JP3519226B2 - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP3519226B2
JP3519226B2 JP33435896A JP33435896A JP3519226B2 JP 3519226 B2 JP3519226 B2 JP 3519226B2 JP 33435896 A JP33435896 A JP 33435896A JP 33435896 A JP33435896 A JP 33435896A JP 3519226 B2 JP3519226 B2 JP 3519226B2
Authority
JP
Japan
Prior art keywords
region
electrode
conductivity type
surface layer
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33435896A
Other languages
Japanese (ja)
Other versions
JPH10173068A (en
Inventor
修 佐々木
誠 大和
元 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP33435896A priority Critical patent/JP3519226B2/en
Publication of JPH10173068A publication Critical patent/JPH10173068A/en
Application granted granted Critical
Publication of JP3519226B2 publication Critical patent/JP3519226B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、プラズマディス
プレイなどを駆動するプッシュプル型出力回路などが集
積されたパワー集積回路などの半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device such as a power integrated circuit in which a push-pull type output circuit for driving a plasma display or the like is integrated.

【0002】[0002]

【従来の技術】図5にプラズマ表示パネル駆動用ICの
例で、一ドット当たりの出力回路を示す。表示セルであ
る放電管53の両端にプッシュプル型ドライバICを構
成するデータドライバIC51の出力端子DOとスキャ
ンドライバIC52の出力端子DOとがそれぞれ接続さ
れている。各ドライバIC51、52の出力回路は、n
チャネルMOSFETを直列に接続したプッシュプル型
となっていて、出力端子DOはこれら直列接続された二
つのMOSFET(N1 とN2 、N3 とN4 )の間から
取り出されている。電源54、55の高電位端子(電源
端子:VDH)に接続される素子をハイサイド素子(こ
こではN2 とD2 およびN4 とD4 を指す)、電源5
4、55の低電位端子(グランド端子:GND)側に接
続される素子をローサイド素子(ここではN1 とD1 お
よびN3 とD3 を指す)と呼ぶ。データドライバIC5
1ではハイサイドトランジスタN2 とローサイドトラン
ジスタN1 に、それぞれハイサイドダイオードD2 、ロ
ーサイドダイオードD1 が並列接続されている。スキャ
ンドライバIC52のハイサイドトランジスタN4 とロ
ーサイドトランジスタN3 にもそれぞれハイサイドダイ
オードD4 、ローサイドダイオードD3 が並列接続され
ている。尚、並列に接続されるダイオードD2 、D1 、
D4 、D3 は寄生pnダイオードである。
2. Description of the Related Art FIG. 5 shows an output circuit per dot in an example of a plasma display panel driving IC. An output terminal DO of a data driver IC 51 and an output terminal DO of a scan driver IC 52, which form a push-pull type driver IC, are connected to both ends of a discharge tube 53 which is a display cell. The output circuits of the driver ICs 51 and 52 are n
It is a push-pull type in which channel MOSFETs are connected in series, and an output terminal DO is taken out between these two MOSFETs (N1 and N2, N3 and N4) connected in series. Elements connected to the high potential terminals (power supply terminals: VDH) of the power supplies 54 and 55 are high-side elements (here, N2 and D2 and N4 and D4 are referred to), and the power supply 5
Elements connected to the low-potential terminals (ground terminals: GND) of the reference numerals 4, 55 are called low-side elements (here, N1 and D1 and N3 and D3 are referred to). Data driver IC5
In No. 1, a high-side diode D2 and a low-side diode D1 are connected in parallel to the high-side transistor N2 and the low-side transistor N1, respectively. A high side diode D4 and a low side diode D3 are connected in parallel to the high side transistor N4 and the low side transistor N3 of the scan driver IC 52, respectively. Incidentally, the diodes D2, D1, which are connected in parallel,
D4 and D3 are parasitic pn diodes.

【0003】制御回路56、57からの信号によりハイ
サイドトランジスタN2 、N4 とローサイドトランジス
タN1 、N3 をオン・オフすることにより、出力端子D
Oの電位を制御して、表示セル53を充放電し、発光さ
せる方式が一般的である。図6はデータドライバIC5
1の出力部のハイサイドトランジスタN2 とローサイド
トランジスタN1 とをCMOS構造で構成した場合の要
部断面図である。尚、以下の説明において、n、pを冠
した層、領域等はそれぞれ、電子、正孔を多数キャリア
とする層、領域を意味することとする。
Signals from the control circuits 56 and 57 turn on and off the high side transistors N2 and N4 and the low side transistors N1 and N3 to output the output terminal D.
A general method is to control the potential of O to charge and discharge the display cell 53 to emit light. FIG. 6 shows a data driver IC5
FIG. 3 is a cross-sectional view of essential parts in the case where the high side transistor N2 and the low side transistor N1 in the output section of No. 1 are constituted by a CMOS structure. In the following description, layers and regions having n and p crowns mean layers and regions in which electrons and holes serve as majority carriers, respectively.

【0004】通常、CMOS構造(Complimen
ntary MOSFETのことで、pチャネルMOS
FETとnチャネルMOSFETで構成される構造)の
形成方法は、p形半導体基板101の表面層にnウェル
領域102を形成し、nウェル領域102の表面層にp
+ ソース領域103とp+ ドレイン領域104とを形成
し、p+ ソース領域103と接するようにn+ 領域10
5を形成し、p+ ソース領域103とp+ ドレイン領域
104に挟まれたnウェル領域102上にゲート絶縁膜
106を介してゲート電極107が形成され、p+ ソー
ス領域103上とn+ 領域105上にソース電極108
が形成され、p+ ドレイン領域104上にドレイン電極
109が形成され、pチャネル型のハイサイドトランジ
スタN2が形成される。一方、p形半導体基板101の
表面層にn+ ソース領域110とn+ ドレイン領域11
1が形成され、n+ ソース領域110に接してp+ 領域
112が形成され、n+ ソース領域110とn+ ドレイ
ン領域111とに挟まれたp形半導体基板101上にゲ
ート絶縁膜113を介してゲート電極114が形成さ
れ、n+ ソース領域110上とp+ 領域112上にソー
ス電極115が形成され、p+ ドレイン領域111上に
ドレイン電極116が形成されて、nチャネル型のロー
サイドトランジスタN1 が形成される。ハイサイドトラ
ンジスタN2 のソース電極108は電源VDHに接続さ
れ、ハイサイドトランジスタN2 のドレイン電極109
とローサイドトランジスタN1 のドレイン電極116と
は互いに出力端子DOに接続され、ローサイドトランジ
スタN1 のソース電極115はグランド端子GNDに接
続される。
Usually, a CMOS structure (Complimen) is used.
n-channel MOSFET, p-channel MOS
The structure of the FET and the n-channel MOSFET) is formed by forming the n-well region 102 in the surface layer of the p-type semiconductor substrate 101 and p-type in the surface layer of the n-well region 102.
The + source region 103 and the p + drain region 104 are formed, and the n + region 10 is in contact with the p + source region 103.
5, the gate electrode 107 is formed on the n well region 102 sandwiched between the p + source region 103 and the p + drain region 104 via the gate insulating film 106, and on the p + source region 103 and the n + region. Source electrode 108 on 105
Is formed, a drain electrode 109 is formed on the p + drain region 104, and a p-channel high-side transistor N2 is formed. On the other hand, the n + source region 110 and the n + drain region 11 are formed on the surface layer of the p-type semiconductor substrate 101.
1 is formed, p + region 112 in contact with n + source region 110 is formed, via the n + source region 110 and n + drain region 111 and the gate insulating film 113 on the p-type semiconductor substrate 101 sandwiched between the A gate electrode 114 is formed, a source electrode 115 is formed on the n + source region 110 and the p + region 112, and a drain electrode 116 is formed on the p + drain region 111 to form an n-channel low-side transistor N1. Is formed. The source electrode 108 of the high side transistor N2 is connected to the power supply VDH, and the drain electrode 109 of the high side transistor N2.
And the drain electrode 116 of the low-side transistor N1 are connected to the output terminal DO, and the source electrode 115 of the low-side transistor N1 is connected to the ground terminal GND.

【0005】[0005]

【発明が解決しようとする課題】図6に示すように、こ
の構造では、出力端子DOとグランド端子GNDとの間
にp形半導体基板101とn+ ドレイン領域111とで
並列ダイオードD1 が形成され、出力端子DOと電源端
子VDHとの間にnウェル領域102とp+ ドレイン領
域104とでやはり並列ダイオードD2 が形成され、グ
ランド端子GNDと、出力端子DOが接続されるハイサ
イドトランジスタN2 との間に、p+ ドレイン領域10
4、nウェル領域102、p形半導体基板101とで寄
生pnpトランジスタT1 が形成される。
As shown in FIG. 6, in this structure, a parallel diode D1 is formed between the output terminal DO and the ground terminal GND by the p-type semiconductor substrate 101 and the n + drain region 111. , The n-well region 102 and the p + drain region 104 form a parallel diode D2 between the output terminal DO and the power supply terminal VDH, and the ground terminal GND and the high-side transistor N2 connected to the output terminal DO are connected to each other. In between, the p + drain region 10
4, the n-well region 102 and the p-type semiconductor substrate 101 form a parasitic pnp transistor T1.

【0006】図7は図5の片方の回路を示し、ハイサイ
ドダイオードD2に寄生pnpトランジスタが接続され
た等価回路を示す。寄生pnpトランジスタT1 のエミ
ッタとベースはハイサイドダイオードD2 と並列に点線
で示すように接続される。図5で示すデータドライバI
C51とスキャンドライバIC52のそれぞれの出力端
子DOは放電管53に接続され、電気的に容量結合され
ている。そのため、放電管53の充放電のタイミングに
よっては、出力端子DOの電位は電源端子VDHより高
電位となる場合もあり、その場合には図7で示すように
出力端子DOからハイサイドダイオードD2を経由して
電源端子VDHに電流Id が流れる。
FIG. 7 shows one of the circuits shown in FIG. 5, and shows an equivalent circuit in which a parasitic pnp transistor is connected to the high side diode D2. The emitter and base of the parasitic pnp transistor T1 are connected in parallel with the high side diode D2 as shown by the dotted line. Data driver I shown in FIG.
The output terminals DO of the C51 and the scan driver IC 52 are connected to the discharge tube 53 and electrically capacitively coupled. Therefore, depending on the charging / discharging timing of the discharge tube 53, the potential of the output terminal DO may be higher than that of the power supply terminal VDH. In that case, as shown in FIG. A current Id flows through the power supply terminal VDH via the via.

【0007】このように、データドライバIC51では
出力端子DOの電位が電源端子VDHより高くなった場
合、出力端子DOから電源端子VDHにハイサイドダイ
オードD2 を介して電流Id が流れる。この電流Idの一
部が寄生pnpトランジスタT1 のベース電流となり寄
生pnpトランジスタT1 のコレクタ電流はこのベース
電流に寄生pnpトランジスタT1 の電流増幅率を乗じ
た大きな値となり、このコレクタ電流がグランド端子側
に寄生電流Il となって流出することになる。この寄生
電流Il が大きいと、消費電力が増大して、データドラ
イバIC51が発熱する。またこの寄生電流Il が過大
になるとデータドライバIC51が破壊する場合も生じ
る。勿論、スキャンドライバIC52でも全く同様の現
象が起こる。
As described above, in the data driver IC 51, when the potential of the output terminal DO becomes higher than the power supply terminal VDH, the current Id flows from the output terminal DO to the power supply terminal VDH through the high side diode D2. Part of this current Id becomes the base current of the parasitic pnp transistor T1 and the collector current of the parasitic pnp transistor T1 becomes a large value obtained by multiplying this base current by the current amplification factor of the parasitic pnp transistor T1. It becomes a parasitic current Il and flows out. When the parasitic current Il is large, the power consumption increases and the data driver IC51 generates heat. Further, if the parasitic current Il becomes excessive, the data driver IC 51 may be destroyed. Of course, the same phenomenon also occurs in the scan driver IC 52.

【0008】この発明の目的は、前記の課題を解決し
て、寄生pnダイオード電流をベース電流として寄生p
npトランジスタが動作することによって流れる寄生電
流を低減し、発熱の少ない、熱破壊が起きにくい半導体
装置を提供することにある。
An object of the present invention is to solve the above-mentioned problems and to use a parasitic pn diode current as a base current to generate a parasitic p
It is an object of the present invention to provide a semiconductor device in which a parasitic current flowing due to the operation of an np transistor is reduced, heat generation is small, and thermal breakdown does not easily occur.

【0009】[0009]

【課題を解決するための手段】前記の目的を達成するた
めに、第1導電形半導体基板上に第1導電形の第1領域
と第2導電形の第2領域とがそれぞれ選択的に形成さ
れ、第2領域の表面層に第2導電形の第3領域と第1導
電形の第4領域とが分離され、且つ選択的に形成され、
第4領域の表面層に第1導電形の第5領域と第2導電形
の第6領域とがそれぞれ形成され、第1領域上、第3領
域上、第5領域上および第6領域上に第1電極、第3電
極、第5電極および第6電極がそれぞれ形成され、第5
電極と第6電極とが導体で接続されるダイオードとす
る。
In order to achieve the above object, a first region of a first conductivity type and a second region of a second conductivity type are selectively formed on a semiconductor substrate of a first conductivity type. And a third region of the second conductivity type and a fourth region of the first conductivity type are separated and selectively formed in the surface layer of the second region,
A fifth region of the first conductivity type and a sixth region of the second conductivity type are respectively formed in the surface layer of the fourth region, and on the first region, the third region, the fifth region and the sixth region. A first electrode, a third electrode, a fifth electrode and a sixth electrode are respectively formed,
The diode and the electrode and the sixth electrode are connected by a conductor.

【0010】前記の第5領域に接して、第6領域が形成
され、第5領域上と第6領域上とに共通の第8電極が形
成される構成としてもよい。また、前記の第5領域に接
して、第5領域を取り囲むように第6領域が形成され、
第5領域上と第6領域上とに共通の第9電極が形成され
る構成としても効果的である。
A sixth region may be formed in contact with the fifth region, and an eighth electrode common to the fifth region and the sixth region may be formed. Further, a sixth region is formed in contact with the fifth region so as to surround the fifth region,
It is also effective to form a common ninth electrode on the fifth region and the sixth region.

【0011】さらに、第1導電形半導体基板上に第1導
電形の第1領域と第2導電形の第2領域とをそれぞれ選
択的に形成され、第2領域の表面層に第2導電形の第3
領域と第1導電形の第4領域および第7領域とがそれぞ
れ分離され、選択的に形成され、第4領域の表面層に第
1導電形の第5領域に接して、第2導電形の第6領域が
形成され、第7領域上に第7電極(ソース電極)が形成
され、第7領域と第4領域に挟まれた第2領域上に絶縁
膜(ゲート絶縁膜)を介して第10電極(ゲート電極)
が形成され、第1領域上、第3領域上に第1電極、第3
電極がそれぞれ形成され、第5領域と第6領域とに共通
の第8電極(ドレイン電極)が形成されるMOSFET
としてもよい。
Further, a first region of the first conductivity type and a second region of the second conductivity type are selectively formed on the semiconductor substrate of the first conductivity type, and the second conductivity type is formed on the surface layer of the second region. The third
The region and the fourth region and the seventh region of the first conductivity type are respectively separated and selectively formed, and the surface layer of the fourth region is in contact with the fifth region of the first conductivity type, and the region of the second conductivity type is formed. A sixth region is formed, a seventh electrode (source electrode) is formed on the seventh region, and a second region is sandwiched between the seventh region and the fourth region with an insulating film (gate insulating film) interposed therebetween. 10 electrodes (gate electrode)
Are formed, and the first electrode and the third electrode are formed on the first region and the third region.
MOSFET in which electrodes are respectively formed and an eighth electrode (drain electrode) common to the fifth region and the sixth region is formed
May be

【0012】また、第1導電形半導体基板上に第1導電
形の第1領域と第2導電形の第2領域とをそれぞれ選択
的に形成され、第2領域の表面層に第2導電形の第3領
域と第1導電形の第4領域および第7領域とがそれぞれ
分離され、選択的に形成され、第4領域の表面層に第1
導電形の第5領域が形成され、第7領域上に第7電極
(エミッタ電極)が形成され、第7領域と第4領域に挟
まれた第2領域上に絶縁膜(ゲート絶縁膜)を介して第
10電極(ゲート電極)が形成され、第1領域上、第3
領域上に第1電極、第3電極がそれぞれ形成され、第5
領域に第8電極(コレクタ電極)が形成される第1の絶
縁ゲート型バイポーラトランジスタ(IGBT)と、前
記第2領域の表面層に第2導電形の第31領域と第1導
電形の第41領域および第71領域とがそれぞれ分離さ
れ、選択的に形成され、第41領域の表面層に第1導電
形の第51領域に接して、第2導電形の第61領域が形
成され、第71領域上に第71電極(ソース電極)が形
成され、第71領域と第41領域に挟まれた第2領域上
に絶縁膜(ゲート絶縁膜)を介して第101電極(ゲー
ト電極)が形成され、第31領域上に第31電極が形成
され、第51領域と第61領域とに共通の第81電極
(コレクタ電極)が形成され、第101電極と第71電
極とが接続される第2の絶縁ゲート型バイポーラトラン
ジスタ(IGBT)とが、並列接続(ここでは、ソース
電極同士、コレクタ電極同士がそれぞれ接続され、ゲー
ト電極同士は接続されていない状態をいう)される構成
としてもよい。
A first region of the first conductivity type and a second region of the second conductivity type are selectively formed on the first conductivity type semiconductor substrate, and the second conductivity type is formed on the surface layer of the second region. The third region and the fourth and seventh regions of the first conductivity type are separately formed and selectively formed, and the first layer is formed on the surface layer of the fourth region.
A fifth region of conductivity type is formed, a seventh electrode (emitter electrode) is formed on the seventh region, and an insulating film (gate insulating film) is formed on the second region sandwiched between the seventh region and the fourth region. A tenth electrode (gate electrode) is formed through the third electrode
A first electrode and a third electrode are formed on the area, and
A first insulated gate bipolar transistor (IGBT) in which an eighth electrode (collector electrode) is formed in a region, and a second conductivity type 31st region and a first conductivity type 41st region in a surface layer of the second region. The region and the 71st region are separated from each other and selectively formed, and the 61st region of the 2nd conductivity type is formed in contact with the 51st region of the 1st conductivity type on the surface layer of the 41st region. A 71st electrode (source electrode) is formed on the region, and a 101st electrode (gate electrode) is formed on the second region sandwiched between the 71st region and the 41st region via an insulating film (gate insulating film). , A 31st electrode is formed on the 31st region, an 81st electrode (collector electrode) common to the 51st region and the 61st region is formed, and a 101st electrode and a 71st electrode are connected to each other. Insulated gate bipolar transistor (IGBT) But parallel connection (in this case, the source electrodes are connected collector electrodes are respectively, the gate electrodes each other refers to a state of not being connected) may be configured to be.

【0013】前記の構成とすることで、この半導体装置
をプラズマディスプレイなどの容量負荷にこの半導体装
置を用いた場合に、前記の第1導電形半導体基板と第2
領域と第4領域で構成される寄生トランジスタを通して
流れる寄生電流を減少させることができる。その理由は
第4領域に第6領域を形成することで、第2領域と第4
領域と第6領域で負荷トランジスタが形成され、寄生ト
ランジスタのベース電流を負荷トランジスタに一部分流
するために寄生電流が減少する。また、例えば、第1導
電形をp形、第2導電形をn形とした場合、CMOSの
pチャネルMOSFETのpドレイン領域の表面層にn
+ 領域を形成することで、やはり寄生電流を低減でき
る。また、pチャネルMOSFETを2個のpチャネル
IGBT(絶縁ゲート型バイポーラトランジスタ)を並
列接続するようにして、置き換え、一方のIGBTのゲ
ート電極とソース電極とを短絡することで、IGBTと
しての働きを殺してダイオードとして利用し、他方のI
GBTをIGBTとして動作させることで、MOSFE
Tの場合より電流容量を大きくできる。
With the above structure, when the semiconductor device is used for a capacitive load such as a plasma display, the first conductivity type semiconductor substrate and the second conductivity type semiconductor substrate are provided.
A parasitic current flowing through the parasitic transistor formed by the region and the fourth region can be reduced. The reason is that the sixth region is formed in the fourth region, and the second region and the fourth region are formed.
A load transistor is formed in the region and the sixth region, and the base current of the parasitic transistor partially flows through the load transistor, so that the parasitic current is reduced. Further, for example, when the first conductivity type is p-type and the second conductivity type is n-type, n is formed on the surface layer of the p-drain region of the p-channel MOSFET of CMOS.
By forming the + region, the parasitic current can be reduced. Further, the p-channel MOSFET is replaced by connecting two p-channel IGBTs (insulated gate bipolar transistors) in parallel, and the gate electrode and the source electrode of one IGBT are short-circuited to function as an IGBT. I kill it and use it as a diode.
By operating the GBT as an IGBT,
The current capacity can be made larger than in the case of T.

【0014】尚、前記の寄生電流が問題となるプラズマ
ディスプレイなどプッシュプル形出力回路との接続は、
従来技術で述べた通りで、プッシュプル型出力回路の出
力端子DOと第5電極と第6電極とを接続する導体と接
続し、電源の低電位端子GNDと第1電極と接続し、電
源の高電位端子VDHと第3電極と接続する場合であ
る。
The connection with a push-pull type output circuit such as a plasma display in which the above-mentioned parasitic current is a problem is
As described in the prior art, the output terminal DO of the push-pull type output circuit is connected to the conductor connecting the fifth electrode and the sixth electrode, and the low potential terminal GND of the power source is connected to the first electrode. This is a case where the high potential terminal VDH is connected to the third electrode.

【0015】[0015]

【発明の実施の形態】図1はこの発明の第1実施例の要
部断面図である。この図はプッシュプル型出力回路を集
積する半導体装置のハイサイドトランジスタと並列に形
成されるハイサイドダイオード(寄生ダイオードD2)
部の断面図を示す。p形シリコン基板1の表面層に第1
+ 領域2と第1p+ 領域2と離れてp形シリコン基板
1の表面層にn- ウエル領域3を拡散等で形成し、n-
ウエル領域3の表面層にp領域4と第1n+ 領域5を形
成し、p領域4の表面層に第2n+ 領域6と第2p+
域7とを形成する。第1p+ 領域2上、第1n+ 領域上
5に第1金属配線8および第2金属配線9を形成し、第
2p+ 領域7上と第2n+ 領域6上とに共通の第3金属
配線10を形成する。尚、第1n+ 領域5の形成と同時
に第2n+ 領域6も形成する。また、各金属配線8、
9、10を形成した後で、シリコンが露出している箇所
にP−CVD膜等の表面保護膜を形成する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a sectional view of the essential parts of a first embodiment of the present invention. This figure shows a high-side diode (parasitic diode D2) formed in parallel with a high-side transistor of a semiconductor device integrating a push-pull type output circuit.
Sectional drawing of a part is shown. First on the surface layer of the p-type silicon substrate 1.
An n well region 3 is formed by diffusion or the like on the surface layer of the p-type silicon substrate 1 so as to be separated from the p + region 2 and the first p + region 2, and n
A p region 4 and a first n + region 5 are formed on the surface layer of the well region 3, and a second n + region 6 and a second p + region 7 are formed on the surface layer of the p region 4. The 1p + on area 2, to a 1n + region on the 5 to form a first metal wiring 8 and the second metal wiring 9, common third metal wiring and the upper second 2p + region 7 and the upper first 2n + region 6 Form 10. Incidentally, the 2n + region 6 at the same time as the formation of the 1n + region 5 is also formed. In addition, each metal wiring 8,
After forming 9 and 10, a surface protective film such as a P-CVD film is formed on the exposed silicon.

【0016】プッシュプル型出力回路の電源の低電位端
子GNDと第1金属配線8とが接続され、電源の高電位
端子VDHと第2金属配線9とが接続され、出力端子D
Oと第3金属配線10とが接続される。この構造では、
等価回路で示すように、p領域4とn- ウェル領域3と
で形成される寄生pnダイオードD2(寄生という意味
は他の領域を形成される時に同時に形成されることから
付けられた。実回路では積極的に電流を流すダイオード
で回路的には必須のダイオードである)と同時にp領域
4とn- ウェル領域3およびp形シリコン基板1で形成
される寄生pnpトランジスタ(このトランジスタは不
要のトランジスタで文字通り寄生のダイオードである)
が存在し、さらに、この寄生pnpトランジスタT1の
ベースとコレクタを短絡するように、第2n+ 領域6、
p領域4およびn- ウェル領域3で付加npnトランジ
スタT2が形成される。そのため、プッシュプル型出力
回路の電源の高電位端子VDHより出力端子DOの電位
が高くなると、寄生pnpトランジスタT1に寄生電流
Il が流れる。しかし、付加npnトランジスタT2を
形成することで、寄生pnpトランジスタT1のベース
電流が付加npnトランジスタのコレクタ電流として吸
い取られ、ベース電流が減少する。また、見方を変える
と寄生pnpトランジスタT1のエミッタ注入効率を付
加npnトランジスタT2で抑えて、結果として電流増
幅率が低下するともいえる。これらのことにより、寄生
pnpトランジスタT1を通って流れる出力端子DOか
ら低電位端子GNDに流れる寄生電流Il は従来の構造
に対して1/10〜1/20に減少し、シリコンチップ
の発熱は抑制される。
The low-potential terminal GND of the power supply of the push-pull type output circuit is connected to the first metal wiring 8, the high-potential terminal VDH of the power supply is connected to the second metal wiring 9, and the output terminal D is connected.
O and the third metal wiring 10 are connected. In this structure,
As shown by an equivalent circuit, a parasitic pn diode D2 formed by the p region 4 and the n - well region 3 (parasitic means that the parasitic region is formed at the same time when other regions are formed. Is a diode that positively allows a current to flow and is essential for the circuit. At the same time, a parasitic pnp transistor formed by the p region 4, the n - well region 3 and the p-type silicon substrate 1 (this transistor is unnecessary) Is literally a parasitic diode)
Is present, and further, the second n + region 6, so as to short-circuit the base and collector of this parasitic pnp transistor T1,
An additional npn transistor T2 is formed in p region 4 and n - well region 3. Therefore, when the potential of the output terminal DO becomes higher than the high potential terminal VDH of the power source of the push-pull output circuit, the parasitic current Il flows through the parasitic pnp transistor T1. However, by forming the additional npn transistor T2, the base current of the parasitic pnp transistor T1 is absorbed as the collector current of the additional npn transistor, and the base current decreases. Further, from a different point of view, it can be said that the emitter injection efficiency of the parasitic pnp transistor T1 is suppressed by the additional npn transistor T2, and as a result the current amplification factor decreases. As a result, the parasitic current Il flowing from the output terminal DO through the parasitic pnp transistor T1 to the low potential terminal GND is reduced to 1/10 to 1/20 of that of the conventional structure, and the heat generation of the silicon chip is suppressed. To be done.

【0017】尚、ここではプッシュプル型出力回路を集
積する半導体装置を例にとって説明したが、それ以外の
パワーIC(集積回路)を形成する際、同時に作り込ま
れる寄生ダイオードを有する半導体装置にも当然当ては
まる。図2はこの発明の第2実施例の要部断面図であ
る。図1との違いは第2p+ 領域7が第2n+ 領域6に
接して、且つ囲まれており、また第3金属配線10がp
n接合の露出部を被覆している点と、p領域4を第1n
+ 領域5で取り囲んでいる点である。効果については、
pn接合を短絡し、p領域4を第1n+ 領域5で取り囲
むことで、付加npnトランジスタT2のエミッタ電流
を流れやすくすることで前記の効果をさらに増大させ
て、寄生電流Il を減少させている。
Here, the semiconductor device in which the push-pull type output circuit is integrated has been described as an example, but other semiconductor devices having a parasitic diode that is simultaneously formed when forming a power IC (integrated circuit) are also described. Of course it applies. FIG. 2 is a sectional view of the essential portions of the second embodiment of the present invention. The difference from FIG. 1 is that the second p + region 7 is in contact with and surrounded by the second n + region 6, and the third metal wiring 10 is p.
The exposed area of the n-junction and the p-region 4 are first n
+ It is the point surrounded by area 5. For the effect,
By short-circuiting the pn junction and surrounding the p region 4 by the first n + region 5, the emitter current of the additional npn transistor T2 is made easier to flow, thereby further increasing the above effect and reducing the parasitic current Il. .

【0018】図3はこの発明の第3実施例の要部断面図
である。n- ウェル領域3の表面層にp領域4と第1n
+ 領域5と第3p+ 領域21とを形成し、p領域4の表
面層に第2n+ 領域23と第2p+ 領域24を接するよ
うに形成し、第1n+ 領域5上と第3p+ 領域21上に
第2金属配線9と第4金属配線11とを形成し、第2n
+ 領域6上と第2p+ 領域7上とに共通の第3金属配線
10を形成する。また第3p+ 領域21とp領域4とに
挟まれるn- ウェル領域3の表面にゲート絶縁膜23を
介してゲート電極24が形成され、ハイサイドトランジ
スタとしてドレインショート型のpチャネルMOSFE
Tを形成する。そしてプッシュプル型出力回路の出力端
子DOが高電位端子VDHより電位が高くなったとき、
第2p+領域7、p領域4およびn- ウェル領域3と、
p形シリコン基板1とで形成される寄生pnpトランジ
スタT1のエミッタ電流を、第2n+ 領域6、p領域4
およびn- ウェル領域3で形成される付加npnトラン
ジスタT2でバイパスすることで、寄生pnpトランジ
スタT1のベース電流を減少させ、p形シリコン基板に
流れる寄生電流Il を減少させることができる。
FIG. 3 is a sectional view of the essential portions of the third embodiment of the present invention. In the surface layer of the n - well region 3, the p region 4 and the first n
The + region 5 and the third p + region 21 are formed, and the second n + region 23 and the second p + region 24 are formed in contact with the surface layer of the p region 4 so as to contact the first n + region 5 and the third p + region. Second metal wiring 9 and fourth metal wiring 11 are formed on
A common third metal wiring 10 is formed on the + region 6 and the second p + region 7. Further, a gate electrode 24 is formed on the surface of the n well region 3 sandwiched between the third p + region 21 and the p region 4 via a gate insulating film 23, and a drain short type p channel MOSFE serving as a high side transistor.
Form T. When the output terminal DO of the push-pull output circuit becomes higher in potential than the high potential terminal VDH,
A second p + region 7, a p region 4 and an n well region 3,
The emitter current of the parasitic pnp transistor T1 formed with the p-type silicon substrate 1 is controlled by the second n + region 6 and the p region 4
By bypassing with the additional npn transistor T2 formed in the n - well region 3, the base current of the parasitic pnp transistor T1 can be reduced and the parasitic current Il flowing through the p-type silicon substrate can be reduced.

【0019】図4はこの発明の第4実施例の要部断面図
である。図3との違いはpチャネルMOSFETが2個
のpチャネルIGBTに代わった点である。同図(a)
に示す第1のIGBTはコレクタ電極である第3金属配
線10がコレクタ領域である第2n+ 領域22のみに接
続しており、このIGBTはハイサイドトランジスタと
して利用される。一方、同図(b)に示す第2のIGB
Tはコレクタ電極である第3金属配線10aがコレクタ
領域である第2n+ 領域27とベース領域の高濃度層で
ある第2p+ 領域28に共通に接続し、ゲート電極26
とエミッタ電極である第4金属配線11aが接続して、
pチャネルMOSFETはMOSFETとしての働きは
せず、前記の寄生ダイオードD2と同様の働きをし、回
路的に必要なダイオードを構成する。第1のIGBTの
エミッタ電極としての第4金属配線11と第2のIGB
Tのエミッタ電極としての第4金属配線11aとが接続
され、第1のIGBTのコレクタ電極としての第2金属
配線11と第2のIGBTのエミッタ電極としての第2
金属配線11aとが接続される。つまり、第1のIGB
Tと第2のIGBTが並列接続される。またコレクタ電
極である第3金属配線10、10aはプッシュプル型出
力回路の出力端子DOに接続し、第2金属配線9、9a
とエミッタ電極である第4金属配線11、11aとは電
源の高電位端子VDHに接続し、第1金属配線8は電源
の低電位端子GNDに接続する。
FIG. 4 is a sectional view of the essential portions of the fourth embodiment of the present invention. The difference from FIG. 3 is that the p-channel MOSFET is replaced by two p-channel IGBTs. The same figure (a)
In the first IGBT shown in (1), the third metal wiring 10 which is the collector electrode is connected only to the second n + region 22 which is the collector region, and this IGBT is used as a high side transistor. On the other hand, the second IGB shown in FIG.
The third metal wiring 10a, which is a collector electrode, is commonly connected to the second n + region 27, which is a collector region, and the second p + region 28, which is a high-concentration layer in the base region.
Is connected to the fourth metal wiring 11a, which is an emitter electrode,
The p-channel MOSFET does not function as a MOSFET but functions similarly to the above-mentioned parasitic diode D2 and constitutes a diode necessary for the circuit. Fourth metal wiring 11 and second IGBT as emitter electrode of first IGBT
The fourth metal wiring 11a serving as the emitter electrode of T is connected to the second metal wiring 11 serving as the collector electrode of the first IGBT and the second metal wiring serving as the emitter electrode of the second IGBT.
The metal wiring 11a is connected. That is, the first IGB
T and the second IGBT are connected in parallel. The third metal wirings 10 and 10a, which are collector electrodes, are connected to the output terminal DO of the push-pull type output circuit, and the second metal wirings 9 and 9a are connected.
And the fourth metal wirings 11 and 11a, which are emitter electrodes, are connected to the high potential terminal VDH of the power source, and the first metal wiring 8 is connected to the low potential terminal GND of the power source.

【0020】この構成では、ハイサイドトランジスタは
第1のIGBTで図3のMOSFETよりも電流容量を
大きくできる。またハイサイドダイオードは寄生ダイオ
ードで第2のIGBTがその役割をする。そのときコレ
クタ領域である第2n+ 領域27は第2p+ 領域28で
短絡される構造となり、この第2p+ 領域28を形成す
ることで、前記の寄生pnpトランジスタが形成される
が、第2n+ 領域23で付加トランジスタT2を構成し
て、この寄生pnpトランジスタを流れる寄生電流Il
は抑制される。尚、この第2のIGBTは図3のpチャ
ネルMOSFETと構造的には類似している。また、こ
この例ではn- ウェル領域3を共通として、その中に第
1および第2のIGBTを形成している。このとき、勿
論、第1n+ 領域5、5aは共通であってもよい。
In this structure, the high-side transistor can have a larger current capacity than the MOSFET of FIG. 3 in the first IGBT. The high side diode is a parasitic diode, and the second IGBT plays its role. Then become structure first 2n + region 27 is the collector region is short-circuited at the 2p + region 28, by forming the first 2p + region 28, although the parasitic pnp transistor is formed, the 2n + The additional transistor T2 is formed in the region 23, and the parasitic current Il flowing through the parasitic pnp transistor is formed.
Is suppressed. The second IGBT is structurally similar to the p-channel MOSFET of FIG. Further, in this example, the n well region 3 is common, and the first and second IGBTs are formed therein. At this time, of course, the first n + regions 5 and 5a may be common.

【0021】[0021]

【発明の効果】この発明によれば、ハイサイドトランジ
スタをpチャネルMOSFETで形成した場合、このp
チャネルMOSFETのp+ ドレイン領域内にn+ 領域
を設けてこれら領域を導体で接続することで、付加np
nトランジスタを形成して、寄生電流の減少を図る。ま
た、ハイサイドトランジスタをpチャネルMOSFET
に付加npnトランジスタと同様の働きをさせること
で、寄生電流の低減を図る。さらにpチャネルMOSF
ETの代わりにpチャネルIGBTを2個並接続し、一
方をダイオードとして利用し、他方をIGBTとして働
かせることで、MOSFETより電流容量を大きくでき
る。
According to the present invention, when the high side transistor is formed of a p-channel MOSFET,
By providing an n + region in the p + drain region of the channel MOSFET and connecting these regions with a conductor, additional np
An n-transistor is formed to reduce the parasitic current. In addition, the high-side transistor is a p-channel MOSFET
In order to reduce the parasitic current, the same function as the additional npn transistor is performed. Furthermore, p-channel MOSF
By connecting two p-channel IGBTs in parallel instead of ET and using one as a diode and the other as an IGBT, the current capacity can be made larger than that of the MOSFET.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1実施例の要部断面図FIG. 1 is a sectional view of a main part of a first embodiment of the present invention.

【図2】この発明の第2実施例の要部断面図FIG. 2 is a sectional view of a main part of a second embodiment of the present invention.

【図3】この発明の第3実施例の要部断面図FIG. 3 is a sectional view of the essential parts of a third embodiment of the present invention.

【図4】この発明の第4実施例の要部断面図FIG. 4 is a sectional view of the essential parts of a fourth embodiment of the present invention.

【図5】プラズマ表示パネル駆動用ICの例で、一ドッ
ト当たりの出力回路図
FIG. 5 is an output circuit diagram per dot in an example of a plasma display panel driving IC.

【図6】従来構造の要部断面図FIG. 6 is a sectional view of a main part of a conventional structure.

【図7】従来構造でハイサイドダイオードD2に寄生p
npトランジスタが接続された等価回路図
FIG. 7 shows a parasitic p on the high side diode D2 in the conventional structure.
Equivalent circuit diagram with np transistor connected

【符号の説明】[Explanation of symbols]

1 p形半導体基板 2 第1p+ 領域 3 n- ウェル領域 4 p領域 5 第1n+ 領域 6 第2n+ 領域 7 第2p+ 領域 8 第1金属配線 8a 第1金属配線 9 第2金属配線 9a 第2金属配線 10 第3金属配線 10a 第3金属配線 11 第4金属配線 11a 第4金属配線 12 ゲート電極 21 第3p+ 領域 22 第2n+ 領域 23 ゲート絶縁膜 24 ゲート電極 25 ゲート絶縁膜 26 ゲート電極 27 第3n+ 領域 28 第4p+ 領域 51 データドライバIC 52 スキャンドライバIC 53 放電管 54 電源 55 電源 56 制御回路 57 制御回路 101 p形半導体基板 102 nウェル領域 103 p+ ソース領域 104 p+ ドレイン領域 105 n+ 領域 106 ゲート絶縁膜 107 ゲート電極 108 ソース電極 109 ドレイン電極 110 n+ ソース領域 111 n+ ドレイン領域 112 p+ 領域 113 ゲート絶縁膜 114 ゲート電極 115 ソース電極 116 ドレイン電極 GND グランド端子 DO 出力端子 VDH 電源端子 T1 寄生pnpトランジスタ T2 付加npnトランジスタ D2 ハイサイドダイオード Il 寄生電流 D1 ローサイドダイオード D2 ハイサイドダイオード D3 ローサイドダイオード D2 ハイサイドダイオード N1 ローサイドトランジスタ N2 ハイサイドトランジスタ N3 ローサイドトランジスタ N4 ハイサイドトランジスタ1 p-type semiconductor substrate 2 first p + region 3 n - well region 4 p region 5 first n + region 6 second n + region 7 second p + region 8 first metal wiring 8a first metal wiring 9 second metal wiring 9a 2 metal wiring 10 third metal wiring 10a third metal wiring 11 fourth metal wiring 11a fourth metal wiring 12 gate electrode 21 third p + region 22 second n + region 23 gate insulating film 24 gate electrode 25 gate insulating film 26 gate electrode 27 third n + region 28 fourth p + region 51 data driver IC 52 scan driver IC 53 discharge tube 54 power supply 55 power supply 56 control circuit 57 control circuit 101 p-type semiconductor substrate 102 n-well region 103 p + source region 104 p + drain region 105 n + region 106 gate insulating film 107 gate electrode 108 source electrode 109 drain electrode 110 n + source region 111 n + drain region 112 p + region 113 gate insulating film 114 gate electrode 115 source electrode 116 drain electrode GND ground terminal DO output terminal VDH power supply terminal T1 parasitic pnp transistor T2 additional npn transistor D2 high side diode Il parasitic current D1 low side diode D2 high Side diode D3 Low side diode D2 High side diode N1 Low side transistor N2 High side transistor N3 Low side transistor N4 High side transistor

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−155156(JP,A) 特開 昭62−217664(JP,A) 特開 平5−283622(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 29/861 H01L 29/78 H01L 27/08 H01L 27/06 H01L 29/73 ─────────────────────────────────────────────────── --Continued from the front page (56) References JP-A-3-155156 (JP, A) JP-A-62-217664 (JP, A) JP-A-5-283622 (JP, A) (58) Field (Int.Cl. 7 , DB name) H01L 29/861 H01L 29/78 H01L 27/08 H01L 27/06 H01L 29/73

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】第1導電形半導体基板上に第1導電形の第
1領域と第2導電形の第2領域とがそれぞれ選択的に形
成され、第2領域の表面層に第2導電形の第3領域と第
1導電形の第4領域とが分離され、且つ選択的に形成さ
れ、第4領域の表面層に第1導電形の第5領域と第2導
電形の第6領域とがそれぞれ形成され、第1領域上、第
3領域上、第5領域上および第6領域上に第1電極、第
3電極、第5電極および第6電極がそれぞれ形成され、
第5電極と第6電極とが導体で接続されたダイオードで
あることを特徴とする半導体装置。
1. A first conductivity type first region and a second conductivity type second region are selectively formed on a first conductivity type semiconductor substrate, and a second conductivity type is formed on a surface layer of the second region. The third region and the fourth region of the first conductivity type are separated and selectively formed, and a fifth region of the first conductivity type and a sixth region of the second conductivity type are formed on the surface layer of the fourth region. Are formed respectively, and a first electrode, a third electrode, a fifth electrode and a sixth electrode are respectively formed on the first region, the third region, the fifth region and the sixth region,
A diode in which the fifth electrode and the sixth electrode are connected by a conductor.
There is a semiconductor device.
【請求項2】第5領域に接して、第6領域が形成され、
第5領域上と第6領域上とに共通の第8電極が形成され
ることを特徴とする請求項1記載の半導体装置。
2. A sixth region is formed in contact with the fifth region,
The semiconductor device according to claim 1, wherein a common eighth electrode is formed on the fifth region and the sixth region.
【請求項3】第5領域に接して、第5領域を取り囲むよ
うに第6領域が形成され、第5領域上と第6領域上とに
共通の第9電極が形成されることを特徴とする請求項1
記載の半導体装置。
3. A sixth region is formed in contact with the fifth region so as to surround the fifth region, and a common ninth electrode is formed on the fifth region and the sixth region. Claim 1
The semiconductor device described.
【請求項4】第1導電形半導体基板上に第1導電形の第
1領域と第2導電形の第2領域とがそれぞれ選択的に形
成され、第2領域の表面層に第2導電形の第3領域と第
1導電形の第4領域および第7領域とがそれぞれ分離さ
れ、選択的に形成され、第4領域の表面層に第1導電形
の第5領域に接して、第2導電形の第6領域が形成さ
れ、第7領域上に第7電極が形成され、第7領域と第4
領域とに挟まれた第2領域上に絶縁膜を介して第10電
極が形成され、第1領域上、第3領域上に第1電極、第
3電極がそれぞれ形成され、第5領域と第6領域とに共
通の第8電極が形成されたMOSFETであることを特
徴とする半導体装置。
4. A first conductivity type first region and a second conductivity type second region are selectively formed on a first conductivity type semiconductor substrate, and a second conductivity type is formed on a surface layer of the second region. Of the first conductivity type and the fourth region and the seventh region of the first conductivity type are respectively separated and selectively formed, and the surface layer of the fourth region is in contact with the fifth region of the first conductivity type, A sixth region of conductivity type is formed, a seventh electrode is formed on the seventh region, and a seventh region and a fourth region are formed.
A tenth electrode is formed on a second region sandwiched by the region and an insulating film, a first electrode and a third electrode are formed on the first region and the third region, respectively. A semiconductor device comprising a MOSFET having an eighth electrode common to six regions.
【請求項5】第1導電形半導体基板上に第1導電形の第
1領域と第2導電形の第2領域とがそれぞれ選択的に形
成され、第2領域の表面層に第2導電形の第3領域と第
1導電形の第4領域および第7領域とがそれぞれ分離さ
れ、選択的に形成され、第4領域の表面層に第1導電形
の第5領域が形成され、第7領域上に第7電極が形成さ
れ、第7領域と第4領域とに挟まれた第2領域上に絶縁
膜を介して第10電極が形成され、第1領域上、第3領
域上に第1電極、第3電極がそれぞれ形成され、第5領
域に第8電極が形成される第1絶縁ゲート型バイポーラ
トランジスタと、前記第2領域の表面層に第2導電形の
第31領域と第1導電形の第41領域および第71領域
とがそれぞれ分離され、選択的に形成され、第41領域
の表面層に第1導電形の第51領域に接して、第2導電
形の第61領域が形成され、第71領域上に第71電極
が形成され、第71領域と第41領域とに挟まれた第2
領域上に絶縁膜を介して第101電極が形成され、第3
1領域上に第31電極が形成され、第51領域と第61
領域とに共通の第81電極が形成され、第101電極と
第71電極とが接続される第2絶縁ゲート型バイポーラ
トランジスタとが、並列接続(第7電極と第71電極、
第8電極と第81電極がそれぞれ接続されている状態)
されることを特徴とする半導体装置。
5. A first conductivity type first region and a second conductivity type second region are selectively formed on a first conductivity type semiconductor substrate, and a second conductivity type is formed on a surface layer of the second region. The third region and the fourth region and the seventh region of the first conductivity type are respectively separated and selectively formed, and the fifth region of the first conductivity type is formed in the surface layer of the fourth region. A seventh electrode is formed on the region, a tenth electrode is formed on the second region sandwiched between the seventh region and the fourth region via an insulating film, and a tenth electrode is formed on the first region and the third region. A first insulated gate bipolar transistor in which a first electrode and a third electrode are respectively formed, and an eighth electrode is formed in a fifth region, and a second conductivity type thirty-first region and a first conductivity type thirty-first region in a surface layer of the second region. The 41st and 71st regions of the conductivity type are separated and selectively formed, and the first conductive layer is formed on the surface layer of the 41st region. In contact with the first 51 region of the form, the 61 region of the second conductivity type is formed, the first 71 electrode is formed 71 on the region, the second sandwiched between the first 71 region and 41 region
The 101st electrode is formed on the region through an insulating film,
The 31st electrode is formed on the 1st region, and the 51st region and the 61st electrode are formed.
An 81st electrode common to the region is formed, and a second insulated gate bipolar transistor in which the 101st electrode and the 71st electrode are connected is connected in parallel (the 7th electrode and the 71st electrode,
(The state where the 8th electrode and the 81st electrode are respectively connected)
A semiconductor device characterized by the following.
JP33435896A 1996-12-16 1996-12-16 Semiconductor device Expired - Lifetime JP3519226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33435896A JP3519226B2 (en) 1996-12-16 1996-12-16 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33435896A JP3519226B2 (en) 1996-12-16 1996-12-16 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH10173068A JPH10173068A (en) 1998-06-26
JP3519226B2 true JP3519226B2 (en) 2004-04-12

Family

ID=18276485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33435896A Expired - Lifetime JP3519226B2 (en) 1996-12-16 1996-12-16 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3519226B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000277622A (en) * 1999-01-18 2000-10-06 Sony Corp Semiconductor device and its manufacture
JP4788276B2 (en) * 2005-10-04 2011-10-05 富士電機株式会社 Semiconductor device
JP5132077B2 (en) * 2006-04-18 2013-01-30 オンセミコンダクター・トレーディング・リミテッド Semiconductor device
JP2009064036A (en) * 2008-11-13 2009-03-26 Hitachi Ltd Plasma display apparatus
JP2009265682A (en) * 2009-06-29 2009-11-12 Hitachi Ltd Display device, pdp display device, and its driving circuit
JP2010092056A (en) * 2009-10-14 2010-04-22 Hitachi Ltd Pdp display device
JP5488256B2 (en) * 2010-06-25 2014-05-14 三菱電機株式会社 Power semiconductor device

Also Published As

Publication number Publication date
JPH10173068A (en) 1998-06-26

Similar Documents

Publication Publication Date Title
US7763941B2 (en) Integrated circuit device having input/output electrostatic discharge protection cell equipped with electrostatic discharge protection element and power clamp
JP3237555B2 (en) Semiconductor device
US7408228B2 (en) Semiconductor device capable of avoiding latchup breakdown resulting from negative variation of floating offset voltage
JP3590371B2 (en) ESD protection circuit for semiconductor device with multi-finger structure
JP3680544B2 (en) High voltage power IC output stage circuit
JP3198959B2 (en) High voltage integrated circuit
JP3519226B2 (en) Semiconductor device
JPH0855984A (en) Protection structure for integrated circuit
US6873012B2 (en) SOI component
JP3186405B2 (en) Horizontal MOSFET
CN106663658B (en) Semiconductor integrated circuit having a plurality of transistors
JP3444263B2 (en) Insulated gate semiconductor device with built-in control circuit
JPH1065146A (en) Semiconductor integrated circuit device
JP4023276B2 (en) Driving circuit
JPH1065018A (en) Semiconductor device
US5497011A (en) Semiconductor memory device and a method of using the same
JP4945948B2 (en) Semiconductor device
JP2007227697A (en) Semiconductor device, and semiconductor integrated device
JP4788276B2 (en) Semiconductor device
JP2000286391A (en) Level shifter
JPH0487373A (en) Semiconductor device
JP3439042B2 (en) Semiconductor integrated circuit
JPH10289977A (en) Composite semiconductor device
JP3199857B2 (en) Conductivity modulation type MOSFET
JP4106804B2 (en) Integrated circuit protection device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040128

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term