JP3518367B2 - Method for manufacturing 13Cr stainless steel plate - Google Patents
Method for manufacturing 13Cr stainless steel plateInfo
- Publication number
- JP3518367B2 JP3518367B2 JP28487998A JP28487998A JP3518367B2 JP 3518367 B2 JP3518367 B2 JP 3518367B2 JP 28487998 A JP28487998 A JP 28487998A JP 28487998 A JP28487998 A JP 28487998A JP 3518367 B2 JP3518367 B2 JP 3518367B2
- Authority
- JP
- Japan
- Prior art keywords
- steel plate
- less
- steel
- rolling
- stainless steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、湿潤炭酸ガスを含
んだ原油や天然ガスまたはその他の流体を輸送する溶接
管の素材として用いられる13Cr系ステンレス厚鋼板
の製造方法に関する。
【0002】
【従来の技術】近年、エネルギー事情の悪化にともな
い、炭酸ガスや硫化水素のような腐食性ガスを多く含む
油井や天然ガス井が開発されるようになってきた。
【0003】湿潤炭酸ガスのみを含む環境(極微量の硫
化水素を含む場合もある)では、耐食性と材料コストの
観点から13Cr系ステンレス鋼管が広く用いられてい
る。
【0004】油井管としては、AISI規格の420鋼
に代表される高C(0.2%)−13Cr系ステンレス
鋼が一般的であり、ラインパイプ用では、溶接施工が必
要な観点から、AISI規格の410鋼に代表される低
C(0.1%)−13Cr系ステンレス鋼が使用されて
きた。
【0005】また、最近では、さらに極低C(0.03
%)で、Niを含有する改良13Cr系ステンレス鋼が
開発されている。
【0006】これらのマルテンサイト系ステンレス鋼か
らなる鋼管は、一般に、熱間継目無製管法で製造される
ことが多い。しかし、継目無鋼管は高い信頼性を評価さ
れているものの、いくつかの問題点があり、特に外径が
16インチ(426mm)以上の大径管の製造が困難と
いう問題がある。
【0007】これらの大径管は、一般に、溶接製管法に
よって製造される。そこで、最近、13Cr系ステンレ
ス溶接鋼管の製造方法がいくつか提案されている。
【0008】例えば、特開平4−191319号公報
(特公平7−5972号公報)には、低Cの13Cr系
ステンレス鋼からなるラインパイプの電縫溶接法による
製造方法が提案されている。また、特開平8−2068
61号公報には、レーザー溶接法を用いた13Cr系ス
テンレス鋼からなるラインパイプの製造方法が提案され
ている。
【0009】ただし、電縫溶接法やレーザ溶接法、また
はTIG溶接法では、マルテンサイト系ステンレス鋼の
熱延鋼帯を素材に用いて製管するので、一般的に肉厚が
10mm以下の薄肉管しか製造できない。
【0010】さらに、継目無鋼管は、素材の鋼片(ビレ
ット)を1250℃程度の高温に加熱した後に穿孔、延
伸圧延するので、機械的性質および耐食性の観点から、
製管後の焼入れ焼戻し処理が必須である。また、上記の
薄肉溶接管においても、製管溶接後に焼入れ焼戻し処理
を施すのが望ましい。
【0011】言うまでもなく、このような焼入れ焼戻し
処理法は、強度調整が比較的容易であるという長所があ
る。しかし、製造工程が増えることになり、また、熱処
理時に生成した酸化スケールを除去する必要が生じるこ
となど、生産性の低下ひいては製造コストが嵩むという
問題が生じる。
【0012】
【発明が解決しようとする課題】最近では、特に、天然
ガスの輸送効率を上げるために、このような13Cr系
ステンレス鋼ラインパイプの大径、厚肉化が要望されて
いる。大径化によって輸送量を増やし、厚肉化によって
操業圧力を高めることができるので、さらにガスの輸送
効率を上げることができる。
【0013】本発明の目的は、湿潤炭酸ガスを含んだ原
油や天然ガスまたはその他の流体を輸送する溶接管の素
材として用いられ、製管溶接のままで製品として使用で
きる13Cr系ステンレス厚鋼板の製造方法を提供する
ことにある。
【0014】なお、ここでいう厚鋼板とは、肉厚がおお
よそ1/2インチ(12.7mm)以上のものを意味す
る。
【0015】
【課題を解決するための手段】本発明の要旨は、下記の
13Cr系ステンレス厚鋼板の製造方法にある。
【0016】重量%で、C:0.03%以下、Si:1
%以下、Mn:2%以下、Cr:9〜13%、Ni:1
〜7%、Ti:0.5%以下、Al:0.1%以下、お
よびCu:0.3〜2%とMo:0.5〜3%のいずれ
か一方又は両方の成分を含み、残部はFeおよび不可避
不純物の鋼からなる鋼片の熱間圧延を800℃以上で終
了した後、800〜600℃の温度域を10℃/s以上
の平均冷却速度で冷却する一方、600℃未満の温度域
を空冷以下の冷却速度で冷却する13Cr系ステンレス
厚鋼板の製造方法。
【0017】上記のような厚鋼板を素材とする溶接管
は、一般的に、厚鋼板をCプレス、Uプレス、Oプレス
で管状に成形し、サブマージアーク溶接法によってシー
ム製管溶接される。この時、サブマージアーク溶接法に
よるシーム部の溶接は、内外両面ともに1層溶接される
のが一般的であるが、多層溶接されることもある。
【0018】なお、管状への成形法にはロールベンダー
が、また溶接法にはレーザ溶接法やTIG溶接法が用い
られる場合もある。
【0019】上記のような工程を経て製造されるいわゆ
るUO管は、一般的に、外径が20〜24インチ(50
8〜609.6mm)以上であり、このような大径厚肉
管の管全体を一気に焼入れ焼戻し処理することは設備的
に極めて難しく、仮に行う場合には設備費が嵩んで極め
て高コストになる。したがって、製管溶接したままで使
用できるような素材の厚鋼板が必要になる。
【0020】また、厚鋼板自体も、肉厚がおおよそ1/
2インチ(12.7mm)以上、幅がおおよそ63イン
チ以上、長さがおおよそ25〜26m程度と長尺であ
る。したがって、厚鋼板においても、圧延後の焼入れ処
理はもちろん、焼戻し処理も困難であるので、このよう
な圧延後の熱処理なしで製管溶接に供することができる
厚鋼板が必要になる。
【0021】一方、圧延後の熱処理を省略する場合、圧
延ままで機械的性質および耐食性を満足することはもち
ろん、厚鋼板での水素割れを避けねばならない。しか
し、本発明で対象とする13Cr系ステンレス鋼は、一
般にX80(単位はksiで、56kgf/mm2 )以
上の高強度のマルテンサイト組織であり、厚鋼板の水素
割れ感受性が高い。
【0022】なお、電縫製管法やレーザ製管法に供する
熱延鋼帯では、巻取り後の冷却速度が1℃/s以下と極
めて遅く、室温に冷えるまでの間に水素が抜けてしまう
ので、水素割れの心配はない。
【0023】このように、水素割れは、厚鋼板に特有の
問題である。13Cr系ステンレス鋼の厚鋼板で、圧延
のままで機械的性質および耐食性を満足させ、かつ、厚
鋼板での水素割れを防止する方法は、これまで知られて
いなかった。
【0024】厚鋼板の水素割れを引き起こす水素は、溶
解原料に含有または付着していた水分が熱分解して発生
したものである。溶鋼に固溶した水素が、スラブやビレ
ットでポロシティーなどにガスとしてトラップされ、加
熱圧延工程でポロシティーが圧着する際に、再度鋼中に
固溶して製品まで残留したものである。
【0025】したがって、スラブあるいはビレットの段
階で、脱水素すればその問題は生じないわけであるが、
極めて厚肉の鋼片では、その肉厚中心部の脱水素を完了
するのに従来から知られている方法では数時間〜数日を
要するので、非効率的である。
【0026】そこで、本発明者らは、厚鋼板に発生する
水素割れ挙動を解明すべく、組織的な検討と以下に述べ
る実験を行い、次のことを知見した。
【0027】焼入れ焼戻しのような熱処理を施さない厚
鋼板における水素割れは、板厚中心部に発生し、主とし
て圧延面に平行に伝播している。その形態は、旧オース
テナイト粒界の破壊であり、破面には、粗大な炭化物が
析出していることが確認された。これらの水素割れが発
生した鋼板の健全部から腐食試験片を採取し、微量(1
00ppm:0.03atmに相当)のH2S を含む環
境で硫化物応力割れ(以下、SSCと称す)試験を実施
すると、やはり、板厚中心部に同様の割れ形態を呈する
ことが確認された。
【0028】厚鋼板で板厚中心部に水素割れが発生する
のは、その部分の残留水素濃度が最も高いからであり、
残留水素濃度を下げるためにはスラブで脱水素しなけれ
ばならない。
【0029】これに対して、本発明者らは、他の水素割
れ防止対策として、割れが圧延面に平行に伸びた旧オー
ステナイト粒界に沿って割れていることから旧オーステ
ナイト粒を扁平粒にしなければよいこと、および粒界に
析出した炭化物の周囲に水素ガスが溜まって割れたと考
えられることから炭化物の粒界への析出を抑制すればよ
いと考えた。
【0030】そこで、旧オーステナイト粒は、仕上温度
が低いほど扁平になるので、仕上温度の及ぼす影響と、
粗大な炭化物の粒界析出には高温での滞留時間が影響し
ているので、炭化物の析出に及ぼす圧延後に施す水冷の
影響について調査した。その結果、次のことがわかっ
た。
【0031】800℃未満で圧延を終了すると、粒の扁
平化が著しく、その場合には、圧延後、600℃までの
温度域を10℃/s以上の平均冷却速度で冷却しても、
粒界にわずかに析出した炭化物によって水素割れが発生
し、耐SSC性が劣化する。
【0032】また、800℃以上で圧延を終了しても、
その後に600℃未満まで10℃/s以上の平均冷却速
度で冷却すると、粒界への粗大な炭化物析出が抑制され
て耐SSC性は良好であるが、高温域での脱水素が不足
し、水素割れが発生する。
【0033】これに対し、800℃以上で圧延を終了す
ると、粒の扁平化が大幅に抑制される。また、この圧延
終了後、800〜600℃の温度域を10℃/s以上の
平均冷却速度で冷却し、次いで600℃未満の温度域を
空冷以下の冷却速度で冷却すると、粒界への粗大な炭化
物の析出が大幅に抑制されるとともに、高温域での脱水
素が促進され、水素割れの発生がなく、良好な耐SSC
性が確保される。
【0034】すなわち、圧延前の素材(スラブ)の段階
で、長時間の脱水素処理を施すのではなく、800℃以
上で熱間圧延を終了し、800〜600℃の温度域を1
0℃/s以上の平均冷却速度で冷却した後、600℃未
満の温度域を空冷以下の冷却速度で冷却するという短時
間の処理によって脱水素が行われ、水素割れが発生せ
ず、良好な耐SSC性を備えた厚鋼板が得られ、これを
素材とする溶接鋼管は、製管溶接のままで製品として用
いても何らの問題もないことを知見した。
【0035】
【発明の実施の形態】以下、本発明の方法について詳細
に説明する。なお、以下において、「%」は特に断らな
い限り「重量%」を意味する。
【0036】《素材鋼の化学組成》
C:C含有量が0.03%を超えると、Cr炭化物の析
出による耐炭酸ガス腐食性の劣化が起こるだけでなく、
水素割れの起点となる炭化物が粒界に析出しやすくな
る。また、溶接部の硬度上昇を招いて耐SSC性が劣化
する。したがって、C含有量の上限は0.03%と定め
た。望ましい上限は0.02%である。
【0037】なお、Cは耐食性の確保と溶接部の硬度上
昇を抑制する観点からは低ければ低いほど好ましく、工
業的に可能な0.005%程度にまで低くしてもよいの
で、その下限値を定める必要はない。
【0038】Si:Siは鋼の脱酸のために添加する元
素であるが、その含有量が1%を超えると鋼の清浄性と
靱性が低下する。このため、Si含有量の上限は1%と
定めた。望ましい上限は0.5%である。
【0039】なお、十分な脱酸効果を得るためには、そ
の含有量を0.05%以上とするのが好ましいが、他の
元素(後述のAl)によって十分な脱酸がなされる場
合、Siは必ずしも含有させなくてもよい。
【0040】Mn:Mnは本発明が対象とするC含有量
0.03%以下の低C−13Cr系ステンレス鋼におい
て安定なマルテンサイト相を得るのに有効であるが、そ
の含有量が2%を超えると耐食性が悪化する。このた
め、Mn含有量の上限は2%と定めた。望ましい上限は
1%である。
【0041】なお、Mnは耐食性の観点からは低ければ
低いほど好ましいので、その下限値は特に定める必要は
ない。しかし、その含有量を過剰に低くしすぎると、マ
ルテンサイト相を得るのに高価なNi含有量を高める必
要が生じてコスト上昇を招くので、0.3〜0.5%程
度以上含有させるのが好ましい。
【0042】Cr:Cr含有量が9%未満では、母材部
を含めてその鋼表面に充分な耐食性能を有する耐食性皮
膜が形成されないために、ラインパイプ用鋼管として炭
酸ガスや硫化水素を含む環境中で使用した場合、必要な
耐食性が確保できない。逆に、Cr含有量が13%を超
えると、耐食性に及ぼす効果が飽和するばかりか、オー
ステナイト相を安定化させ、引いてはマルテンサイト相
を生成させやすくする元素である高価なNiなどの合金
元素の添加量を増やす必要があり、素材コストの上昇を
招いて経済性が損なわれる。このため、Cr含有量は9
〜13%と定めた。望ましい範囲は10〜13%であ
る。
【0043】Ni:Ni含有量が1%未満では、マルテ
ンサイト相を安定かつ容易に確保するのが困難になるだ
けでなく、特にラインパイプ用鋼管として微量の硫化水
素を含む環境中で使用した場合、耐食性能を有する耐食
性皮膜が生成形成されないために、必要な耐食性が確保
できなくなる。逆に、Ni含有量が7%を超えると、組
織の安定性と耐食性に及ぼす効果が飽和するばかりか、
素材コストの上昇を招いて経済性が損なわれる。したが
って、Ni含有量は1〜7%と定めた。望ましい範囲は
2〜7%である。
【0044】Al:Alは鋼の脱酸のために添加する元
素であるが、0.1%を超えて含有させると清浄性と靱
性が低下する。このため、Al含有量の上限は0.1%
と定めた。望ましい上限は0.06%である。
【0045】なお、十分な脱酸効果を得るためには、そ
の含有量を0.01%以上とするのが好ましいが、他の
元素(前述のSi)によって十分な脱酸がなされる場
合、Alは必ずしも含有させなくてもよい。
【0046】Ti:TiはCを固定し、粗大な炭化物の
粒界析出を抑制する作用を有するが、0.5%を超えて
含有させるとその効果が飽和するばかりか、熱間加工性
と靱性が劣化する。したがって、Ti含有量の上限は
0.5%と定めた。望ましい上限は0.2%である。
【0047】なお、Ti含有量の下限値は特に定めない
が、Cのほぼ全量をTiCとして固定するためにはC含
有量の4倍以上を含有させるのが好ましい。
【0048】Cu、Mo:これらの元素は、耐食性、特
に耐局部腐食性と耐SSC性を高める効果がある。この
ため、CuとMoのいずれか一方又は両方の元素を添加
する。それぞれ、Cuについては0.3%以上、Moに
ついては0.5%以上でその効果が顕著になる。しか
し、2%超のCu添加はその効果が飽和するばかりか熱
間加工性と溶接性の劣化を招く。また、3%超のMo添
加はその効果が飽和するばかりか、上記のCrと同様
に、フェライト相の安定化元素であるので、オーステナ
イト相を安定化させ、引いてはマルテンサイト相を生成
させやすくする元素である高価なNiなどの合金元素の
含有量を増やす必要があり、素材コストの上昇を招く。
したがって、CuとMoの含有量は、それぞれ0.3〜
2%、0.5〜3%とする。
【0049】P、S、N、O(酸素):これらの元素
は、いずれも鋼中に含まれる不可避不純物であり、その
含有量は低ければ低いほど好ましい。
【0050】《製造方法》
素材鋼片の加熱:圧延に供される素材鋼片の温度は、次
に述べる圧延が可能な温度であればよい。
【0051】仕上圧延温度:800℃を下回ると、未再
結晶温度域であるため、粒が著しく扁平化して、水素割
れ感受性が高くなり、極低CでTi添加の鋼でも水素割
れが発生するのを防止できない。望ましい仕上圧延温度
の下限は900℃である。このような高温仕上で、L方
向(圧延方向)とC方向(圧延方向と直交する方向)の
機械的性質に異方性のない、溶接管用の素材として好適
な厚鋼板を製造することができる。
【0052】800〜600℃の平均冷却速度:圧延終
了後、800〜600℃の温度域を10℃/s以上の平
均冷却速度で冷却する必要がある。これは、前述したよ
うに、800〜600℃の温度域を10℃/s未満の平
均冷却速度で冷却したのでは、水素割れの起点となって
割れの伝播を加速する粗大な炭化物が粒界に析出するの
を抑制できなくなるためである。望ましい平均冷却速度
の下限は15℃/sである。
【0053】なお、平均冷却速度は、速ければ速いほど
よい。このため、その上限は特に定める必要はない。ま
た、冷却の方法は、気水(ミスト)冷却またはシャワー
水冷とすればよい。
【0054】600℃未満の冷却速度:600℃未満の
温度域まで上記10℃/s以上の平均冷却速度で冷却す
ると、高温域での脱水素が不十分となり、たとえ粗大な
炭化物が粒界に析出するのを抑制できたとしても、水素
割れが発生するようになる。このため、600℃未満の
温度域の冷却速度は空冷以下の遅い速度と定めた。
【0055】なお、空冷よりも遅い冷却速度は、例えば
圧延後の鋼板が冷えきらない間に2枚重ねにする方法に
より実現可能であり、この方法が最も簡単である。
【0056】
【実施例】表1に示す化学組成を有する11種類の鋼を
溶製し、厚さ300mm、幅2300mmの素材鋼片
(スラブ)を準備し、その肉厚方向の中央部から厚さ1
50mm、幅120mm、長さ100mmの圧延用素材
を切り出した。
【0057】
【表1】
【0058】各圧延用素材は、表2に示す種々の条件で
熱間圧延するとともに冷却し、厚さ25.4mmの厚鋼
板を得た。
【0059】
【表2】
【0060】そして、製造後、室温に48時間放置した
後の各厚鋼板から、一辺が100mmの正方形の全厚
(ただし、表面スケールは研削で除去)の試験片を採取
し、超音波探傷によるCスキャン法にて水素割れの発生
の有無を調べた。評価は、割れが検出されなかったもの
を合格(○)、一部でも割れが検出されたものを不合格
(×)とした。
【0061】また、室温に48時間放置した後の各厚鋼
板のC方向(圧延方向と直交する方向)から、厚さ2m
m、幅10mm、長さ75mmのノッチ無しの応力腐食
試験片を採取した。得られた応力腐食試験片は、図1に
示す4点曲げ付与治具にセットし、素材厚鋼板の降伏応
力の100%の応力を付加した後、液温25℃の下記
またはの腐食環境下に336時間浸漬して耐SSC性
を調べた。評価は、SSCが発生しなかったものを合格
(○)、SSCが発生したものを不合格(×)とした。
【0062】腐食環境:
0.003atmH2S−30atmCO2−5%Na
Cl水溶液、
0.03atmH2S−30atmCO2−5%NaC
l水溶液。
【0063】なお、腐食環境下を上記のとの2通り
でおこなったのは、Cuまたは/およびMoを添加した
鋼と添加しなかった鋼では耐SSC性が異なるためであ
る。これらの調査結果を、表2に併せて示した。
【0064】表2に示す結果からわかるように、本発明
の方法にしたがって製造された厚鋼板(試番16、1
7、20および24〜28)は、いずれも水素割れは発
生しておらず、耐SSC性も良好であった。
【0065】これに対し、鋼の化学組成、仕上げ温度、
800〜600℃間の平均冷却速度、平均冷却速度10
℃/s以上での冷却の停止温度および600℃未満の冷
却速度のいずれかが本発明で規定する範囲から外れる方
法で製造された比較例の厚鋼板(試番12〜15、1
8、19および21〜23)は、いずれも水素割れが発
生し、平均冷却速度10℃/s以上での冷却の停止温度
が600℃未満のものを除いて耐SSC性も不芳であっ
た。
【0066】具体的に説明すると、試番15および19
は、800〜600℃間の平均冷却速度が10℃/s未
満であるために、水素割れが発生し、耐SSC性も不芳
であった。
【0067】
【0068】試番12と13は、C含有量が高すぎるた
めに、水素割れが発生し、耐SSC性も不芳であった。
試番22と23は、Tiが添加されていないために、水
素割れが発生し、耐SSC性も不芳であった。
【0069】
【0070】
【発明の効果】本発明の方法によれば、湿潤炭酸ガスを
含む原油や天然ガスまたはその他の流体を輸送するライ
ンパイプの素材として好適な、耐食性に優れる13Cr
系ステンレス厚鋼板を安価に製造することができる。ま
た、この厚鋼板を素材にしてラインパイプ用の溶接鋼管
を製造する場合には、溶接製管のままで必要な特性を有
しているので、焼入れ焼戻し処理を施さずにそのまま製
品として出荷できる。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a 13Cr stainless steel plate used as a material for welding pipes for transporting crude oil, natural gas or other fluids containing wet carbon dioxide gas. And a method for producing the same. [0002] In recent years, oil wells and natural gas wells containing a large amount of corrosive gas such as carbon dioxide gas and hydrogen sulfide have been developed with the worsening of the energy situation. [0003] In an environment containing only wet carbon dioxide gas (which may contain a trace amount of hydrogen sulfide), 13Cr stainless steel pipes are widely used from the viewpoint of corrosion resistance and material cost. As the oil country tubular goods, high C (0.2%)-13Cr stainless steel typified by AISI standard 420 steel is generally used. For line pipes, AISI is required from the viewpoint that welding work is required. Low C (0.1%)-13Cr stainless steel represented by standard 410 steel has been used. In recent years, the extremely low C (0.03
%), An improved 13Cr stainless steel containing Ni has been developed. [0006] Steel pipes made of these martensitic stainless steels are generally produced by a hot seamless pipe production method in many cases. However, although seamless steel pipes have been evaluated for high reliability, they have some problems, in particular, the problem that it is difficult to manufacture large-diameter pipes having an outer diameter of 16 inches (426 mm) or more. [0007] These large diameter pipes are generally manufactured by a welding pipe manufacturing method. Therefore, recently, several methods for manufacturing a 13Cr stainless steel welded steel pipe have been proposed. For example, Japanese Patent Application Laid-Open No. 4-191319 (JP-B-7-5972) proposes a method for producing a line pipe made of low C 13Cr stainless steel by an electric resistance welding method. Also, JP-A-8-2068
No. 61 proposes a method of manufacturing a line pipe made of 13Cr stainless steel using a laser welding method. However, in the electric resistance welding method, the laser welding method, or the TIG welding method, since a pipe is formed by using a hot-rolled steel strip of martensitic stainless steel as a material, a thin wall having a wall thickness of 10 mm or less is generally used. Only tubes can be manufactured. Furthermore, since a seamless steel pipe is heated at a high temperature of about 1250 ° C. and then pierced and stretched and rolled, a seamless steel pipe is used in view of mechanical properties and corrosion resistance.
Quenching and tempering after pipe production is essential. In addition, it is desirable that a quenching and tempering treatment be performed on the thin-walled welded pipe after the pipe-forming welding. Needless to say, such a quenching and tempering method has an advantage that strength adjustment is relatively easy. However, there are problems that the number of manufacturing steps increases and that oxide scale generated at the time of heat treatment needs to be removed, thereby lowering productivity and increasing manufacturing cost. [0012] Recently, in order to increase the efficiency of transporting natural gas, there is a demand for such 13Cr stainless steel line pipes to have a large diameter and a large wall thickness. Since the transport volume can be increased by increasing the diameter, and the operating pressure can be increased by increasing the wall thickness, the gas transport efficiency can be further increased. An object of the present invention is to provide a 13Cr stainless steel plate which is used as a material for welding pipes for transporting crude oil, natural gas or other fluids containing wet carbon dioxide gas, and which can be used as a product as it is by pipe welding. It is to provide a manufacturing method. Here, the thick steel plate means a steel plate having a thickness of about 1/2 inch (12.7 mm) or more. The gist of the present invention resides in the following method for producing a 13Cr stainless steel plate. In weight%, C: 0.03% or less, Si: 1
%, Mn: 2% or less, Cr: 9 to 13%, Ni: 1
~7%, Ti: 0.5% or less, Al: 0.1% or less, you
And Cu: 0.3 to 2% and Mo: 0.5 to 3%
After the hot rolling of a slab composed of steel containing Fe and unavoidable impurities is completed at a temperature of 800 ° C. or higher, the average cooling of the temperature range of 800 to 600 ° C. is performed at a temperature of 10 ° C./s or higher. A method for producing a 13Cr stainless steel plate that cools at a rate of less than 600 ° C. at a cooling rate equal to or less than air cooling while cooling at a high speed. In general, a welded pipe made of a thick steel plate as described above is formed by forming a thick steel plate into a tubular shape using a C press, a U press, and an O press, and performing seam pipe welding by a submerged arc welding method. At this time, in the seam welding by the submerged arc welding method, it is general that both inner and outer surfaces are welded in one layer, but sometimes they are welded in multiple layers. In some cases, a roll bender is used for forming a tube, and a laser welding method or a TIG welding method is used for a welding method. The so-called UO tube manufactured through the above-described steps generally has an outer diameter of 20 to 24 inches (50 inches).
8 to 609.6 mm) or more, and it is extremely difficult to quench and temper the entirety of such a large-diameter thick-walled pipe at a stretch, and if it is performed temporarily, the equipment cost increases and the cost becomes extremely high. . Therefore, a thick steel plate made of a material that can be used while being welded to a pipe is required. The thickness of the thick steel plate itself is also about 1 /
It is as long as 2 inches (12.7 mm) or more, about 63 inches or more in width, and about 25 to 26 m in length. Therefore, it is difficult to perform tempering as well as quenching after rolling, so that a thick steel plate that can be used for pipe welding without such heat treatment after rolling is required. On the other hand, when the heat treatment after rolling is omitted, not only the mechanical properties and corrosion resistance are satisfied as-rolled, but also hydrogen cracking in the thick steel plate must be avoided. However, the 13Cr stainless steel targeted in the present invention generally has a high-strength martensite structure of X80 (unit: ksi, 56 kgf / mm 2 ) or more, and the steel plate has high susceptibility to hydrogen cracking. In the case of the hot rolled steel strip used for the ERW or laser pipe forming method, the cooling rate after winding is extremely low at 1 ° C./s or less, and hydrogen escapes before cooling to room temperature. So there is no worry about hydrogen cracking. As described above, hydrogen cracking is a problem unique to thick steel plates. A method of satisfying mechanical properties and corrosion resistance of 13Cr stainless steel plate as rolled as it is, and preventing hydrogen cracking in the plate has not been known. Hydrogen which causes hydrogen cracking of a thick steel plate is generated by thermal decomposition of water contained or adhered to a molten raw material. Hydrogen dissolved in the molten steel is trapped as a gas in porosity or the like by a slab or billet, and when the porosity is press-bonded in the heating and rolling step, it is dissolved again in the steel and remains in the product. Therefore, the problem does not occur if dehydrogenation is performed at the slab or billet stage.
In the case of extremely thick steel slabs, it is inefficient because conventionally known methods require several hours to several days to complete the dehydrogenation of the central part of the thickness. The present inventors have conducted a systematic study and conducted the experiments described below in order to elucidate the behavior of hydrogen cracking occurring in a thick steel plate, and have found the following. Hydrogen cracking in a thick steel sheet not subjected to heat treatment such as quenching and tempering occurs at the center of the thickness and propagates mainly parallel to the rolling surface. The morphology was a fracture of the former austenite grain boundary, and it was confirmed that coarse carbides were precipitated on the fracture surface. Corrosion test specimens were collected from a healthy part of the steel sheet where hydrogen cracking occurred, and a small amount (1
When a sulfide stress cracking (hereinafter, referred to as SSC) test was performed in an environment containing H 2 S (00 ppm: equivalent to 0.03 atm), it was confirmed that a similar cracking form was also exhibited at the center of the sheet thickness. . The reason why hydrogen cracking occurs at the center of the thickness of a thick steel plate is that the residual hydrogen concentration in that portion is the highest.
In order to reduce the residual hydrogen concentration, the slab must be used for dehydrogenation. On the other hand, the present inventors have taken another measure to prevent hydrogen cracking, because the cracks are broken along the old austenite grain boundaries extending parallel to the rolling surface, and the old austenite grains are made into flat grains. It is considered that it is necessary to suppress the precipitation of carbides at the grain boundaries because it is considered that hydrogen gas accumulates around the carbides precipitated at the grain boundaries and cracks occur. Therefore, the prior austenite grains become flatter as the finishing temperature is lower.
Since the residence time at high temperature affects grain boundary precipitation of coarse carbides, the effect of water cooling applied after rolling on carbide precipitation was investigated. As a result, the following was found. When the rolling is completed at a temperature lower than 800 ° C., the grains become significantly flattened. In this case, even if the temperature range up to 600 ° C. after the rolling is cooled at an average cooling rate of 10 ° C./s or more,
Hydrogen cracking occurs due to carbides slightly precipitated at the grain boundaries, deteriorating SSC resistance. Further, even if rolling is completed at 800 ° C. or more,
Thereafter, when cooled to a temperature lower than 600 ° C. at an average cooling rate of 10 ° C./s or more, coarse carbide precipitation at the grain boundaries is suppressed and the SSC resistance is good, but dehydrogenation in a high temperature region is insufficient, Hydrogen cracking occurs. On the other hand, when the rolling is completed at 800 ° C. or higher, the flattening of the grains is greatly suppressed. After completion of the rolling, the temperature range of 800 to 600 ° C. is cooled at an average cooling rate of 10 ° C./s or more, and then the temperature range of less than 600 ° C. is cooled at a cooling rate of air cooling or less. Precipitation of high-quality carbides is greatly suppressed, dehydrogenation in the high-temperature range is promoted, and hydrogen cracking does not occur and good SSC resistance
Is ensured. That is, at the stage of the raw material (slab) before rolling, rather than performing a long-term dehydrogenation treatment, the hot rolling is completed at 800 ° C. or more, and the temperature range of 800 to 600 ° C.
After cooling at an average cooling rate of 0 ° C./s or more, dehydrogenation is performed by a short-time treatment of cooling a temperature range of less than 600 ° C. at a cooling rate of air cooling or less. A thick steel plate having SSC resistance was obtained, and it was found that a welded steel pipe using this as a raw material had no problem even if it was used as a product as it was in pipe welding. Hereinafter, the method of the present invention will be described in detail. In the following, “%” means “% by weight” unless otherwise specified. << Chemical Composition of Material Steel >> C: When the C content exceeds 0.03%, not only deterioration of carbon dioxide corrosion resistance due to precipitation of Cr carbide occurs, but also
Carbide, which is the starting point of hydrogen cracking, tends to precipitate at the grain boundaries. Further, the hardness of the welded portion is increased, and the SSC resistance is deteriorated. Therefore, the upper limit of the C content is set to 0.03%. A desirable upper limit is 0.02%. C is preferably as low as possible from the viewpoint of securing corrosion resistance and suppressing an increase in hardness of the welded portion. The lower limit of C may be as low as about 0.005%, which is industrially possible. There is no need to specify. Si: Si is an element added for deoxidizing steel, but if its content exceeds 1%, the cleanliness and toughness of steel decrease. For this reason, the upper limit of the Si content is set to 1%. A desirable upper limit is 0.5%. In order to obtain a sufficient deoxidizing effect, the content is preferably set to 0.05% or more. However, when the content is sufficiently deoxidized by another element (Al described later), Si does not necessarily have to be contained. Mn: Mn is effective in obtaining a stable martensitic phase in a low C-13Cr stainless steel having a C content of 0.03% or less, which is a target of the present invention, but its content is 2%. If it exceeds, the corrosion resistance deteriorates. For this reason, the upper limit of the Mn content is set to 2%. A desirable upper limit is 1%. It is to be noted that Mn is preferably as low as possible from the viewpoint of corrosion resistance, so that its lower limit need not be particularly defined. However, if the content is excessively low, it is necessary to increase the expensive Ni content in order to obtain a martensitic phase, resulting in an increase in cost. Is preferred. Cr: If the Cr content is less than 9%, a corrosion-resistant film having sufficient corrosion resistance is not formed on the surface of the steel including the base material, so that the pipe for line pipe contains carbon dioxide gas or hydrogen sulfide. When used in the environment, the required corrosion resistance cannot be secured. Conversely, if the Cr content exceeds 13%, not only the effect on corrosion resistance is saturated, but also an expensive alloy such as Ni, which is an element that stabilizes the austenite phase and thus facilitates the formation of the martensite phase. It is necessary to increase the amount of the element to be added, which leads to an increase in material cost and impairs economic efficiency. Therefore, the Cr content is 9
1313%. A desirable range is 10 to 13%. Ni: If the Ni content is less than 1%, it becomes difficult not only to secure a stable and easy martensite phase, but also to use the steel pipe for line pipe in an environment containing a trace amount of hydrogen sulfide. In this case, since a corrosion-resistant film having corrosion resistance is not formed and formed, the required corrosion resistance cannot be secured. Conversely, if the Ni content exceeds 7%, the effect on the stability and corrosion resistance of the structure is saturated,
This raises the cost of raw materials, and impairs economic efficiency. Therefore, the Ni content was determined to be 1 to 7%. A desirable range is 2 to 7%. Al: Al is an element added for deoxidizing steel, but if it is contained in excess of 0.1%, cleanliness and toughness are reduced. For this reason, the upper limit of the Al content is 0.1%.
It was decided. A desirable upper limit is 0.06%. In order to obtain a sufficient deoxidizing effect, it is preferable that the content is 0.01% or more. However, when sufficient deoxidizing is performed by another element (the aforementioned Si), Al does not always have to be contained. Ti: Ti has the effect of fixing C and suppressing the precipitation of coarse carbides at the grain boundary. However, when the content exceeds 0.5%, not only the effect is saturated, but also the hot workability and The toughness deteriorates. Therefore, the upper limit of the Ti content is set to 0.5%. A desirable upper limit is 0.2%. Although the lower limit of the Ti content is not particularly defined, it is preferable that the content of C is at least four times the content of C in order to fix almost all of C as TiC. [0048] Cu, Mo: These elements are effective to improve the corrosion resistance, especially local corrosion resistance and SSC resistance. Therefore, one or both elements of Cu and Mo are added.
I do. Respectively 0.3% or more for Cu, the effect becomes significant at 0.5% or more for Mo. However, the addition of Cu exceeding 2% not only saturates the effect but also causes deterioration of hot workability and weldability. Further, the addition of more than 3% of Mo not only saturates its effect, but also stabilizes the austenite phase and consequently forms the martensite phase because it is a stabilizing element of the ferrite phase, like Cr. It is necessary to increase the content of expensive alloying elements such as Ni, which is an element that facilitates this, and this leads to an increase in material costs.
Therefore , the content of Cu and Mo is 0.3 to 0.3 respectively.
2%, 0.5 to 3% . P, S, N, O (oxygen): These elements are all unavoidable impurities contained in steel, and the lower the content, the better. << Manufacturing Method >> Heating of raw steel slab: The temperature of the raw steel slab to be subjected to rolling may be any temperature at which the following rolling is possible. When the finishing rolling temperature is lower than 800 ° C., since the temperature is in the non-recrystallization temperature range, the grains are remarkably flattened and the susceptibility to hydrogen cracking increases, and hydrogen cracking occurs even in extremely low C and Ti-added steel. Can not be prevented. A desirable lower limit of the finish rolling temperature is 900 ° C. With such a high-temperature finish, it is possible to produce a thick steel sheet suitable for a material for a welded pipe without mechanical anisotropy in the mechanical properties in the L direction (rolling direction) and the C direction (direction perpendicular to the rolling direction). . Average cooling rate of 800 to 600 ° C .: After rolling, it is necessary to cool the temperature range of 800 to 600 ° C. at an average cooling rate of 10 ° C./s or more. This is because, as described above, if the temperature range of 800 to 600 ° C. is cooled at an average cooling rate of less than 10 ° C./s, coarse carbides which serve as starting points of hydrogen cracking and accelerate the propagation of cracks are formed at grain boundaries. This is because it becomes impossible to suppress precipitation on the surface. The lower limit of the desirable average cooling rate is 15 ° C./s. The faster the average cooling rate is, the better. For this reason, the upper limit does not need to be specified. The cooling method may be air-water (mist) cooling or shower water cooling. Cooling rate of less than 600 ° C .: When cooling to a temperature range of less than 600 ° C. at the above average cooling rate of 10 ° C./s or more, dehydrogenation in a high temperature range becomes insufficient, and even if coarse carbides Even if the precipitation can be suppressed, hydrogen cracking occurs. For this reason, the cooling rate in a temperature range below 600 ° C. is set to a slow rate equal to or lower than air cooling. The cooling rate slower than the air cooling can be realized by, for example, a method in which two sheets are stacked while the rolled steel sheet is not completely cooled, and this method is the simplest. EXAMPLES 11 types of steels having the chemical compositions shown in Table 1 were melted, and raw steel slabs (slabs) having a thickness of 300 mm and a width of 2300 mm were prepared. Sa1
A rolling material having a size of 50 mm, a width of 120 mm and a length of 100 mm was cut out. [Table 1] Each rolling material was hot-rolled and cooled under various conditions shown in Table 2 to obtain a thick steel plate having a thickness of 25.4 mm. [Table 2] Then, after the production, each test piece having a total thickness of 100 mm on a side (however, the surface scale is removed by grinding) is sampled from each thick steel plate after being left at room temperature for 48 hours, and subjected to ultrasonic flaw detection. The presence or absence of hydrogen cracking was examined by the C-scan method. In the evaluation, those in which cracks were not detected were regarded as pass (○), and those in which even some cracks were detected were rejected (x). The thickness of each steel plate after being left at room temperature for 48 hours is 2 m in thickness from the C direction (direction perpendicular to the rolling direction).
A notch-free stress corrosion test specimen of m, width 10 mm, and length 75 mm was collected. The obtained stress corrosion test piece was set in a four-point bending jig shown in FIG. 1 and a stress of 100% of the yield stress of the material thick steel plate was applied. For 336 hours to examine the SSC resistance. In the evaluation, those in which SSC did not occur were evaluated as pass (○), and those in which SSC occurred were evaluated as unacceptable (x). Corrosion environment: 0.003 atm H 2 S-30 atm CO 2 -5% Na
Cl solution, 0.03atmH 2 S-30atmCO 2 -5 % NaC
1 aqueous solution. The reason why the corrosion environment was performed in the above two cases is that the steel to which Cu and / or Mo was added and the steel to which Cu and / or Mo were not added had different SSC resistances. The results of these investigations are also shown in Table 2. [0064] Table As can be seen from 2 to show results, the steel plate manufactured according to the method of the present invention (trial number 16, 1
7, 20, and 24 to 28) did not have any hydrogen cracking and had good SSC resistance. On the other hand, the chemical composition of steel, the finishing temperature,
Average cooling rate between 800 and 600 ° C, average cooling rate 10
A steel plate of a comparative example manufactured by a method in which one of the cooling stop temperature at a temperature of at least ° C / s and the cooling rate below 600 ° C is out of the range specified in the present invention (sample numbers 12 to 15, 1
8, 19 and 21 to 23) all had hydrogen cracking and had poor SSC resistance except for those having a cooling stop temperature of less than 600 ° C. at an average cooling rate of 10 ° C./s or more. . [0066] More specifically, the trial numbers 15 and 19
Since the average cooling rate between 800 and 600 ° C. was less than 10 ° C./s, hydrogen cracking occurred and the SSC resistance was poor . In Test Nos. 12 and 13, since the C content was too high, hydrogen cracking occurred and the SSC resistance was poor.
In Test Nos. 22 and 23, hydrogen cracking occurred and SSC resistance was poor because Ti was not added. According to the method of the present invention, 13Cr excellent in corrosion resistance and suitable as a material for line pipes for transporting crude oil, natural gas or other fluids containing wet carbon dioxide gas.
Series stainless steel plate can be manufactured at low cost. In addition, when manufacturing a welded steel pipe for a line pipe using this thick steel plate as a material, the pipe has the necessary characteristics as it is, and can be shipped as a product without quenching and tempering. .
【図面の簡単な説明】
【図1】応力腐食割れ試験片の4点曲げ付与治具に対す
るセット状態を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a set state of a stress corrosion cracking test piece on a four-point bending applying jig.
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C21D 8/00 - 8/10 C21D 9/573 C22C 38/00 - 38/60 B21B 1/00 - 3/02 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C21D 8/00-8/10 C21D 9/573 C22C 38/00-38/60 B21B 1/00-3 / 02
Claims (1)
%以下、Mn:2%以下、Cr:9〜13%、Ni:1
〜7%、Ti:0.5%以下、Al:0.1%以下、お
よびCu:0.3〜2%とMo:0.5〜3%のいずれ
か一方又は両方の成分を含み、残部はFeおよび不可避
不純物の鋼からなる鋼片の熱間圧延を800℃以上で終
了した後、800〜600℃の温度域を10℃/s以上
の平均冷却速度で冷却し、600℃未満の温度域を空冷
以下の冷却速度で冷却することを特徴とする13Cr系
ステンレス厚鋼板の製造方法。(57) [Claims 1] By weight%, C: 0.03% or less, Si: 1
%, Mn: 2% or less, Cr: 9 to 13%, Ni: 1
~7%, Ti: 0.5% or less, Al: 0.1% or less, you
And Cu: 0.3 to 2% and Mo: 0.5 to 3%
After the hot rolling of a slab composed of steel containing Fe and unavoidable impurities is completed at a temperature of 800 ° C. or higher, the average cooling of the temperature range of 800 to 600 ° C. is performed at a temperature of 10 ° C./s or higher. A method for producing a 13Cr stainless steel plate, comprising cooling at a cooling rate and cooling a temperature range of less than 600 ° C. at a cooling rate of air cooling or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28487998A JP3518367B2 (en) | 1998-10-07 | 1998-10-07 | Method for manufacturing 13Cr stainless steel plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28487998A JP3518367B2 (en) | 1998-10-07 | 1998-10-07 | Method for manufacturing 13Cr stainless steel plate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000119748A JP2000119748A (en) | 2000-04-25 |
JP3518367B2 true JP3518367B2 (en) | 2004-04-12 |
Family
ID=17684228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28487998A Expired - Fee Related JP3518367B2 (en) | 1998-10-07 | 1998-10-07 | Method for manufacturing 13Cr stainless steel plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3518367B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003129190A (en) | 2001-10-19 | 2003-05-08 | Sumitomo Metal Ind Ltd | Martensitic stainless steel and manufacturing method therefor |
JP4952708B2 (en) * | 2008-12-19 | 2012-06-13 | 住友金属工業株式会社 | Martensitic stainless steel and method for producing the same |
-
1998
- 1998-10-07 JP JP28487998A patent/JP3518367B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000119748A (en) | 2000-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6460229B2 (en) | High strength stainless steel seamless steel pipe for oil well | |
JP6358411B1 (en) | Duplex stainless steel and manufacturing method thereof | |
EP2837708B1 (en) | High-strength thick-walled electric-resistance-welded steel pipe having excellent low-temperature toughness, and method for manufacturing same | |
CN111094610B9 (en) | Steel pipe and steel plate | |
JP5499733B2 (en) | Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same | |
JP3116156B2 (en) | Method for producing steel pipe with excellent corrosion resistance and weldability | |
JP6047947B2 (en) | Thick high-strength seamless steel pipe for line pipes with excellent sour resistance and method for producing the same | |
JP6369662B1 (en) | Duplex stainless steel and manufacturing method thereof | |
JP4905240B2 (en) | Manufacturing method of hot-rolled steel sheet with excellent surface quality, fracture toughness and sour resistance | |
JP5679114B2 (en) | Low yield ratio high strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same | |
JP5765036B2 (en) | Cr-containing steel pipe for line pipes with excellent intergranular stress corrosion cracking resistance in weld heat affected zone | |
JP5151233B2 (en) | Hot-rolled steel sheet excellent in surface quality and ductile crack propagation characteristics and method for producing the same | |
JP5499731B2 (en) | Thick high-tensile hot-rolled steel sheet with excellent HIC resistance and method for producing the same | |
JP6015602B2 (en) | High toughness, high ductility, high strength hot-rolled steel sheet and method for producing the same | |
JP2007254797A (en) | Thick electric resistance welded pipe having excellent toughness in base metal part and electric resistance weld zone and its production method | |
JP2015190026A (en) | Thick high strength electroseamed steel pipe for linepipe and manufacturing method therefor | |
JP6384637B1 (en) | ERW steel pipe for coiled tubing and manufacturing method thereof | |
JP5971415B2 (en) | Manufacturing method of martensitic stainless hot-rolled steel strip for welded steel pipe for line pipe | |
JP5640777B2 (en) | Cr-containing steel pipe for line pipes with excellent intergranular stress corrosion cracking resistance in weld heat affected zone | |
JP4900260B2 (en) | Method for producing hot-rolled steel sheet having excellent ductile crack propagation characteristics and sour resistance | |
JP5224780B2 (en) | High strength stainless steel pipe | |
JPH0625746A (en) | Manufacture of high cr-containing steel pipe for oil well | |
JP3518367B2 (en) | Method for manufacturing 13Cr stainless steel plate | |
JP4193308B2 (en) | Low carbon ferrite-martensitic duplex stainless steel welded steel pipe with excellent resistance to sulfide stress cracking | |
JPH1161328A (en) | High manganese ingot, its continuous casting and manufacture of high tensile steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040119 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080206 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090206 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100206 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |