JP3508166B2 - Resin-sealed electromagnetic winding - Google Patents

Resin-sealed electromagnetic winding

Info

Publication number
JP3508166B2
JP3508166B2 JP18254293A JP18254293A JP3508166B2 JP 3508166 B2 JP3508166 B2 JP 3508166B2 JP 18254293 A JP18254293 A JP 18254293A JP 18254293 A JP18254293 A JP 18254293A JP 3508166 B2 JP3508166 B2 JP 3508166B2
Authority
JP
Japan
Prior art keywords
resin
electromagnetic winding
magnetic
inorganic filler
sealed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18254293A
Other languages
Japanese (ja)
Other versions
JPH0739098A (en
Inventor
剛 吉村
文敏 山下
修明 森野
久和 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP18254293A priority Critical patent/JP3508166B2/en
Publication of JPH0739098A publication Critical patent/JPH0739098A/en
Application granted granted Critical
Publication of JP3508166B2 publication Critical patent/JP3508166B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】この樹脂封止電磁巻線は、整流子
や軸、あるいは軸受等の部材と共に電機子に組み立て、
界磁磁石部材や刷子等と共にモータに組み立てた後、例
えば電装分野へ利用される。 【0002】 【従来の技術】整流子や軸、あるいは軸受等の構成部材
と共に樹脂封止電磁巻線を組み立てた電機子の信頼性は
封止樹脂自体の性能に負うところが多い。特に自己融着
性絶縁電線を巻回して電磁巻線を形成し、樹脂封止した
構成のいわゆる無鉄心型と称される電機子の信頼性に関
しては上記封止樹脂の性能が重要な影響を及ぼす。 【0003】上記無鉄心型と称される電機子が、例えば
電装分野で出力数十Wに至る比較的高出力のモータとし
て使用される場合、周囲温度が80゜Cに至る高温下での高
頻度の起動・停止を繰り返す運転動作を求められること
が多い。この場合の封止樹脂は耐熱限界に近い 200゜C程
度の温度領域に曝された状態で電磁巻線を支える必要が
あり、樹脂封止電磁巻線の寸法安定性、熱安定性、耐熱
劣化性等の性能がモータの信頼性を確保するうえで重要
である。 【0004】そこで、これらのモータの信頼性を確保す
るための多くの工夫や提案が従来から樹脂封止電磁巻線
に対してなされてきた。例えば、特開昭54-26403号公報
では電磁巻線部分の封止樹脂としてウレトジオン環を有
するイソシアネート化合物とエポキシ化合物およびヘテ
ロ環形成触媒を有効成分とすることによりモータの信頼
性を確保する提案がなされている。また、特開昭60- 25
5030号公報では電磁巻線部分の封止樹脂として70重量%
以上の非磁性無機質充填剤を含有した3官能トリアジン
化合物を有するアリル系不飽和ポリエステル樹脂が提案
されている。特開昭54ー26403号公報を含め、この種の樹
脂封止電磁巻線では樹脂に多量の炭酸カルシウム、アル
ミナ、シリカ、溶融石英ガラス、珪酸ジルコンなど非磁
性無機質充填剤を混入する。この理由は電磁巻線の導体
部分と樹脂の熱膨張の差の縮小や、樹脂の熱伝導率を大
きくすることにより樹脂封止電磁巻線の寸法安定性や放
熱性を改善し、これによりモータの信頼性を確保しよう
とするためである。 【0005】 【発明が解決しようとする課題】上記、無鉄心構造の電
機子でモータの高出力化に対応する手段として界磁磁石
に一般に使用されるマグネットプランバイト型フェライ
ト焼結磁石を希土類磁石へ材質転換することなどで、(B
H)max に代表される磁石特性を改善することが考えられ
るが、磁石特性と経済性との整合性に乏しい。 【0006】また、無鉄心構造の電機子は磁気回路構成
上、界磁磁石との機械的空隙とともに磁気空隙部分があ
るが、電磁巻線部分の信頼性を損なわずに封止樹脂に透
磁性を持たせることにより電磁巻線部分の磁気抵抗を減
らしモータの高出力化を図ることができる。 【0007】これは、非磁性無機質充填剤の一部もしく
は全量を平均粒子径10μm以下のソフト磁性フェライト
粉体もしくは鉄系ソフト磁性粉体で置換することが考え
られる。ソフト磁性フェライトにおいては粒子が数μm
と小さく、しかも化学的に安定であり電気抵抗も大きい
が、飽和磁化Isが低く、またキュリー温度Tcが 300゜C程
度と低いために磁気特性の温度特性が悪く、電磁巻線温
度が 200゜C程度となる電装分野の部材としては磁気特性
の低下が激しく使用できない。 【0008】また、鉄系ソフト磁性粉体においては飽和
磁化Isは高く、キュリー温度Tcも高く磁気特性の温度に
対する影響は小さいが、50μm以下の金属粉体は比表面
積が大きくなり化学的に活性となるため取扱いが難し
い。また、平均粒子径数μmの金属粉体は非常に高価で
あり経済的にも適していない。 【0009】本発明は、無鉄心構造の電機子構成部分で
ある電磁巻線部分の信頼性を損なわずに封止樹脂に透磁
性を持たせることにより電磁巻線部分の磁気抵抗を減ら
し、最高電磁巻線温度が 200゜C程度という状況にて使用
されるようなモータの高出力化の要求に応えようとする
ものである。 【0010】 【課題を解決するための手段】本発明は、下記(a)、
(b)、(c)群より構成され (a) 5〜40重量%のアリル系共重合単量体を含有する
室温にては固体であるアリル系不飽和ポリエステル樹脂 (b)粒子径20μm以下の非磁性無機質充填剤と粒子径
50μm以上の非磁性無機質充填剤の割合が70:30か
ら30:70である非磁性無機質充填剤 (c)添加剤 且つ、(b)群が複合物の70重量%以上である封止樹脂
において、粒子径50μm以上の非磁性無機質充填剤の一
部もしくは全量、すなわち、封止樹脂全量の15体積%以
上40体積%未満を粒子径 53〜250μmの鉄系ソフト磁性
材料で置換し少なくとも電磁巻線部分を封止した樹脂封
止電磁巻線に透磁性を付与するものである。また、鉄系
ソフト磁性材料としてアトマイズ鉄粉を用いることが望
ましい。 【0011】 【作用】以下、本発明を更に詳しく説明する。まず、本
発明で言う粒子径 53〜250μmの鉄系ソフト磁性材料と
は鉄粉、あるいは、シリコン鉄、パーマロイ、センダス
ト等の鉄系の磁性粉体のことを言う。また、鉄粉は形状
が球形で比較的比表面積の小さいアトマイズ鉄粉を用い
ることが望ましい。 【0012】また、本発明で言う(a)群のアリル系不
飽和ポリエステル樹脂とは不飽和ポリエステルアルキド
とアリル系共重合性単量体溶液との混合物で、重合禁止
剤など種々の添加剤を必要に応じて加えたものである。
アリル系不飽和ポリエステル樹脂が好ましい理由はその
重合硬化が典型的なラジカル反応であるため速硬化性
で、しかもアリル基の共鳴により室温域では重合不活性
であるから電磁巻線の樹脂封止生産性や、樹脂の貯蔵安
定性に有利であるからである。 【0013】なお、不飽和ポリエステルアルキドとはカ
ルボン酸成分として飽和ジカルボン酸、その無水物、あ
るいはそのジアルキルエステルと不飽和ジカルボン酸、
その無水物およびグリコールを原料としてエステル化反
応により製造される。飽和ジカルボン酸としてはオルソ
フタル酸、無水フタル酸、イソフタル酸、テトラおよび
ヘキサヒドロフタル酸なども使用できるが、テレフタル
酸が好ましい。また、不飽和ジカルボン酸としてはフマ
ル酸、マレイン酸、イタコン酸、シトラコン酸などがあ
る。また、グリコール成分としてはエチレングリコー
ル、1・2ーおよび1・3ープロパンジオール、1・3ーおよび1・4ー
ブタンジオール、ジエチレングリコール、ジプロピレン
グリコール、ネオペンチルグリコール、ビスフェノール
類のアルキレンオキシド付加物、ハロゲン化ビスフェノ
ールのアルキレンオキシド付加物などがある。このよう
な不飽和ポリエステルアルキドは融点が室温以上の固体
が望ましく、一方の主成分であるアリル系共重合性単量
体はジアリルフタレート、トリアリルイソシアヌレー
ト、トリアリルシアヌレートなどが使用できる。 【0014】一方、(b)群である無機質充填剤とは、
20μm以下と50μm以上の非磁性無機質充填剤の混合物
からなるもので、その混合比を 70/30〜 30/70重量%の
範囲とする。20μm以下の非磁性無機質充填剤が混合比
70重量%以上であると、得られる樹脂封止電磁巻線の耐
衝撃性や焼損特性が損なわれ、30重量%以下であると樹
脂封止電磁巻線の熱時寸法安定性や強度が著しく損なわ
れる。 【0015】上記、非磁性無機質充填剤としては炭酸カ
ルシウム、アルミナ、シリカ、溶融石英ガラス、珪酸ジ
ルコンなどが適宜使用できる。 【0016】また一方、(c)群である添加剤として
は、(a)群に属するアリル系不飽和ポリエステルの重
合開始剤、或いは内部離型剤、滑剤、顔料、補強剤など
(a)および(b)群からなる複合物を円滑に電磁巻線
を樹脂封止するために使用する各種添加剤を言う。 【0017】例えば、重合開始剤としてはジクミルパー
オキサイド、t−ブチルパーベンゾエート、2・5-ジメチ
ル- 2・5-ジt(ブチルパーオキシ)ヘキサンなどを使用
し、内部離型剤としては高級脂肪酸、高級アルコール或
いは高級脂肪酸エステルおよび金属石鹸類などがあり、
滑剤としては特公昭62ー10538号公報のように不飽和ポリ
エステル樹脂の溶融時の流動性を確保する目的でカプリ
ン酸、カプリル酸、ミスチリン酸、パルミチン酸、ステ
アリン酸、ベヘニン酸などの高級脂肪酸類をペンタエリ
スリトールとエステル化したものがあり、補強剤として
はガラス繊維、有機質繊維などがある。なお、この他カ
ーボンブラック、三酸化アンチモンなど通常熱硬化性樹
脂組成物を構成する各種添加剤をも必要に応じて適宜使
用して差し支えない。 【0018】上記(a)、(b)、(c)群からなる樹
脂組成物の混合割合は少なくとも(b)群が樹脂組成物
の70重量%以上占めることが肝要であり、70重量%を下
回ると得られる樹脂封止電磁巻線の耐熱衝撃性や耐久性
を著しく損なうばかりでなく所望の寸法精度の維持確保
が困難になる。なお、(a)、(b)、(c)群の混合
方式や(a)、(c)群から適宜選択される樹脂組成物
構成成分は樹脂封止電磁巻線の特性ならびに信頼性を満
足する範囲で決定される。 【0019】以上、粒子径 53〜250μmの鉄系ソフト磁
性粉体と不飽和ポリエステルアルキド、アリル系共重合
性単量体、および滑剤、重合開始剤、補強剤、離型剤、
非磁性無機充填剤、顔料など必要に応じて適宜加える添
加剤は一括して混練してもかまわない。 【0020】 【実施例】以下、本発明の実施例を説明する。 【0021】(1)封止樹脂の作製 不飽和ポリエステルアルキド 19.81体積%、ジアリルフ
タレートモノマー5.78体積%、ジクミルパーオキサイド
0.25体積%、ガラス繊維8.16体積%、ペンタエリストー
ル/C17トリエステル2.69体積%を基本樹脂成分とし、
これに 53〜250μmの表面処理アトマイズ鉄粉と平均粒
子径 4μm炭酸カルシウム、粒子径53〜250μm炭酸カ
ルシウムを(表1)のように計量した。計量した成分を
まず室温で不飽和ポリエステルアルキド、ジアリルフタ
レートモノマー、ジクミルパーオキサイド、 53〜250μ
mアトマイズ鉄粉、平均粒子径 4μm炭酸カルシウム、
粒子径 53〜250μm炭酸カルシウムを混合した後ロール
ミルにて80〜90゜Cで混練し、一様になったところでガラ
ス繊維、ペンタエリストール/C17トリエステルを順次
入れ混練し、封止樹脂とした。 【0022】 【表1】 【0023】(2)電磁巻線の作製 導体径0.50mmの自己融着性絶縁電線を巻回し、巻線端を
整流子片と電気的に接続した。次いで、反巻線端をラジ
アル方向へ放射状に配列することにより偏平状電磁巻線
とした。但し、巻回数は13、巻線数は23である。 【0024】(3)電磁巻線の樹脂封止 (1)で作製した封止樹脂を用いて(2)の電磁巻線部
分をトランスファー成形により封止し、図1に示す樹脂
封止電磁巻線を作製した。図1において1Aは封止樹脂、
1Bは電磁巻線、1Cは整流子である。なお、成形条件は射
出温度 90〜100゜C、射出圧力 〜100kgf/cm2、金型温度
150゜C±5deg、硬化時間120sであり、樹脂封止電磁巻線
のモータ組立後の主鎖交部分の磁気回路距離は2.40mm、
樹脂封止電磁巻線の外径は94.8mmである。 【0025】このうち(表1)に示した実施例4は成形
性に欠け、また硬化後脆く機械的強度が足りないものと
なった。 【0026】(4)モータ特性 (3)の樹脂封止電磁巻線に軸と軸受けとを装着した電
機子とし、界磁磁石と導磁性ブラケットとで形成したモ
ータ磁気回路に挿入し、室温にて3000 rpmで回転したと
きの誘起電圧、起動トルク、 2.0kg-cm(S-T)における電
流を測定した結果を(表2)に示す。 【0027】 【表2】 【0028】(5)温度特性 ここで実施例1,2,3と比較例2の封止樹脂の磁気特
性の温度特性を図2に示す。 【0029】図2の通り比較例2は最高電磁巻線温度で
ある 200゜Cでは室温での磁気特性の約 1/3となりそれに
伴い封止樹脂の持つ透磁性も低下してしまう。それに対
し実施例1,2,3は 200゜Cにおいても磁気特性の低下
は僅かで封止樹脂の持つ透磁性は室温時とほぼ同等の特
性を維持できる。 【0030】このように実施例1、2、3とすることに
よって 200゜C程度までの電磁巻線温度においてモータの
高出力化が見込まれる。 【0031】 【発明の効果】本発明は、樹脂封止電磁巻線の封止樹脂
に従来から多用されていた非磁性無機質充填剤のうち粒
子径50μm以上のものの一部または全量を粒子径 53〜2
50μmの鉄系ソフト磁性粉体へ置換することで封止樹脂
に透磁性を付与する。しかも、この透磁性は高温まで持
続し高温域までのモータの高出力化が可能となる。
Description: BACKGROUND OF THE INVENTION This resin-sealed electromagnetic winding is assembled into an armature together with members such as a commutator, a shaft, and a bearing.
After being assembled into a motor together with a field magnet member, a brush, and the like, it is used, for example, in the field of electrical components. 2. Description of the Related Art The reliability of an armature in which a resin-sealed electromagnetic winding is assembled together with components such as a commutator, a shaft, and a bearing often depends on the performance of a sealing resin itself. In particular, the performance of the above sealing resin has an important effect on the reliability of the so-called ironless type of armature, which is formed by winding a self-fusing insulated wire to form an electromagnetic winding and sealing with resin. Exert. [0003] When an armature referred to as an ironless type is used as a motor having a relatively high output of several tens of watts, for example, in the field of electrical components, the armature at high temperatures of up to 80 ° C is required. In many cases, a driving operation that repeatedly starts and stops frequently is required. In this case, the sealing resin must support the electromagnetic winding in a state where it is exposed to a temperature range of about 200 ° C, which is close to the heat resistance limit, and the dimensional stability, thermal stability, and heat resistance deterioration of the resin-sealed electromagnetic winding Performance such as performance is important to ensure the reliability of the motor. Therefore, many ideas and proposals for ensuring the reliability of these motors have been made for resin-sealed electromagnetic windings. For example, Japanese Patent Application Laid-Open No. 54-26403 discloses a proposal for securing the reliability of a motor by using an isocyanate compound having a uretdione ring, an epoxy compound, and a heterocycle-forming catalyst as effective components as a sealing resin for an electromagnetic winding portion. Has been done. In addition, JP-A-60-25
In the 5030 publication, 70% by weight is used as the sealing resin for the electromagnetic windings.
An allylic unsaturated polyester resin having a trifunctional triazine compound containing the above nonmagnetic inorganic filler has been proposed. In this type of resin-sealed electromagnetic winding, including JP-A-54-26403, a large amount of a nonmagnetic inorganic filler such as calcium carbonate, alumina, silica, fused silica glass, or zircon silicate is mixed into a resin. The reason is that the dimensional stability and heat dissipation of the resin-sealed electromagnetic winding are improved by reducing the difference in thermal expansion between the conductor of the electromagnetic winding and the resin, and by increasing the thermal conductivity of the resin. In order to ensure the reliability of the system. [0005] The above-described armature having a coreless structure and a rare earth magnet which is a magnet plumbite type ferrite sintered magnet generally used as a field magnet as a means for responding to a high output of a motor. (B)
Although it is conceivable to improve the magnet characteristics represented by H) max, the consistency between the magnet characteristics and economy is poor. The armature having a coreless structure has a magnetic gap in addition to a mechanical gap with the field magnet due to the magnetic circuit configuration. However, the armature has a magnetic permeability to the sealing resin without impairing the reliability of the electromagnetic winding. , The magnetic resistance of the electromagnetic winding portion can be reduced, and the output of the motor can be increased. It is conceivable that a part or all of the nonmagnetic inorganic filler is replaced with a soft magnetic ferrite powder or an iron soft magnetic powder having an average particle diameter of 10 μm or less. Particles of soft magnetic ferrite are several μm
However, it is chemically stable and has a high electric resistance, but its saturation magnetization Is is low and its Curie temperature Tc is as low as 300 ゜ C. As a member in the field of electrical equipment with a degree of C, the magnetic properties are severely degraded and cannot be used. In addition, the saturation magnetization Is is high, the Curie temperature Tc is high, and the influence of the magnetic properties on the temperature is small in the iron-based soft magnetic powder, but the metal powder of 50 μm or less has a large specific surface area and is chemically active. Is difficult to handle. Further, metal powder having an average particle size of several μm is very expensive and is not economically suitable. According to the present invention, the magnetic resistance of the electromagnetic winding portion is reduced by imparting permeability to the sealing resin without impairing the reliability of the electromagnetic winding portion, which is an armature component of the ironless structure. It is intended to respond to the demand for higher output motors that are used when the temperature of the electromagnetic winding is around 200 ° C. The present invention provides the following (a):
(B) an allyl-based unsaturated polyester resin which is composed of groups (c) and which is a solid at room temperature and contains 5 to 40% by weight of an allyl-based copolymer monomer; Non-magnetic inorganic filler and particle size
In a non-magnetic inorganic filler (c) additive in which the ratio of the non-magnetic inorganic filler of 50 μm or more is 70:30 to 30:70, and in a sealing resin in which the group (b) is 70% by weight or more of the composite. Part or all of the non-magnetic inorganic filler having a particle diameter of 50 μm or more, that is, 15% by volume or more and less than 40% by volume of the total amount of the sealing resin is replaced with an iron-based soft magnetic material having a particle diameter of 53 to 250 μm and at least an electromagnetic winding This is to impart magnetic permeability to the resin-sealed electromagnetic winding in which the wire portion is sealed. It is desirable to use atomized iron powder as the iron-based soft magnetic material. Hereinafter, the present invention will be described in more detail. First, the iron-based soft magnetic material having a particle diameter of 53 to 250 μm referred to in the present invention refers to iron powder or iron-based magnetic powder such as silicon iron, permalloy, and sendust. It is desirable to use atomized iron powder having a spherical shape and a relatively small specific surface area. The allylic unsaturated polyester resin of the group (a) referred to in the present invention is a mixture of an unsaturated polyester alkyd and an allylic copolymerizable monomer solution, and contains various additives such as a polymerization inhibitor. Added as needed.
Allyl-unsaturated polyester resin is preferred because its polymerization curing is a typical radical reaction, it is fast-curing, and it is polymerization-inactive at room temperature due to the resonance of allyl groups. This is because they are advantageous in properties and storage stability of the resin. The unsaturated polyester alkyd is a saturated carboxylic acid, an anhydride thereof, or a dialkyl ester thereof and an unsaturated dicarboxylic acid as a carboxylic acid component.
It is produced by an esterification reaction using the anhydride and glycol as raw materials. As the saturated dicarboxylic acid, orthophthalic acid, phthalic anhydride, isophthalic acid, tetra and hexahydrophthalic acid can be used, but terephthalic acid is preferable. Examples of the unsaturated dicarboxylic acid include fumaric acid, maleic acid, itaconic acid, citraconic acid and the like. Glycol components include ethylene glycol, 1.2- and 1.3-propanediol, 1.3- and 1.4-butanediol, diethylene glycol, dipropylene glycol, neopentyl glycol, alkylene oxide adducts of bisphenols, halogens And alkylene oxide adducts of hydrogenated bisphenol. Such an unsaturated polyester alkyd is desirably a solid having a melting point of room temperature or higher. As the allyl-based copolymerizable monomer as one main component, diallyl phthalate, triallyl isocyanurate, triallyl cyanurate and the like can be used. On the other hand, the inorganic fillers belonging to the group (b) include:
It consists of a mixture of non-magnetic inorganic fillers of 20 μm or less and 50 μm or more, and the mixture ratio is in the range of 70/30 to 30/70% by weight. Mixing ratio of non-magnetic inorganic filler of 20μm or less
If it is more than 70% by weight, the impact resistance and burnout characteristics of the obtained resin-sealed electromagnetic winding are impaired. Be impaired. As the above-mentioned non-magnetic inorganic filler, calcium carbonate, alumina, silica, fused silica glass, zircon silicate, and the like can be appropriately used. On the other hand, the additives belonging to the group (c) include a polymerization initiator for the allylic unsaturated polyester belonging to the group (a), an internal mold release agent, a lubricant, a pigment, a reinforcing agent and the like. (B) Various additives used to smoothly seal the composite consisting of the group with the resin for the electromagnetic winding. For example, dicumyl peroxide, t-butyl perbenzoate, 2,5-dimethyl-2,5-di-t (butylperoxy) hexane or the like is used as a polymerization initiator, and an internal mold release agent is used. There are higher fatty acids, higher alcohols or higher fatty acid esters and metal soaps,
As the lubricant, higher fatty acids such as capric acid, caprylic acid, mistyric acid, palmitic acid, stearic acid, behenic acid and the like for the purpose of ensuring the fluidity of the unsaturated polyester resin during melting as disclosed in JP-B-62-10538. Is esterified with pentaerythritol, and examples of the reinforcing agent include glass fiber and organic fiber. In addition, various additives such as carbon black and antimony trioxide which usually constitute the thermosetting resin composition may be appropriately used as needed. It is important that the mixing ratio of the resin composition comprising the groups (a), (b) and (c) is at least 70% by weight of the resin composition in the group (b). If it is lower than this, not only is the thermal shock resistance and durability of the obtained resin-sealed electromagnetic winding significantly impaired, but also it becomes difficult to maintain and secure desired dimensional accuracy. The mixing method of the groups (a), (b), and (c) and the resin composition components appropriately selected from the groups (a) and (c) satisfy the characteristics and reliability of the resin-sealed electromagnetic winding. It is determined in the range to do. As described above, an iron-based soft magnetic powder having a particle diameter of 53 to 250 μm, an unsaturated polyester alkyd, an allylic copolymerizable monomer, a lubricant, a polymerization initiator, a reinforcing agent, a release agent,
Additives, such as non-magnetic inorganic fillers and pigments, which are appropriately added as necessary, may be kneaded at once. Embodiments of the present invention will be described below. (1) Preparation of sealing resin 19.81% by volume of unsaturated polyester alkyd, 5.78% by volume of diallyl phthalate monomer, dicumyl peroxide
0.25% by volume, glass fiber 8.16% by volume, pentaerythol / C17 triester 2.69% by volume as a basic resin component,
The surface-treated atomized iron powder having a particle size of 53 to 250 μm, calcium carbonate having an average particle size of 4 μm, and calcium carbonate having a particle size of 53 to 250 μm were weighed as shown in Table 1. The weighed components are first added at room temperature to an unsaturated polyester alkyd, diallyl phthalate monomer, dicumyl peroxide, 53-250μ.
m atomized iron powder, average particle size 4 μm calcium carbonate,
After mixing calcium carbonate with a particle size of 53 to 250 μm, the mixture was kneaded at 80 to 90 ° C. by a roll mill, and when it became uniform, glass fiber and pentaerythol / C17 triester were sequentially added and kneaded to obtain a sealing resin. . [Table 1] (2) Preparation of Electromagnetic Winding A self-fusing insulated wire having a conductor diameter of 0.50 mm was wound, and the winding end was electrically connected to a commutator piece. Next, the non-winding ends were arranged radially in the radial direction to obtain flat electromagnetic windings. However, the number of windings is 13, and the number of windings is 23. (3) Resin Sealing of Electromagnetic Winding Using the sealing resin prepared in (1), the electromagnetic winding part of (2) is sealed by transfer molding, and the resin-sealed electromagnetic winding shown in FIG. A wire was made. In FIG. 1, 1A is a sealing resin,
1B is an electromagnetic winding and 1C is a commutator. The molding conditions were: injection temperature 90 ~ 100 ゜ C, injection pressure ~ 100kgf / cm 2 , mold temperature
150 ° C ± 5deg, curing time 120s, magnetic circuit distance of main interlinking part of resin-sealed electromagnetic winding after motor assembly is 2.40mm,
The outer diameter of the resin-sealed electromagnetic winding is 94.8 mm. Of these, Example 4 shown in (Table 1) lacked moldability, and was brittle after curing and had insufficient mechanical strength. (4) Motor characteristics An armature in which a shaft and a bearing are mounted on the resin-sealed electromagnetic winding of (3) is inserted into a motor magnetic circuit formed by a field magnet and a magnetic conductive bracket. (Table 2) shows the measurement results of the induced voltage, the starting torque, and the current at 2.0 kg-cm (ST) when rotating at 3000 rpm. [Table 2] (5) Temperature Characteristics FIG. 2 shows the temperature characteristics of the magnetic characteristics of the sealing resins of Examples 1, 2 and 3 and Comparative Example 2. As shown in FIG. 2, in Comparative Example 2 at 200 ° C., which is the maximum electromagnetic winding temperature, the magnetic properties at room temperature are reduced to about / 3, and accordingly the magnetic permeability of the sealing resin is reduced. On the other hand, in Examples 1, 2, and 3, even at 200 ° C., the magnetic properties are slightly reduced, and the magnetic permeability of the sealing resin can be maintained substantially the same as at room temperature. As described above, the first, second, and third embodiments are expected to increase the output of the motor at an electromagnetic winding temperature of about 200 ° C. According to the present invention, a part or all of the non-magnetic inorganic filler having a particle diameter of 50 μm or more among the non-magnetic inorganic fillers which have been frequently used in the sealing resin of the resin-sealed electromagnetic winding is used. ~ 2
By substituting iron-based soft magnetic powder of 50 μm, magnetic permeability is imparted to the sealing resin. In addition, the magnetic permeability is maintained at a high temperature, and it is possible to increase the output of the motor up to a high temperature range.

【図面の簡単な説明】 【図1】樹脂封止電磁巻線の構成図 【図2】封止樹脂の磁気特性の温度特性図 【符号の説明】 1A 封止樹脂 1B 電磁巻線 1C 整流子[Brief description of the drawings] FIG. 1 is a configuration diagram of a resin-sealed electromagnetic winding. FIG. 2 is a temperature characteristic diagram of magnetic characteristics of a sealing resin. [Explanation of symbols] 1A sealing resin 1B Electromagnetic winding 1C commutator

フロントページの続き (72)発明者 片岡 久和 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平3−195773(JP,A) 特開 平1−304150(JP,A) 特開 昭60−255030(JP,A) 特開 昭58−206639(JP,A) (58)調査した分野(Int.Cl.7,DB名) H02K 3/44 Continuation of front page (72) Inventor Hisaka Kataoka 1006 Kazuma Kadoma, Kadoma-shi, Osaka Matsushita Electric Industrial Co., Ltd. (56) References JP-A-3-195773 (JP, A) JP-A-1-304150 ( JP, A) JP-A-60-255030 (JP, A) JP-A-58-206639 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H02K 3/44

Claims (1)

(57)【特許請求の範囲】 【請求項1】 下記(a)、(b)、(c)群より構成
され、 (a)5〜40重量%のアリル系共重合単量体を含有す
る室温にては固体であるアリル系不飽和ポリエステル樹
脂 (b)粒子径20μm以下の非磁性無機質充填剤と粒子
径50μm以上の非磁性無機質充填剤の割合が70:3
0から30:70重量%である非磁性無機質充填剤 (c)添加剤 かつ、(b)群が複合物の70重量%以上である封止樹
脂において、粒子径50μm以上の非磁性無機質充填剤
の一部若しくは全量を粒子径53〜250μmの鉄系ソ
フト磁性材料で置換し少なくとも電磁巻線部分を封止し
た樹脂封止電磁巻線であり、 さらに置換される前記鉄系ソフト磁性材料がアトマイズ
鉄粉であり、 前記アトマイズ鉄粉の置換量は封止樹脂全量の15体積
%以上40体積%未満であることを特徴とする樹脂封止
電磁巻線
(57) [Claim 1] It is composed of the following groups (a), (b) and (c), and (a) contains 5 to 40% by weight of an allylic comonomer. The ratio of the non-magnetic inorganic filler having a particle diameter of 20 μm or less to the non-magnetic inorganic filler having a particle diameter of 50 μm or more is 70: 3, which is a solid at room temperature.
0 to 30 : 70 % by weight of non-magnetic inorganic filler (c) additive and (b) sealing resin having 70% by weight or more of the composite, non-magnetic inorganic filler having a particle diameter of 50 μm or more Is a resin-sealed electromagnetic winding in which a part or the whole of is replaced with an iron-based soft magnetic material having a particle diameter of 53 to 250 μm and at least an electromagnetic winding part is sealed, and the iron-based soft magnetic material to be further replaced is atomized.
Iron powder, and the replacement amount of the atomized iron powder is 15 volumes of the total amount of the sealing resin.
% Or more and less than 40% by volume.
Electromagnetic winding .
JP18254293A 1993-07-23 1993-07-23 Resin-sealed electromagnetic winding Expired - Lifetime JP3508166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18254293A JP3508166B2 (en) 1993-07-23 1993-07-23 Resin-sealed electromagnetic winding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18254293A JP3508166B2 (en) 1993-07-23 1993-07-23 Resin-sealed electromagnetic winding

Publications (2)

Publication Number Publication Date
JPH0739098A JPH0739098A (en) 1995-02-07
JP3508166B2 true JP3508166B2 (en) 2004-03-22

Family

ID=16120115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18254293A Expired - Lifetime JP3508166B2 (en) 1993-07-23 1993-07-23 Resin-sealed electromagnetic winding

Country Status (1)

Country Link
JP (1) JP3508166B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2348322A (en) * 1999-03-26 2000-09-27 Aisin Seiki Air-gap winding impregnated with magnetic material in a binder

Also Published As

Publication number Publication date
JPH0739098A (en) 1995-02-07

Similar Documents

Publication Publication Date Title
KR900003477B1 (en) Resin-bonded magnet
US4128527A (en) Dynamoelectric machine having coil windings and core encapsulated with resin-filler composition
US4868970A (en) Method of making an electric motor
JP4796788B2 (en) Coreless motor
KR101096958B1 (en) Magnetic core and coil component using the same
US5932134A (en) Polymer-based composition for producting magnetic and magnetizable molded articles
US4846987A (en) Low loss oxide magnetic material
JP3508166B2 (en) Resin-sealed electromagnetic winding
JP2007088354A (en) METHOD OF MANUFACTURING Sm2Fe17N3/Nd2Fe14B ANISOTROPIC COMPOSITE MAGNET
JPH0583887A (en) Electric machine
JP3171028B2 (en) Manufacturing method of mold armature
JPH06197484A (en) Resin-sealed electromagnetic winding
JP2004103871A (en) Method of manufacturing anisotropic rare earth bonded magnet, and permanent magnet motor using the anisotropic rare earth bonded magnet
JPH0640717B2 (en) Ironless armature
JP5753033B2 (en) Resin composition and coil
JP3863800B2 (en) Resin-encapsulated iron core with excellent iron loss characteristics
JP2506627B2 (en) Ironless armature
JPS6323535A (en) Manufacture of magnet-integrated coreless armature
WO2023181902A1 (en) Magnetic body and magnetic element
JP4947329B2 (en) Resin composition for electrical insulation and electrical equipment
JP2007005521A (en) Ignition coil
JPS59159655A (en) Method of operating electric machine and electric machine
RU2070763C1 (en) Dc motor
JPH08283448A (en) Resin composite material
Pal Comparative study of the design and manufacturing processes of electrical motors with low and high energy permanent magnets

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

EXPY Cancellation because of completion of term