JP3508308B2 - Method and apparatus for producing oxygen-containing titanium - Google Patents

Method and apparatus for producing oxygen-containing titanium

Info

Publication number
JP3508308B2
JP3508308B2 JP18302895A JP18302895A JP3508308B2 JP 3508308 B2 JP3508308 B2 JP 3508308B2 JP 18302895 A JP18302895 A JP 18302895A JP 18302895 A JP18302895 A JP 18302895A JP 3508308 B2 JP3508308 B2 JP 3508308B2
Authority
JP
Japan
Prior art keywords
concentration
titanium
mixed gas
gas
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18302895A
Other languages
Japanese (ja)
Other versions
JPH0931563A (en
Inventor
敬 折井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP18302895A priority Critical patent/JP3508308B2/en
Publication of JPH0931563A publication Critical patent/JPH0931563A/en
Application granted granted Critical
Publication of JP3508308B2 publication Critical patent/JP3508308B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、純チタンまたはチタン
合金であって、酸素を積極的に添加し含有させたものの
製造方法に関する。 本発明はまた、その方法の実施に
使用する装置にも関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing pure titanium or a titanium alloy containing oxygen by positively adding it. The invention also relates to the device used to carry out the method.

【0002】以下、純チタンとチタン合金とを、「チタ
ン」の語で代表させる。
Hereinafter, pure titanium and titanium alloy are represented by the term "titanium".

【0003】[0003]

【従来の技術】主として強度および硬さの向上を意図し
て行なわれるチタンへの酸素の添加は、従来、真空アー
ク再溶解(VAR)によるインゴットの製造に際して、
チタニアTiO2の微粉末を溶湯に混合することによっ
て行なっていた。 TiO2の熱分解で放出される酸素
を溶湯に吸収させるわけであるが、チタニア微粉末の分
散が均一に行なわれないと偏析を生じたり、またチタニ
アの一部が未分解のまま残ることもあり、常に良好な結
果が得られるとは限らない。
2. Description of the Related Art The addition of oxygen to titanium, which is mainly intended to improve strength and hardness, has hitherto been carried out in the production of ingots by vacuum arc remelting (VAR).
This was done by mixing fine powder of titania TiO 2 into the molten metal. The oxygen released by the thermal decomposition of TiO 2 is absorbed in the molten metal, but if the titania fine powder is not uniformly dispersed, segregation may occur, or part of the titania may remain undecomposed. Yes, good results are not always obtained.

【0004】出願人は、アルゴンをプラズマガスとする
プラズマアーク加熱によりチタン材料を溶解し、水冷モ
ールド中で連続的に鋳造を行なう、プラズマプログレッ
シブキャスティング(PPC)によるチタンインゴット
の製造において、溶解雰囲気中にO2 を存在させてお
き、その一部を溶湯中に移行させることにより酸素を含
有させる方法を確立し、すでに提案した(特願平7−4
6541号)。
The applicant of the present invention, in the production of titanium ingot by plasma progressive casting (PPC) in which a titanium material is melted by plasma arc heating using argon as a plasma gas and continuously cast in a water-cooled mold, in a melting atmosphere. O 2 was made to exist in the molten metal, and a method of containing oxygen by migrating a part of it into the molten metal was established and already proposed (Japanese Patent Application No. 7-4
6541).

【0005】この方法において、雰囲気中のO2 ガス分
圧が高ければ、それに応じて溶湯中の〔O〕量も増大す
るが、移行の速度は高いといえず、高酸素含有量のチタ
ンを得ることは容易でなかった。 また、〔O〕量を精
密にコントロールする技術が求められていた。
In this method, if the O 2 gas partial pressure in the atmosphere is high, the amount of [O] in the molten metal is correspondingly increased, but the rate of transfer is not high, and titanium with a high oxygen content is not used. It wasn't easy to get. Further, there has been a demand for a technique for precisely controlling the [O] amount.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、PP
C法によるチタンインゴットを鋳造するに当り、溶解雰
囲気から溶湯中に酸素を移行させて酸素含有チタンを製
造する方法において、酸素と溶湯との反応効率を高めて
高濃度で酸素を含有するチタンを容易に製造することが
でき、かつ、その酸素含有量を正確にコントロールする
ことのできる酸素含有チタンの製造方法を提供すること
にある。
The object of the present invention is to provide a PP
In casting a titanium ingot by the C method, in a method for producing oxygen-containing titanium by transferring oxygen from a molten atmosphere into a molten metal, a reaction efficiency between oxygen and the molten metal is increased to increase the concentration of titanium containing oxygen. An object of the present invention is to provide a method for producing oxygen-containing titanium which can be easily produced and whose oxygen content can be accurately controlled.

【0007】そのような方法の実施に使用する製造装置
を提供することもまた、本発明の目的に含まれる。
It is also within the object of the present invention to provide a manufacturing apparatus for use in carrying out such a method.

【0008】[0008]

【課題を解決するための手段】本発明の酸素含有チタン
の製造方法は、チタンまたはチタン合金の材料をプラズ
マアーク加熱により溶解して水冷モールド中で連続的に
鋳造し、溶解雰囲気から溶湯中に酸素を添加することか
らなる酸素含有チタンの製造方法において、溶解室にO
2−Ar混合ガスを供給し、溶解室内のO2濃度(A%)
と溶解室を出るガス中のO2濃度(B%)とを測定し、
ΔO2%=(A−B)%が一定の値になるようにO2−A
r混合ガスのO2濃度および(または)供給速度をコン
トロールすることにより、鋳造されたチタンまたはチタ
ン合金中の酸素含有量を一定にすることを特徴とする。
The method for producing oxygen-containing titanium according to the present invention comprises the steps of melting a titanium or titanium alloy material by plasma arc heating and continuously casting the material in a water-cooled mold, and then converting it from a molten atmosphere into a molten metal. In the method for producing oxygen-containing titanium, which comprises adding oxygen, O is added to the melting chamber.
Supplying 2- Ar mixed gas, O 2 concentration (A%) in the melting chamber
And the O 2 concentration (B%) in the gas exiting the melting chamber,
ΔO 2 % = (A−B)% so that O 2 −A becomes a constant value
It is characterized in that the oxygen content in the cast titanium or titanium alloy is kept constant by controlling the O 2 concentration and / or the supply rate of the r mixed gas.

【0009】この方法の実施に当っては、O2 −Ar混
合ガスを溶湯面に吹きつけるように供給して実施するこ
とが好ましい。
In carrying out this method, it is preferable that the O 2 -Ar mixed gas is supplied so as to be sprayed onto the surface of the molten metal.

【0010】本発明の酸素含有チタンの製造装置は、図
1に示すように、内部に水冷モールド(1)および鋳片
引下装置(4)を有し、上部にプラズマアーク電極
(2)および材料投入口(3)をそなえた溶解室
(5)、この溶解室にO2−Ar混合ガスを任意の混合比
率および供給速度をもって供給する混合ガスの吹込手段
(6)、吹き込まれる混合ガス中のO2濃度(A%)を
測定するO2計(7A)および溶解室を出るガス中のO2
濃度(B%)を測定するO2計(7B)、ならびに溶解
室内のO2濃度(A%)を計算するとともに混合ガスの混
合比率および供給速度を制御するコントローラ(8)か
ら成り、ΔO2%=(A−B)%を所定の値に保つことが
できるように構成したものである。
As shown in FIG. 1, the apparatus for producing oxygen-containing titanium of the present invention has a water-cooled mold (1) and a slab lowering device (4) inside and a plasma arc electrode (2) and an upper part on top. A melting chamber (5) having a material input port (3), a gas mixture blowing means (6) for supplying an O 2 -Ar mixed gas into the melting chamber at an arbitrary mixing ratio and supply rate, O 2 meter (7A) for measuring the O 2 concentration (A%) of the gas and O 2 in the gas leaving the melting chamber
ΔO 2 comprising an O 2 meter (7B) for measuring the concentration (B%), a controller (8) for calculating the O 2 concentration (A%) in the melting chamber and controlling the mixing ratio and supply rate of the mixed gas, % = (A−B)% can be maintained at a predetermined value.

【0011】[0011]

【作用】図1の装置において、溶解室に入るガスに関す
る事項をとり出すと、図2のように示すことができる。
ここで、 プラズマガス(Ar)の流量: Q1 添加反応用O2 ガスの流量: Q ブースト用Arガスの流量: Q3 吹込ノズル内径: d とすると、溶解室に流入する全体のガス中のO2 濃度
(%)および吹込みガスの流速v(m/s)は、それぞ
れつぎのように与えられ、 O2%=Q2/(Q1+Q3)×100 v=const ×(Q2+Q3)/d22%はQ2の増減によって調節することができ、またv
はQ3 の増減によって調節することができる。(Q1>>
3であるため) 実例を挙げて示せば、まずPPC炉内の雰囲気ガス中の
2 濃度とチタンインゴット中の〔O〕濃度との関係は
図3にみるとおりであって、雰囲気中のO2 濃度を高め
ると、それに比例してチタン中に酸素が移行することが
わかる。
In the apparatus shown in FIG. 1, the matters relating to the gas entering the melting chamber can be extracted as shown in FIG.
Here, flow rate of plasma gas (Ar): flow rate of O 2 gas for Q 1 addition reaction: flow rate of Q 2 boost Ar gas: Q 3 inner diameter of blowing nozzle: d O 2 concentration (%) and the flow velocity v (m / s) of the blown gas are given as follows, and O 2 % = Q 2 / (Q 1 + Q 3 ) × 100 v = const × (Q 2 + Q 3 ) / d 2 O 2 % can be adjusted by increasing or decreasing Q 2 , and v
Can be adjusted by increasing or decreasing Q 3 . (Q 1 >>
(Because it is Q 3 ,) First, the relationship between the O 2 concentration in the atmosphere gas in the PPC furnace and the [O] concentration in the titanium ingot is as shown in FIG. It can be seen that when the O 2 concentration is increased, oxygen is proportionally transferred into titanium.

【0012】次に、吹込みガスの流速がチタンインゴッ
ト中の〔O〕濃度に与える影響は図4にみるとおりであ
って、雰囲気ガス中のO2 濃度がほぼ同レベルであって
も、吹込みガス流速を高めると、より高い〔O〕濃度が
得られることがわかる。 図4のグラフを反応酸素効率
の観点から整理すると、図5のグラフとなる。 これら
のデータは、吹込みガスの流速を高めるとO2 含有ガス
が溶湯表面に当りやすくなり、界面における酸素の移行
が促進されるものとして理解される。
Next, the effect of the flow velocity of the blowing gas on the [O] concentration in the titanium ingot is as shown in FIG. 4, and even if the O 2 concentration in the atmospheric gas is almost the same level, It can be seen that a higher [O] concentration can be obtained by increasing the entrapped gas flow rate. When the graph of FIG. 4 is arranged from the viewpoint of reactive oxygen efficiency, the graph of FIG. 5 is obtained. These data are understood to be that when the flow velocity of the blowing gas is increased, the O 2 -containing gas is more likely to hit the surface of the molten metal, and the transfer of oxygen at the interface is promoted.

【0013】PPC炉の入口におけるO2 濃度と出口に
おけるO2濃度との差ΔO2%は、一口にいえば溶湯への
酸素移行の容易さ、ないし溶湯による酸素吸収の強さを
あらわすから、これを一定になるように吹込みガスのO
2 濃度および流速の一方または両方をコントロールすれ
ば、溶湯への酸素移行量もまたほぼ一定に保たれる。
[0013] The difference delta O.D. 2% of O 2 concentration in the O 2 concentration and an outlet at the inlet of the PPC furnace, ease of oxygen migration to melt speaking bite, or because represents the intensity of the oxygen absorption by the molten metal, O of blowing gas so that this becomes constant
2 If one or both of concentration and flow rate are controlled, the amount of oxygen transferred to the molten metal is also kept almost constant.

【0014】[0014]

【実施例】図1に示す構造のPPC炉で、純チタンの材
料(スクラップおよびスポンジ)を溶解鋳造した。 条
件はつぎのとおりである: 材料投入速度(平均) 36 kg/hr プラズマArガス流量 300 l/m
in ブースト用Arガス流量 0〜40 l/min O2ガス流量(Q3) 1.5 l/min 吹込みガス流速(v) 0.6〜17.9 m/sec PPC炉内の O2/(混合ガス+プラズマAr)すなわ
ち(A)は0.44〜0.50%、出口ガス中のO2
度(B)は0.37〜0.43%であって、ΔO2%がほ
ぼ0.07%になるようにQ3およびvを上記の範囲内で
コントロールし、直径23cm×長さ52cmの円柱状イン
ゴットを得た。
EXAMPLE Pure titanium materials (scrap and sponge) were melt-cast in a PPC furnace having the structure shown in FIG. The conditions are as follows: Material input rate (average) 36 kg / hr Plasma Ar gas flow rate 300 l / m
in Boost Ar gas flow rate 0-40 l / min O 2 gas flow rate (Q 3 ) 1.5 l / min Blow gas flow rate (v) 0.6-17.9 m / sec O 2 / in PPC furnace (Mixed gas + plasma Ar), that is, (A) is 0.44 to 0.50%, O 2 concentration (B) in the outlet gas is 0.37 to 0.43%, and ΔO 2 % is almost 0. By controlling Q 3 and v within the above range so as to be 0.07%, a cylindrical ingot having a diameter of 23 cm and a length of 52 cm was obtained.

【0015】このインゴットを中心を通る面で二つに縦
断し、その一方について中心部付近の〔O〕濃度を分析
した。 その結果を、本発明に従うコントロールを行な
わないで、Q3 =5l/min、v=7m/secの一定値で操
業を続けた場合と比較して、図6に示す。
This ingot was longitudinally cut into two in a plane passing through the center, and one of them was analyzed for [O] concentration near the center. The results are shown in FIG. 6 in comparison with the case where the operation according to the present invention is not performed and the operation is continued at a constant value of Q 3 = 5 l / min and v = 7 m / sec.

【0016】[0016]

【発明の効果】本発明によるときは、PPC炉を使用す
る酸素含有チタンの製造において、チタンインゴットへ
の酸素の添加量を正確にコントロールすることができ、
かつ高い酸素濃度の製品をも容易に製造することができ
る。 また、従来法に伴っていたチタニア微粉末の偏在
に起因する偏析も回避できる。
According to the present invention, the amount of oxygen added to the titanium ingot can be accurately controlled in the production of oxygen-containing titanium using a PPC furnace.
Moreover, a product having a high oxygen concentration can be easily manufactured. In addition, segregation due to uneven distribution of the titania fine powder, which is accompanied by the conventional method, can be avoided.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の酸素含有チタンの製造装置の主要構
成部分を示す縦断面図。
FIG. 1 is a vertical cross-sectional view showing main components of an apparatus for producing oxygen-containing titanium according to the present invention.

【図2】 図1の装置において、PPC炉へのガスの導
入に関する事項を概念的に示した図。
FIG. 2 is a diagram conceptually showing matters related to introduction of gas into a PPC furnace in the apparatus of FIG.

【図3】 本発明の作用を説明するためのデータであっ
て、PPC炉内雰囲気中のO2濃度とチタンインゴット
中〔O〕濃度との関係を示すグラフ。
FIG. 3 is a graph showing the relationship between the O 2 concentration in the PPC furnace atmosphere and the [O] concentration in the titanium ingot, which is data for explaining the operation of the present invention.

【図4】 本発明の作用を説明するためのデータであっ
て、PPC炉内への吹込みガスの流速とチタンインゴッ
ト中〔O〕濃度との関係を示すグラフ。
FIG. 4 is a graph showing the relationship between the flow velocity of the gas blown into the PPC furnace and the [O] concentration in the titanium ingot, which is data for explaining the operation of the present invention.

【図5】 本発明の作用を説明するためのデータであっ
て、吹込みガスの流速と反応酸素効率との関係を示すグ
ラフ。
FIG. 5 is data for explaining the operation of the present invention, and is a graph showing the relationship between the flow velocity of the blown gas and the reactive oxygen efficiency.

【図6】 本発明の実施例のデータであって、チタンイ
ンゴットの中心部における〔O〕濃度の変動を、比較例
のデータとともに示すグラフ。
FIG. 6 is a graph showing the variation of the [O] concentration in the central portion of the titanium ingot, together with the data of the comparative example, which is the data of the example of the present invention.

【符号の説明】[Explanation of symbols]

1 水冷モールド 2 プラズマアーク電極 3 材料投入口 4 鋳片引下装置 5 溶解室(PPC炉) 6 混合ガス吹込手段 7A,7B O2計 8 コントローラ1 Water Cooled Mold 2 Plasma Arc Electrode 3 Material Input Port 4 Slab Lowering Device 5 Melting Chamber (PPC Furnace) 6 Mixed Gas Injection Means 7A, 7B O 2 Total 8 Controller

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C22B 1/00 - 61/00 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) C22B 1/00-61/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 チタンまたはチタン合金の材料をプラズ
マアーク加熱により溶解して水冷モールド中で連続的に
鋳造し、溶解雰囲気から溶湯中に酸素を添加することか
らなる酸素含有チタンの製造方法において、溶解室にO
2 −Ar混合ガスを供給し、溶解室内のO2濃度(A
%)と溶解室を出るガス中のO2濃度(B%)とを測定
し、ΔO2%=(A−B)%が一定の値になるようにO2
−Ar混合ガスのO2濃度および(または)供給速度をコ
ントロールすることにより、鋳造されたチタンまたはチ
タン合金中の酸素含有量を一定にすることを特徴とする
酸素含有チタンの製造方法。
1. A method for producing oxygen-containing titanium, which comprises melting a material of titanium or a titanium alloy by plasma arc heating, continuously casting in a water-cooled mold, and adding oxygen from a melting atmosphere to the molten metal. O in the melting chamber
By supplying a 2- Ar mixed gas, the O 2 concentration (A
%) And melting chamber to measure the O 2 concentration in the gas (B%) exiting, delta O.D. 2% = (as A-B)% is a constant value O 2
A method for producing oxygen-containing titanium, characterized in that the oxygen content in the cast titanium or titanium alloy is made constant by controlling the O 2 concentration and / or the supply rate of the Ar mixed gas.
【請求項2】 O2 −Ar混合ガスを溶湯面に吹きつけ
るように供給して実施する請求項1の製造方法。
2. The manufacturing method according to claim 1, wherein the O 2 —Ar mixed gas is supplied so as to be sprayed onto the surface of the molten metal.
【請求項3】 内部に水冷モールドおよび鋳片引下装置
を有し、上部にプラズマアーク電極および材料投入口を
そなえた溶解室、この溶解室にO2 −Ar混合ガスを任
意の混合比率および供給速度をもって供給する混合ガス
の吹き込み手段、吹き込まれる混合ガス中のO2濃度
(A%)を測定するO2計および溶解室を出るガス中の
2濃度(B%)を測定するO2計、ならびに溶解室内の
2濃度(A%)を計算するとともに混合ガスの混合比率
および供給速度を制御するコントローラから成り、ΔO
2%=(A−B)%を所定の値に保つことができるように
構成した酸素含有チタンの製造装置。
3. A melting chamber having a water-cooled mold and a slab lowering device inside, and a plasma arc electrode and a material inlet in the upper part, and an O 2 -Ar mixed gas having an arbitrary mixing ratio and blowing means of the mixed gas supplied with the feed rate, O 2 for measuring the O 2 concentration in the gas leaving the O 2 meter and melting chamber for measuring the O 2 concentration in the mixed gas to be blown (a%) (B%) And a controller for calculating the O 2 concentration (A%) in the melting chamber and controlling the mixing ratio and supply rate of the mixed gas.
An apparatus for producing oxygen-containing titanium, which is configured so that 2 % = (AB)% can be maintained at a predetermined value.
JP18302895A 1995-07-19 1995-07-19 Method and apparatus for producing oxygen-containing titanium Expired - Fee Related JP3508308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18302895A JP3508308B2 (en) 1995-07-19 1995-07-19 Method and apparatus for producing oxygen-containing titanium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18302895A JP3508308B2 (en) 1995-07-19 1995-07-19 Method and apparatus for producing oxygen-containing titanium

Publications (2)

Publication Number Publication Date
JPH0931563A JPH0931563A (en) 1997-02-04
JP3508308B2 true JP3508308B2 (en) 2004-03-22

Family

ID=16128485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18302895A Expired - Fee Related JP3508308B2 (en) 1995-07-19 1995-07-19 Method and apparatus for producing oxygen-containing titanium

Country Status (1)

Country Link
JP (1) JP3508308B2 (en)

Also Published As

Publication number Publication date
JPH0931563A (en) 1997-02-04

Similar Documents

Publication Publication Date Title
JPH01305865A (en) Apparatus for rapidly coagulating molten ceramics composition
CN1100978A (en) Casting metal strip
JPS59229262A (en) Method and device for horizontal type continuous casting of metallic molding
JP3508308B2 (en) Method and apparatus for producing oxygen-containing titanium
CN109047685B (en) Method for preparing steel ingot
US4049248A (en) Dynamic vacuum treatment
JPS58177403A (en) Method and device for manufacturing ceramic-free high purity metal powder
JPH1149510A (en) Method for refining metal silicon and apparatus therefor
JP2969731B2 (en) Heating method of molten steel in tundish
EP0174765B1 (en) Method and apparatus for continuous casting of crystalline strip
JPS63165047A (en) Continuous melting and casting method by electron beam
JP2007513773A5 (en)
JP3567209B2 (en) Cooling method of titanium sponge reduction furnace
US4317679A (en) Method and apparatus for the degassing of molten metal
JPH0531568A (en) Plasma melting/casting method
EP1989336B1 (en) Reactor intended for titanium production
US4735773A (en) Inertial mixing method for mixing together molten metal streams
JP2903602B2 (en) Preheating method of molten steel tank
CN1031629C (en) Metal refinery and continuous casting complex device
JPH04310534A (en) Method and apparatus for manufacturing mineral fiber
RU2215613C2 (en) Method of continuous casting of metals
JPS62144865A (en) Casting method
JPH03258446A (en) Production of clean steel
JPH08332551A (en) Method for adjusting component of molten steel by using vertical tundish
JP2984871B2 (en) Twin roll thin plate continuous casting method

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees