JP2000119748A - Production of 13 chromium series stainless thick steel plate - Google Patents

Production of 13 chromium series stainless thick steel plate

Info

Publication number
JP2000119748A
JP2000119748A JP10284879A JP28487998A JP2000119748A JP 2000119748 A JP2000119748 A JP 2000119748A JP 10284879 A JP10284879 A JP 10284879A JP 28487998 A JP28487998 A JP 28487998A JP 2000119748 A JP2000119748 A JP 2000119748A
Authority
JP
Japan
Prior art keywords
steel plate
cooling rate
thick steel
less
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10284879A
Other languages
Japanese (ja)
Other versions
JP3518367B2 (en
Inventor
Takahiro Kushida
隆弘 櫛田
Kunio Kondo
邦夫 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP28487998A priority Critical patent/JP3518367B2/en
Publication of JP2000119748A publication Critical patent/JP2000119748A/en
Application granted granted Critical
Publication of JP3518367B2 publication Critical patent/JP3518367B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a 13 Cr series stainless thick steel plate usable as a product as tube making-welded. SOLUTION: Hot rolling to a slab composed of steel contg., by weight, <=0.03% C, <=1% Si, <=2% Mn, 9 to 13% Cr, 1 to 7% Ni, <=0.5% Ti, <=0.1% Al, 0 to 2% Cu, 0 to 3% Mo and the balance Fe with inevitable impurities is finished at >=800 deg.C, then it is cooled in a temp. range of 800 to 600 deg.C at an average cooling rate of >=10 deg.C/s and is cooled in the temp. range of <600 deg.C at the cooling rate equal to or below that in air cooling.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、湿潤炭酸ガスを含
んだ原油や天然ガスまたはその他の流体を輸送する溶接
管の素材として用いられる13Cr系ステンレス厚鋼板
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a 13Cr stainless steel plate used as a material for welding pipes for transporting crude oil, natural gas or other fluids containing wet carbon dioxide gas.

【0002】[0002]

【従来の技術】近年、エネルギー事情の悪化にともな
い、炭酸ガスや硫化水素のような腐食性ガスを多く含む
油井や天然ガス井が開発されるようになってきた。
2. Description of the Related Art In recent years, oil wells and natural gas wells containing a large amount of corrosive gases such as carbon dioxide and hydrogen sulfide have been developed along with the deterioration of the energy situation.

【0003】湿潤炭酸ガスのみを含む環境(極微量の硫
化水素を含む場合もある)では、耐食性と材料コストの
観点から13Cr系ステンレス鋼管が広く用いられてい
る。
[0003] In an environment containing only wet carbon dioxide gas (which may contain a trace amount of hydrogen sulfide), 13Cr stainless steel pipes are widely used from the viewpoint of corrosion resistance and material cost.

【0004】油井管としては、AISI規格の420鋼
に代表される高C(0.2%)−13Cr系ステンレス
鋼が一般的であり、ラインパイプ用では、溶接施工が必
要な観点から、AISI規格の410鋼に代表される低
C(0.1%)−13Cr系ステンレス鋼が使用されて
きた。
[0004] Oil well pipes are generally made of high C (0.2%)-13Cr stainless steel typified by AISI standard 420 steel. For line pipes, AISI is required from the viewpoint that welding work is required. Low C (0.1%)-13Cr stainless steel represented by standard 410 steel has been used.

【0005】また、最近では、さらに極低C(0.03
%)で、Niを含有する改良13Cr系ステンレス鋼が
開発されている。
[0005] Recently, extremely low C (0.03
%), An improved 13Cr stainless steel containing Ni has been developed.

【0006】これらのマルテンサイト系ステンレス鋼か
らなる鋼管は、一般に、熱間継目無製管法で製造される
ことが多い。しかし、継目無鋼管は高い信頼性を評価さ
れているものの、いくつかの問題点があり、特に外径が
16インチ(426mm)以上の大径管の製造が困難と
いう問題がある。
[0006] Steel pipes made of these martensitic stainless steels are generally often manufactured by a hot seamless pipe manufacturing method. However, although seamless steel pipes have been evaluated for high reliability, they have some problems, particularly that it is difficult to manufacture large-diameter pipes having an outer diameter of 16 inches (426 mm) or more.

【0007】これらの大径管は、一般に、溶接製管法に
よって製造される。そこで、最近、13Cr系ステンレ
ス溶接鋼管の製造方法がいくつか提案されている。
[0007] These large-diameter pipes are generally manufactured by a welding pipe manufacturing method. Therefore, recently, several methods for producing a 13Cr stainless steel welded steel pipe have been proposed.

【0008】例えば、特開平4−191319号公報
(特公平7−5972号公報)には、低Cの13Cr系
ステンレス鋼からなるラインパイプの電縫溶接法による
製造方法が提案されている。また、特開平8−2068
61号公報には、レーザー溶接法を用いた13Cr系ス
テンレス鋼からなるラインパイプの製造方法が提案され
ている。
For example, Japanese Patent Application Laid-Open No. 4-191319 (Japanese Patent Publication No. 7-5972) proposes a method for manufacturing a line pipe made of low C 13Cr stainless steel by electric resistance welding. Also, JP-A-8-2068
No. 61 proposes a method for manufacturing a line pipe made of 13Cr stainless steel using a laser welding method.

【0009】ただし、電縫溶接法やレーザ溶接法、また
はTIG溶接法では、マルテンサイト系ステンレス鋼の
熱延鋼帯を素材に用いて製管するので、一般的に肉厚が
10mm以下の薄肉管しか製造できない。
However, in the electric resistance welding method, the laser welding method, or the TIG welding method, since a pipe is formed by using a hot-rolled steel strip of martensitic stainless steel as a material, a thin wall having a thickness of 10 mm or less is generally used. Only tubes can be manufactured.

【0010】さらに、継目無鋼管は、素材の鋼片(ビレ
ット)を1250℃程度の高温に加熱した後に穿孔、延
伸圧延するので、機械的性質および耐食性の観点から、
製管後の焼入れ焼戻し処理が必須である。また、上記の
薄肉溶接管においても、製管溶接後に焼入れ焼戻し処理
を施すのが望ましい。
Furthermore, since a seamless steel pipe is heated at a high temperature of about 1250 ° C. and then pierced and stretched and rolled, a seamless steel pipe is required from the viewpoint of mechanical properties and corrosion resistance.
Quenching and tempering after pipe production is essential. It is also desirable to perform quenching and tempering treatment on the thin-walled welded pipe after the pipe-forming welding.

【0011】言うまでもなく、このような焼入れ焼戻し
処理法は、強度調整が比較的容易であるという長所があ
る。しかし、製造工程が増えることになり、また、熱処
理時に生成した酸化スケールを除去する必要が生じるこ
となど、生産性の低下ひいては製造コストが嵩むという
問題が生じる。
Needless to say, such a quenching and tempering method has an advantage that strength adjustment is relatively easy. However, there are problems that the number of manufacturing steps increases and that oxide scale generated at the time of heat treatment needs to be removed, thereby lowering productivity and increasing manufacturing cost.

【0012】[0012]

【発明が解決しようとする課題】最近では、特に、天然
ガスの輸送効率を上げるために、このような13Cr系
ステンレス鋼ラインパイプの大径、厚肉化が要望されて
いる。大径化によって輸送量を増やし、厚肉化によって
操業圧力を高めることができるので、さらにガスの輸送
効率を上げることができる。
Recently, in order to increase the efficiency of transporting natural gas, there is a demand for such 13Cr stainless steel line pipes to have a large diameter and a large wall thickness. Since the transport volume can be increased by increasing the diameter, and the operating pressure can be increased by increasing the wall thickness, the gas transport efficiency can be further increased.

【0013】本発明の目的は、湿潤炭酸ガスを含んだ原
油や天然ガスまたはその他の流体を輸送する溶接管の素
材として用いられ、製管溶接のままで製品として使用で
きる13Cr系ステンレス厚鋼板の製造方法を提供する
ことにある。
An object of the present invention is to provide a 13Cr stainless steel plate which is used as a material for welded pipes for transporting crude oil, natural gas or other fluids containing wet carbon dioxide gas, and which can be used as a product as it is by pipe welding. It is to provide a manufacturing method.

【0014】なお、ここでいう厚鋼板とは、肉厚がおお
よそ1/2インチ(12.7mm)以上のものを意味す
る。
Here, the thick steel plate means a steel plate having a wall thickness of about 1/2 inch (12.7 mm) or more.

【0015】[0015]

【課題を解決するための手段】本発明の要旨は、下記の
13Cr系ステンレス厚鋼板の製造方法にある。
The gist of the present invention resides in the following method for producing a 13Cr stainless steel plate.

【0016】重量%で、C:0.03%以下、Si:1
%以下、Mn:2%以下、Cr:9〜13%、Ni:1
〜7%、Ti:0.5%以下、Al:0.1%以下、C
u:0〜2%、Mo:0〜3%を含み、残部はFeおよ
び不可避不純物の鋼からなる鋼片の熱間圧延を800℃
以上で終了した後、800〜600℃の温度域を10℃
/s以上の平均冷却速度で冷却する一方、600℃未満
の温度域を空冷以下の冷却速度で冷却する13Cr系ス
テンレス厚鋼板の製造方法。
In weight%, C: 0.03% or less, Si: 1
%, Mn: 2% or less, Cr: 9 to 13%, Ni: 1
-7%, Ti: 0.5% or less, Al: 0.1% or less, C
u: 0 to 2%, Mo: 0 to 3%, the balance being 800 ° C. by hot rolling of a slab composed of steel of Fe and unavoidable impurities.
After completing the above, the temperature range of 800 to 600 ° C. is set to 10 ° C.
A method for producing a 13Cr stainless steel plate, wherein cooling is performed at an average cooling rate of not less than / s while cooling a temperature region below 600 ° C at a cooling rate not exceeding air cooling.

【0017】上記のような厚鋼板を素材とする溶接管
は、一般的に、厚鋼板をCプレス、Uプレス、Oプレス
で管状に成形し、サブマージアーク溶接法によってシー
ム製管溶接される。この時、サブマージアーク溶接法に
よるシーム部の溶接は、内外両面ともに1層溶接される
のが一般的であるが、多層溶接されることもある。
A welded pipe made of a thick steel plate as described above is generally formed by forming a thick steel plate into a tubular shape by a C press, a U press, and an O press, and then welding the pipe by a seamer by a submerged arc welding method. At this time, in the seam welding by the submerged arc welding method, it is general that both inner and outer surfaces are welded by one layer, but sometimes they are welded by multiple layers.

【0018】なお、管状への成形法にはロールベンダー
が、また溶接法にはレーザ溶接法やTIG溶接法が用い
られる場合もある。
In some cases, a roll bender is used for forming a tube, and a laser welding method or a TIG welding method is used for a welding method.

【0019】上記のような工程を経て製造されるいわゆ
るUO管は、一般的に、外径が20〜24インチ(50
8〜609.6mm)以上であり、このような大径厚肉
管の管全体を一気に焼入れ焼戻し処理することは設備的
に極めて難しく、仮に行う場合には設備費が嵩んで極め
て高コストになる。したがって、製管溶接したままで使
用できるような素材の厚鋼板が必要になる。
The so-called UO pipe manufactured through the above-described steps generally has an outer diameter of 20 to 24 inches (50 inches).
8 to 609.6 mm) or more, and it is extremely difficult to quench and temper the entirety of such a large-diameter thick-walled pipe at a stretch, and if it is performed, the equipment cost increases and the cost becomes extremely high. . Therefore, it is necessary to use a thick steel plate made of a material that can be used as it is after pipe welding.

【0020】また、厚鋼板自体も、肉厚がおおよそ1/
2インチ(12.7mm)以上、幅がおおよそ63イン
チ以上、長さがおおよそ25〜26m程度と長尺であ
る。したがって、厚鋼板においても、圧延後の焼入れ処
理はもちろん、焼戻し処理も困難であるので、このよう
な圧延後の熱処理なしで製管溶接に供することができる
厚鋼板が必要になる。
The thickness of the thick steel plate itself is also approximately 1 /
It is as long as 2 inches (12.7 mm) or more, about 63 inches or more in width, and about 25 to 26 m in length. Therefore, it is difficult to perform tempering as well as quenching after rolling of thick steel plates. Therefore, a thick steel plate that can be used for pipe welding without such heat treatment after rolling is required.

【0021】一方、圧延後の熱処理を省略する場合、圧
延ままで機械的性質および耐食性を満足することはもち
ろん、厚鋼板での水素割れを避けねばならない。しか
し、本発明で対象とする13Cr系ステンレス鋼は、一
般にX80(単位はksiで、56kgf/mm2 )以
上の高強度のマルテンサイト組織であり、厚鋼板の水素
割れ感受性が高い。
On the other hand, when the heat treatment after the rolling is omitted, not only the mechanical properties and the corrosion resistance are satisfied as-rolled, but also hydrogen cracking in the thick steel plate must be avoided. However, the 13Cr stainless steel targeted in the present invention generally has a high-strength martensite structure of X80 (unit: ksi, 56 kgf / mm 2 ) or more, and the steel plate has high susceptibility to hydrogen cracking.

【0022】なお、電縫製管法やレーザ製管法に供する
熱延鋼帯では、巻取り後の冷却速度が1℃/s以下と極
めて遅く、室温に冷えるまでの間に水素が抜けてしまう
ので、水素割れの心配はない。
In the case of the hot rolled steel strip used in the ERW or laser pipe forming method, the cooling rate after winding is extremely low at 1 ° C./s or less, and hydrogen escapes before cooling to room temperature. So there is no worry about hydrogen cracking.

【0023】このように、水素割れは、厚鋼板に特有の
問題である。13Cr系ステンレス鋼の厚鋼板で、圧延
のままで機械的性質および耐食性を満足させ、かつ、厚
鋼板での水素割れを防止する方法は、これまで知られて
いなかった。
As described above, hydrogen cracking is a problem specific to thick steel plates. A method of satisfying mechanical properties and corrosion resistance of 13Cr stainless steel plate as rolled as it is, and preventing hydrogen cracking in the plate has not been known.

【0024】厚鋼板の水素割れを引き起こす水素は、溶
解原料に含有または付着していた水分が熱分解して発生
したものである。溶鋼に固溶した水素が、スラブやビレ
ットでポロシティーなどにガスとしてトラップされ、加
熱圧延工程でポロシティーが圧着する際に、再度鋼中に
固溶して製品まで残留したものである。
Hydrogen which causes hydrogen cracking of a thick steel plate is generated by thermal decomposition of water contained or adhered to a molten raw material. Hydrogen dissolved in the molten steel is trapped as a gas in porosity or the like by a slab or billet, and when the porosity is press-bonded in the heating and rolling step, it is dissolved again in the steel and remains in the product.

【0025】したがって、スラブあるいはビレットの段
階で、脱水素すればその問題は生じないわけであるが、
極めて厚肉の鋼片では、その肉厚中心部の脱水素を完了
するのに従来から知られている方法では数時間〜数日を
要するので、非効率的である。
Therefore, the problem does not occur if dehydrogenation is performed at the slab or billet stage.
In the case of extremely thick steel slabs, it is inefficient because conventionally known methods require several hours to several days to complete dehydrogenation of the central part of the thickness.

【0026】そこで、本発明者らは、厚鋼板に発生する
水素割れ挙動を解明すべく、組織的な検討と以下に述べ
る実験を行い、次のことを知見した。
The present inventors have conducted a systematic study and conducted the experiments described below in order to elucidate the behavior of hydrogen cracking occurring in a thick steel plate, and have found the following.

【0027】焼入れ焼戻しのような熱処理を施さない厚
鋼板における水素割れは、板厚中心部に発生し、主とし
て圧延面に平行に伝播している。その形態は、旧オース
テナイト粒界の破壊であり、破面には、粗大な炭化物が
析出していることが確認された。これらの水素割れが発
生した鋼板の健全部から腐食試験片を採取し、微量(1
00ppm:0.03atmに相当)のH2S を含む環
境で硫化物応力割れ(以下、SSCと称す)試験を実施
すると、やはり、板厚中心部に同様の割れ形態を呈する
ことが確認された。
Hydrogen cracking in a thick steel plate that is not subjected to heat treatment such as quenching and tempering occurs at the center of the thickness and propagates mainly parallel to the rolling surface. The morphology was a fracture of the former austenite grain boundary, and it was confirmed that coarse carbides were precipitated on the fracture surface. Corrosion test specimens were collected from a healthy part of the steel sheet where hydrogen cracking occurred, and a small amount (1
When a sulfide stress cracking (hereinafter, referred to as SSC) test was performed in an environment containing H 2 S (00 ppm: equivalent to 0.03 atm), it was confirmed that a similar cracking morphology was also exhibited at the center of the sheet thickness. .

【0028】厚鋼板で板厚中心部に水素割れが発生する
のは、その部分の残留水素濃度が最も高いからであり、
残留水素濃度を下げるためにはスラブで脱水素しなけれ
ばならない。
The reason why hydrogen cracking occurs at the center of the thickness of a thick steel plate is that the residual hydrogen concentration in that portion is the highest.
To reduce the residual hydrogen concentration, dehydrogenation must be performed with a slab.

【0029】これに対して、本発明者らは、他の水素割
れ防止対策として、割れが圧延面に平行に伸びた旧オー
ステナイト粒界に沿って割れていることから旧オーステ
ナイト粒を扁平粒にしなければよいこと、および粒界に
析出した炭化物の周囲に水素ガスが溜まって割れたと考
えられることから炭化物の粒界への析出を抑制すればよ
いと考えた。
On the other hand, as another measure for preventing hydrogen cracking, the present inventors made the old austenite grains flat because the cracks were cracked along the old austenite grain boundaries extending parallel to the rolling surface. It is considered that it is necessary to suppress the precipitation of carbides at the grain boundaries, since it is considered that hydrogen gas accumulates around the carbides precipitated at the grain boundaries and cracks occur.

【0030】そこで、旧オーステナイト粒は、仕上温度
が低いほど扁平になるので、仕上温度の及ぼす影響と、
粗大な炭化物の粒界析出には高温での滞留時間が影響し
ているので、炭化物の析出に及ぼす圧延後に施す水冷の
影響について調査した。その結果、次のことがわかっ
た。
Therefore, the prior austenite grains become flatter as the finishing temperature is lower.
Since the residence time at high temperature affects grain boundary precipitation of coarse carbides, the effect of water cooling applied after rolling on carbide precipitation was investigated. As a result, the following was found.

【0031】800℃未満で圧延を終了すると、粒の扁
平化が著しく、その場合には、圧延後、600℃までの
温度域を10℃/s以上の平均冷却速度で冷却しても、
粒界にわずかに析出した炭化物によって水素割れが発生
し、耐SSC性が劣化する。
When the rolling is completed at a temperature lower than 800 ° C., the grains become significantly flattened. In this case, even if the temperature range up to 600 ° C. after the rolling is cooled at an average cooling rate of 10 ° C./s or more,
Hydrogen cracking occurs due to carbides slightly precipitated at the grain boundaries, deteriorating SSC resistance.

【0032】また、800℃以上で圧延を終了しても、
その後に600℃未満まで10℃/s以上の平均冷却速
度で冷却すると、粒界への粗大な炭化物析出が抑制され
て耐SSC性は良好であるが、高温域での脱水素が不足
し、水素割れが発生する。
Further, even if the rolling is completed at 800 ° C. or more,
Thereafter, when cooled to a temperature lower than 600 ° C. at an average cooling rate of 10 ° C./s or more, coarse carbide precipitation at the grain boundaries is suppressed and the SSC resistance is good, but dehydrogenation in a high temperature region is insufficient, Hydrogen cracking occurs.

【0033】これに対し、800℃以上で圧延を終了す
ると、粒の扁平化が大幅に抑制される。また、この圧延
終了後、800〜600℃の温度域を10℃/s以上の
平均冷却速度で冷却し、次いで600℃未満の温度域を
空冷以下の冷却速度で冷却すると、粒界への粗大な炭化
物の析出が大幅に抑制されるとともに、高温域での脱水
素が促進され、水素割れの発生がなく、良好な耐SSC
性が確保される。
On the other hand, when the rolling is completed at 800 ° C. or higher, the flattening of the grains is greatly suppressed. After the completion of the rolling, the temperature range of 800 to 600 ° C. is cooled at an average cooling rate of 10 ° C./s or more, and then the temperature range of less than 600 ° C. is cooled at a cooling rate of air cooling or less. Precipitation of various carbides is greatly suppressed, dehydrogenation in a high temperature range is promoted, no hydrogen cracking occurs, and good SSC resistance
Nature is secured.

【0034】すなわち、圧延前の素材(スラブ)の段階
で、長時間の脱水素処理を施すのではなく、800℃以
上で熱間圧延を終了し、800〜600℃の温度域を1
0℃/s以上の平均冷却速度で冷却した後、600℃未
満の温度域を空冷以下の冷却速度で冷却するという短時
間の処理によって脱水素が行われ、水素割れが発生せ
ず、良好な耐SSC性を備えた厚鋼板が得られ、これを
素材とする溶接鋼管は、製管溶接のままで製品として用
いても何らの問題もないことを知見した。
That is, at the stage of the raw material (slab) before rolling, rather than performing a long-term dehydrogenation treatment, the hot rolling is completed at 800 ° C. or more, and the temperature range of 800 to 600 ° C.
After cooling at an average cooling rate of 0 ° C./s or more, dehydrogenation is performed by a short-time treatment of cooling a temperature range of less than 600 ° C. at a cooling rate of air cooling or less. A thick steel plate having SSC resistance was obtained, and it was found that a welded steel pipe using this as a raw material had no problem even if it was used as a product as it was in pipe welding.

【0035】[0035]

【発明の実施の形態】以下、本発明の方法について詳細
に説明する。なお、以下において、「%」は特に断らな
い限り「重量%」を意味する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The method of the present invention will be described below in detail. In the following, “%” means “% by weight” unless otherwise specified.

【0036】《素材鋼の化学組成》 C:C含有量が0.03%を超えると、Cr炭化物の析
出による耐炭酸ガス腐食性の劣化が起こるだけでなく、
水素割れの起点となる炭化物が粒界に析出しやすくな
る。また、溶接部の硬度上昇を招いて耐SSC性が劣化
する。したがって、C含有量の上限は0.03%と定め
た。望ましい上限は0.02%である。
<< Chemical Composition of Material Steel >> C: When the C content exceeds 0.03%, not only deterioration of carbon dioxide corrosion resistance due to precipitation of Cr carbide occurs, but also
Carbide, which is a starting point of hydrogen cracking, tends to precipitate at the grain boundary. Further, the hardness of the welded portion is increased, and the SSC resistance is deteriorated. Therefore, the upper limit of the C content is set to 0.03%. A desirable upper limit is 0.02%.

【0037】なお、Cは耐食性の確保と溶接部の硬度上
昇を抑制する観点からは低ければ低いほど好ましく、工
業的に可能な0.005%程度にまで低くしてもよいの
で、その下限値を定める必要はない。
C is preferably as low as possible from the viewpoint of securing corrosion resistance and suppressing an increase in the hardness of the welded portion. The lower limit of C may be as low as about 0.005%, which is industrially possible. There is no need to specify.

【0038】Si:Siは鋼の脱酸のために添加する元
素であるが、その含有量が1%を超えると鋼の清浄性と
靱性が低下する。このため、Si含有量の上限は1%と
定めた。望ましい上限は0.5%である。
Si: Si is an element added for deoxidizing steel, but if its content exceeds 1%, the cleanliness and toughness of steel decrease. For this reason, the upper limit of the Si content is set to 1%. A desirable upper limit is 0.5%.

【0039】なお、十分な脱酸効果を得るためには、そ
の含有量を0.05%以上とするのが好ましいが、他の
元素(後述のAl)によって十分な脱酸がなされる場
合、Siは必ずしも含有させなくてもよい。
In order to obtain a sufficient deoxidizing effect, the content is preferably set to 0.05% or more. However, when sufficient deoxidation is performed by another element (Al described later), Si does not necessarily have to be contained.

【0040】Mn:Mnは本発明が対象とするC含有量
0.03%以下の低C−13Cr系ステンレス鋼におい
て安定なマルテンサイト相を得るのに有効であるが、そ
の含有量が2%を超えると耐食性が悪化する。このた
め、Mn含有量の上限は2%と定めた。望ましい上限は
1%である。
Mn: Mn is effective for obtaining a stable martensite phase in a low C-13Cr stainless steel having a C content of 0.03% or less, which is a target of the present invention. If it exceeds, the corrosion resistance deteriorates. For this reason, the upper limit of the Mn content is set to 2%. A desirable upper limit is 1%.

【0041】なお、Mnは耐食性の観点からは低ければ
低いほど好ましいので、その下限値は特に定める必要は
ない。しかし、その含有量を過剰に低くしすぎると、マ
ルテンサイト相を得るのに高価なNi含有量を高める必
要が生じてコスト上昇を招くので、0.3〜0.5%程
度以上含有させるのが好ましい。
Since Mn is preferably as low as possible from the viewpoint of corrosion resistance, its lower limit does not need to be particularly defined. However, if the content is excessively low, it is necessary to increase the expensive Ni content in order to obtain a martensite phase, resulting in an increase in cost. Is preferred.

【0042】Cr:Cr含有量が9%未満では、母材部
を含めてその鋼表面に充分な耐食性能を有する耐食性皮
膜が形成されないために、ラインパイプ用鋼管として炭
酸ガスや硫化水素を含む環境中で使用した場合、必要な
耐食性が確保できない。逆に、Cr含有量が13%を超
えると、耐食性に及ぼす効果が飽和するばかりか、オー
ステナイト相を安定化させ、引いてはマルテンサイト相
を生成させやすくする元素である高価なNiなどの合金
元素の添加量を増やす必要があり、素材コストの上昇を
招いて経済性が損なわれる。このため、Cr含有量は9
〜13%と定めた。望ましい範囲は10〜13%であ
る。
Cr: If the Cr content is less than 9%, a corrosion-resistant film having sufficient corrosion resistance is not formed on the surface of the steel including the base material, so that the pipe for line pipe contains carbon dioxide gas or hydrogen sulfide. When used in the environment, the required corrosion resistance cannot be secured. Conversely, if the Cr content exceeds 13%, not only the effect on corrosion resistance is saturated, but also an expensive alloy such as Ni, which is an element that stabilizes the austenite phase and thus facilitates the formation of the martensite phase. It is necessary to increase the amount of the element to be added, which leads to an increase in material cost and impairs economic efficiency. Therefore, the Cr content is 9
1313%. A desirable range is 10 to 13%.

【0043】Ni:Ni含有量が1%未満では、マルテ
ンサイト相を安定かつ容易に確保するのが困難になるだ
けでなく、特にラインパイプ用鋼管として微量の硫化水
素を含む環境中で使用した場合、耐食性能を有する耐食
性皮膜が生成形成されないために、必要な耐食性が確保
できなくなる。逆に、Ni含有量が7%を超えると、組
織の安定性と耐食性に及ぼす効果が飽和するばかりか、
素材コストの上昇を招いて経済性が損なわれる。したが
って、Ni含有量は1〜7%と定めた。望ましい範囲は
2〜7%である。
Ni: If the Ni content is less than 1%, not only is it difficult to stably and easily secure a martensitic phase, but it is particularly used as a steel pipe for line pipe in an environment containing a trace amount of hydrogen sulfide. In this case, since a corrosion-resistant film having corrosion resistance is not formed, the required corrosion resistance cannot be secured. Conversely, if the Ni content exceeds 7%, the effect on the stability and corrosion resistance of the structure is saturated,
This raises the cost of raw materials and impairs economic efficiency. Therefore, the Ni content was determined to be 1 to 7%. A desirable range is 2 to 7%.

【0044】Al:Alは鋼の脱酸のために添加する元
素であるが、0.1%を超えて含有させると清浄性と靱
性が低下する。このため、Al含有量の上限は0.1%
と定めた。望ましい上限は0.06%である。
Al: Al is an element added for deoxidizing steel, but if it is contained in excess of 0.1%, cleanliness and toughness are reduced. For this reason, the upper limit of the Al content is 0.1%.
It was decided. A desirable upper limit is 0.06%.

【0045】なお、十分な脱酸効果を得るためには、そ
の含有量を0.01%以上とするのが好ましいが、他の
元素(前述のSi)によって十分な脱酸がなされる場
合、Alは必ずしも含有させなくてもよい。
In order to obtain a sufficient deoxidizing effect, the content is preferably set to 0.01% or more. However, when the content is sufficiently deoxidized by another element (Si described above), Al does not always have to be contained.

【0046】Ti:TiはCを固定し、粗大な炭化物の
粒界析出を抑制する作用を有するが、0.5%を超えて
含有させるとその効果が飽和するばかりか、熱間加工性
と靱性が劣化する。したがって、Ti含有量の上限は
0.5%と定めた。望ましい上限は0.2%である。
Ti: Ti has the effect of fixing C and suppressing the precipitation of coarse carbides at the grain boundary. However, if the content exceeds 0.5%, not only the effect is saturated, but also the hot workability and The toughness deteriorates. Therefore, the upper limit of the Ti content is set to 0.5%. A desirable upper limit is 0.2%.

【0047】なお、Ti含有量の下限値は特に定めない
が、Cのほぼ全量をTiCとして固定するためにはC含
有量の4倍以上を含有させるのが好ましい。
Although the lower limit of the Ti content is not particularly defined, it is preferable that the content of C is at least four times the C content in order to fix almost all of C as TiC.

【0048】Cu、Mo:これらの元素は添加しなくて
もよい。添加すれば耐食性、特に耐局部腐食性と耐SS
C性を高める効果がある。このため、その効果を得たい
場合に添加するが、Cuについては0.3%以上、Mo
については0.5%以上でその効果が顕著になる。しか
し、2%超のCu添加はその効果が飽和するばかりか熱
間加工性と溶接性の劣化を招く。また、3%超のMo添
加はその効果が飽和するばかりか、上記のCrと同様
に、フェライト相の安定化元素であるので、オーステナ
イト相を安定化させ、引いてはマルテンサイト相を生成
させやすくする元素である高価なNiなどの合金元素の
含有量を増やす必要があり、素材コストの上昇を招く。
したがって、添加する場合のCuとMoの含有量は、そ
れぞれ0.3〜2%、0.5〜3%とするのが好まし
い。
Cu, Mo: These elements need not be added. If added, corrosion resistance, especially local corrosion resistance and SS resistance
This has the effect of increasing the C property. Therefore, it is added when it is desired to obtain the effect.
The effect becomes significant at 0.5% or more. However, the addition of Cu exceeding 2% not only saturates the effect but also causes deterioration of hot workability and weldability. Further, the addition of Mo in excess of 3% not only saturates the effect, but also stabilizes the austenite phase and consequently forms the martensite phase because it is a stabilizing element of the ferrite phase like Cr. It is necessary to increase the content of expensive alloying elements such as Ni, which is an element that facilitates this, and this leads to an increase in material costs.
Therefore, the contents of Cu and Mo when added are preferably 0.3 to 2% and 0.5 to 3%, respectively.

【0049】P、S、N、O(酸素):これらの元素
は、いずれも鋼中に含まれる不可避不純物であり、その
含有量は低ければ低いほど好ましい。
P, S, N, O (oxygen): These elements are all unavoidable impurities contained in steel, and the lower the content, the better.

【0050】《製造方法》 素材鋼片の加熱:圧延に供される素材鋼片の温度は、次
に述べる圧延が可能な温度であればよい。
<< Manufacturing Method >> Heating of the raw steel slab: The temperature of the raw steel slab to be rolled may be any temperature at which the following rolling is possible.

【0051】仕上圧延温度:800℃を下回ると、未再
結晶温度域であるため、粒が著しく扁平化して、水素割
れ感受性が高くなり、極低CでTi添加の鋼でも水素割
れが発生するのを防止できない。望ましい仕上圧延温度
の下限は900℃である。このような高温仕上で、L方
向(圧延方向)とC方向(圧延方向と直交する方向)の
機械的性質に異方性のない、溶接管用の素材として好適
な厚鋼板を製造することができる。
When the finishing rolling temperature is lower than 800 ° C., since the temperature is in the non-recrystallization temperature range, the grains are remarkably flattened and the susceptibility to hydrogen cracking increases, and hydrogen cracking occurs even in extremely low C steel with Ti addition. Can not be prevented. A desirable lower limit of the finish rolling temperature is 900 ° C. With such a high-temperature finish, it is possible to produce a thick steel sheet suitable for a material for a welded pipe, having no anisotropy in mechanical properties in the L direction (rolling direction) and the C direction (direction perpendicular to the rolling direction). .

【0052】800〜600℃の平均冷却速度:圧延終
了後、800〜600℃の温度域を10℃/s以上の平
均冷却速度で冷却する必要がある。これは、前述したよ
うに、800〜600℃の温度域を10℃/s未満の平
均冷却速度で冷却したのでは、水素割れの起点となって
割れの伝播を加速する粗大な炭化物が粒界に析出するの
を抑制できなくなるためである。望ましい平均冷却速度
の下限は15℃/sである。
Average cooling rate of 800 to 600 ° C .: After rolling, it is necessary to cool the temperature range of 800 to 600 ° C. at an average cooling rate of 10 ° C./s or more. This is because, as described above, when the temperature range of 800 to 600 ° C. is cooled at an average cooling rate of less than 10 ° C./s, coarse carbides which serve as starting points of hydrogen cracking and accelerate the propagation of cracks are formed at grain boundaries. This is because it becomes impossible to suppress the precipitation on the surface. A desirable lower limit of the average cooling rate is 15 ° C./s.

【0053】なお、平均冷却速度は、速ければ速いほど
よい。このため、その上限は特に定める必要はない。ま
た、冷却の方法は、気水(ミスト)冷却またはシャワー
水冷とすればよい。
The faster the average cooling rate is, the better. For this reason, the upper limit does not need to be specified. The cooling method may be air-water (mist) cooling or shower water cooling.

【0054】600℃未満の冷却速度:600℃未満の
温度域まで上記10℃/s以上の平均冷却速度で冷却す
ると、高温域での脱水素が不十分となり、たとえ粗大な
炭化物が粒界に析出するのを抑制できたとしても、水素
割れが発生するようになる。このため、600℃未満の
温度域の冷却速度は空冷以下の遅い速度と定めた。
Cooling rate of less than 600 ° C .: When cooling to a temperature range of less than 600 ° C. at the above average cooling rate of 10 ° C./s or more, dehydrogenation in a high temperature range becomes insufficient, and even if coarse carbides Even if the precipitation can be suppressed, hydrogen cracking occurs. For this reason, the cooling rate in the temperature range below 600 ° C. is set to a slow rate equal to or lower than air cooling.

【0055】なお、空冷よりも遅い冷却速度は、例えば
圧延後の鋼板が冷えきらない間に2枚重ねにする方法に
より実現可能であり、この方法が最も簡単である。
The cooling rate slower than the air cooling can be realized, for example, by a method of stacking two sheets while the rolled steel sheet is not completely cooled, and this method is the simplest.

【0056】[0056]

【実施例】表1に示す化学組成を有する11種類の鋼を
溶製し、厚さ300mm、幅2300mmの素材鋼片
(スラブ)を準備し、その肉厚方向の中央部から厚さ1
50mm、幅120mm、長さ100mmの圧延用素材
を切り出した。
EXAMPLES 11 types of steels having the chemical compositions shown in Table 1 were melted, and raw material slabs (slabs) having a thickness of 300 mm and a width of 2300 mm were prepared.
A rolling material having a size of 50 mm, a width of 120 mm and a length of 100 mm was cut out.

【0057】[0057]

【表1】 [Table 1]

【0058】各圧延用素材は、表2に示す種々の条件で
熱間圧延するとともに冷却し、厚さ25.4mmの厚鋼
板を得た。
Each rolling material was hot-rolled and cooled under various conditions shown in Table 2 to obtain a thick steel plate having a thickness of 25.4 mm.

【0059】[0059]

【表2】 [Table 2]

【0060】そして、製造後、室温に48時間放置した
後の各厚鋼板から、一辺が100mmの正方形の全厚
(ただし、表面スケールは研削で除去)の試験片を採取
し、超音波探傷によるCスキャン法にて水素割れの発生
の有無を調べた。評価は、割れが検出されなかったもの
を合格(○)、一部でも割れが検出されたものを不合格
(×)とした。
After the production, the test piece having a total thickness of 100 mm on a side (however, the surface scale is removed by grinding) is sampled from each thick steel plate left at room temperature for 48 hours and subjected to ultrasonic flaw detection. The presence or absence of hydrogen cracking was examined by the C-scan method. In the evaluation, those in which cracks were not detected were passed (O), and those in which cracks were detected in some portions were rejected (X).

【0061】また、室温に48時間放置した後の各厚鋼
板のC方向(圧延方向と直交する方向)から、厚さ2m
m、幅10mm、長さ75mmのノッチ無しの応力腐食
試験片を採取した。得られた応力腐食試験片は、図1に
示す4点曲げ付与治具にセットし、素材厚鋼板の降伏応
力の100%の応力を付加した後、液温25℃の下記
またはの腐食環境下に336時間浸漬して耐SSC性
を調べた。評価は、SSCが発生しなかったものを合格
(○)、SSCが発生したものを不合格(×)とした。
The thickness of each steel plate after being left at room temperature for 48 hours is 2 m in thickness from the C direction (direction perpendicular to the rolling direction).
A notch-free stress corrosion test specimen having a length of m, a width of 10 mm, and a length of 75 mm was collected. The obtained stress corrosion test piece was set in a four-point bending jig shown in FIG. 1 and a stress of 100% of the yield stress of the thick steel plate was applied. Was immersed for 336 hours to examine the SSC resistance. In the evaluation, those in which SSC did not occur were evaluated as pass (○), and those in which SSC occurred were evaluated as unacceptable (x).

【0062】腐食環境: 0.003atmH2S−30atmCO2−5%Na
Cl水溶液、 0.03atmH2S−30atmCO2−5%NaC
l水溶液。
Corrosion environment: 0.003 atm H 2 S-30 atm CO 2 -5% Na
Cl solution, 0.03atmH 2 S-30atmCO 2 -5 % NaC
1 aqueous solution.

【0063】なお、腐食環境下を上記のとの2通り
でおこなったのは、Cuまたは/およびMoを添加した
鋼と添加しなかった鋼では耐SSC性が異なるためであ
る。これらの調査結果を、表2に併せて示した。
The reason why the corrosion environment was performed in the above two cases is that the steel to which Cu and / or Mo was added and the steel to which Cu was not added had different SSC resistances. The results of these investigations are also shown in Table 2.

【0064】表2に示す結果からわかるように、本発明
の方法にしたがって製造された厚鋼板(試番4〜6、
9、10、16、17、20および24〜28)は、い
ずれも水素割れは発生しておらず、耐SSC性も良好で
あった。
As can be seen from the results shown in Table 2, thick steel plates manufactured according to the method of the present invention (test numbers 4 to 6;
9, 10, 16, 17, 20, and 24 to 28) did not have any hydrogen cracks and had good SSC resistance.

【0065】これに対し、鋼の化学組成、仕上げ温度、
800〜600℃間の平均冷却速度、平均冷却速度10
℃/s以上での冷却の停止温度および600℃未満の冷
却速度のいずれかが本発明で規定する範囲から外れる方
法で製造された比較例の厚鋼板(試番1〜3、7、8、
11〜15、18、19および21〜23)は、いずれ
も水素割れが発生し、平均冷却速度10℃/s以上での
冷却の停止温度が600℃未満のものを除いて耐SSC
性も不芳であった。
On the other hand, the chemical composition of steel, the finishing temperature,
Average cooling rate between 800 and 600 ° C, average cooling rate 10
A steel plate of a comparative example manufactured by a method in which one of the cooling stop temperature at a temperature of at least ° C / s and the cooling rate at a temperature of less than 600 ° C is out of the range specified in the present invention (sample numbers 1 to 3, 7, 8,
Nos. 11 to 15, 18, 19 and 21 to 23) are all SSC-resistant except for those in which hydrogen cracking occurs and the cooling stop temperature at an average cooling rate of 10 ° C./s or higher is lower than 600 ° C.
The sex was also bad.

【0066】具体的に説明すると、試番1〜3、8、1
5および19は、800〜600℃間の平均冷却速度が
10℃/s未満であるために、水素割れが発生し、耐S
SC性も不芳であった。試番7は、仕上げ温度が800
℃未満であるために、水素割れを発生し、耐SSC性も
不芳であった。
More specifically, test numbers 1-3, 8, 1
In Nos. 5 and 19, since the average cooling rate between 800 and 600 ° C. was less than 10 ° C./s, hydrogen cracking occurred and S
SC property was also unsatisfactory. Test number 7 is when the finishing temperature is 800
Since the temperature was lower than ℃, hydrogen cracking occurred and the SSC resistance was poor.

【0067】試番11は、平均冷却速度10℃/s以上
での冷却の停止温度が600℃未満であるために、水素
割れが発生した。なお、この試番11の厚鋼板の健全部
(水素割れが発生していない部分)から採取した試験片
の耐SSC性は良好であった。
In Test No. 11, hydrogen cracking occurred because the cooling stop temperature at an average cooling rate of 10 ° C./s or more was lower than 600 ° C. In addition, the SSC resistance of the test piece taken from the sound part (the part where hydrogen cracking did not occur) of the thick steel plate of Test No. 11 was good.

【0068】試番12と13は、C含有量が高すぎるた
めに、水素割れが発生し、耐SSC性も不芳であった。
試番22と23は、Tiが添加されていないために、水
素割れが発生し、耐SSC性も不芳であった。
In Test Nos. 12 and 13, since the C content was too high, hydrogen cracking occurred and the SSC resistance was poor.
In Test Nos. 22 and 23, hydrogen cracking occurred and SSC resistance was poor because Ti was not added.

【0069】また、スラブの段階で500℃に24時間
均熱保持する脱水素処理を施した参考例(試番29)
は、600℃未満まで平均冷却速度10℃/s以上で冷
却しても、水素割れは発生せず、耐SSC性も良好あっ
たが、この方法は製造コストが嵩む。
Reference Example (Trial No. 29) in which a dehydrogenation treatment in which the slab was kept at 500 ° C. for 24 hours at the slab stage was performed.
Although hydrogen cracking did not occur and the SSC resistance was good even when cooled at an average cooling rate of 10 ° C./s or more to less than 600 ° C., the production cost increased with this method.

【0070】[0070]

【発明の効果】本発明の方法によれば、湿潤炭酸ガスを
含む原油や天然ガスまたはその他の流体を輸送するライ
ンパイプの素材として好適な、耐食性に優れる13Cr
系ステンレス厚鋼板を安価に製造することができる。ま
た、この厚鋼板を素材にしてラインパイプ用の溶接鋼管
を製造する場合には、溶接製管のままで必要な特性を有
しているので、焼入れ焼戻し処理を施さずにそのまま製
品として出荷できる。
According to the method of the present invention, 13Cr having excellent corrosion resistance is suitable as a material for line pipes for transporting crude oil, natural gas or other fluids containing wet carbon dioxide.
Series stainless steel plate can be manufactured at low cost. In addition, when manufacturing a welded steel pipe for a line pipe using this thick steel plate as a material, since it has the necessary characteristics as it is, it can be shipped as a product without quenching and tempering treatment. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】応力腐食割れ試験片の4点曲げ付与治具に対す
るセット状態を示す図である。
FIG. 1 is a view showing a set state of a stress corrosion cracking test piece on a four-point bending jig.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K032 AA01 AA04 AA12 AA13 AA14 AA15 AA16 AA19 AA20 AA21 AA24 AA26 AA31 AA35 BA01 CA02 CB02 CC03 CC04 CD03 CD05 4K043 AA01 AB01 AB03 AB11 AB12 AB13 AB14 AB15 AB18 AB19 AB22 AB25 AB26 AB27 AB29 BA03 BA04 EA01 FA03 FA13 ────────────────────────────────────────────────── ─── Continued on the front page F term (reference) 4K032 AA01 AA04 AA12 AA13 AA14 AA15 AA16 AA19 AA20 AA21 AA24 AA26 AA31 AA35 BA01 CA02 CB02 CC03 CC04 CD03 CD05 4K043 AA01 AB01 AB03 AB11 AB12 AB13 AB19 AB18 BA03 BA04 EA01 FA03 FA13

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】重量%で、C:0.03%以下、Si:1
%以下、Mn:2%以下、Cr:9〜13%、Ni:1
〜7%、Ti:0.5%以下、Al:0.1%以下、C
u:0〜2%、Mo:0〜3%を含み、残部はFeおよ
び不可避不純物の鋼からなる鋼片の熱間圧延を800℃
以上で終了した後、800〜600℃の温度域を10℃
/s以上の平均冷却速度で冷却し、600℃未満の温度
域を空冷以下の冷却速度で冷却することを特徴とする1
3Cr系ステンレス厚鋼板の製造方法。
1. In weight%, C: 0.03% or less, Si: 1
%, Mn: 2% or less, Cr: 9 to 13%, Ni: 1
-7%, Ti: 0.5% or less, Al: 0.1% or less, C
u: 0 to 2%, Mo: 0 to 3%, the balance being 800 ° C. by hot rolling of a slab composed of steel of Fe and unavoidable impurities.
After completing the above, the temperature range of 800 to 600 ° C. is set to 10 ° C.
/ S is cooled at an average cooling rate of not less than 600 ° C., and a temperature range below 600 ° C. is cooled at a cooling rate of not more than air cooling.
A method for producing a 3Cr stainless steel plate.
JP28487998A 1998-10-07 1998-10-07 Method for manufacturing 13Cr stainless steel plate Expired - Fee Related JP3518367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28487998A JP3518367B2 (en) 1998-10-07 1998-10-07 Method for manufacturing 13Cr stainless steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28487998A JP3518367B2 (en) 1998-10-07 1998-10-07 Method for manufacturing 13Cr stainless steel plate

Publications (2)

Publication Number Publication Date
JP2000119748A true JP2000119748A (en) 2000-04-25
JP3518367B2 JP3518367B2 (en) 2004-04-12

Family

ID=17684228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28487998A Expired - Fee Related JP3518367B2 (en) 1998-10-07 1998-10-07 Method for manufacturing 13Cr stainless steel plate

Country Status (1)

Country Link
JP (1) JP3518367B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009120954A (en) * 2008-12-19 2009-06-04 Sumitomo Metal Ind Ltd Martensitic stainless steel and manufacturing method therefor
US7662244B2 (en) 2001-10-19 2010-02-16 Sumitomo Metal Industries, Ltd. Martensitic stainless steel and method for manufacturing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7662244B2 (en) 2001-10-19 2010-02-16 Sumitomo Metal Industries, Ltd. Martensitic stainless steel and method for manufacturing same
JP2009120954A (en) * 2008-12-19 2009-06-04 Sumitomo Metal Ind Ltd Martensitic stainless steel and manufacturing method therefor

Also Published As

Publication number Publication date
JP3518367B2 (en) 2004-04-12

Similar Documents

Publication Publication Date Title
EP2837708B1 (en) High-strength thick-walled electric-resistance-welded steel pipe having excellent low-temperature toughness, and method for manufacturing same
JP6047947B2 (en) Thick high-strength seamless steel pipe for line pipes with excellent sour resistance and method for producing the same
JP5499733B2 (en) Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same
JP6358411B1 (en) Duplex stainless steel and manufacturing method thereof
JP5737952B2 (en) Nb-containing ferritic stainless steel hot rolled coil and manufacturing method
JP4905240B2 (en) Manufacturing method of hot-rolled steel sheet with excellent surface quality, fracture toughness and sour resistance
JP2007254797A (en) Thick electric resistance welded pipe having excellent toughness in base metal part and electric resistance weld zone and its production method
JP2015190026A (en) Thick high strength electroseamed steel pipe for linepipe and manufacturing method therefor
KR20210050548A (en) High-strength steel pipe using high-strength steel plate for sour-resistant line pipe and its manufacturing method, and high-strength steel plate for sour-resistant line pipe
JP2012241270A (en) High strength sour-resistant linepipe superior in collapse resistance and method for producing the same
JP2001279392A (en) Martensitic stainless steel and its production method
CA3048164A1 (en) Electric resistance welded steel tube for coiled tubing and method for manufacturing the same
JP5971415B2 (en) Manufacturing method of martensitic stainless hot-rolled steel strip for welded steel pipe for line pipe
JP3226278B2 (en) Method of manufacturing steel material and steel pipe excellent in corrosion resistance and weldability
JP5224780B2 (en) High strength stainless steel pipe
JP2000328202A (en) Low carbon martensitic stainless steel sheet excellent in formability, corrosion resistance and toughness, its production and welded steel pipe
JPH0625746A (en) Manufacture of high cr-containing steel pipe for oil well
JP3518367B2 (en) Method for manufacturing 13Cr stainless steel plate
JP4193308B2 (en) Low carbon ferrite-martensitic duplex stainless steel welded steel pipe with excellent resistance to sulfide stress cracking
EP3950973A1 (en) Electroseamed steel pipe for hollow stabilizer, hollow stabilizer, and production methods therefor
JP2018123419A (en) Nickel-containing steel material for low temperatures and tank for low temperatures therewith
JP2861720B2 (en) Method for producing duplex stainless welded steel pipe excellent in strength, toughness and corrosion resistance
JPH09125209A (en) Ferritic stainless steel pipe excellent in secondary working cracking resistance and its production
JP4899885B2 (en) Thin-walled tempered high-strength steel sheet with excellent toughness and brittle crack propagation stopping characteristics and method for producing the same
JP2000226643A (en) Low carbon martensitic stainless steel sheet, its production and welded steel pipe

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees