JP3517039B2 - Magnetic element - Google Patents
Magnetic elementInfo
- Publication number
- JP3517039B2 JP3517039B2 JP21698495A JP21698495A JP3517039B2 JP 3517039 B2 JP3517039 B2 JP 3517039B2 JP 21698495 A JP21698495 A JP 21698495A JP 21698495 A JP21698495 A JP 21698495A JP 3517039 B2 JP3517039 B2 JP 3517039B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- magnetic
- ferromagnetic
- layers
- conductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Hall/Mr Elements (AREA)
- Physical Vapour Deposition (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、磁気素子に関す
る。TECHNICAL FIELD The present invention relates to a magnetic element.
【0002】[0002]
【従来の技術】最近、磁性体と半導体の人工格子膜で熱
あるいは光誘導磁気結合が観測されている(J. Magn. M
agn. Mater. 114 (1992) L6, Phys. Rev. Lett. 71 (19
93) 185, Phys. Rev. Lett. 73 (1994) 340, Jpn. J. A
ppl. Phys. 33 (1994) L1672)。2. Description of the Related Art Recently, thermal or photoinduced magnetic coupling has been observed in an artificial lattice film of a magnetic substance and a semiconductor (J. Magn. M.
agn. Mater. 114 (1992) L6, Phys. Rev. Lett. 71 (19
93) 185, Phys. Rev. Lett. 73 (1994) 340, Jpn. J. A.
ppl. Phys. 33 (1994) L1672).
【0003】この光誘導磁気結合は、半導体層を介して
積層された第1及び第2の強磁性層間の磁気結合状態
が、光照射による熱励起あるいは光励起で半導体層のキ
ャリア濃度が変化することにより誘導されると考えられ
ている。In this photo-induced magnetic coupling, the magnetic coupling state between the first and second ferromagnetic layers laminated via the semiconductor layer changes the carrier concentration of the semiconductor layer by thermal excitation or photoexcitation by light irradiation. It is believed to be induced by.
【0004】この場合、光照射による加熱の効果と光励
起による固有な効果との区別が判別していないものの熱
励起によるものであるならばスイッチングスピードが問
題となる。また、たとえば磁性層間の交換磁気結合を強
磁性と反強磁性結合に磁化の方向をスイッチするために
は、レーザ光学系を必要とする。In this case, if the distinction between the effect of heating by light irradiation and the unique effect of photoexcitation is not discriminated, the switching speed becomes a problem if it is due to thermal excitation. Further, for example, a laser optical system is required to switch the direction of magnetization between exchange magnetic coupling between magnetic layers to ferromagnetic and antiferromagnetic coupling.
【0005】[0005]
【発明が解決しようとする課題】この様に従来の光誘導
磁気結合を用いた磁気素子は光照射が必須であり、必然
的に光学系を伴うことになり、装置全体としての小型化
には問題がある。また加熱を要するとすると応答性にも
問題が残る。本発明は以上の点を考慮してなされたもの
で、光学系を用いずに磁気結合を制御できる磁気素子の
提供を目的とする。As described above, in the conventional magnetic element using the photo-induced magnetic coupling, the light irradiation is indispensable, and the optical system is inevitably accompanied, and the miniaturization of the entire device is required. There's a problem. Further, if heating is required, there remains a problem in responsiveness. The present invention has been made in consideration of the above points, and an object thereof is to provide a magnetic element capable of controlling magnetic coupling without using an optical system.
【0006】[0006]
【課題を解決するための手段】本発明者等は上記課題を
達成するため鋭意研究を進めた結果、強磁性層間に介在
する誘電体層の電位を変えることで、この強磁性層の磁
化の向きを反平行若しくは平行状態に制御できることを
見出した。The inventors of the present invention have conducted extensive studies to achieve the above-mentioned object, and as a result, by changing the potential of the dielectric layer interposed between the ferromagnetic layers, the magnetization of this ferromagnetic layer is changed. It was found that the orientation can be controlled to be antiparallel or parallel.
【0007】すなわち本発明は、第1の導電性強磁性層
と第2の導電性強磁性層との間に介在する誘電体層とを
備えた積層膜と;前記誘電体層の電位を制御し、前記第
1及び第2の導電性強磁性層の磁気結合状態を変化せし
める電位制御手段とを具備した磁気素子である。That is, according to the present invention, a laminated film having a dielectric layer interposed between a first conductive ferromagnetic layer and a second conductive ferromagnetic layer; and a potential of the dielectric layer is controlled. And a potential control means for changing the magnetic coupling state of the first and second conductive ferromagnetic layers.
【0008】導電性の非磁性層を介した磁性層間の磁気
結合の機構は一般的には次の様に考えられている。非磁
性層の伝導電子のスピンが強磁性層の磁性原子スピンと
相互作用し、この相互作用が非磁性層内に伝導電子によ
るスピン密度分布を誘導し、磁性層と非磁性層の全磁気
エネルギーを低下させるように磁性層の磁化の相対的な
方向を決定する。従って、磁化の相対的な方向は非磁性
層内でスピン密度分布の立ち方に支配されており、非磁
性層厚と伝導電子の濃度とに強く依存する。磁性層間の
磁気結合が非磁性層厚に依存することは既に多くの系で
発見されて周知の事実であり、一方、伝導電子の濃度に
依存することは、最近の磁性体と半導体の人工格子膜で
熱あるいは光誘導磁気結合が観測されたことと合致す
る。重要なことは、非磁性層内でのスピン密度分布が非
磁性層に接合する両側の強磁性層の磁化の向きの情報を
伝達していることである。従って、その伝達内容を人為
的に変化させることによって磁気結合が制御できる。The mechanism of magnetic coupling between magnetic layers via a conductive non-magnetic layer is generally considered as follows. The spins of the conduction electrons in the nonmagnetic layer interact with the spins of the magnetic atoms in the ferromagnetic layer, and this interaction induces a spin density distribution due to the conduction electrons in the nonmagnetic layer, and the total magnetic energy of the magnetic layer and the nonmagnetic layer. To determine the relative direction of magnetization of the magnetic layer. Therefore, the relative direction of magnetization is governed by how the spin density distribution stands in the nonmagnetic layer, and strongly depends on the thickness of the nonmagnetic layer and the concentration of conduction electrons. It is a well-known fact that magnetic coupling between magnetic layers depends on the thickness of the non-magnetic layer, and it is a well-known fact that it depends on the concentration of conduction electrons. This is consistent with the observed thermal or photoinduced magnetic coupling in the film. What is important is that the spin density distribution in the nonmagnetic layer conveys information on the magnetization directions of the ferromagnetic layers on both sides that are joined to the nonmagnetic layer. Therefore, the magnetic coupling can be controlled by artificially changing the transmitted content.
【0009】本発明では、強磁性層間に伝導電子のポテ
ンシャル障壁を形成し、その高さを変化させることで磁
化情報の伝達内容を制御する。ポテンシャル障壁の高さ
は外部電気回路によって制御できるので電界効果磁気ス
イッチ素子の機能を発揮することができる。In the present invention, the potential barrier of conduction electrons is formed between the ferromagnetic layers, and the height of the potential barrier is changed to control the transmission content of the magnetization information. Since the height of the potential barrier can be controlled by an external electric circuit, the function of the field effect magnetic switching element can be exerted.
【0010】[0010]
【発明の実施の形態】図1に本発明磁気素子の概念図を
示す。第1の導電性強磁性層(1)と第2の導電性強磁
性層(2)との間に印加電圧を制御できる電位制御手段
(4)、例えば電圧可変直流電圧源を接続し、この電圧
を換えることで、トンネル絶縁膜としての第1及び第2
の導電性強磁性層(1)(2)間の誘電体層(3)のポ
テンシャル障壁を変化させる。この変化が伝導電子によ
る磁化情報の伝達を変化させ、第1及び第2の導電性強
磁性層(1)(2)の磁化の向きを平行若しくは反平行
にすることができる。DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a conceptual diagram of the magnetic element of the present invention. Between the first conductive ferromagnetic layer (1) and the second conductive ferromagnetic layer (2), a potential control means (4) capable of controlling the applied voltage, for example, a variable voltage DC voltage source is connected, By changing the voltage, the first and second tunnel insulating films are formed.
The potential barrier of the dielectric layer (3) between the conductive ferromagnetic layers (1) and (2) is changed. This change changes the transmission of magnetization information by conduction electrons, so that the magnetization directions of the first and second conductive ferromagnetic layers (1) and (2) can be made parallel or antiparallel.
【0011】本発明の強磁性層を構成する元素として例
えばCo,Fe,Niあるいはそれらの合金が挙げられ
るが、導電性の強磁性体であれば特に限定されない。そ
して、その厚さtM は0.2nm≦tM ≦10nm、よ
り好ましくは0.4nm≦tM ≦8nmがよい。Examples of the element constituting the ferromagnetic layer of the present invention include Co, Fe, Ni or alloys thereof, but are not particularly limited as long as they are conductive ferromagnetic materials. The thickness t M is preferably 0.2 nm ≦ t M ≦ 10 nm, more preferably 0.4 nm ≦ t M ≦ 8 nm.
【0012】本発明の誘電体層の構成材料はAl2 O
3 、SiO2 等の絶縁体や、Si,Ge等の真性半導体
や、AlP,AlAs,GaAs等の化合物半導体やF
eSi合金等の半導体が挙げられるが誘電体であれば特
に限定されない。その厚さはtD は0.1nm≦tD ≦
5nm、より好ましくは0.1nm≦tD 2nmがよ
い。なお、基本ユニットは3層であるが、更に多数層を
増層してもかまわない。各種構成膜は分子線エピタキシ
ー(MBE)法、超高真空スパッタ法などで作製するこ
との他に、RFマグネトロンスパッタ法、イオンビーム
スパッタ法、真空蒸着法など初期真空度が10-7Tor
r以下の通常の薄膜形成技術でも作成することができ
る。いわゆる人工格子を組んでいても良い。また、膜形
状はリソグラフィーと化学エッチング等によって形成す
ることができる。The constituent material of the dielectric layer of the present invention is Al 2 O.
Insulators such as 3 , SiO 2 ; intrinsic semiconductors such as Si and Ge; compound semiconductors such as AlP, AlAs and GaAs; and F
A semiconductor such as an eSi alloy may be used, but the dielectric is not particularly limited. The thickness t D is 0.1 nm ≦ t D ≦
5 nm, and more preferably 0.1 nm ≦ t D 2 nm. Although the basic unit has three layers, a larger number of layers may be added. Various constituent films are prepared by molecular beam epitaxy (MBE) method, ultra-high vacuum sputtering method, etc., as well as RF magnetron sputtering method, ion beam sputtering method, vacuum deposition method, etc., and initial vacuum degree is 10 −7 Tor.
It can also be produced by a normal thin film forming technique of r or less. A so-called artificial lattice may be formed. The film shape can be formed by lithography, chemical etching, or the like.
【0013】なお、図2に示すように少なくとも一方の
誘電体層表面には導電性非磁性層(5)(6)を形成し
ても良い。誘電体層の電位の均一性、強磁性体層間の磁
気的結合などを向上することができる。この場合、強磁
性体層若しくは非磁性層に電位制御手段を接続すれば良
い。As shown in FIG. 2, conductive nonmagnetic layers (5) and (6) may be formed on the surface of at least one of the dielectric layers. It is possible to improve the uniformity of the potential of the dielectric layer and the magnetic coupling between the ferromagnetic layers. In this case, the potential control means may be connected to the ferromagnetic layer or the non-magnetic layer.
【0014】本発明の非磁性層を構成する元素として例
えばCu,Al,Ag,Au,Pd,Pt,Cr,R
u,Rhなどの単体もしくはこれらを含む合金が挙げら
れる。そして、非磁性層の厚さtN はtN ≦10nm、
より好ましくはtN ≦5nmがよい。As the elements constituting the non-magnetic layer of the present invention, for example, Cu, Al, Ag, Au, Pd, Pt, Cr, R
A simple substance such as u or Rh or an alloy containing them can be used. The thickness t N of the nonmagnetic layer is t N ≦ 10 nm,
It is more preferable that t N ≦ 5 nm.
【0015】また、強磁性層表面にも電極層として、C
u,Au,Agなどの導体層を形成しても良い。以下、
実施例を用いて本発明を詳細に説明する。
(実施例1)この実施例では、強磁性層(1)(2)に
Co、非磁性層(5)(6)にCu、誘電体層(3)に
SiO2 を用い、イオンビームスパッタリング法により
積層膜を形成した。先ず、チェンバ内を5×10-7To
rrまで排気した後、Arを1×10-4Torrまで導
入し、スパッタArイオンの加速電圧を600V、ビー
ム電流30mAの条件でスパッタリングを行った。ター
ゲットはAu,Co,CuおよびSiO2 を用意し、M
gO(100)単結晶を基板(10)とする。最初にM
gO(100)基板上にバッファ層と電極を兼ねてAu
層を10nm積層し、次にCo層を2nm、Cu層を
0.5nm、SiO2 層を0.5nm、Cu層を0.5
nm、Co層を2nmという順番で交互に積層し、最後
に防錆層と電極を兼ねてAu層を10nm積層した。こ
の様にして(Au10nm/Co2nm/Cu0.5n
m/SiO2 0.5nm/Cu0.5nm/Co2nm
/Au10nm)/MgO(100)の積層膜を形成し
た(図3)。C is also used as an electrode layer on the surface of the ferromagnetic layer.
You may form a conductor layer, such as u, Au, and Ag. Less than,
The present invention will be described in detail with reference to examples. Example 1 In this example, Co is used for the ferromagnetic layers (1) and (2), Cu is used for the nonmagnetic layers (5) and (6), and SiO 2 is used for the dielectric layer (3). To form a laminated film. First, 5 × 10 -7 To inside the chamber
After exhausting to rr, Ar was introduced up to 1 × 10 −4 Torr, and sputtering was performed under the conditions of an acceleration voltage of sputtered Ar ions of 600 V and a beam current of 30 mA. As targets, Au, Co, Cu and SiO 2 are prepared, and M
The gO (100) single crystal is used as the substrate (10). First M
Au as a buffer layer and an electrode on a gO (100) substrate
Layers of 10 nm, then Co layer of 2 nm, Cu layer of 0.5 nm, SiO 2 layer of 0.5 nm, and Cu layer of 0.5 nm.
nm and Co layers were alternately laminated in the order of 2 nm, and finally, an Au layer was laminated to 10 nm so as to also serve as an antirust layer and an electrode. In this way (Au10nm / Co2nm / Cu0.5n
m / SiO 2 0.5 nm / Cu 0.5 nm / Co 2 nm
/ Au 10 nm) / MgO (100) laminated film was formed (FIG. 3).
【0016】本実施例の素子を用いて印加電位Vを0−
0.5[V]まで変えて磁気特性を測定した。図4にV
=0と0.4[V]のときの結果を示す。磁気特性はV
SM(Vibrating Sample Magnetometer )を用いて面内
に磁場を印加して測定した。図4の結果から、Co層間
の磁気結合がV=0[V]のとき強磁性的、V=0.4
[V]のとき反強磁性的に結合することが分かった。
(実施例2)実施例1と同様な方法で作製した(Au1
0nm/Co2nm/Cu0.5nm/SiO2 0.5
nm/Cu0.5nm/パーマロイ2nm/Au10n
m)/MgO(100)についての磁気特性を図5に示
す。図5からCoとパーマロイ層間の磁気結合がV=0
[V]のとき強磁性的、V=0.4[V]のとき反強磁
性的に結合することが分かった。
(実施例3)実施例1と同様な方法で作成した(Au1
0nm/Co2nm/Cu0.5nm/Al2 O3 0.
5nm/Cu0.5nm/Co2nm/Au10nm)
/MgO(100)についての磁気特性を図6に示す。
図6からCo層間の磁気結合がV=0[V]のとき強磁
性的、V=0.4[V]のとき反強磁性的に結合するこ
とが分かった。
(実施例4)実施例1と同様な方法で作製した(Au1
0nm/Co2nm/Cu0.5nm/Al2 O3 0.
5nm/Cu0.5nm/パーマロイ2nm/Au10
nm)/MgO(100)についての磁気特性を図7に
示す。図7からCoとパーマロイ層間の磁気結合がV=
0[V]のとき強磁性的、V=0.4[V]のとき反強
磁性的に結合することが分かった。
(実施例5)実施例1と同様な方法で作成した(Au1
0nm/Co2nm/Cu0.5nm/Al2 O3 0.
5nm/Cu0.5nm/パーマロイ2nm/Cu0.
5nm)/Al2 O3 0.5nm/Cu0.5nm/C
o2nm/Au10nm)MgO(100)についての
素子概略図と磁気特性を図8に示す。図8からCoとパ
ーマロイ層間の磁気結合がV1 =V2 =0[V]のとき
強磁性的、V1 =V2=0.4[V]のとき反強磁性的
に結合することが分かった。なお、V1 =V2は夫々の
Au層とパーマロイ層間の電圧である。An applied potential V of 0-
The magnetic characteristics were measured while changing to 0.5 [V]. V in Figure 4
The results when = 0 and 0.4 [V] are shown. Magnetic characteristic is V
The measurement was performed by applying an in-plane magnetic field using an SM (Vibrating Sample Magnetometer). From the result of FIG. 4, when the magnetic coupling between Co layers is V = 0 [V], it is ferromagnetic, and V = 0.4.
It was found that antiferromagnetic coupling occurs at [V]. (Example 2) A method similar to that of Example 1 was used (Au1).
0 nm / Co 2 nm / Cu 0.5 nm / SiO 2 0.5
nm / Cu 0.5 nm / Permalloy 2 nm / Au 10 n
The magnetic properties for m) / MgO (100) are shown in FIG. From FIG. 5, the magnetic coupling between Co and the permalloy layer is V = 0.
It was found that the coupling was ferromagnetic at [V] and antiferromagnetic at V = 0.4 [V]. (Example 3) The same method as in Example 1 was used (Au1).
0 nm / Co 2 nm / Cu 0.5 nm / Al 2 O 3 0.
5 nm / Cu 0.5 nm / Co 2 nm / Au 10 nm)
The magnetic characteristics of / MgO (100) are shown in FIG.
From FIG. 6, it was found that the magnetic coupling between the Co layers was ferromagnetic when V = 0 [V] and antiferromagnetic when V = 0.4 [V]. (Example 4) The same method as in Example 1 was used (Au1).
0 nm / Co 2 nm / Cu 0.5 nm / Al 2 O 3 0.
5nm / Cu 0.5nm / Permalloy 2nm / Au10
(nm) / MgO (100) magnetic properties are shown in FIG. From FIG. 7, the magnetic coupling between Co and the permalloy layer is V =
It was found that the coupling was ferromagnetic at 0 [V] and antiferromagnetic at V = 0.4 [V]. (Example 5) The same method as in Example 1 was used (Au1).
0 nm / Co 2 nm / Cu 0.5 nm / Al 2 O 3 0.
5 nm / Cu 0.5 nm / Permalloy 2 nm / Cu 0.
5 nm) / Al 2 O 3 0.5 nm / Cu 0.5 nm / C
FIG. 8 shows a device schematic view and magnetic characteristics of (2 nm / Au 10 nm) MgO (100). It can be seen from FIG. 8 that the magnetic coupling between Co and the permalloy layer is ferromagnetic when V 1 = V 2 = 0 [V] and antiferromagnetic when V 1 = V 2 = 0.4 [V]. Do you get it. Note that V 1 = V 2 is the voltage between the Au layer and the permalloy layer.
【0017】[0017]
【発明の効果】以上説明したように本発明によれば、外
部磁場の作用やレーザ光学系を必要としない磁気結合制
御を実現する磁気素子を提供することが可能となる。従
って、電気的に書き込みが可能な磁気記録媒体(読出し
は磁気抵抗効果あるいは従来の光磁気記録媒体のように
カー効果などを用いれば良い。)などへの応用が図れ
る。As described above, according to the present invention, it is possible to provide a magnetic element that realizes magnetic coupling control that does not require the action of an external magnetic field or a laser optical system. Therefore, it can be applied to an electrically writable magnetic recording medium (reading may use the magnetoresistive effect or the Kerr effect as in the conventional magneto-optical recording medium).
【図1】 本発明の概念図。FIG. 1 is a conceptual diagram of the present invention.
【図2】 本発明の概念図。FIG. 2 is a conceptual diagram of the present invention.
【図3】 本発明の概念図。FIG. 3 is a conceptual diagram of the present invention.
【図4】 本発明の特性図。FIG. 4 is a characteristic diagram of the present invention.
【図5】 本発明の特性図。FIG. 5 is a characteristic diagram of the present invention.
【図6】 本発明の特性図。FIG. 6 is a characteristic diagram of the present invention.
【図7】 本発明の特性図。FIG. 7 is a characteristic diagram of the present invention.
【図8】 本発明の特性図。FIG. 8 is a characteristic diagram of the present invention.
1…第1の導電性強磁性層 2…第2の導電性強磁性層 3…誘電体層 5,6…導電性非磁性層 1 ... First conductive ferromagnetic layer 2 ... second conductive ferromagnetic layer 3 ... Dielectric layer 5, 6 ... Conductive non-magnetic layer
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 43/00 H01L 43/08 H01L 43/10 G11B 11/105 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) H01L 43/00 H01L 43/08 H01L 43/10 G11B 11/105
Claims (2)
性層とこれらの導電性強磁性層の間に介在する誘電体層
とを備えた積層膜と;前記誘電体層の少なくとも一方の
面に設けられた導電性非磁性層と;前記誘電体層の電位
を制御し、前記第1及び第2の導電性強磁性層の磁気結
合状態を変化せしめる電位制御手段とを具備したことを
特徴とする磁気素子。1. A laminated film comprising a first conductive ferromagnetic layer, a second conductive ferromagnetic layer, and a dielectric layer interposed between these conductive ferromagnetic layers ; said dielectric layer. At least one of
A conductive non-magnetic layer provided on the surface; and a potential control means for controlling the potential of the dielectric layer and changing the magnetic coupling state of the first and second conductive ferromagnetic layers. Characteristic magnetic element.
が具備されたことを特徴とする請求項1記載の磁気素
子。2. The magnetic element according to claim 1 , wherein the conductive nonmagnetic layer is provided on both surfaces of the dielectric layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21698495A JP3517039B2 (en) | 1995-08-25 | 1995-08-25 | Magnetic element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21698495A JP3517039B2 (en) | 1995-08-25 | 1995-08-25 | Magnetic element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0964434A JPH0964434A (en) | 1997-03-07 |
JP3517039B2 true JP3517039B2 (en) | 2004-04-05 |
Family
ID=16697002
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21698495A Expired - Fee Related JP3517039B2 (en) | 1995-08-25 | 1995-08-25 | Magnetic element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3517039B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001196661A (en) * | 1999-10-27 | 2001-07-19 | Sony Corp | Magnetization control method, information storage method, magnetic function element, and information storage element |
-
1995
- 1995-08-25 JP JP21698495A patent/JP3517039B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0964434A (en) | 1997-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4103315A (en) | Antiferromagnetic-ferromagnetic exchange bias films | |
US5936293A (en) | Hard/soft magnetic tunnel junction device with stable hard ferromagnetic layer | |
US6639766B2 (en) | Magneto-resistance effect type composite head and production method thereof | |
US3965463A (en) | Apparatus using amorphous magnetic compositions | |
JP3459869B2 (en) | Method for manufacturing ferromagnetic tunnel junction device | |
US6914761B2 (en) | Magnetoresistive sensor with magnetic flux paths surrounding non-magnetic regions of ferromagnetic material layer | |
JPH11134620A (en) | Ferromagnetic tunnel junction element sensor and its manufacture | |
JPH07142783A (en) | Magnetic field detector | |
JP3050189B2 (en) | Magnetoresistive element and method of manufacturing the same | |
JP3231313B2 (en) | Magnetic head | |
JP2550893B2 (en) | Magnetic multilayer film | |
KR100833260B1 (en) | Method of manufacturing a spin valve structure | |
JP3517039B2 (en) | Magnetic element | |
JP2003258335A (en) | Manufacturing method for tunneling magneto resistive effect device | |
JP3219329B2 (en) | Magnetoresistance effect element | |
JP3496215B2 (en) | Manufacturing method of ferromagnetic tunnel junction device | |
JPH1074658A (en) | Manufacture of spin valve magnetoresistive effect device | |
JPH10302456A (en) | Magnetic thin film memory element and magnetic thin film memory using the same | |
JP3532607B2 (en) | Magnetoresistance effect element | |
JPH11353868A (en) | Magnetic thin film memory device and method for manufacturing the same, and apparatus for manufacturing the same | |
JP2000231706A (en) | Magnetic recording and reproducing head and magnetic storage device using the same as well as its production | |
JP2000077744A (en) | Manufacture of ferromagnetic tunnel junction magnetoresistance effect element | |
JPH08249875A (en) | Solid-state magnetic recording element | |
JP3048572B2 (en) | Magneto-resistance effect element and thin-film magnetic head using the magneto-resistance effect element | |
JP2853204B2 (en) | Method of manufacturing magnetoresistive element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040120 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040122 |
|
LAPS | Cancellation because of no payment of annual fees |