とする半導体装置。
(57) Claims 1. A second conductivity type drain region is selectively formed on a first conductivity type semiconductor substrate, and a first conductivity type base region is formed on a surface layer of the drain region. Selectively forming a second conductivity type source region on a surface layer of the base region;
Forming a first conductivity type base pickup region in contact with the base region in the source region; forming a gate electrode on the base region sandwiched between the source region and the drain region via a gate oxide film; In the semiconductor device in which the planar pattern of the above is formed in a stripe shape, the first portion is formed at the longitudinal end of the stripe source region.
A conductive type base pickup area is formed, and the source area is formed.
Parasitic region formed in the region, drain region and base region.
A semiconductor device, wherein h FE of the bipolar transistor is 50 or more .
JP12490198A 1998-05-07 1998-05-07 Semiconductor device Expired - Lifetime JP3522532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12490198A JP3522532B2 (en) 1998-05-07 1998-05-07 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12490198A JP3522532B2 (en) 1998-05-07 1998-05-07 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH11330451A JPH11330451A (en) 1999-11-30
JP3522532B2 true JP3522532B2 (en) 2004-04-26

Family

ID=14896919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12490198A Expired - Lifetime JP3522532B2 (en) 1998-05-07 1998-05-07 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3522532B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19828494B4 (en) 1998-06-26 2005-07-07 Robert Bosch Gmbh MOSFET device with protective device against switching through a parasitic transistor
JP3230504B2 (en) 1998-12-11 2001-11-19 日本電気株式会社 MIS type semiconductor device and method of manufacturing the same
US7109558B2 (en) 2001-06-06 2006-09-19 Denso Corporation Power MOS transistor having capability for setting substrate potential independently of source potential
US7091565B2 (en) * 2003-10-22 2006-08-15 Marvell World Trade Ltd. Efficient transistor structure
US7960833B2 (en) 2003-10-22 2011-06-14 Marvell World Trade Ltd. Integrated circuits and interconnect structure for integrated circuits
JP4630207B2 (en) * 2006-03-15 2011-02-09 シャープ株式会社 Semiconductor device
JP2008244236A (en) * 2007-03-28 2008-10-09 Oki Electric Ind Co Ltd Semiconductor device
JP6568735B2 (en) * 2015-07-17 2019-08-28 日立オートモティブシステムズ株式会社 Switch element and load drive device

Also Published As

Publication number Publication date
JPH11330451A (en) 1999-11-30

Similar Documents

Publication Publication Date Title
US7781826B2 (en) Circuit configuration and manufacturing processes for vertical transient voltage suppressor (TVS) and EMI filter
US7553733B2 (en) Isolated LDMOS IC technology
US6914298B1 (en) Double diffusion MOSFET with N+ and P+ type regions at an equal potential
US7417282B2 (en) Vertical double-diffused metal oxide semiconductor (VDMOS) device incorporating reverse diode
CN107026165B (en) Circuit including semiconductor device including first and second transistors and control circuit
JP4623775B2 (en) VDMOS transistor
US7087973B2 (en) Ballast resistors for transistor devices
JP2002525878A (en) Semiconductor device
JPH03270273A (en) Semiconductor device and its manufacture
KR20010090598A (en) Lateral thin-film silicon-on-insulator (soi) pmos device having a drain extension region
US5612564A (en) Semiconductor device with limiter diode
US10038082B2 (en) Cascoded high voltage junction field effect transistor
JPH0324791B2 (en)
JPH10233508A (en) Dmos transistor protected from snap back
CN109923663A (en) Semiconductor device
JPH0715006A (en) Integrated structure protective device
JP3522532B2 (en) Semiconductor device
JP3298455B2 (en) Semiconductor device
CN106960841B (en) High voltage transistor
JPH07202199A (en) Active clamping device of integrated structure
JPS61296770A (en) Insulated gate field effect type semiconductor device
JP2000294778A (en) Semiconductor device
JP3522887B2 (en) High voltage semiconductor device
US5298770A (en) Power switching MOS transistor
US7973360B2 (en) Depletable cathode low charge storage diode

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040204

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term