JP3516175B2 - Degassing method - Google Patents
Degassing methodInfo
- Publication number
- JP3516175B2 JP3516175B2 JP21518194A JP21518194A JP3516175B2 JP 3516175 B2 JP3516175 B2 JP 3516175B2 JP 21518194 A JP21518194 A JP 21518194A JP 21518194 A JP21518194 A JP 21518194A JP 3516175 B2 JP3516175 B2 JP 3516175B2
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- pump
- gas
- tank
- dissolved gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Degasification And Air Bubble Elimination (AREA)
Description
【発明の詳細な説明】
【0001】
【産業上の利用分野】液体の脱気技術は、金属や樹脂等
からなる加工部品や完成品等の超音波洗浄時において、
超音波のキャビテーション作用を強化するために、洗浄
液中の溶存気体を除去する場合の他、多くの工業用品・
民生用品・食品・薬品等の製品品質の向上・製造技術の
改善・価格の低減等に多様な用途を有するのみでなく、
学術研究その他の分野においても多く利用される。
【0002】
【従来技術】液体中の溶存気体を除去するために、液体
を遠心力を利用して薄膜状に広げた後真空ポンプで減圧
したり、沸点まで温度を上げて脱気した後冷却したり、
あるいは中空糸膜を通して脱気する等種々の方法が行わ
れてきた。
【0003】所が、上記の方法はそれぞれ、真空ポンプ
や加熱・冷却手段、あるいは気液分離膜等を必要とし、
装置が大きくまた非常に高価であった。
【0004】
【発明が解決しようとする課題】従来技術において必要
とされた高価で広い設置面積を要する脱気方法に代り、
設置面積が小さく低価格の脱気装置の実現が可能な脱気
方法を提供することである。
【0005】
【課題を解決するための手段】送液ポンプの吸入側管路
の一部に絞りを設け、吐出側に気泡を浮上分離させる気
液分離槽を設ける。送液ポンプは耐キャビテーション性
を有するものを使用する。
【0006】
【作用】送液ポンプの運転により絞りとポンプとの間で
液体が減圧され、溶存気体が液体から気泡となって析出
する。この気泡はポンプ内を通過する間に膨張と結合に
より粗大化するため気液分離槽に送られた後にすみやか
に浮上分離される。
【0007】
【実施例】図1は、本発明による脱気方法を用いた洗浄
装置の一例を示す。循環ポンプ(5)の運転により溶存
気体を含む炭化水素系溶剤(7)は、貯液槽(3)へオ
ーバーフローした後槽底部の流出口(9)より流出し、
フィルター(8)を経てバルブ(4)を通過する。この
時、バルブ(4)を全開せず、半開位に絞ることにより
バルブ(4)と循環ポンプ(5)との間の管路内を減圧
状態にする。なお本実施例において絞り手段としてバル
ブを用いているが、これをオリフィス等の固定絞りにお
きかえることもできる。その結果、溶存気体が析出した
気泡を含む溶剤が循環ポンプ(5)に入り、他方吐出管
路(10)においては加圧状態となるが、ポンプ内で粗
大化した気泡は短時間には溶剤中に再溶解することが殆
どなくそのまま気液分離槽(6)へ送られ、ここで液面
に浮上し大気中へ放出される。溶存気体を除去された溶
剤は洗浄槽(1)へ還流し、上記サイクルを繰り返すこ
とにより順次洗浄液中の溶存気体が減少し超音波による
キャビテーション強度が格段に大きくなる状態に到達す
る。
【0008】図2は、本発明による脱気方法において、
アスピレータを絞り手段として用いた装置の一例を示
す。処理槽(13)内に収容された溶存気体を含む液体
(12)は、循環ポンプ(5)の運転によりその吸入側
に設けられたアスピレータ(11)に吸入される。ここ
を通過した液体(12)は負圧の作用により溶存する気
体を気泡として析出させた後循環ポンプ(5)に入り、
ポンプ内を通過して気液分離槽(6)に吐出され、浮力
にもとずき気泡が液体から分離される。上記サイクルを
繰り返すことにより順次液体中の溶存気体は減少する。
運転に際してはバルブ(4)を経てアスピレータ(1
1)の吸引口(14)に適量の液体を吸入させ循環ポン
プ(5)を過負荷から保護する。
【0009】図3は本発明による脱気方法により、バル
ブまたはアスピレータを絞り手段として用いて水を脱気
処理した実験装置を示す。溶存酸素を含む水を循環ポン
プ(5)の吸入側に設けられたバルブまたはアスピレー
タ(4または11)に通し、負圧の作用により溶存気体
を析出させた後、ポンプ吐出側から気液分離槽(6)に
導き気泡を浮上分離させる。脱気状態の経時変化は水中
に浸漬した溶存酸素計センサにて検知し測定した。尚、
処理槽(13)の仕込み水量は29▲リットル▼、ポン
プ循環量は720▲リットル▼/時であった。
【0010】図4は上記実験結果をグラフに示したもの
である。
【0011】
【発明の効果】高価で広い設置面積を必要とする従来の
方法にもとずく脱気装置と比較し、ポンプと絞り手段を
使った本発明の脱気方法による装置は、設置面積と価格
の両面で優れている。Description: BACKGROUND OF THE INVENTION Liquid degassing technology is used for ultrasonic cleaning of processed parts or finished products made of metal, resin, or the like.
In order to enhance the cavitation effect of ultrasonic waves, many industrial products and
In addition to having a variety of uses for improving product quality, improving manufacturing technology, and reducing prices for consumer goods, food, and pharmaceuticals,
It is often used in academic research and other fields. 2. Description of the Related Art In order to remove dissolved gas in a liquid, the liquid is spread in the form of a thin film using centrifugal force and then depressurized by a vacuum pump or deaerated by raising the temperature to the boiling point and then cooled. Or
Alternatively, various methods such as degassing through a hollow fiber membrane have been performed. However, each of the above methods requires a vacuum pump, heating / cooling means, a gas-liquid separation membrane, and the like.
The equipment was large and very expensive. [0004] Instead of the expensive and large-footprint deaeration method required in the prior art,
An object of the present invention is to provide a deaeration method capable of realizing a low-priced deaerator with a small installation area. A throttle is provided in a part of a suction-side pipe line of a liquid-feeding pump, and a gas-liquid separation tank is provided on a discharge side to float and separate bubbles. A liquid pump having cavitation resistance is used. The liquid is depressurized between the throttle and the pump by the operation of the liquid feed pump, and the dissolved gas is separated from the liquid as bubbles. The bubbles are coarsened by expansion and bonding while passing through the pump, so that they are immediately floated and separated after being sent to the gas-liquid separation tank. FIG. 1 shows an example of a cleaning apparatus using a degassing method according to the present invention. By operating the circulation pump (5), the hydrocarbon-based solvent (7) containing dissolved gas overflows into the liquid storage tank (3), and then flows out from the outlet (9) at the bottom of the tank.
Pass through valve (4) via filter (8). At this time, the valve (4) is not fully opened, but is throttled to a half-open position, thereby reducing the pressure in the pipeline between the valve (4) and the circulation pump (5). In this embodiment, a valve is used as the throttle means, but this can be replaced by a fixed throttle such as an orifice. As a result, the solvent containing the bubbles in which the dissolved gas has precipitated enters the circulation pump (5), and on the other hand, is pressurized in the discharge pipe (10). It is sent to the gas-liquid separation tank (6) as it hardly dissolves therein, where it floats on the liquid surface and is released to the atmosphere. The solvent from which the dissolved gas has been removed is returned to the washing tank (1), and by repeating the above-described cycle, the dissolved gas in the washing solution is sequentially reduced, and the state in which the cavitation intensity by the ultrasonic wave is significantly increased is reached. FIG. 2 shows a degassing method according to the present invention.
An example of an apparatus using an aspirator as a diaphragm is shown. The liquid (12) containing the dissolved gas contained in the processing tank (13) is sucked into the aspirator (11) provided on the suction side by the operation of the circulation pump (5). The liquid (12) that has passed through this precipitates dissolved gas as bubbles by the action of negative pressure and then enters the circulation pump (5).
After passing through the pump, it is discharged to the gas-liquid separation tank (6), and bubbles are separated from the liquid based on the buoyancy. By repeating the above cycle, the dissolved gas in the liquid is sequentially reduced.
During operation, the aspirator (1) passes through the valve (4).
An appropriate amount of liquid is sucked into the suction port (1) of 1) to protect the circulation pump (5) from overload. FIG. 3 shows an experimental apparatus in which water is degassed by a degassing method according to the present invention using a valve or an aspirator as a throttle means. Water containing dissolved oxygen is passed through a valve or aspirator (4 or 11) provided on the suction side of the circulation pump (5) to precipitate dissolved gas by the action of negative pressure, and then the gas-liquid separation tank is discharged from the pump discharge side. The air bubbles are guided to (6) and floated and separated. The change with time of the degassing state was detected and measured by a dissolved oxygen meter sensor immersed in water. still,
The amount of water charged in the treatment tank (13) was 29 liters, and the pump circulation amount was 720 liters / hour. FIG. 4 is a graph showing the results of the above experiment. As compared with the conventional deaerator which is expensive and requires a large installation area, the apparatus according to the deaeration method of the present invention using the pump and the throttle means has a small installation area. And is excellent in both price.
【図面の簡単な説明】
図1・・・本発明による脱気方法を用いる洗浄装置の一
例を示す。
図2・・・本発明による脱気方法を実施する装置の一例
を示す。
図3・・・水を脱気処理した実験装置の概念図を示す。
図4・・・図3に示す方法により実験した結果を示すグ
ラフである。
【符号の説明】
1・・・洗浄槽 8・・・フィルター
2・・・超音波振動子 9・・・流出口
3・・・貯液槽 10・・・吐出管路
4・・・バルブ 11・・・アスピレータ
5・・・循環ポンプ 12・・・液体
6・・・気液分離槽 13・・・処理槽
7・・・溶剤 14・・・吸引口BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows an example of a cleaning apparatus using a degassing method according to the present invention. FIG. 2 shows an example of an apparatus for performing the degassing method according to the present invention. FIG. 3 shows a conceptual diagram of an experimental apparatus in which water has been degassed. 4 is a graph showing the results of an experiment performed by the method shown in FIG. [Description of Signs] 1 ... Washing tank 8 ... Filter 2 ... Ultrasonic vibrator 9 ... Outflow port 3 ... Reservoir tank 10 ... Discharge pipeline 4 ... Valve 11 ... Aspirator 5 ... Circulation pump 12 ... Liquid 6 ... Gas-liquid separation tank 13 ... Processing tank 7 ... Solvent 14 ... Suction port
Claims (1)
路の一部を絞ることにより、上記絞りと上記ポンプとの
間で減圧し、液中の溶存気体を遊離させた後、ポンプ吐
出側に設けた気液分離槽に導くことを特徴とする脱気方
法。(57) [Claims] Claims: A liquid is introduced into a suction pipe of a liquid feed pump, and a part of the pipe is throttled to reduce the pressure between the throttle and the pump. A degassing method characterized in that after the dissolved gas is released, the gas is led to a gas-liquid separation tank provided on the pump discharge side.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21518194A JP3516175B2 (en) | 1994-04-12 | 1994-08-05 | Degassing method |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6-108920 | 1994-04-12 | ||
JP10892094 | 1994-04-12 | ||
JP21518194A JP3516175B2 (en) | 1994-04-12 | 1994-08-05 | Degassing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07328316A JPH07328316A (en) | 1995-12-19 |
JP3516175B2 true JP3516175B2 (en) | 2004-04-05 |
Family
ID=26448745
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21518194A Expired - Fee Related JP3516175B2 (en) | 1994-04-12 | 1994-08-05 | Degassing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3516175B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1895719B (en) * | 2005-06-21 | 2012-06-27 | 株式会社海上 | Degassing apparatus and ultrasonic wave washing apparatus using the same |
JP5282481B2 (en) * | 2008-08-20 | 2013-09-04 | 栗田工業株式会社 | Ozone cleaning tank and ozone cleaning device |
WO2011118821A1 (en) | 2010-03-23 | 2011-09-29 | 国立大学法人宮崎大学 | Method for and device for control of microbes in food materials by means of vacuum and resonant ultrasound treatment |
EP3981014B1 (en) | 2019-06-06 | 2023-12-27 | Framatome Gmbh | Degasification system for a nuclear power plant and method for degassing a flow of reactor coolant |
WO2022024271A1 (en) | 2020-07-29 | 2022-02-03 | 日本製鉄株式会社 | Ultrasonic processing device and fine bubble supply method |
JP6976623B1 (en) * | 2021-05-10 | 2021-12-08 | 有限会社ブレイヴオート | Ultrasonic cleaner and throttle tube |
-
1994
- 1994-08-05 JP JP21518194A patent/JP3516175B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH07328316A (en) | 1995-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3676983A (en) | Apparatus and method for degassing a liquid | |
JP3341427B2 (en) | Immersion membrane equipment | |
CN102580545B (en) | Combined ultra-filtration device with membrane pollution control and ultrasonic cleaning functions | |
US6620226B2 (en) | Bubble elimination tube with acutely angled transducer horn assembly | |
US8906166B2 (en) | Process and apparatus for performing forced immersion oscillatory cleaning | |
JPH07185271A (en) | Immersion membrane apparatus | |
KR900701418A (en) | Surface and Fluid Clean Methods | |
JP3516175B2 (en) | Degassing method | |
US20180161826A1 (en) | Process and Apparatus for Performing Buoyant Forced Oscillatory Cleaning | |
SE517821C2 (en) | Method and apparatus for continuously venting a liquid | |
US5322082A (en) | Ultrasonic cleaning apparatus | |
CN207877300U (en) | A kind of ultra-pure water decarburization/device for deoxidizing system based on membrane contactor | |
JP3223340B2 (en) | Liquid degassing method | |
CN102784496A (en) | Degasser for liquid drugs in rinse tank | |
JPH08108005A (en) | Deaeration device | |
CN207694310U (en) | Online vacuum degasification instrument | |
Hashemi Shahraki et al. | Hollow fibers filtration and cleaning processes under ultrasound and gas bubbling combination | |
CN211935697U (en) | Ultrasonic wave fire fighting equipment for coating liquid | |
EP3481563B1 (en) | Method for restoring damaged electronic devices by cleaning and apparatus therefor | |
JP3124174B2 (en) | Water treatment equipment | |
BR9708266A (en) | Process and device for removing gas from a liquid medium | |
JPH0745001B2 (en) | Liquid supply device and defoaming method | |
JPS6061011A (en) | Deaeration-defoaming apparatus | |
JPH0985242A (en) | Immersion type film separation device | |
CN109548305A (en) | A kind of circuit board cleaning device using micro-nano bubbler techniques |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040108 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090130 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100130 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110130 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120130 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130130 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140130 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |