JP3513342B2 - Optical measuring device - Google Patents

Optical measuring device

Info

Publication number
JP3513342B2
JP3513342B2 JP32192896A JP32192896A JP3513342B2 JP 3513342 B2 JP3513342 B2 JP 3513342B2 JP 32192896 A JP32192896 A JP 32192896A JP 32192896 A JP32192896 A JP 32192896A JP 3513342 B2 JP3513342 B2 JP 3513342B2
Authority
JP
Japan
Prior art keywords
measuring device
flow path
measurement
gas
window
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32192896A
Other languages
Japanese (ja)
Other versions
JPH10160525A (en
Inventor
克彦 横濱
祥啓 出口
治 品田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP32192896A priority Critical patent/JP3513342B2/en
Publication of JPH10160525A publication Critical patent/JPH10160525A/en
Application granted granted Critical
Publication of JP3513342B2 publication Critical patent/JP3513342B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Optical Measuring Cells (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば焼却炉、石
炭炉等の配管から光学的計測を行なうレーザ計測装置に
適用して好適な光学的計測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical measuring device suitable for application to a laser measuring device for performing optical measurement from a pipe of, for example, an incinerator or a coal furnace.

【0002】[0002]

【従来の技術】焼却炉、石炭炉等に於いて、その配管か
らレーザ計測装置により光学的計測を行なう場合、被計
測部から計測装置本体(計測器)が設けられた計測装置
側に、媒塵・ゴミ・燃焼ガス等が流入して、計測装置本
体が汚染され、これによって計測精度の悪化が発生し、
強いては計測装置本体の故障発生を招くという問題が生
じる。
2. Description of the Related Art In an incinerator, a coal furnace, etc., when optical measurement is performed from a pipe of a laser measuring device, a medium is measured from a measured part to a measuring device provided with a measuring device main body (measuring device). Dust, dust, combustion gas, etc. flow in and pollute the measuring device body, which causes deterioration of measurement accuracy.
If it is forced, there arises a problem of causing a failure of the measuring device body.

【0003】このような不具合を解決するために、従来
では、図13に示すように、計測装置本体02を収めた
炉の壁面01aに設けられた計測孔01bから、炉内に
ガスを噴出する方法、あるいは図14に示すように、計
測孔01bに窓03を設置する方法、あるいは図15に
示すように、炉内へのガスの噴出と窓03の設置を組み
合わせた方法等が実施されている。
In order to solve such a problem, conventionally, as shown in FIG. 13, a gas is jetted into the furnace from a measurement hole 01b provided in a wall surface 01a of the furnace accommodating the measuring device body 02. The method, or the method of installing the window 03 in the measurement hole 01b as shown in FIG. 14, or the method of combining the gas injection into the furnace and the installation of the window 03 as shown in FIG. There is.

【0004】ここで、図13〜図15に示す従来例に於
いては、計測孔を構成する流路の横断面が、被計測部側
と計測装置本体側とで同一の断面積形状を有する。上記
図13に示す従来例の方法は、被計測部と計測装置が、
大きな開口(開口面積の大きな流路)で連結されている
ので、計測装置側への粒子・燃焼ガスの侵入を確実に防
止することが困難である。又、防止効果を高めるために
は流路での通気ガス流速を大きくとる必要がある。この
ような通気ガス流速の増加は、被計測部の状態を変化さ
せるのみならず、通気ガス量の増加を引き起こし、運用
上の不具合を発生する。
Here, in the conventional example shown in FIGS. 13 to 15, the cross-sections of the flow paths forming the measurement holes have the same cross-sectional area shape on the measured portion side and the measuring device body side. . In the method of the conventional example shown in FIG. 13, the measured part and the measuring device are
Since they are connected by a large opening (a flow path having a large opening area), it is difficult to reliably prevent the particles and the combustion gas from entering the measuring device side. Further, in order to enhance the prevention effect, it is necessary to increase the flow velocity of the ventilation gas in the flow path. Such an increase in the flow rate of the ventilation gas not only changes the state of the portion to be measured, but also causes an increase in the amount of the ventilation gas, which causes a malfunction in operation.

【0005】上記図14に示す従来例の方法は、被計測
部から計測装置本体側への、粒子・燃焼ガス等の侵入は
発生しないが、窓部に粒子の付着、あるいは燃焼ガスの
成分の凝集等が発生し、光学的計測を阻害する。
In the conventional method shown in FIG. 14, particles and combustion gas do not invade from the part to be measured into the main body of the measuring device, but particles adhere to the window or the components of combustion gas Aggregation and the like occurs, which interferes with optical measurement.

【0006】上記図15に示す従来例の方法は、上記図
13に示す従来例の課題であった、計測装置本体側への
粒子・燃焼ガス等の侵入を防止することができるが、流
路での通気ガス流速を大きく取る必要がある。かつこの
ような条件でも工業的に実施可能な流速範囲では、窓部
の汚れを確実に防止することが困難である。
The conventional method shown in FIG. 15 can prevent particles, combustion gas, and the like from entering the main body of the measuring device, which is a problem of the conventional example shown in FIG. It is necessary to increase the flow rate of the gas in the air. Moreover, even under such a condition, it is difficult to reliably prevent the window portion from being soiled within a flow rate range that can be industrially implemented.

【0007】[0007]

【発明が解決しようとする課題】上記したように、従来
の光学的計測装置に於いては、被計測部から計測装置本
体(計測器)が設けられた計測装置側に、媒塵・ゴミ・
燃焼ガス等が流入して、計測装置本体が汚染される不具
合を解消する有効な手段が存在しなかった。
As described above, in the conventional optical measuring device, dust particles, dust, and so on are introduced from the part to be measured to the measuring device side where the measuring device body (measuring device) is provided.
There has been no effective means for solving the problem that the measuring device body is contaminated by the inflow of combustion gas and the like.

【0008】即ち、上記図13に示す従来例の方法に於
いては、被計測部と計測装置が、大きな開口(開口面積
の大きな流路)で連結されているので、計測装置側への
粒子・燃焼ガスの侵入を確実に防止することが困難であ
り、又、防止効果を高めるためには流路での通気ガス流
速を大きくとる必要があるが、このような通気ガス流速
の増加は被計測部の状態を変化させるのみならず通気ガ
ス量の増加を引き起こし、運用上の不具合を発生すると
いう問題があった。
That is, in the method of the conventional example shown in FIG. 13, the portion to be measured and the measuring device are connected by a large opening (a channel having a large opening area), so that the particles to the measuring device side are connected. -It is difficult to reliably prevent the invasion of combustion gas, and in order to enhance the prevention effect, it is necessary to increase the flow velocity of ventilation gas in the flow path. There is a problem that not only the state of the measuring unit is changed but also the amount of ventilation gas is increased, which causes a malfunction in operation.

【0009】又、上記図14に示す従来例の方法に於い
ては、被計測部から計測装置本体側への、粒子・燃焼ガ
ス等の侵入は発生しないが、窓部に粒子の付着、あるい
は燃焼ガスの成分の凝集等が発生し、光学的計測を阻害
するという問題があった。
Further, in the method of the conventional example shown in FIG. 14, particles, combustion gas, etc. do not enter from the part to be measured to the measuring device main body, but particles adhere to the window part, or There is a problem in that the components of the combustion gas are aggregated and the optical measurement is hindered.

【0010】又、上記図15に示す従来例の方法に於い
ては、上記図13に示す従来例の課題であった、計測装
置本体側への粒子・燃焼ガス等の侵入を防止することが
できるが、流路での通気ガス流速を大きく取る必要があ
り、工業的に実施可能な流速範囲では窓部の汚れを確実
に防止することが困難であるという問題があった。
Further, in the method of the conventional example shown in FIG. 15, it is possible to prevent particles, combustion gas, and the like from entering the measuring device body side, which is a problem of the conventional example shown in FIG. However, it is necessary to increase the flow rate of the ventilation gas in the flow path, and there is a problem that it is difficult to reliably prevent the window portion from being soiled within the industrially applicable flow rate range.

【0011】本発明は上記実情に鑑みなされたもので、
計測装置本体が計測孔を形成する流路を介して計測を行
なう光学的計測装置に於いて、前記計測孔と計測装置本
体を連結する流路の形状更には構造に特徴をもたせるこ
とで、被計測部から計測装置本体(計測器)が設けられ
た計測装置側に、媒塵・ゴミ・燃焼ガス等が流入して計
測装置本体側が汚染される不具合を解消した実用性の高
い経済的にも有利な構成をなす光学的計測装置を提供す
ることを目的とする。
The present invention has been made in view of the above circumstances,
In an optical measuring device in which the measuring device main body performs measurement through a flow path forming a measuring hole, the shape and structure of the flow path connecting the measuring hole and the measuring device main body are characterized by The problem that the measuring device body is contaminated by dust, dust, combustion gas, etc. flowing into the measuring device side where the measuring device body (measuring instrument) is installed from the measuring unit is also highly practical and economical. An object of the present invention is to provide an optical measuring device having an advantageous configuration.

【0012】又、本発明は、上記流路の形状に特徴をも
たせることで、少量の通気ガス量で粒子・燃焼ガス等の
計測孔への流入を防止できる光学的計測装置を提供する
ことを目的とする。
Further, the present invention provides an optical measuring device capable of preventing particles, combustion gas and the like from flowing into the measuring hole with a small amount of ventilation gas by giving the above-mentioned flow passage a feature. To aim.

【0013】又、本発明は、上記流路の形状及び構造の
組み合わせに特徴をもたせることで、計測装置本体側へ
の粒子・燃料ガスの流入を確実に防止して、計測装置本
体の性能劣化を軽減できる光学的計測装置を提供するこ
とを目的とする。
Further, the present invention is characterized by the combination of the shape and structure of the above-mentioned flow path, so that the inflow of particles and fuel gas to the measuring device main body side is reliably prevented, and the performance of the measuring device main body is deteriorated. An object of the present invention is to provide an optical measuring device capable of reducing the noise.

【0014】又、本発明は、上記流路の形状及び構造の
組み合わせに特徴をもたせることで、長期間に亘り安定
した視野を確保できる光学的計測装置を提供することを
目的とする。
Another object of the present invention is to provide an optical measuring device capable of ensuring a stable visual field for a long period of time by giving the combination of the shape and structure of the above-mentioned flow path a characteristic.

【0015】又、本発明は、上記流路の形状及び構造の
組み合わせに特徴をもたせることで、計測装置本体側に
侵入する粉塵を被計測部側に戻すことができ常に安定し
た視野を確保できる光学的計測装置を提供することを目
的とする。
Further, the present invention is characterized by the combination of the shape and structure of the above-mentioned flow path, so that the dust entering the measuring device main body side can be returned to the measured part side, and a stable visual field can always be secured. An object is to provide an optical measuring device.

【0016】又、本発明は、上記流路の形状及び構造の
組み合わせに特徴をもたせることで、計測装置本体側に
侵入した粉塵が計測装置本体側に堆積して再び舞った
り、計測装置本体の視野を阻害することなく、侵入した
粉塵を確実に回収することができる光学的計測装置を提
供することを目的とする。又、本発明は、上記流路の形
状及び構造の組み合わせに特徴をもたせることで、流路
に入り込もうとする勢いのある粉塵を少ないガス流量で
効率よく押し戻すことができる光学的計測装置を提供す
ることを目的とする。
Further, the present invention is characterized by the combination of the shape and structure of the above-mentioned flow paths, so that the dust that has entered the measuring device main body side is accumulated on the measuring device main body side and reappears, or the measuring device main body An object of the present invention is to provide an optical measuring device capable of surely collecting invaded dust without obstructing the visual field. Further, the present invention provides an optical measuring device capable of efficiently pushing back the dust having a force to enter the flow path with a small gas flow rate, by giving a feature to the combination of the shape and the structure of the flow path. The purpose is to

【0017】[0017]

【課題を解決するための手段】光学的計測法に於いて、
光軸上に焦点を結ぶ必要がある手法では、被計測部で集
光させる手法であっても計測を阻害しない。そこで本発
明に於いては、計測部流路形状を光路形状に沿ってガス
流れ方向に流路横断面積が小さくなるように開口を絞る
構造とした。又、流路に設置する窓に関しては、汚れを
除去する装置を設置する構造とした。又、除去した汚れ
を取り除き易いように、ガス流れ方向に流路を下向きに
する構造とした。
[Means for Solving the Problems] In the optical measurement method,
In the method that requires focusing on the optical axis, the measurement is not hindered even by the method of condensing at the measured portion. In view of this, in the present invention, the shape of the flow path of the measuring portion is set so as to narrow the cross-sectional area of the flow path along the optical path in the gas flow direction. The window installed in the flow path has a structure in which a device for removing dirt is installed. Further, in order to easily remove the removed dirt, the flow path is oriented downward in the gas flow direction.

【0018】即ち、本発明は、計測装置本体が計測孔を
形成する流路を介して計測を行なう光学的計測装置に於
いて、前記計測孔と計測装置本体を連結する流路の形状
を光路形状に沿い、被計測部側流路断面積を計測装置本
体側流路断面積より小さくしたことを特徴とする。
That is, according to the present invention, in an optical measuring device in which a measuring device main body performs measurement through a flow path forming a measuring hole, the shape of the flow path connecting the measuring hole and the measuring device main body to the optical path. According to the shape, the flow path cross-sectional area on the measured part side is smaller than the flow path cross-sectional area on the measuring device main body side.

【0019】又、上記光学的計測装置に於いて、流路に
窓部を設けてなることを特徴とする。又、上記光学的計
測装置に於いて、流路に、計測装置本体側から被計測部
側へガスを流通する手段を設けたことを特徴とする。
Further, in the above optical measuring device,
It is characterized in that a window is provided. Further, in the above-mentioned optical measuring device, the flow path is provided with a means for flowing gas from the measuring device main body side to the measured portion side.

【0020】又、上記光学的計測装置に於いて、流路に
設けられた窓部と、当該窓部に付着した計測を阻害する
物質を除去するためにガス若しくは粉体若しくは液体を
前記窓部へ噴出する手段とを具備してなることを特徴と
する。
Further, in the above optical measuring device, a window portion provided in the flow path and a gas, powder or liquid for removing a substance adhering to the window portion which obstructs the measurement is added to the window portion. And a means for ejecting to.

【0021】又、上記光学的計測装置に於いて、流路に
設けられた窓部と、当該窓部に付着した計測を阻害する
物質を除去するために前記窓部に振動を与える加振機と
を具備してなることを特徴とする。
Further, in the above-mentioned optical measuring device, a vibrating machine for vibrating the window portion provided in the flow path and the window portion in order to remove the substance that interferes with the measurement adhered to the window portion. It is characterized by comprising:

【0022】又、上記光学的計測装置に於いて、被計測
部側が計測装置本体側より低位となるように流路を下向
きに取り付けたことを特徴とする。又、上記光学的計測
装置に於いて、被計測部側のガスを通すための流路が計
測装置本体側よりも狭くなり、かつ流路の下側が被計測
部側に近い部分で下向きに拡がる形状の計測孔を有して
なることを特徴とする。
Further, in the above optical measuring device, the flow path is attached downward so that the measured portion side is lower than the measuring device main body side. Further, in the above optical measuring device, the flow path for passing the gas on the measured part side is narrower than that on the measuring device main body side, and the lower side of the flow path expands downward in the part close to the measured part side. It is characterized by having a shape measurement hole.

【0023】又、上記光学的計測装置に於いて、流路の
被計測部側近傍に、計測孔に向けた小口径の複数のガス
噴出口を設けてなることを特徴とする。又、上記光学的
計測装置に於いて、流路の被計測部側と計測装置本体側
との間に窓を設け、当該窓で仕切られた被計測部側流路
内壁部から被計測部側に向かって、プラス若しくはマイ
ナスのイオンを含ませたガスを流すことを特徴とする。
又、上記光学的計測装置に於いて、流路の被計測部と計
測装置側との間に、塵埃を受ける容器を設けたことを特
徴とする。
Further, in the above-mentioned optical measuring device, a plurality of gas jet ports having a small diameter toward the measurement hole are provided in the vicinity of the measured portion side of the flow path. Further, in the above optical measuring device, a window is provided between the measured part side of the flow path and the measuring device main body side, and the measured part side flow path inner wall part partitioned by the window is measured from the measured part side. A gas containing positive or negative ions is made to flow toward.
Further, in the above optical measuring device, a container for receiving dust is provided between the measured portion of the flow path and the measuring device side.

【0024】[0024]

【作用】上記したように、光学的計測法で、光軸上に焦
点を結ぶ必要がある手法では、被計測部で集光させる手
法であっても計測を阻害しない。円形流路を例にとり、
集光レンズ径をD、流路出口径をD1、集光レンズと流
路出口距離をL、集光する角度をθとする。
As described above, in the optical measurement method that requires focusing on the optical axis, the measurement is not impeded even by the method of collecting light at the measured portion. Taking a circular channel as an example,
Let D be the diameter of the condenser lens, D1 be the outlet diameter of the flow path, L be the distance between the condenser lens and the outlet of the flow path, and θ be the angle of light collection.

【0025】ここで、従来例では、流路径は集光レンズ
径の寸法で一定であるので、必要な外流速をvとしたと
き、その通気ガス量:Q0 は以下に示される。 Q0 =π/4・D2 ・ρ・v …(1) ここで、流路出口でのガス流速を一致させることによ
り、同様の防止効果が得られるので、本発明の流路での
通気ガス量:Q1 は以下の式で表される。
Here, in the conventional example, since the diameter of the flow path is constant with the diameter of the condenser lens, when the required external flow velocity is v, the amount of ventilation gas: Q0 is shown below. Q0 = π / 4 · D 2 · ρ · v (1) Here, since the same preventive effect can be obtained by making the gas flow velocities at the flow path outlets the same, the vent gas in the flow path of the present invention can be obtained. Quantity: Q1 is represented by the following formula.

【0026】 Q1 =π/4・(D−2・L・tan θ)2 ・ρ・v …(2) つまり、通気ガス量を以下の割合で低減することが可能
である。 Q1 /Q0 =((D−2・L・tan θ)/D)2 …(3) 即ち、集光レンズ部の断面積をA0 、本発明の計測孔の
断面積をA1 とすると、通気ガス量は、以下の割合で低
減可能である。
[0026] Q1 = π / 4 · (D -2 · L · tan θ) 2 · ρ · v ... (2) That is, it is possible to reduce the ventilation gas amount in the following proportions. Q1 / Q0 = ((D-2.L.tan .theta.) / D) 2 (3) That is, letting A0 be the cross-sectional area of the condensing lens portion and A1 the cross-sectional area of the measurement hole of the present invention, the ventilation gas. The amount can be reduced at the following rates.

【0027】Q1 /Q0 =A1 /A0 …(4) また、窓部に付着した汚れを流体の噴射により取り除く
ためには、付着力よりも流体による除去力が大きくなる
ような流速Vで流体を付けることにより汚れの除去が可
能である。
Q1 / Q0 = A1 / A0 (4) Further, in order to remove the dirt adhering to the window portion by jetting the fluid, the fluid is applied at a flow velocity V such that the removing force by the fluid is larger than the adhering force. Dirt can be removed by attaching it.

【0028】また、振動による除去の場合は、振動によ
る除去力が付着力よりも大きくなるように、付着力と反
対方向に振動による加速度を作用させることにより汚れ
の除去が可能である。また、流路を下向きに設置し開口
部流路形状をガス流れ方向に小さくすることにより、出
口側のガス流速を高くすることが可能である。
Further, in the case of removal by vibration, dirt can be removed by applying acceleration due to vibration in a direction opposite to the adhesive force so that the removing force by vibration becomes larger than the adhesive force. In addition, it is possible to increase the gas flow velocity on the outlet side by installing the flow path downward and reducing the shape of the opening flow path in the gas flow direction.

【0029】また、流路を水平あるいは下向きに(重力
方向)に設置することにより、流路に侵入し流路の下部
に堆積した物質や、窓に付着して除去された物質を被計
測部側に除去することが可能である。
By installing the flow path horizontally or downward (in the direction of gravity), the substance that has entered the flow path and accumulated at the bottom of the flow path, or the substance that has adhered to the window and has been removed is measured. It is possible to remove to the side.

【0030】[0030]

【発明の実施の形態】以下図面を参照して本発明の実施
形態を説明する。図1乃至図3は計測孔と計測装置本体
を連結する流路の形状更には構造に特徴をもたせてい
る。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. 1 to 3 are characterized by the shape and structure of the flow path connecting the measuring hole and the measuring device body.

【0031】図1は本発明の第1実施形態を示す図であ
り、ここでは光軸方向断面(縦断面)の構成を示してい
る。図1に於いて、10は容器、11aは被計測部側の
壁面、11bは計測孔、11cはシールガス導入口、1
1dは流路、12は容器10に体納された計測装置本体
(計測器)である。
FIG. 1 is a diagram showing a first embodiment of the present invention, and here shows a configuration of a cross section (longitudinal section) in the optical axis direction. In FIG. 1, 10 is a container, 11a is a wall surface on the measured portion side, 11b is a measurement hole, 11c is a seal gas introduction port, 1
Reference numeral 1d is a flow path, and 12 is a measuring device main body (measuring instrument) housed in the container 10.

【0032】被計測部側の壁面11aに設けられた計測
孔11bは流路11dを介して計測装置本体12を収納
した容器10の内部に連通される。容器10内の計測装
置本体12は流路11d及び壁面11aに設けられた計
測孔11bを介して被計測部の光学的計測を行なう。
The measuring hole 11b provided in the wall surface 11a on the measured portion side is communicated with the inside of the container 10 accommodating the measuring device body 12 through the flow path 11d. The measuring device main body 12 in the container 10 performs optical measurement of the measured portion via the flow path 11d and the measurement hole 11b provided in the wall surface 11a.

【0033】ここで、計測孔11bと計測装置本体12
を連結する流路11dは、光路形状に沿い、被計測部側
流路断面積を計測装置本体側流路断面積より小さくした
形状となっている。
Here, the measuring hole 11b and the measuring device main body 12
The flow path 11d that connects the parts has a shape in which the cross-sectional area of the flow path on the measured portion side is smaller than the cross-sectional area of the measurement device main body side along the optical path shape.

【0034】上記した構成の光学的計測装置を用いるこ
とにより、より少ない通気ガス量で流路11d出口のガ
ス流速を速め、流路11dに入り込もうとする勢いのあ
る粉塵等を流速で押し戻すことができることから、効率
良く粒子・燃焼ガス等の計測孔11bへの流入を防止で
きる。
By using the optical measuring device having the above-described structure, the gas flow velocity at the outlet of the flow passage 11d can be increased with a smaller amount of gas flow, and the dust or the like having a force to enter the flow passage 11d can be pushed back at the flow velocity. As a result, it is possible to efficiently prevent the particles, the combustion gas, and the like from flowing into the measurement hole 11b.

【0035】これにより、長期間に亘り安定した視野を
確保することができ、安定した精度の高い光学的計測が
維持できる。図2は本発明の第2実施形態を示す縦断面
図である。
As a result, a stable field of view can be secured for a long period of time, and stable and highly accurate optical measurement can be maintained. FIG. 2 is a vertical sectional view showing the second embodiment of the present invention.

【0036】図2に於いて、20は容器、21aは被計
測部側の壁面、21bは計測孔、21cはシールガス導
入口、21dは流路、22は容器20に体納された計測
装置本体(計測器)であり、ここでは、被計測部側の壁
面21aに設けられた計測孔21bが被計測部側の壁面
21aより突出した構造となっている。
In FIG. 2, 20 is a container, 21a is a wall surface on the side of the measured portion, 21b is a measurement hole, 21c is a seal gas inlet, 21d is a flow path, and 22 is a measuring device housed in the container 20. The main body (measuring instrument) has a structure in which the measurement hole 21b provided in the wall surface 21a on the measured portion side projects from the wall surface 21a on the measured portion side.

【0037】被計測部側の壁面21aに設けられた計測
孔21bは流路21dを介して計測装置本体22を収納
した容器20の内部に連通され、容器20内の計測装置
本体22が流路21d及び壁面21aに設けられた計測
孔21bを介して被計測部の光学的計測を行なう。
The measurement hole 21b provided in the wall surface 21a on the measured portion side is communicated with the inside of the container 20 accommodating the measuring device body 22 via the flow path 21d, and the measuring device body 22 in the container 20 is connected to the flow path. 21d and the measurement hole 21b provided on the wall surface 21a are used to perform optical measurement of the measured portion.

【0038】このような実施形態に於いても上記第1実
施形態と同様に計測孔21bと計測装置本体22を連結
する流路21dが、光路形状に沿い、被計測部側流路断
面積を計測装置本体側流路断面積より小さくした形状と
なっており、従って、より少ない通気ガス量で流路21
d出口のガス流速を速め、流路21dに入り込もうとす
る勢いのある粉塵等を流速で押し戻すことができること
から、粒子・燃焼ガス等の計測孔21bへの流入を防止
できる。
In this embodiment as well, as in the first embodiment, the flow path 21d connecting the measuring hole 21b and the measuring device main body 22 along the optical path shape has a cross-sectional area of the measured part side flow path. It has a shape smaller than the cross-sectional area of the flow path on the measuring device main body side, so that the flow path 21 can be formed with a smaller amount of vent gas.
Since the flow velocity of the gas at the d outlet can be increased to push back the dust and the like having a force to enter the flow passage 21d at the flow velocity, it is possible to prevent the inflow of particles, combustion gas, and the like into the measurement hole 21b.

【0039】図3は本発明の第3実施形態を示す縦断面
図である。図3に於いて、30は容器、31aは被計測
部側の壁面、31bは計測孔、31cはシールガス導入
口、31dは流路、32は容器30に体納された計測装
置本体(計測器)であり、ここでは、被計測部側の壁面
31aに設けられた計測孔31bが被計測部側の壁面3
1aより凹んだ構造となっている。
FIG. 3 is a vertical sectional view showing a third embodiment of the present invention. In FIG. 3, reference numeral 30 is a container, 31a is a wall surface on the measured portion side, 31b is a measurement hole, 31c is a seal gas inlet, 31d is a flow path, and 32 is a measuring device body (measurement body) housed in the container 30. In this example, the measurement hole 31b provided in the wall surface 31a on the measured portion side is the wall surface 3 on the measured portion side.
The structure is recessed from 1a.

【0040】被計測部側の壁面31aに設けられた計測
孔31bは流路31dを介して計測装置本体32を収納
した容器30の内部に連通され、容器30内の計測装置
本体32が流路31d及び壁面31aに設けられた計測
孔31bを介して被計測部の光学的計測を行なう。
The measurement hole 31b provided in the wall surface 31a on the measured portion side is communicated with the inside of the container 30 accommodating the measuring device main body 32 through the flow path 31d, and the measuring device main body 32 in the container 30 is connected to the flow path. Optical measurement of the measured portion is performed through 31d and the measurement hole 31b provided on the wall surface 31a.

【0041】このような実施形態に於いても上記各実施
形態と同様に計測孔31bと計測装置本体32を連結す
る流路31dが、光路形状に沿い、被計測部側流路断面
積を計測装置本体側流路断面積より小さくした形状とな
っており、従って、より少ない通気ガス量で流路31d
出口のガス流速を速め、流路31dに入り込もうとする
勢いのある粉塵等を流速で押し戻すことができることか
ら、粒子・燃焼ガス等の計測孔31bへの流入を防止で
きる。
In this embodiment as well, as in each of the above-described embodiments, the flow path 31d connecting the measuring hole 31b and the measuring device main body 32 is measured along the optical path shape to measure the cross-sectional area of the flow path on the measured part side. It has a shape smaller than the cross-sectional area of the flow path on the device body side, and therefore, the flow path 31d can be formed with a smaller amount of vent gas.
Since the flow velocity of the gas at the outlet can be increased and the dust and the like having a force to enter the flow passage 31d can be pushed back at the flow velocity, the inflow of particles, combustion gas, etc. into the measurement hole 31b can be prevented.

【0042】上記した各実施形態は、流路(11d,2
1d,31d)が、計測装置本体(12,22,32)
から被計測部方向に向けて光路形状に沿い断面積が縮小
する形状である。
In each of the above-mentioned embodiments, the flow paths (11d, 2
1d, 31d) is the measuring device body (12, 22, 32)
Is a shape in which the cross-sectional area is reduced along the optical path shape from the direction toward the measured portion.

【0043】図4は本発明の第4実施形態を示す縦断面
図であり、計測孔と計測装置本体を連結する流路の形状
及び構造の組み合わせに特徴をもつ。図4に於いて、4
0は容器、41aは被計測部側の壁面、41bは計測
孔、41cはシールガス導入口、41dは流路、42は
容器40に体納された計測装置本体(計測器)であり、
ここでは、流路41dの断面積が、上記第1〜第3実施
形態のように光路形状に沿い縮小する形状ではなく、被
計測部方向に向けて段階状に減少する形状となってい
る。尚、この際、流路41dは光路を阻害しないような
形状である必要がある。
FIG. 4 is a longitudinal sectional view showing a fourth embodiment of the present invention, which is characterized by the combination of the shape and structure of the flow path connecting the measuring hole and the measuring device main body. In FIG. 4, 4
Reference numeral 0 is a container, 41a is a wall surface on the measured portion side, 41b is a measurement hole, 41c is a seal gas introduction port, 41d is a flow path, and 42 is a measuring device main body (measuring instrument) housed in a container 40,
Here, the cross-sectional area of the flow path 41d is not a shape that shrinks along the optical path shape as in the first to third embodiments, but a shape that decreases stepwise toward the measured portion. At this time, the flow path 41d needs to have a shape that does not obstruct the optical path.

【0044】被計測部側の壁面41aに設けられた計測
孔41bは流路41dを介して計測装置本体42を収納
した容器40の内部に連通され、容器40内の計測装置
本体42が流路41d及び壁面41aに設けられた計測
孔41bを介して被計測部の光学的計測を行なう。
The measurement hole 41b provided in the wall surface 41a on the measured portion side is communicated with the inside of the container 40 accommodating the measuring device main body 42 via the flow path 41d, and the measuring device main body 42 in the container 40 is connected to the flow path. Optical measurement of the measured portion is performed via 41d and a measurement hole 41b provided in the wall surface 41a.

【0045】このような実施形態に於いても上記各実施
形態と同様に計測孔41bと計測装置本体42を連結す
る流路41dが、光路形状に沿い、被計測部側流路断面
積を計測装置本体側流路断面積より小さくした形状とな
っており、従って、より少ない通気ガス量で流路41d
出口のガス流速を速め、流路41dに入り込もうとする
勢いのある粉塵等を流速で押し戻すことができることか
ら、粒子・燃焼ガス等の計測孔41bへの流入を防止で
きる。
In this embodiment as well, as in each of the above-described embodiments, the flow path 41d connecting the measuring hole 41b and the measuring device main body 42 is measured along the optical path shape to measure the cross-sectional area of the flow path on the measured portion side. The flow path 41d has a shape smaller than the flow path cross-sectional area of the main body of the apparatus, and therefore the flow path 41d can be formed with a smaller amount of gas.
Since the flow velocity of the gas at the outlet can be increased to push back the dust and the like having a force to enter the flow passage 41d at the flow velocity, it is possible to prevent the inflow of particles, combustion gas, and the like into the measurement hole 41b.

【0046】上記した図1〜図4に示す各実施形態に於
いて、流路(11d,21d,31d,41d)の横断
面形状は、円形、楕円形、多角形形状のいずれであって
もよい。また、図1〜図4に示す各実施形態に於いて
は、シールガスの導入口を容器の1か所のみに設けてい
るように示しているが、複数個所に設置してもよい。ま
た、流路に複数個設置してもよい。
In each of the embodiments shown in FIGS. 1 to 4 described above, the flow path (11d, 21d, 31d, 41d) may have any of a circular cross section, an elliptical cross section and a polygonal cross section. Good. Further, in each of the embodiments shown in FIGS. 1 to 4, the introduction port of the seal gas is shown to be provided at only one place of the container, but it may be provided at a plurality of places. Also, a plurality of them may be installed in the flow path.

【0047】図5は本発明の第5実施形態を示す縦断面
図であり、計測孔と計測装置本体を連結する流路の形状
及び構造の組み合わせに特徴をもつ。図5に於いて、5
0は容器、51aは被計測部側の壁面、51bは計測
孔、51cはシールガス導入口、51dは流路、52は
容器50に体納された計測装置本体(計測器)、53は
流路51d内に設けられた、流路51dを被計測部側と
計測装置本体側とに仕切る窓である。
FIG. 5 is a longitudinal sectional view showing a fifth embodiment of the present invention, which is characterized by the combination of the shape and structure of the flow path connecting the measuring hole and the measuring device main body. In FIG. 5, 5
0 is a container, 51a is a wall surface on the measured portion side, 51b is a measurement hole, 51c is a seal gas inlet, 51d is a flow path, 52 is a measuring device main body (measuring instrument) housed in a container 50, and 53 is a flow. A window provided in the passage 51d for partitioning the passage 51d into the measured portion side and the measuring device body side.

【0048】被計測部側の壁面51aに設けられた計測
孔51bは流路51d、及び流路51d内に設けられた
窓53を介して、計測装置本体52を収納した容器50
に連通され、計測装置本体52が流路51d内に設けら
れた窓53、及び壁面51aに設けられた計測孔51b
を介して被計測部の光学的計測を行なう。
The measuring hole 51b provided on the wall surface 51a on the measured portion side has a channel 50d and a container 50 accommodating the measuring device main body 52 through a window 53 provided in the channel 51d.
And the measurement device main body 52 is connected to the window 53 provided in the flow path 51d, and the measurement hole 51b provided in the wall surface 51a.
The optical measurement of the measured portion is performed via.

【0049】このような実施形態に於いても上記各実施
形態と同様に計測孔51bと計測装置本体52を連結す
る流路51dが、光路形状に沿い、被計測部側流路断面
積を計測装置本体側流路断面積より小さくした形状とな
っており、従って、より少ない通気ガス量で流路51d
出口のガス流速を速め、流路51dに入り込もうとする
勢いのある粉塵等を流速で押し戻すことができることか
ら、粒子・燃焼ガス等の計測孔51bへの流入を防止で
きる。
In this embodiment as well, as in each of the above embodiments, the flow path 51d connecting the measurement hole 51b and the measuring device main body 52 is measured along the optical path shape to measure the cross-sectional area of the flow path on the measured part side. The flow path 51d has a shape smaller than the flow path cross-sectional area of the main body of the apparatus, so that the flow path 51d can be formed with a smaller amount of gas.
Since the flow velocity of the gas at the outlet can be increased and the dust and the like having the force to enter the flow passage 51d can be pushed back at the flow velocity, the inflow of particles and combustion gas into the measurement hole 51b can be prevented.

【0050】更に、この図5に示す実施形態では、シー
ルガスの導入口51cに供給されたガスが容器50内及
び配管を経由して、流路51d内の窓53の被計測部側
に導出され、その噴出ガスにより、窓53に付着した計
測を阻害する塵挨等の物質が除去される。
Further, in the embodiment shown in FIG. 5, the gas supplied to the inlet 51c for the seal gas is led to the measured portion side of the window 53 in the flow path 51d via the inside of the container 50 and the piping. Then, the ejected gas removes substances such as dust that adhere to the window 53 and obstruct the measurement.

【0051】これにより、計測装置本体52側への粒
子、燃料ガス等の流入を窓53により確実に防止するこ
とができ、計測装置本体52の性能劣化を防止できると
ともに、窓53の汚れを常に除去して、長期間に亘り安
定した視野を確保することができ、安定した高い計測精
度を維持することができる。
This makes it possible to reliably prevent the particles, fuel gas, and the like from flowing into the measuring device main body 52 side by the window 53, prevent the performance of the measuring device main body 52 from deteriorating, and keep the window 53 clean. By removing it, a stable visual field can be secured for a long period of time, and stable and high measurement accuracy can be maintained.

【0052】この第5実施形態に於いて、シールガスの
導入口51cより容器50内に導入されるガスは、例え
ば複数の系統から供給する構成であってもよく、又、シ
ールガス導入口51c、ガス噴出口等も1箇所に限らず
複数箇所設けた構成であってもよい。
In the fifth embodiment, the gas introduced into the container 50 through the seal gas inlet 51c may be supplied from a plurality of systems, for example, or the seal gas inlet 51c. The number of gas ejection ports and the like is not limited to one and may be plural.

【0053】又、この第5実施形態では、ガスにより窓
53に付着した計測を阻害する塵挨等の物質を除去して
いるが、ガス以外に、粉体若しくは液体を窓53へ噴出
することにより窓53を清掃することも可能である。
又、流路51dの横断面形状は、上記各実施形態と同様
に円形、楕円形、多角形形状のいずれであってもよい。
Further, in the fifth embodiment, the substance such as dust that adheres to the window 53 and obstructs the measurement is removed by the gas, but powder or liquid is ejected to the window 53 in addition to the gas. It is also possible to clean the window 53 by.
Further, the cross-sectional shape of the flow channel 51d may be circular, elliptical, or polygonal as in the above embodiments.

【0054】又、この第5実施形態では、計測孔51b
が被計測部側の壁面51aに設けられた構成としている
が、例えば上記第2実施形態に示すような壁面51aよ
り突出した構造、又は第3実施形態に示すような壁面5
1aより凹んだ構造であってもよい。
In the fifth embodiment, the measuring hole 51b is also provided.
Is provided on the wall surface 51a on the measured portion side. For example, the structure protruding from the wall surface 51a as shown in the second embodiment or the wall surface 5 as shown in the third embodiment.
The structure may be recessed from 1a.

【0055】又、この第5実施形態では、計測孔51b
と計測装置本体52を連結する流路51dが、光路形状
に沿い、被計測部側流路断面積を計測装置本体側流路断
面積より小さくした形状となっているが、例えば緩やか
に断面積が減少する流路形状とせず、上記第4実施形態
に示すように、段階的に断面積が減少する流路形状であ
ってもよいが、光路を阻害しないような流路形状である
必要がある。この際も流路の横断面形状は、円形、楕円
形・多角形形状のいずれであってもよい。
In the fifth embodiment, the measuring hole 51b is also provided.
The flow path 51d connecting the measuring device main body 52 and the measuring device main body 52 has a shape in which the measured-part-side flow path cross-sectional area is smaller than the measuring-device main body-side flow path cross-sectional area along the optical path shape. Is not limited to the flow passage shape, and the flow passage shape may be such that the cross-sectional area is reduced stepwise as shown in the fourth embodiment, but it is necessary that the flow passage shape does not obstruct the optical path. is there. Also in this case, the cross-sectional shape of the channel may be circular, elliptical or polygonal.

【0056】図6は本発明の第6実施形態を示す縦断面
図であり、計測孔と計測装置本体を連結する流路の形状
及び構造の組み合わせに特徴をもつもので、上記図5に
示す第5実施形態をより発展させた構成としている。
FIG. 6 is a vertical cross-sectional view showing a sixth embodiment of the present invention, which is characterized by the combination of the shape and structure of the flow path connecting the measuring hole and the measuring device body, and is shown in FIG. The configuration is a further development of the fifth embodiment.

【0057】図6に於いて、60は容器、61aは被計
測部側の壁面、61bは計測孔、61cはシールガス導
入口、61dは流路、62は容器60に体納された計測
装置本体(計測器)、63は流路61d内に設けられ
た、流路61dを被計測部側と計測装置本体側とに仕切
る窓である。61eは流路61d内を被計測部側と計測
装置本体側とに仕切る窓63の被計測部側に汚れ除去用
ガスを吹付けるための汚れ除去用ガス導入口であり、窓
63の周辺部から窓63の被計測部側の面部へ汚れ除去
用ガスを噴射して窓63へ付着する塵挨を除去する。
In FIG. 6, reference numeral 60 is a container, 61a is a wall surface on the side to be measured, 61b is a measurement hole, 61c is a seal gas inlet, 61d is a flow path, and 62 is a measuring device housed in the container 60. A main body (measuring device) 63 is a window provided in the flow path 61d for partitioning the flow path 61d into the measured portion side and the measuring device main body side. Reference numeral 61e denotes a dirt removing gas introduction port for spraying a dirt removing gas to the measured part side of the window 63 that partitions the inside of the flow path 61d into the measured part side and the measuring device body side, and a peripheral part of the window 63. A dirt-removing gas is sprayed onto the surface of the window 63 on the measured portion side to remove dust adhering to the window 63.

【0058】被計測部側の壁面61aに設けられた計測
孔61bは流路61d、及び流路61d内に設けられた
窓63を介して、計測装置本体62を収納した容器60
に連通され、計測装置本体62が流路61d内に設けら
れた窓63、及び壁面61aに設けられた計測孔61b
を介して被計測部の光学的計測を行なう。
The measuring hole 61b provided on the wall surface 61a on the measured portion side has a channel 60d and a container 60 accommodating the measuring device main body 62 through a window 63 provided in the channel 61d.
And the measuring device main body 62 communicates with the window 63 provided in the flow path 61d, and the measuring hole 61b provided in the wall surface 61a.
The optical measurement of the measured portion is performed via.

【0059】このような実施形態に於いても上記各実施
形態と同様に計測孔61bと計測装置本体62を連結す
る流路61dが、光路形状に沿い、被計測部側流路断面
積を計測装置本体側流路断面積より小さくした形状とな
っており、従って、より少ない通気ガス量で流路61d
出口のガス流速を速め、流路61dに入り込もうとする
勢いのある粉塵等を流速で押し戻すことができることか
ら、粒子・燃焼ガス等の計測孔61bへの流入を防止で
きる。
In this embodiment as well, as in each of the above embodiments, the flow path 61d connecting the measuring hole 61b and the measuring device main body 62 is measured along the optical path shape to measure the cross-sectional area of the flow path on the measured portion side. The flow path 61d has a shape smaller than the flow path cross-sectional area of the main body of the apparatus.
Since the flow velocity of the gas at the outlet can be increased and the dust and the like having the force to enter the flow passage 61d can be pushed back at the flow velocity, the inflow of particles, combustion gas, and the like into the measurement hole 61b can be prevented.

【0060】更に、この図6に示す実施形態では、シー
ルガスの導入口61cに供給されたガスが容器60内及
び配管を経由して、流路61d内の窓63の被計測部側
に導出され、その噴出ガスにより、窓63に付着した計
測を阻害する塵挨等の物質が除去されるとともに、汚れ
除去用ガス導入口61eからの噴出ガスを窓63の周辺
部から窓63の被計測部側の面部に吹き付け、窓63の
被計測部側の面部に付着する塵挨等を除去して窓63を
クリーンな状態に保つ。
Further, in the embodiment shown in FIG. 6, the gas supplied to the inlet 61c for the seal gas is led out to the measured portion side of the window 63 in the channel 61d via the inside of the container 60 and the pipe. The ejected gas removes substances such as dust adhering to the window 63, which obstruct the measurement, and ejects the ejected gas from the dirt removing gas introduction port 61e from the peripheral portion of the window 63 to the measured portion of the window 63. The surface of the window 63 is sprayed to remove dust and the like adhering to the surface of the window 63 on the side of the measured portion to keep the window 63 in a clean state.

【0061】これにより、計測装置本体62側への粒
子、燃料ガス等の流入を窓63により確実に防止するこ
とができ、計測装置本体62の性能劣化を防止できると
ともに、窓63の汚れを常に除去して、長期間に亘り安
定した視野を確保することができ、安定した高い計測精
度を維持することができる。
This makes it possible to reliably prevent the particles, fuel gas, and the like from flowing into the measuring device main body 62 side by the window 63, prevent the performance of the measuring device main body 62 from deteriorating, and keep the window 63 clean. By removing it, a stable visual field can be secured for a long period of time, and stable and high measurement accuracy can be maintained.

【0062】この第6実施形態に於いても上記図5に示
す第5実施形態と同様の変形・拡張構造が可能である。
図7は本発明の第7実施形態を示す縦断面図であり、計
測孔と計測装置本体を連結する流路の形状及び構造の組
み合わせに特徴をもつもので、上記図5に示す第5実施
形態をより発展させた構成としている。
Also in the sixth embodiment, the same modification / expansion structure as that of the fifth embodiment shown in FIG. 5 is possible.
FIG. 7 is a vertical cross-sectional view showing a seventh embodiment of the present invention, which is characterized by the combination of the shape and structure of the flow path connecting the measuring hole and the measuring device main body, and the fifth embodiment shown in FIG. The structure is more developed.

【0063】図7に於いて、70は容器、71aは被計
測部側の壁面、71bは計測孔、71cはシールガス導
入口、71dは流路、72は容器70に体納された計測
装置本体(計測器)、73は流路71d内に設けられ
た、流路71dを被計測部側と計測装置本体側とに仕切
る窓である。74は窓73に振動を与えて窓73の汚れ
を除去するための加振機であり、連結棒等の連結機構を
介して窓73に連結される。
In FIG. 7, 70 is a container, 71a is a wall surface on the measured portion side, 71b is a measuring hole, 71c is a seal gas inlet, 71d is a flow path, and 72 is a measuring device housed in the container 70. A main body (measuring instrument) 73 is a window provided in the flow path 71d for partitioning the flow path 71d into the measured portion side and the measuring apparatus main body side. Reference numeral 74 is a vibrator for applying vibration to the window 73 to remove dirt on the window 73, and is connected to the window 73 via a connecting mechanism such as a connecting rod.

【0064】被計測部側の壁面71aに設けられた計測
孔71bは流路71d、及び流路71d内に設けられた
窓73を介して、計測装置本体72を収納した容器70
に連通され、計測装置本体72が流路71d内に設けら
れた窓73、及び壁面71aに設けられた計測孔71b
を介して被計測部の光学的計測を行なう。
The measurement hole 71b provided on the wall surface 71a on the measured portion side has a flow path 71d and a container 70 containing the measuring device main body 72 through a window 73 provided in the flow path 71d.
And a measurement hole 71b provided in the wall surface 71a and a window 73 provided in the flow path 71d.
The optical measurement of the measured portion is performed via.

【0065】このような実施形態に於いても上記各実施
形態と同様に計測孔71bと計測装置本体72を連結す
る流路71dが、光路形状に沿い、被計測部側流路断面
積を計測装置本体側流路断面積より小さくした形状とな
っており、従って、より少ない通気ガス量で流路71d
出口のガス流速を速め、流路71dに入り込もうとする
勢いのある粉塵等を流速で押し戻すことができることか
ら、粒子・燃焼ガス等の計測孔71bへの流入を防止で
きる。
Also in such an embodiment, as in each of the above-described embodiments, the flow path 71d connecting the measuring hole 71b and the measuring device main body 72 measures the cross-sectional area of the flow path on the measured portion side along the optical path shape. The shape is smaller than the cross-sectional area of the flow path on the apparatus main body side, and therefore, the flow path 71d can be formed with a smaller amount of ventilation gas.
Since the gas flow velocity at the outlet can be increased and the dust or the like having the force to enter the flow passage 71d can be pushed back at the flow velocity, the inflow of particles, combustion gas, etc. into the measurement hole 71b can be prevented.

【0066】更に、この図7に示す実施形態では、シー
ルガスの導入口71cに供給されたガスが容器70内及
び配管を経由して、流路71d内の窓73の被計測部側
に導出され、その噴出ガスにより、窓73に付着した計
測を阻害する塵挨等の物質が除去されるとともに、加振
機74と窓73が連結棒等の連結機構により連結され、
加振機74によって窓73に振動が加えられて、計測を
阻害する塵挨等の物質の窓73への付着が防止される。
Further, in the embodiment shown in FIG. 7, the gas supplied to the inlet 71c for the seal gas is led to the measured portion side of the window 73 in the flow passage 71d via the inside of the container 70 and the piping. The ejected gas removes dust and other substances adhering to the window 73 that interfere with measurement, and the vibrator 74 and the window 73 are connected by a connecting mechanism such as a connecting rod.
Vibration is applied to the window 73 by the vibration exciter 74, and adhesion of substances such as dust that hinders measurement to the window 73 is prevented.

【0067】これにより、計測装置本体72側への粒
子、燃料ガス等の流入を窓73により確実に防止するこ
とができ、計測装置本体72の性能劣化を防止できると
ともに、塵挨等の物質が窓73へ付着する不具合を排除
して、長期間に亘り安定した視野を確保することがで
き、安定した高い計測精度を維持することができる。
This makes it possible to reliably prevent particles, fuel gas, and the like from flowing into the measuring device main body 72 side by the window 73, prevent the performance of the measuring device main body 72 from deteriorating, and prevent dusts and other substances from collecting. It is possible to eliminate a defect attached to the window 73, to secure a stable visual field for a long period of time, and to maintain stable and high measurement accuracy.

【0068】この第7実施形態に於いても上記図5に示
す第5実施形態と同様の変形・拡張構造が可能である。
図8は本発明の第8実施形態を示す縦断面図であり、計
測孔と計測装置本体を連結する流路の形状及び構造の組
み合わせに特徴をもつもので、ここでは計測孔を下向き
に配置した構成としている。
Also in the seventh embodiment, the same modified / expanded structure as that of the fifth embodiment shown in FIG. 5 is possible.
FIG. 8 is a vertical cross-sectional view showing an eighth embodiment of the present invention, which is characterized by the combination of the shape and structure of the flow path connecting the measuring hole and the measuring device body. Here, the measuring hole is arranged downward. It has been configured.

【0069】図8に於いて、80は容器、81aは被計
測部側の壁面、81bは下向きに配置した計測孔、81
cはシールガス導入口、81dはガス流れ方向に下向き
に設けた流路、82は容器80に体納された計測装置本
体(計測器)である。
In FIG. 8, 80 is a container, 81a is a wall surface on the measured portion side, 81b is a measurement hole arranged downward, and 81 is a measuring hole.
Reference numeral c is a seal gas inlet, 81d is a flow path provided downward in the gas flow direction, and 82 is a measuring device main body (measuring instrument) housed in a container 80.

【0070】被計測部側の壁面81aに設けられた下向
きの計測孔81bは流路81d、及び流路81d内に設
けられた窓83を介して、計測装置本体82を収納した
容器80に連通され、計測装置本体82が流路81d、
及び壁面81aに設けられた下向きの計測孔81bを介
して被計測部の光学的計測を行なう。
The downward measuring hole 81b provided on the wall surface 81a on the measured portion side communicates with the container 80 accommodating the measuring device main body 82 through the flow path 81d and the window 83 provided in the flow path 81d. The measurement device main body 82 is connected to the flow path 81d,
Also, optical measurement of the measurement target portion is performed through the downward measurement hole 81b provided in the wall surface 81a.

【0071】このような実施形態に於いても上記各実施
形態と同様に下向きの計測孔81bと計測装置本体82
を連結する流路81dが、光路形状に沿い、被計測部側
流路断面積を計測装置本体側流路断面積より小さくした
形状となっており、従って、より少ない通気ガス量で流
路81d出口のガス流速を速め、流路81dに入り込も
うとする勢いのある粉塵等を流速で押し戻すことができ
ることから、塵挨、粉塵、粒子等の計測孔81bへの流
入を防止できる。
In such an embodiment as well, as in each of the above-described embodiments, the downward measuring hole 81b and the measuring device main body 82 are provided.
The flow path 81d connecting the flow path 81d has a shape in which the flow path cross-sectional area on the measured portion side is smaller than the flow path cross-sectional area on the measurement device main body side along the optical path shape. Since the flow velocity of the gas at the outlet can be increased and the dust and the like having a force to enter the flow path 81d can be pushed back at the flow velocity, the inflow of dust, dust, particles and the like into the measurement hole 81b can be prevented.

【0072】更に、この図8に示す第8実施形態では、
計測孔81b、及び流路81dが下向きとなっているた
め、上記した各実施形態より更に少ないガス流量で、塵
挨、粉塵、粒子等の計測孔81bへの流入を防止でき
る。又、流路81dの下部に粒子等の物質が堆積して
も、その粒子等の物質を容易に炉内側に除去することが
できる。
Furthermore, in the eighth embodiment shown in FIG.
Since the measurement hole 81b and the flow path 81d face downward, it is possible to prevent dust, dust, particles, and the like from flowing into the measurement hole 81b with a smaller gas flow rate than the above-described embodiments. Further, even if a substance such as particles is deposited in the lower portion of the flow path 81d, the substance such as particles can be easily removed inside the furnace.

【0073】これにより、長期間に亘り安定した視野を
確保することができ、安定した精度の高い光学的計測が
維持できる。この第8実施形態に於いても上記した図4
乃至図7に示す実施形態と同様の変形・拡張構造が可能
である。
As a result, a stable visual field can be secured for a long period of time, and stable and highly accurate optical measurement can be maintained. Also in this eighth embodiment, as shown in FIG.
The same modification / expansion structure as that of the embodiment shown in FIG. 7 is possible.

【0074】図9は本発明の第9実施形態を示す縦断面
図であり、計測孔と計測装置本体を連結する流路の形状
及び計測孔の形状に特徴をもつもので、ここでは計測孔
を下向きに配置した構成としている。
FIG. 9 is a vertical cross-sectional view showing a ninth embodiment of the present invention, which is characterized by the shape of the flow path and the shape of the measuring hole that connect the measuring hole and the measuring device body. Is arranged downward.

【0075】図9に於いて、90は容器、91aは被計
測部側の壁面、91bは計測孔、91cはシールガス導
入口、91dは流路、92は容器90に体納された計測
装置本体(計測器)である。
In FIG. 9, reference numeral 90 is a container, 91a is a wall surface on the measured portion side, 91b is a measurement hole, 91c is a seal gas inlet, 91d is a flow path, and 92 is a measuring device housed in the container 90. It is the main body (measuring instrument).

【0076】91fは被計測部側の計測孔91bを形成
する流路91d出口を被計測部側に開くように傾斜をつ
けて下側部分のみ一部開口した開口部であり、流路91
dに入り込もうとする被計測部側の粉塵、ごみ等を被計
測部側に戻すための傾斜路を形成している。
Reference numeral 91f is an opening in which the outlet of the flow passage 91d forming the measurement hole 91b on the measured portion side is inclined so as to open to the measured portion side and only the lower part is partially opened.
An inclined path is formed for returning the dust, dust, and the like on the side of the measured part that is about to enter the d to the side of the measured part.

【0077】被計測部側の壁面91aに設けられた計測
孔91bは流路91dを介して、計測装置本体92を収
納した容器90に連通され、計測装置本体92が流路9
1d、及び壁面91aに設けられた計測孔91bを介し
て被計測部の光学的計測を行なう。
The measuring hole 91b provided in the wall surface 91a on the measured portion side is communicated with the container 90 accommodating the measuring device main body 92 through the flow path 91d, and the measuring device main body 92 is connected to the flow path 9d.
Optical measurement of the measured portion is performed through 1d and the measurement hole 91b provided in the wall surface 91a.

【0078】このような実施形態に於いても上記各実施
形態と同様に計測孔91bと計測装置本体92を連結す
る流路91dが、光路形状に沿い、被計測部側流路断面
積を計測装置本体側流路断面積より小さくした形状とな
っており、従って、より少ない通気ガス量で流路91d
出口のガス流速を速め、流路91dに入り込もうとする
勢いのある粉塵等を流速で押し戻すことができることか
ら、塵挨、粉塵、粒子等の計測孔91bへの流入を防止
できる。
In this embodiment as well, as in each of the above-described embodiments, the flow path 91d connecting the measuring hole 91b and the measuring device main body 92 is measured along the optical path shape to measure the cross-sectional area of the flow path on the measured portion side. It has a shape smaller than the flow path cross-sectional area of the apparatus main body side.
Since the gas flow velocity at the outlet can be increased and the dust or the like that is trying to enter the flow passage 91d can be pushed back at the flow velocity, the inflow of dust, dust, particles or the like into the measurement hole 91b can be prevented.

【0079】更に、この図9に示す第9実施形態では、
被計測部側の計測孔91bを形成する流路91d出口
に、被計測部側に開くように斜めに拡がった開口部(傾
斜路)91fを設け、ガスの流れに打ち勝って流路91
dに入り込もうとする被計測部側の粉塵、ごみ等が、こ
の開口部(傾斜路)91fを伝って被計測部側に落ちる
構造としていることから、塵挨、粉塵、粒子等の計測孔
91bへの流入防止効果を高めることができる。
Further, in the ninth embodiment shown in FIG. 9,
At the outlet of the flow passage 91d forming the measurement hole 91b on the measured portion side, an opening (inclined road) 91f that is obliquely widened so as to open to the measured portion side is provided to overcome the gas flow and flow passage 91
Since the dust, dust, etc. on the side of the measured portion that tries to enter the d are configured to travel along the opening (tilt) 91f and fall to the side of the measured portion, the measurement hole 91b for measuring dust, dust, particles, etc. It is possible to enhance the effect of preventing the inflow to.

【0080】この第9実施形態に於いても上記した図4
乃至図7に示す実施形態と同様の変形・拡張構造が可能
である。図10は本発明の第10実施形態を示す縦断面
図であり、計測孔と計測装置本体を連結する流路の形状
及び計測孔の形状に特徴をもつもので、ここでは流路の
被計測部側近傍に、計測孔に向けた小口径の複数のガス
噴出口を設けてなる構成としている。
Also in the ninth embodiment, as shown in FIG.
The same modification / expansion structure as that of the embodiment shown in FIG. 7 is possible. FIG. 10 is a vertical cross-sectional view showing a tenth embodiment of the present invention, which is characterized by the shape of the flow path connecting the measurement hole and the measuring device body and the shape of the measurement hole. A plurality of gas outlets having a small diameter toward the measurement hole are provided near the portion side.

【0081】図10に於いて、X0は容器、X1aは被
計測部側の壁面、X1bは計測孔、X1cはシールガス
導入口、X1dは流路、X2は容器X0に体納された計
測装置本体(計測器)である。
In FIG. 10, X0 is a container, X1a is a wall surface on the measured portion side, X1b is a measurement hole, X1c is a seal gas inlet, X1d is a flow path, and X2 is a measuring device housed in a container X0. It is the main body (measuring instrument).

【0082】X3は流路X1d内の被計測部側近傍に、
計測孔X1bに向けて設けられた小口径の複数のガス噴
出口であり、計測孔X1bを形成する流路X1d出口に
於いて、流路X1dに入り込もうとする被計測部側の粉
塵、ごみ等を被計測部側に戻すためのガスを噴出する。
X3 is in the vicinity of the portion to be measured in the channel X1d,
It is a plurality of small-diameter gas outlets provided toward the measurement hole X1b, and at the outlet of the flow path X1d forming the measurement hole X1b, dust, dust, etc. on the measured portion side that tries to enter the flow path X1d. A gas for returning the gas to the measured portion side is ejected.

【0083】被計測部側の壁面X1aに設けられた計測
孔X1bは流路X1dを介して、計測装置本体X2を収
納した容器X0に連通され、計測装置本体X2が流路X
1d、及び壁面X1aに設けられた計測孔X1bを介し
て被計測部の光学的計測を行なう。
The measurement hole X1b provided in the wall surface X1a on the measured portion side is communicated with the container X0 accommodating the measuring device main body X2 via the flow path X1d, and the measuring device main body X2 is connected to the flow path X1.
Optical measurement of the measured portion is performed through 1d and the measurement hole X1b provided on the wall surface X1a.

【0084】このような実施形態に於いても上記各実施
形態と同様に計測孔X1bと計測装置本体X2を連結す
る流路X1dが、光路形状に沿い、被計測部側流路断面
積を計測装置本体側流路断面積より小さくした形状とな
っており、従って、より少ない通気ガス量で流路X1d
出口のガス流速を速め、流路X1dに入り込もうとする
勢いのある粉塵等を流速で押し戻すことができることか
ら、塵挨、粉塵、粒子等の計測孔X1bへの流入を防止
できる。
Also in such an embodiment, the channel X1d connecting the measuring hole X1b and the measuring device body X2 is measured along the optical path shape in the same manner as in the above-mentioned respective embodiments to measure the cross-sectional area of the channel on the measured portion side. The shape is smaller than the cross-sectional area of the flow path on the device body side. Therefore, the flow path X1d can be formed with a smaller amount of ventilation gas.
Since the flow velocity of the gas at the outlet can be increased and the dust or the like having a force to enter the flow path X1d can be pushed back at the flow velocity, the inflow of dust, dust, particles or the like into the measurement hole X1b can be prevented.

【0085】更に、この図10に示す第10実施形態で
は、被計測部側の計測孔X1bを形成する流路X1d出
口に、流路X1dに入り込もうとする被計測部側の粉
塵、ごみ等を被計測部側に戻すためのガスを計測孔X1
bに向けて噴出する小口径の複数のガス噴出口X3を設
けていることから、塵挨、粉塵、粒子等の計測孔X1b
への流入防止効果をより高めることができる。
Further, in the tenth embodiment shown in FIG. 10, dust, dust, etc. on the measured portion side which is going to enter the flow passage X1d is output to the outlet of the flow passage X1d forming the measurement hole X1b on the measured portion side. Gas for returning to the measured part side is measured hole X1
Since a plurality of gas outlets X3 having a small diameter for ejecting toward b are provided, the measurement hole X1b for dust, dust, particles, etc.
It is possible to further enhance the effect of preventing the inflow to.

【0086】この第10実施形態に於いても上記した図
4乃至図7、及び図9に示す実施形態と同様の変形・拡
張構造が可能である。図11は本発明の第11実施形態
を示す縦断面図であり、計測孔と計測装置本体を連結す
る流路の形状及び計測孔の形状に特徴をもつもので、こ
こでは、窓で仕切られた被計測部側流路内壁部から被計
測部側に向かって、プラス若しくはマイナスのイオンを
含ませたガスを流す構成としている。
Also in the tenth embodiment, the same modification / expansion structure as that of the embodiment shown in FIGS. 4 to 7 and 9 is possible. FIG. 11 is a vertical cross-sectional view showing an eleventh embodiment of the present invention, which is characterized by the shape of the flow path connecting the measuring hole and the measuring device body and the shape of the measuring hole. The gas containing positive or negative ions is made to flow from the inner wall portion of the flow path on the measured portion side toward the measured portion side.

【0087】図11に於いて、Y0は容器、Y1aは被
計測部側の壁面、Y1bは計測孔、Y1cはイオンガス
導入口、Y1dは流路、Y2は容器Y0に体納された計
測装置本体(計測器)、Y3は流路Y1d内に設けられ
た、流路Y1dを被計測部側と計測装置本体側とに仕切
る窓である。
In FIG. 11, Y0 is a container, Y1a is a wall surface on the measured portion side, Y1b is a measurement hole, Y1c is an ion gas inlet, Y1d is a flow path, and Y2 is a measuring device housed in the container Y0. A main body (measuring instrument) Y3 is a window provided in the flow path Y1d for partitioning the flow path Y1d into the measured portion side and the measuring device main body side.

【0088】被計測部側の壁面Y1aに設けられた計測
孔Y1bは流路Y1d、及び流路Y1d内の窓Y3を介
して、計測装置本体Y2を収納した容器Y0に連通さ
れ、計測装置本体Y2が流路Y1d、窓Y3、及び壁面
Y1aに設けられた計測孔Y1bを介して被計測部の光
学的計測を行なう。
The measurement hole Y1b provided in the wall surface Y1a on the measured portion side is communicated with the container Y0 accommodating the measurement device body Y2 through the flow passage Y1d and the window Y3 in the flow passage Y1d, and the measurement device body Y2 optically measures the portion to be measured through the flow path Y1d, the window Y3, and the measurement hole Y1b provided in the wall surface Y1a.

【0089】このような実施形態に於いても上記各実施
形態と同様に計測孔Y1bと計測装置本体Y2を連結す
る流路Y1dが、光路形状に沿い、被計測部側流路断面
積を計測装置本体側流路断面積より小さくした形状とな
っており、従って、より少ない通気ガス量で流路Y1d
出口のガス流速を速め、流路Y1dに入り込もうとする
勢いのある粉塵等を流速で押し戻すことができることか
ら、塵挨、粉塵、粒子等の計測孔Y1bへの流入を防止
できる。
Also in such an embodiment, the flow path Y1d connecting the measuring hole Y1b and the measuring device main body Y2 is measured along the optical path shape in the same manner as in the above-described embodiments, and the flow path cross-sectional area on the measured portion side is measured. The shape of the flow path Y1d is smaller than that of the flow path Y1d on the apparatus main body side.
Since the gas flow velocity at the outlet can be increased and the dust or the like that is trying to enter the flow path Y1d can be pushed back at the flow velocity, the inflow of dust, dust, particles or the like into the measurement hole Y1b can be prevented.

【0090】更に、この図11に示す第11実施形態で
は、イオンガス導入口Y1cから導入されたイオンガス
を窓Y3で仕切られた被計測部側流路内壁部から被計測
部側に向かって噴出する構成としていることから、帯電
した粉塵、ごみ等が、静電気力によって窓Y3に引き寄
せられる不具合を解消できる。
Further, in the eleventh embodiment shown in FIG. 11, the ion gas introduced from the ion gas inlet Y1c is directed from the inner wall portion of the flow path on the measured portion side partitioned by the window Y3 toward the measured portion side. Since it is configured to eject, it is possible to solve the problem that charged dust, dust, and the like are attracted to the window Y3 by electrostatic force.

【0091】即ち、被計測部と計測装置本体Y2の間の
流路Y1dには、窓Y3で仕切られた被計測部側流路内
壁部から被計測部側に向かって、イオンガス導入口Y1
cから導入されプラス若しくはマイナスのイオンを含ま
せたガスが吹出される。
That is, in the flow path Y1d between the measured part and the measuring device body Y2, the ion gas inlet Y1 is introduced from the measured part side flow path inner wall section partitioned by the window Y3 toward the measured part side.
Gas containing positive or negative ions introduced from c is blown out.

【0092】この際、窓Y3の被計測部側周囲からプラ
若しくはマイナスに帯電したイオンをもつガスが流
れ、当該ガスが流路Y1dkの口径が狭くなるに連れて
加速され、被計測部側に吹き出される。
At this time, a gas having positively or negatively charged ions flows from the periphery of the measurement target side of the window Y3, the gas is accelerated as the diameter of the flow path Y1dk becomes narrower, and the gas is moved toward the measurement target side. Blown out.

【0093】この実現手段としては、イオンガス導入口
Y1c、又はイオンガス導入口Y1cに連通して窓Y3
の周囲に設けられるガス吹出口に、イオン発生装置を取
り付けておき、イオン発生装置で電極間に高電圧を印加
することによってイオン発生させることができる。これ
により窓Y3の被計測部側周囲からプラス及びマイナス
に帯電したイオンをもつガスが流れ、被計測部側に向か
って吹出されることから、例えば摩擦等、種々の現象に
より帯電した粉塵、ごみ等が、窓Y3の周囲から吹き出
すイオンを含んだガスによって中和され、静電気力を失
って、流路Y1d内に沈降したり、ガスの流れに押され
て被計測部側に流れてゆき、静電気力によって窓Y3に
引き寄せられ付着する等の不具合を解消できる。
As a means for realizing this, the ion gas inlet Y1c or the window Y3 communicating with the ion gas inlet Y1c is used.
It is possible to generate ions by attaching an ion generator to a gas outlet provided around the ion generator and applying a high voltage between the electrodes by the ion generator. As a result, a gas having positively and negatively charged ions flows from around the measured portion side of the window Y3 and is blown toward the measured portion side. Therefore, for example, dust or dust charged due to various phenomena such as friction. And the like are neutralized by the gas containing the ions blown from the periphery of the window Y3, lose the electrostatic force, settle in the flow path Y1d, or are pushed by the flow of gas and flow toward the measurement target side, Problems such as being attracted to and attached to the window Y3 by electrostatic force can be eliminated.

【0094】この第11実施形態に於いても上記した図
4乃至図10に示す実施形態と同様の変形・拡張構造が
可能である。図12は本発明の第12実施形態を示す縦
断面図であり、計測孔と計測装置本体を連結する流路の
形状及び計測孔の形状に特徴をもつもので、ここでは、
流路の被計測部と計測装置側との間に、塵埃、粉塵等の
ごみを受ける容器を設けた構成としている。
Also in the eleventh embodiment, the same modified / expanded structure as that of the embodiment shown in FIGS. 4 to 10 is possible. FIG. 12 is a vertical cross-sectional view showing a twelfth embodiment of the present invention, which is characterized by the shape of the flow path and the shape of the measurement hole connecting the measurement hole and the measurement device main body.
A container for receiving dust such as dust and dust is provided between the measured portion of the flow path and the measuring device side.

【0095】図12に於いて、Z0は容器、Z1aは被
計測部側の壁面、Z1bは計測孔、Z1cはシールガス
導入口、Z1dは流路、Z2は容器Z0に体納された計
測装置本体(計測器)、Z4はごみ回収容器、Z5は流
路Z1dとごみ回収容器Z4をとの間に設けられた仕切
り板、Z6はごみ回収容器Z4に回収された塵埃、粉塵
等のごみである。
In FIG. 12, Z0 is a container, Z1a is a wall surface on the measured portion side, Z1b is a measurement hole, Z1c is a seal gas inlet, Z1d is a flow path, and Z2 is a measuring device housed in the container Z0. Main body (measuring instrument), Z4 is a waste collection container, Z5 is a partition plate provided between the flow path Z1d and the waste collection container Z4, and Z6 is dust collected in the waste collection container Z4. is there.

【0096】被計測部側の壁面Z1aに設けられた計測
孔Z1bは流路Z1dを介して、計測装置本体Z2を収
納した容器Z0に連通され、計測装置本体Z2が流路Z
1d、及び壁面Z1aに設けられた計測孔Z1bを介し
て被計測部の光学的計測を行なう。
The measurement hole Z1b provided on the wall surface Z1a on the measured portion side is communicated with the container Z0 accommodating the measuring device main body Z2 via the flow path Z1d, and the measuring device main body Z2 is connected to the flow path Z1.
1d and the measurement hole Z1b provided in the wall surface Z1a are used to perform optical measurement of the measured portion.

【0097】このような実施形態に於いても上記各実施
形態と同様に計測孔Z1bと計測装置本体Z2を連結す
る流路Z1dが、光路形状に沿い、被計測部側流路断面
積を計測装置本体側流路断面積より小さくした形状とな
っており、従って、より少ない通気ガス量で流路Z1d
出口のガス流速を速め、流路Z1dに入り込もうとする
勢いのある粉塵等を流速で押し戻すことができることか
ら、塵挨、粉塵、粒子等の計測孔Z1bへの流入を防止
できる。
In this embodiment as well, as in each of the above-described embodiments, the flow path Z1d connecting the measurement hole Z1b and the measuring device main body Z2 is measured along the optical path shape to measure the cross-sectional area of the flow path on the measured portion side. It has a shape smaller than the flow passage cross-sectional area of the device main body side, and therefore, the flow passage Z1d can be formed with a smaller amount of gas.
Since the gas flow velocity at the outlet can be increased and the dust or the like having a force to enter the flow path Z1d can be pushed back at the flow velocity, the inflow of dust, dust, particles or the like into the measurement hole Z1b can be prevented.

【0098】更に、この図12に示す第12実施形態で
は、流路Z1d途中の下側に、流路Z1dの中に入って
きた塵埃、粉塵等のごみを回収する、ごみ回収容器Z4
を取付けており、流路Z1dに入り込んだ塵埃、粉塵等
のごみは、流路Z1dの底に落ち、ごみ回収容器Z4容
器に落ちて計測装置本体Z2に届かない。又、ごみ回収
容器Z4には、途中に仕切り板Z5が設けられ、更に容
器底部にごみの取り出し穴が設けられているので、内部
のガスの流れを乱すことなく容器内に堆積した塵埃、粉
塵等のごみを取り出すことができる。
Further, in the twelfth embodiment shown in FIG. 12, a dust collecting container Z4 for collecting dust such as dust and dust that has entered the flow passage Z1d on the lower side of the flow passage Z1d.
The dust such as dust and dust that has entered the flow path Z1d falls to the bottom of the flow path Z1d, falls into the dust collection container Z4, and does not reach the measuring device body Z2. Further, since the garbage collecting container Z4 is provided with a partition plate Z5 in the middle thereof and further provided with a dust take-out hole at the bottom of the container, dust and dust accumulated in the container without disturbing the gas flow inside the container. It is possible to take out such garbage.

【0099】これにより、例え塵埃、粉塵等のごみが流
路Z1dに入り込んでも流路Z1dと中でごみ回収容器
Z4に回収され、更に、流路Z1dに入り込んだ塵埃、
粉塵等のごみが流路Z1d内に堆積したり、堆積した塵
埃、粉塵等のごみがガスの流れによって再び舞う等の不
具合も解消できる。
As a result, even if dust such as dust or dust enters the flow path Z1d, it is collected in the dust collecting container Z4 in the flow path Z1d, and further dust that enters the flow path Z1d,
It is also possible to solve the problem that dust such as dust is accumulated in the flow path Z1d, and dust such as accumulated dust and dust flows again due to the flow of gas.

【0100】上記したように上記した各実施形態によれ
ば、少ない通気ガス量で塵埃、粉塵、粒子等の計測孔へ
の流入を防止できる。又、上記機能に加えて計測装置本
体側への粒子、燃料ガス等の流入を防止する窓を設置す
ることにより、計測装置本体の性能劣化を軽減すること
ができる。
As described above, according to each of the above-described embodiments, it is possible to prevent dust, dust, particles and the like from flowing into the measurement hole with a small amount of ventilation gas. Further, in addition to the above functions, by installing a window for preventing the inflow of particles, fuel gas, etc. to the measuring device body side, it is possible to reduce the performance deterioration of the measuring device body.

【0101】又、窓の汚れを除去する装置を付け加える
ことにより、長期間にわたり、安定した視野を確保する
ことができる。又、流路内にに侵入した塵埃、粉塵等を
被計測部側に戻すことができる。
Further, by adding a device for removing dirt on the window, a stable visual field can be secured for a long period of time. Further, dust, dust, and the like that have entered the flow path can be returned to the measured portion side.

【0102】又、流路内に侵入した塵埃、粉塵等を流路
内で回収することによって、塵埃、粉塵等が流路内に堆
積し再び舞ったり計測視野を阻害するという不具合を招
くことなく、流路内に侵入した塵埃、粉塵等を確実に回
収することができる。
Further, by collecting the dust, dust, and the like that have entered the flow passage in the flow passage, the dust, the dust, and the like do not accumulate in the flow passage and fly again or obstruct the measurement field of view. It is possible to reliably collect dust, dust, and the like that have entered the flow path.

【0103】又、窓を汚すことなく、常にクリーンな状
態で計測することができる。又、比較的少ない流量で、
流路に入り込もうとする勢いのある塵埃、粉塵等を流速
で押し戻すことができる。
Further, it is possible to always measure in a clean state without polluting the window. Also, with a relatively low flow rate,
It is possible to push back the vigorous dust, dust, etc. that try to enter the flow path at the flow velocity.

【0104】[0104]

【発明の効果】以上詳記したように本発明によれば、計
測装置本体が計測孔を形成する流路を介して計測を行な
う光学的計測装置に於いて、前記計測孔と計測装置本体
を連結する流路の形状更には構造に特徴をもたせること
で、被計測部から計測装置本体(計測器)が設けられた
計測装置側に、媒塵・ゴミ・燃焼ガス等が流入して計測
装置本体側が汚染される不具合を解消した実用性の高い
経済的にも有利な構成をなす光学的計測装置が提供でき
る。
As described above in detail, according to the present invention, in the optical measuring device which performs measurement through the flow path in which the measuring device body forms the measuring hole, the measuring hole and the measuring device body are By giving the shape and structure of the flow path to be connected to the measuring device, dust, dust, combustion gas, etc. will flow from the part to be measured to the measuring device side where the measuring device body (measuring device) is installed. It is possible to provide an optical measuring device having a highly practical and economically advantageous configuration that solves the problem that the main body side is contaminated.

【0105】又、本発明によれば、上記流路の形状に特
徴をもたせることで、少量の通気ガス量で粒子・燃焼ガ
ス等の計測孔への流入を防止できる光学的計測装置が提
供できる。
Further, according to the present invention, it is possible to provide an optical measuring device capable of preventing the inflow of particles, combustion gas and the like into the measuring hole with a small amount of ventilation gas by giving the above-mentioned flow passage a feature. .

【0106】又、本発明によれば、上記流路の形状及び
構造の組み合わせに特徴をもたせることで、計測装置本
体側への粒子・燃料ガスの流入を確実に防止して、計測
装置本体の性能劣化を軽減できる光学的計測装置が提供
できる。
Further, according to the present invention, the combination of the shape and structure of the above-mentioned flow paths is characterized, so that the inflow of particles and fuel gas to the measuring device main body side is reliably prevented, and the measuring device main body An optical measuring device that can reduce performance deterioration can be provided.

【0107】又、本発明によれば、上記流路の形状及び
構造の組み合わせに特徴をもたせることで長期間に亘り
安定した視野を確保できる光学的計測装置が提供でき
る。又、本発明によれば、上記流路の形状及び構造の組
み合わせに特徴をもたせることで、計測装置本体側に侵
入する粉塵を被計測部側に戻すことができ常に安定した
視野を確保できる光学的計測装置が提供できる。
Further, according to the present invention, it is possible to provide an optical measuring device capable of ensuring a stable visual field for a long period of time by giving a feature to the combination of the shape and structure of the flow path. Further, according to the present invention, by giving the combination of the shape and structure of the above-mentioned flow path a feature, it is possible to return the dust entering the measuring device body side to the measured part side, and to always secure a stable visual field. A measuring device can be provided.

【0108】又、本発明によれば、上記流路の形状及び
構造の組み合わせに特徴をもたせることで、計測装置本
体側に侵入した粉塵が計測装置本体側に堆積して再び舞
ったり、計測装置本体の視野を阻害することなく、侵入
した粉塵を確実に回収できる光学的計測装置が提供でき
る。又、本発明によれば、上記流路の形状及び構造の組
み合わせに特徴をもたせることで、流路に入り込もうと
する勢いのある粉塵を少ないガス流量で効率よく押し戻
すことができる光学的計測装置が提供できる。
According to the present invention, the combination of the shape and the structure of the flow path is characterized, so that the dust that has entered the measuring device body side is deposited on the measuring device body side and reappears, or the measuring device body reappears. It is possible to provide an optical measuring device that can reliably collect invading dust without obstructing the field of view of the main body. Further, according to the present invention, by providing a feature in the combination of the shape and structure of the above-mentioned flow path, an optical measuring device capable of efficiently pushing back the dust with the force to enter the flow path with a small gas flow rate. Can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施形態による光学的計測装置の
構成を示す光軸方向に沿う断面図。
FIG. 1 is a sectional view taken along the optical axis showing the configuration of an optical measuring device according to a first embodiment of the invention.

【図2】本発明の第2実施形態による光学的計測装置の
構成を示す光軸方向に沿う断面図。
FIG. 2 is a sectional view taken along the optical axis showing the configuration of an optical measuring device according to a second embodiment of the invention.

【図3】本発明の第3実施形態による光学的計測装置の
構成を示す光軸方向に沿う断面図。
FIG. 3 is a sectional view taken along the optical axis direction showing the configuration of an optical measuring device according to a third embodiment of the invention.

【図4】本発明の第4実施形態による光学的計測装置の
構成を示す光軸方向に沿う断面図。
FIG. 4 is a sectional view taken along the optical axis showing the configuration of an optical measuring device according to a fourth embodiment of the invention.

【図5】本発明の第5実施形態による光学的計測装置の
構成を示す光軸方向に沿う断面図。
FIG. 5 is a sectional view taken along the optical axis showing the configuration of an optical measuring device according to a fifth embodiment of the invention.

【図6】本発明の第5実施形態による光学的計測装置の
構成を示す光軸方向に沿う断面図。
FIG. 6 is a sectional view taken along the optical axis showing the configuration of an optical measuring device according to a fifth embodiment of the invention.

【図7】本発明の第7実施形態による光学的計測装置の
構成を示す光軸方向に沿う断面図。
FIG. 7 is a sectional view taken along the optical axis direction showing the configuration of an optical measuring device according to a seventh embodiment of the invention.

【図8】本発明の第8実施形態による光学的計測装置の
構成を示す光軸方向に沿う断面図。
FIG. 8 is a sectional view taken along the optical axis showing the configuration of an optical measuring device according to an eighth embodiment of the invention.

【図9】本発明の第9実施形態による光学的計測装置の
構成を示す光軸方向に沿う断面図。
FIG. 9 is a sectional view taken along the optical axis showing the configuration of an optical measuring device according to a ninth embodiment of the invention.

【図10】本発明の第10実施形態による光学的計測装
置の構成を示す光軸方向に沿う断面図。
FIG. 10 is a sectional view taken along the optical axis showing the configuration of an optical measuring device according to a tenth embodiment of the invention.

【図11】本発明の第11実施形態による光学的計測装
置の構成を示す光軸方向に沿う断面図。
FIG. 11 is a sectional view taken along the optical axis showing the configuration of an optical measuring device according to an eleventh embodiment of the invention.

【図12】本発明の第12実施形態による光学的計測装
置の構成を示す光軸方向に沿う断面図。
FIG. 12 is a sectional view taken along the optical axis showing the configuration of an optical measuring device according to a twelfth embodiment of the invention.

【図13】従来技術1による光学的計測装置の構成を示
す光軸方向に沿う断面図。
FIG. 13 is a sectional view taken along the optical axis direction showing the configuration of the optical measurement device according to the related art 1.

【図14】従来技術2による光学的計測装置の構成を示
す光軸方向に沿う断面図。
FIG. 14 is a sectional view taken along the optical axis direction showing the configuration of an optical measuring device according to Related Art 2.

【図15】従来技術3による光学的計測装置の構成を示
す光軸方向に沿う断面図。
FIG. 15 is a cross-sectional view taken along the optical axis showing the configuration of an optical measuring device according to prior art 3.

【符号の説明】[Explanation of symbols]

10,20,30,40,50,60,70,80,9
0,X0,Y0,Z0…容器 11a,21a,31a,41a,51a,61a,7
1a,81a,91a,X1a,Y1a,Z1a…壁面 11b,21b,31b,41b,51b,61b,7
1b,81b,91b,X1b,Y1b,Z1b…計測
孔 11c,21c,31c,41c,51c,61c,7
1c,81c,91c,X1c,Y1c,Z1c…シー
ルガス導入口 11d,21d,31d,41d,51d,61d,7
1d,81d,91d,X1d,Y1d,Z1d…流路 12,22,32,42,52,62,72,82,9
2,X2,Y2,Z2…計測装置本体(計測器) 53,63,73,83,Y3…窓 61e…汚れ除去用ガス導入口 74…加振機 91f…開口部(傾斜路) X3…ガス噴出口 Y1c…イオンガス導入口 Z4…ごみ回収容器 Z5…仕切り板 Z6…塵埃、粉塵等のごみ。
10, 20, 30, 40, 50, 60, 70, 80, 9
0, X0, Y0, Z0 ... Containers 11a, 21a, 31a, 41a, 51a, 61a, 7
1a, 81a, 91a, X1a, Y1a, Z1a ... Wall surfaces 11b, 21b, 31b, 41b, 51b, 61b, 7
1b, 81b, 91b, X1b, Y1b, Z1b ... Measuring holes 11c, 21c, 31c, 41c, 51c, 61c, 7
1c, 81c, 91c, X1c, Y1c, Z1c ... Seal gas introduction ports 11d, 21d, 31d, 41d, 51d, 61d, 7
1d, 81d, 91d, X1d, Y1d, Z1d ... Channels 12, 22, 32, 42, 52, 62, 72, 82, 9
2, X2, Y2, Z2 ... Measuring device main body (measuring instrument) 53, 63, 73, 83, Y3 ... Window 61e ... Dirt removing gas inlet 74 ... Vibrator 91f ... Opening (slope) X3 ... Gas Jet port Y1c ... Ion gas introduction port Z4 ... Dust collection container Z5 ... Partition plate Z6 ... Dust such as dust and dust.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平10−115210(JP,A) 特開 平4−314020(JP,A) 特開 平7−216422(JP,A) 特開 平7−299412(JP,A) 特開 平6−60630(JP,A) 実開 平3−125244(JP,U) 実開 平7−8759(JP,U) 実開 昭50−984(JP,U) 実開 昭61−131636(JP,U) 実公 平3−34679(JP,Y2) 実公 昭59−22520(JP,Y1) (58)調査した分野(Int.Cl.7,DB名) G01N 21/00 - 21/74 JICSTファイル(JOIS)─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP 10-115210 (JP, A) JP 4-314020 (JP, A) JP 7-216422 (JP, A) JP 7- 299412 (JP, A) JP-A-6-60630 (JP, A) Actual opening 3-125244 (JP, U) Actual opening 7-8759 (JP, U) Actual opening Sho-50-984 (JP, U) Actual development Sho 61-131636 (JP, U) Actual public 3-34679 (JP, Y2) Actual public 59-22520 (JP, Y1) (58) Fields investigated (Int.Cl. 7 , DB name) G01N 21/00-21/74 JISST file (JOIS)

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 計測装置本体が計測孔を形成する流路を
介して計測を行なう光学的計測装置に於いて、前記計測
孔と計測装置本体を連結する流路の形状を光路形状に沿
い、被計測部側流路断面積を計測装置本体側流路断面積
より小さくしたことを特徴とする光学的計測装置。
1. An optical measuring device in which a measuring device main body performs measurement through a flow path forming a measuring hole, wherein a shape of a flow path connecting the measuring hole and the measuring device main body is along an optical path shape, An optical measuring device characterized in that a flow path cross-sectional area of a measured portion side is made smaller than a flow path cross-sectional area of a measuring device main body side.
【請求項2】 流路に、窓部を設けてなる請求項1記載
の光学的計測装置。
2. The optical measuring device according to claim 1 , wherein the flow path is provided with a window portion .
【請求項3】 流路に、計測装置本体側から被計測部側
へガスを流通する手段を設けた請求項1記載の光学的計
測装置。
3. The optical measuring device according to claim 1, wherein the flow path is provided with means for flowing gas from the measuring device body side to the measured portion side.
【請求項4】 流路に設けられた窓部と、当該窓部に付
着した計測を阻害する物質を除去するためにガス若しく
は粉体若しくは液体を前記窓部へ噴出する手段とを具備
してなることを特徴とする請求項1記載の光学的計測装
置。
4. A window portion provided in the flow path, and means for ejecting gas, powder or liquid to the window portion in order to remove a substance adhering to the window portion which interferes with measurement. The optical measuring device according to claim 1, wherein
【請求項5】 流路に設けられた窓部と、当該窓部に付
着した計測を阻害する物質を除去するために前記窓部に
振動を与える加振機とを具備してなることを特徴とする
請求項1記載の光学的計測装置。
5. A window part provided in the flow path, and a vibration exciter for vibrating the window part to remove a substance that interferes with the measurement and adheres to the window part. The optical measuring device according to claim 1.
【請求項6】 被計測部側が計測装置本体側より低位と
なるように流路を下向きに取り付けたことを特徴とする
請求項1記載の光学的計測装置。
6. The optical measuring device according to claim 1, wherein the flow path is attached downward so that the measured portion side is lower than the measuring device main body side.
【請求項7】 被計測部側のガスを通すための流路が計
測装置本体側よりも狭くなり、かつ流路の下側が被計測
部側に近い部分で下向きに拡がる形状の計測孔を有して
なる請求項1記載の光学的計測装置。
7. The flow path for passing the gas on the measured part side is narrower than the measuring device main body side, and the lower side of the flow path has a measurement hole that expands downward at a portion near the measured part side. The optical measuring device according to claim 1, wherein
【請求項8】 流路の被計測部側近傍に、計測孔に向け
た小口径の複数のガス噴出口を設けてなることを特徴と
する請求項1記載の光学的計測装置。
8. The optical measuring device according to claim 1, wherein a plurality of gas outlets having a small diameter toward the measurement hole are provided in the vicinity of the measured portion side of the flow path.
【請求項9】 流路の被計測部側と計測装置本体側との
間に窓を設け、当該窓で仕切られた被計測部側流路内壁
部から被計測部側に向かってイオンを含ませたガスを
流すことを特徴とする請求項1記載の光学的計測装置。
9. a window between the measurement portion side and the measuring unit side of the flow path, toward the measurement portion side from the measurement portion side channel inner wall portion partitioned by the window, the ions The optical measuring device according to claim 1, wherein the contained gas is caused to flow.
【請求項10】 流路の被計測部と計測装置側との間
に、塵埃を受ける容器を設けたことを特徴とする請求項
1記載の光学的計測装置。
10. The optical measuring device according to claim 1, wherein a container for receiving dust is provided between the measured portion of the flow path and the measuring device side.
JP32192896A 1996-12-02 1996-12-02 Optical measuring device Expired - Lifetime JP3513342B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32192896A JP3513342B2 (en) 1996-12-02 1996-12-02 Optical measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32192896A JP3513342B2 (en) 1996-12-02 1996-12-02 Optical measuring device

Publications (2)

Publication Number Publication Date
JPH10160525A JPH10160525A (en) 1998-06-19
JP3513342B2 true JP3513342B2 (en) 2004-03-31

Family

ID=18137989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32192896A Expired - Lifetime JP3513342B2 (en) 1996-12-02 1996-12-02 Optical measuring device

Country Status (1)

Country Link
JP (1) JP3513342B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2104555C1 (en) * 1996-04-30 1998-02-10 Александр Михайлович Деревягин Flow speed meter
JP2009270917A (en) * 2008-05-07 2009-11-19 Nohken:Kk Mounting structure of laser type gas analysis meter
JP5606056B2 (en) * 2009-12-17 2014-10-15 三菱重工業株式会社 Gas measuring cell and gas concentration measuring device using the same
FR2966931B1 (en) * 2010-10-27 2012-11-16 Commissariat Energie Atomique CHARACTERIZATION CELL FOR SMOKE ANALYSIS
JP7118684B2 (en) * 2018-03-27 2022-08-16 日本光電工業株式会社 Respiratory Information Detection Sensor, Respiratory Information Detector

Also Published As

Publication number Publication date
JPH10160525A (en) 1998-06-19

Similar Documents

Publication Publication Date Title
JP4426106B2 (en) Apparatus and method for controlling droplet separation point of flow cytometer
JP3513342B2 (en) Optical measuring device
US6372506B1 (en) Apparatus and method for verifying drop delay in a flow cytometer
Nam et al. Analyzing freeway traffic under congestion: Traffic dynamics approach
Wurster et al. Measurement of oil entrainment rates and drop size spectra from coalescence filter media
US7798017B2 (en) Ram pressure probe having two ducts and a differential pressure increasing element
CN102365542A (en) Horizontal component catcher of dustfall in atmosphere and measuring method of horizontal component
KR101009271B1 (en) Device for determining at least one parameter of a medium flowing in a line
Barlow et al. Two-phase velocity measurements in dense particle-laden jets
JP2003121452A5 (en)
KR19990064074A (en) Mass measuring device of fluid
CN213360430U (en) Oil-gas separation end cover for air compressor
JP2004143935A (en) Oil particle collecting device
FI107713B (en) droplet eliminator
JP4142036B2 (en) Taxiway
John et al. Breakup of latex doublets by impaction
JPH01209147A (en) Ink jet recording apparatus
JP3849671B2 (en) Vehicle level detection device
JPH0631125Y2 (en) PCV room for internal combustion engine
GB1566718A (en) Device for separating a liquid mist from a gas
EP3698886A1 (en) Monitoring of a fluidic free jet
JP2824858B2 (en) Purge air circulation system for particle detection cell
JP3779090B2 (en) Taxiway
KR20130086579A (en) Cascade impactor for low flow rate with microchannel and process of the same
SU866446A1 (en) Device for sampling aerosols

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100116

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110116

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110116

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term