JPH0640717B2 - Ironless armature - Google Patents

Ironless armature

Info

Publication number
JPH0640717B2
JPH0640717B2 JP11113584A JP11113584A JPH0640717B2 JP H0640717 B2 JPH0640717 B2 JP H0640717B2 JP 11113584 A JP11113584 A JP 11113584A JP 11113584 A JP11113584 A JP 11113584A JP H0640717 B2 JPH0640717 B2 JP H0640717B2
Authority
JP
Japan
Prior art keywords
armature
ironless
weight
resin composition
armature winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11113584A
Other languages
Japanese (ja)
Other versions
JPS60255030A (en
Inventor
文敏 山下
富明 坂野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11113584A priority Critical patent/JPH0640717B2/en
Publication of JPS60255030A publication Critical patent/JPS60255030A/en
Publication of JPH0640717B2 publication Critical patent/JPH0640717B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, heating or drying of windings, stators, rotors or machines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • H01B3/421Polyesters
    • H01B3/425Non-saturated polyesters derived from polycarboxylic acids and polyhydroxy compounds, in which at least one of the two components contains aliphatic unsaturation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K23/00DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors
    • H02K23/56Motors or generators having iron cores separated from armature winding

Description

【発明の詳細な説明】 産業上の利用分野 本発明は複写機,自動溶接機,NCI作機械,カーエア
コンなどOA,FAおよび電装分野で広く使用される無
鉄心モータの電機子に関し、更に詳しくは絶縁電線或い
は自己融着性絶縁電線により形成した電機子巻線を熱硬
化性樹脂組成物で封止した構成で、且つ比較的高温下に
て使用される無鉄心電機子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an armature of a coreless motor that is widely used in copiers, automatic welding machines, NCI working machines, car air conditioners, OA, FA and electrical equipment fields. Relates to an ironless armature having a structure in which an armature winding formed of an insulated wire or a self-bonding insulated wire is sealed with a thermosetting resin composition and used at a relatively high temperature.

従来例の構成とその問題点 無鉄心モータの特性並びに信頼性は通常電機子部分の性
能に負うところが多大である。特に絶縁電線や自己融着
性絶縁電線により電機子巻線を形成し、これを熱硬化性
樹脂組成物で封止した構成の無鉄心電機子は前記熱硬化
性樹脂組成物の性能が重大な影響を及ぼすものである。
Structure of the conventional example and its problems The characteristics and reliability of the iron-free core motor usually depend largely on the performance of the armature part. Particularly in an ironless core armature in which an armature winding is formed of an insulated wire or a self-bonding insulated wire and is sealed with a thermosetting resin composition, the performance of the thermosetting resin composition is important. It has an influence.

例えば数ワットから数キロワットに至る比較的大容量の
モータにおいて高頻度の起動・停止を繰り返えしたり、
或いはモータとして使用時の周囲温度が高い場合、無鉄
心電機子は通常150〜180℃と比較的高い温度下で使用さ
れる。従って、無鉄心電機子としては、このような比較
的高温域での熱時寸法安定性,熱剛性,熱間強度,耐熱
劣化性が、この種のモータ特性並びに信頼性を確保する
うえで重大なものとなり、これ等の特性を満足するため
に例えば電機子巻線をエポキシ樹脂組成物で封止したも
のが実用化されていた。前記エポキシ樹脂組成物とはエ
ポキシ樹脂に充填剤,離型剤その他必要に応じて加える
添加剤から成る複合物である。
For example, in a motor with a relatively large capacity of several watts to several kilowatts, it is possible to repeatedly start and stop frequently.
Alternatively, when the ambient temperature during use as a motor is high, the ironless core armature is usually used at a relatively high temperature of 150 to 180 ° C. Therefore, as for the ironless core armature, dimensional stability at the time of heat in such a relatively high temperature range, thermal rigidity, hot strength, and heat deterioration resistance are important in securing this type of motor characteristics and reliability. In order to satisfy these characteristics, for example, an armature winding sealed with an epoxy resin composition has been put into practical use. The epoxy resin composition is a composite composed of a filler, a mold release agent, and other additives added as necessary to the epoxy resin.

上記エポキシ樹脂が好んで使用される理由としては耐熱
性,機械強度,耐薬品性の優れた硬化物が得られること
や電機子巻線を形成する絶縁電線や自己融着性絶縁電線
とのコンパティビリティが優れているからである。中で
もエポキシ樹脂は開環重合により比較的緩やかに硬化す
る特性は、硬化歪が少なく高度な寸法精度と耐熱衝撃性
を有する無鉄心電機子を得るために有利である。また電
機子巻線封止時の溶融粘度が比較的低いので緻密な構造
の電機子巻線の封止が容易であり、このため電機子巻線
の変形が少なくモータ特性を維持するうえで有利だから
である。更に溶融粘度が比較的低いためアルミナ,水酸
化アルミニウム,シリカ,硅酸ジルコニウムなどの充填
剤を比較的多量に添加できるので、電機子巻線の導体
と、これを封止する樹脂組成物との熱膨張差が縮少し、
或いはまた樹脂組成物の熱伝導率が比較的大きくなるな
ど、例えば150〜180℃もの高温下でも無鉄心電機
子としての熱時寸法安定性,熱剛性,熱間強度,耐熱特
性などの諸特性が実用的に十分確保できるからである。
The reason why the above-mentioned epoxy resin is preferably used is that a cured product having excellent heat resistance, mechanical strength and chemical resistance can be obtained, and that it can be used as an insulated wire forming an armature winding or as a self-fusing insulated wire. This is because it has excellent abilities. Among them, the property that the epoxy resin cures comparatively slowly by ring-opening polymerization is advantageous for obtaining an ironless core armature with little curing strain and high dimensional accuracy and thermal shock resistance. In addition, since the melting viscosity at the time of sealing the armature winding is relatively low, it is easy to seal the armature winding with a precise structure, which is advantageous in maintaining the motor characteristics with less deformation of the armature winding. That's why. Furthermore, since the melt viscosity is relatively low, a relatively large amount of filler such as alumina, aluminum hydroxide, silica, zirconium silicate, etc. can be added, so that the conductor of the armature winding and the resin composition for sealing it can be The difference in thermal expansion is slightly reduced,
Alternatively, the thermal conductivity of the resin composition becomes relatively large, and various characteristics such as dimensional stability during heating, thermal rigidity, hot strength, and heat resistance characteristics as an ironless core armature even at a high temperature of 150 to 180 ° C. Is practically sufficient.

上記の如くエポキシ樹脂並びに多量の充填剤との複合物
はモータとしての高度な信頼性並びに耐久性を確保する
ための重大な無鉄心電機子構成部材である半面エポキシ
樹脂の硬化が比較的緩やかに進行する事実は電機子巻線
封止作業の観点から生産性への重大な欠点となってい
た。一方、不飽和ポリエステル樹脂は典型的なラジカル
重合機構によって硬化が進行するので極めて速硬化であ
り、生産性を改善するために極めて有効である。しか
し、これ等不飽和ポリエステル樹脂硬化物の実用温度で
の耐熱性は例えば無水フタル酸系で80〜100℃イリ
フタル酸系或いはテレフタル酸系で150℃程度であ
る。また、速硬化性であることは硬化歪の増大を意味
し、それ故、無鉄心電機子の耐熱衝撃性やモータとして
の耐久性に重大な影響を及ぼす原因ともなる。特に樹脂
硬化物の構成成分として繊維質充填剤を使用すると、重
合硬化に伴なう硬化歪が繊維配向と重複して作用するた
め、寸法精度の確保が極めて困難になる。更に不飽和ポ
リエステル樹脂硬化物のガラス転移温度以上では熱膨張
率などに繊維配向の影響が現われ易い。一般にイソフタ
ル酸系或いはテレフタル酸系でスチレン系共重合性単量
体を使用した硬化物で得られる最高のガラス転移温度が
170℃までであから、モータとして使用時の無鉄心電
機子温度が170℃を越えるとき、電機子巻線導体との
熱膨張差に繊維配向による熱膨張の異方性とが重複して
作用するため、経時的な寸法変化が過大となってモータ
としての特性並びに信頼性の維持が困難になる。
As described above, the epoxy resin and the compound with a large amount of the filler make the half-faced epoxy resin, which is a serious ironless armature constituent member, ensure relatively high curing and durability as a motor relatively slowly. The fact of progress has been a serious drawback to productivity from the viewpoint of armature winding sealing work. On the other hand, the unsaturated polyester resin is cured extremely rapidly because of a typical radical polymerization mechanism, and is extremely effective for improving productivity. However, the heat resistance of these unsaturated polyester resin cured products at a practical temperature is, for example, about 80 to 100 ° C. for phthalic anhydride type and about 150 ° C. for iriphthalic acid type or terephthalic acid type. In addition, the fact that it is fast-curing means an increase in curing strain, which is also a cause of seriously affecting the thermal shock resistance of the ironless core armature and the durability as a motor. In particular, when a fibrous filler is used as a constituent component of a cured resin product, the curing strain associated with polymerization curing overlaps with the fiber orientation, making it extremely difficult to ensure dimensional accuracy. Further, at the glass transition temperature or higher of the unsaturated polyester resin cured product, the influence of fiber orientation is likely to appear in the coefficient of thermal expansion and the like. Generally, the maximum glass transition temperature obtained from a cured product using an isophthalic acid-based or terephthalic acid-based styrene-based copolymerizable monomer is up to 170 ° C., so the iron-free armature temperature when used as a motor is 170 When the temperature exceeds ℃, the thermal expansion difference due to the fiber orientation overlaps the thermal expansion difference between the armature winding conductor and the thermal expansion anisotropy. It becomes difficult to maintain sex.

一方、上記不飽和ポリエステル樹脂の低収縮剤として例
えば各種熱可塑性樹脂を併用すれば電機子巻線封止時の
寸法精度は極めて高度なものが得られるが、高温下での
無鉄心電機子としての特性並びに信頼性の維持・確保が
更に困難となるのである。
On the other hand, as a low shrinkage agent of the unsaturated polyester resin, for example, if various thermoplastic resins are used together, the dimensional accuracy at the time of armature winding encapsulation is extremely high, but as a coreless armature at high temperature, It becomes even more difficult to maintain and secure the characteristics and reliability of.

即ち、無鉄心電機子の生産性とモータとしての特性並び
に信頼性の確保に関しては互いに相反する状況にあっ
た。
That is, the productivity of the ironless core armature and the characteristics and reliability of the motor are in conflict with each other.

発明の目的 本発明は重合硬化が極めて速く、且つ無鉄心電機子とし
ての特性並びに信頼性を確保するうえで十分な耐熱性と
耐熱衝撃性を有する熱硬化性樹脂組成物で少なくとも電
機子巻線部分を封止する無鉄心電機子を提供しようとす
るものである。
OBJECT OF THE INVENTION The present invention is a thermosetting resin composition having extremely high heat resistance and thermal shock resistance in order to secure the characteristics and reliability as an iron-free core armature, in which polymerization and curing are extremely fast, and at least an armature winding. An attempt is made to provide a coreless armature that seals a portion.

発明の構成 本発明の無鉄心電機子の構成は電機子巻線部分と、これ
を封止する樹脂組成物であり、この樹脂組成物が下記
a,b,c群から成る複合物であり、且つb群が複合物
の70重量%以上あるものである。
Configuration of the Invention The configuration of the ironless core armature of the present invention is an armature winding portion and a resin composition for sealing the armature winding portion, and the resin composition is a composite consisting of the following groups a, b and c: Further, the group b is 70% by weight or more of the composite.

(a):5〜40重量%の3官能トリアジン化合物を含有
する不飽和ポリエステル樹脂。
(a): An unsaturated polyester resin containing 5 to 40% by weight of a trifunctional triazine compound.

(b):粒子径20μm以下の無機質充填剤と粒子径50
μm以上の無機質充填剤(70/30〜30/70重量
比) (c):重合開始剤,内部離型剤,補強剤,顔料その他必
要に応じて加える添加剤。
(b): an inorganic filler having a particle size of 20 μm or less and a particle size of 50
Inorganic filler of 70 μm or more (70/30 to 30/70 weight ratio) (c): Polymerization initiator, internal release agent, reinforcing agent, pigment and other additives added as necessary.

以下本発明を更に詳しく説明する。The present invention will be described in more detail below.

先ず本発明で言う電機子巻線とは絶縁電線もしくは自己
融着性絶縁電線により巻装した巻線群であり、その巻線
端末は通常整流子に電気的に接続された状態のものを言
う。このような電機子巻線の形状は偏平状からカップ状
まで無鉄心モータの設計思想に基づき任意の形状を選択
することができる。更に電機子巻線は整流子と共に電機
子構成部材である電機子軸をも包含した状態であっても
差し支えない。
First, the armature winding referred to in the present invention is a winding group wound with an insulated electric wire or a self-bonding insulated electric wire, and its winding terminal is usually in a state of being electrically connected to a commutator. . The shape of such an armature winding can be selected from a flat shape to a cup shape based on the design concept of a coreless motor. Furthermore, the armature winding may include the commutator and the armature shaft that is an armature-constituting member.

本発明で言う上記電機子巻線を封止する樹脂組成物とは
上記a,b,c群からなる複合物であり、且つb群が複
合物の70〜85重量%を占める。ここでa群とは3官
能トリアジン化合物を5〜40重量%含有する不飽和ポ
リエステル樹脂である。
The resin composition for sealing the armature winding referred to in the present invention is a composite consisting of the above-mentioned groups a, b and c, and the group b accounts for 70 to 85% by weight of the composite. Here, the group a is an unsaturated polyester resin containing 5 to 40% by weight of a trifunctional triazine compound.

上記不飽和ポリエステル樹脂とは、本発明者が特願昭5
9−28950号(特開昭60−174035号)にお
いて提案したように、不飽和ポリエステルアルキドの共
重合性単量体溶液であり、更に重合禁止剤等種々の添加
剤を必要に応じて添加したものであり、少なくとも3官
能トリアジン化合物を5〜40重量%含有するものであ
る。ここで不飽和ポリエステルアルキドとはカルボン酸
成分として不飽和ジカルボン酸と必要により飽和ジカル
ボン酸とからなり、アルコール成分としてグリコール成
分とからなる。不飽和ジカルボン酸としてはフマル酸,
マレイン酸,イタコン酸,シトラコン酸などがある。飽
和ジカルボン酸としてはオルソフタル酸,無水フタル酸
なども使用できるが好ましくはイソフタル酸,テレフタ
ル酸,テトラおよびヘキサヒドロフタル酸などである。
またグリコール成分としてはエチレングリコール,1・
2−および1・3−プロパンジオール,1・3および1
・4−ブタンジオール,ジエチレングリコール,ジプロ
ピレングリコール,ネオペンチルグリコール,ビスフェ
ノール類のアルキレンオキシド付加物,水素化ビスフェ
ノール類およびそのアルキレンオキシド付加物,ハロゲ
ン化ビスフェノールのアルキレンオキシド付加物,1・
4−シクロヘキサンジメタノールなどがある。
The above unsaturated polyester resin is used by the present inventor in Japanese Patent Application No.
As proposed in 9-28950 (JP-A-60-174035), it is a copolymerizable monomer solution of an unsaturated polyester alkyd, and various additives such as a polymerization inhibitor are added if necessary. And contains at least 5 to 40% by weight of a trifunctional triazine compound. Here, the unsaturated polyester alkyd comprises an unsaturated dicarboxylic acid as a carboxylic acid component and optionally a saturated dicarboxylic acid, and a glycol component as an alcohol component. Fumaric acid as the unsaturated dicarboxylic acid,
Examples include maleic acid, itaconic acid, and citraconic acid. As the saturated dicarboxylic acid, orthophthalic acid, phthalic anhydride and the like can be used, but isophthalic acid, terephthalic acid, tetra- and hexahydrophthalic acid and the like are preferable.
The glycol component is ethylene glycol, 1.
2- and 1.3-propanediol, 1.3 and 1
.4-butanediol, diethylene glycol, dipropylene glycol, neopentyl glycol, alkylene oxide adducts of bisphenols, hydrogenated bisphenols and their alkylene oxide adducts, alkylene oxide adducts of halogenated bisphenols, 1.
4-cyclohexanedimethanol and the like.

上記不飽和ポリエステルアルキドにビニル系或いはアリ
ル系共重合性単量体を適宜使用することは差し支えない
が、前述の特願昭59−28950号(特開昭60−1
74035号)と同様、本発明においても5〜40重量
%の3官能トリアジン化合物を含有した不飽和ポリエス
テル樹脂とするものである。
Although it is possible to appropriately use a vinyl-type or allyl-type copolymerizable monomer for the unsaturated polyester alkyd, the above-mentioned Japanese Patent Application No. 59-28950 (JP-A-60-1).
No. 74035), an unsaturated polyester resin containing 5 to 40% by weight of a trifunctional triazine compound is also used in the present invention.

上記3官能トリアジン化合物とはトリアジン環にアリル
アルコールを付加してアリル基を3個有するものであ
り、トリアリルイソシアヌレート或いはトリアリルシア
ヌレートなどがある。このようなアリル基を3個有する
トリアジン化合物が不飽和ポリエステル樹脂中5重量%
以下では無鉄心電機子として所望の特性を維持できず4
0重量%以上では硬化歪が大きくなり、所望の寸法精度
が得られず無鉄心電機子としての耐熱衝撃性や焼損特性
などに重大な影響を及ぼすようになる。
The above trifunctional triazine compound is a compound having three allyl groups by adding allyl alcohol to the triazine ring, and examples thereof include triallyl isocyanurate and triallyl cyanurate. The triazine compound having three such allyl groups is 5% by weight in the unsaturated polyester resin.
In the following, the desired characteristics cannot be maintained as an ironless armature 4
If it is 0% by weight or more, the hardening strain becomes large, and the desired dimensional accuracy cannot be obtained, so that the thermal shock resistance and burnout characteristics of the ironless armature will be seriously affected.

一方、樹脂組成物を構成するb群とは、粒子径が20μ
m以下と50μm以上の無機質粒状充填剤の混合物から
成るもので、その混合比を70/30〜30/70(重
量比)の範囲とする。20μm以下の無機質粒状充填剤
が混合比70以上であると得られる無鉄心電機子の耐熱
衝撃性や焼損特性が損なわれ30以下であると無鉄心電
機子の熱時寸法安定性や強度が著しく損なわれる。
On the other hand, the group b constituting the resin composition has a particle size of 20 μm.
It is composed of a mixture of m or less and 50 μm or more of inorganic particulate filler, and the mixing ratio thereof is in the range of 70/30 to 30/70 (weight ratio). When the mixing ratio of the inorganic particulate filler of 20 μm or less is 70 or more, the thermal shock resistance and burnout characteristics of the obtained ironless core armature are impaired, and when it is 30 or less, the dimensional stability and strength of the ironless core armature at the time of heating are remarkable. Be damaged.

上記無機質粒状充填剤としては炭酸カルシウム溶融石
英,クレー,タルフ,硅酸ジルコニウム,アルミナ,水
酸化アルミニウム,硅砂,寒水石などが適宜使用でき
る。
As the above-mentioned inorganic granular filler, calcium carbonate fused quartz, clay, talf, zirconium silicate, alumina, aluminum hydroxide, silica sand, cold water stone and the like can be appropriately used.

一方、樹脂組成物を構成するc群とはa群に属する不飽
和ポリエステル樹脂の重合開始剤、或いは内部離型剤,
顔料,補強剤などaおよびb群からなる複合物を円滑に
電機子巻線封止するために使用する各種添加剤を言う。
On the other hand, the group c constituting the resin composition is a polymerization initiator of an unsaturated polyester resin belonging to the group a, or an internal release agent,
It refers to various additives used for smoothly encapsulating the armature winding of a composite composed of a and b groups such as a pigment and a reinforcing agent.

例えば重合開始剤としてはジクミルパーオキサイド,t
−ブチルパーベンゾエート,2・5−ジメチル−2・5
−ジt(ブチルパーオキシ)ヘキサンなどを使用し、内
部離型剤としては高級脂肪酸,高級アルコール或いは高
級脂肪酸エステルおよび金属石鹸類などがあり、補強剤
としてはガラス繊維、有機質繊維などがある。尚、この
他カーボンブラック,三酸化アンチモンなど通常熱硬化
性樹脂組成物を構成する各種添加剤をも必要に応じて適
宜使用して差し支えない。
For example, as a polymerization initiator, dicumyl peroxide, t
-Butyl perbenzoate, 2.5-dimethyl-2.5
-Di-t (butylperoxy) hexane is used, internal fatty acids, higher alcohols, higher fatty acid esters or higher fatty acid esters and metal soaps are used as internal release agents, and glass fibers, organic fibers and the like are used as reinforcing agents. In addition to these, various additives such as carbon black and antimony trioxide, which normally constitute the thermosetting resin composition, may be appropriately used as necessary.

上記a,b,c群からなる樹脂組成物の混合割合は、本
発明者が先の特願昭59−23114号(特開昭60−
167662号)で提案したごとく、少なくともb群が
樹脂組成物の70〜80重量%占めることが肝要であ
り、70重量%を下回ると得られる無鉄心電機子の耐熱
衝撃性や耐久性を著しく損うばかりでなく所望の寸法精
度の維持確保が困難になり、85重量%以上では樹脂組
成物の硬化後の機械強度が低下し、脆くなる。尚、a,
b,c群の混合方式やa,c群から適宜選択される樹脂
組成物構成成分は無鉄心電機子の特性並びに信頼性を満
足する範囲で決定される。
The mixing ratio of the resin composition consisting of the groups a, b and c is determined by the present inventor in Japanese Patent Application No. 59-23114 (Japanese Patent Laid-Open No. 60-
No. 167662), it is essential that at least b group occupy 70 to 80% by weight of the resin composition, and if it is less than 70% by weight, the thermal shock resistance and durability of the ironless core armature obtained are significantly impaired. Not only does it become difficult to maintain and maintain the desired dimensional accuracy, but if it is 85% by weight or more, the mechanical strength of the resin composition after curing decreases and the resin composition becomes brittle. In addition, a,
The mixing method of the b and c groups and the constituents of the resin composition appropriately selected from the a and c groups are determined within a range that satisfies the characteristics and reliability of the ironless core armature.

実施例の説明 次に本発明を実施例によって具体的に説明するが本発明
はそれ等の実施例に限定されるものではない。
Description of Examples Next, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples.

不飽和ポリエステル樹脂の不飽和ポリエステルアルキド
は飽和ジカルボン酸成分としてテレフタル酸,不飽和ジ
カルボン酸成分としてフマル酸を使用した。3官能トリ
アジン化合物としてはトリアリルイソシアヌレート,2
0μm以下および50μm以上の無機質充填剤は炭酸カ
ルシウム,重合開始剤はジクミルパーオキサイド,補強
剤はガラスチョップドストランド,内部離型剤は高級脂
肪酸エステルを使用した。その他必要に応じて加える添
加剤としてビニロンチョップドストランド,ポリエチレ
ン粉末などを適宜使用した。
The unsaturated polyester alkyd of the unsaturated polyester resin used terephthalic acid as the saturated dicarboxylic acid component and fumaric acid as the unsaturated dicarboxylic acid component. Triallyl isocyanurate as the trifunctional triazine compound, 2
Calcium carbonate was used as the inorganic filler of 0 μm or less and 50 μm or more, dicumyl peroxide was used as the polymerization initiator, glass chopped strand was used as the reinforcing agent, and higher fatty acid ester was used as the internal release agent. In addition, vinylon chopped strands, polyethylene powder, etc. were used as appropriate additives as needed.

上記本発明で言う樹脂組成物a,b,c,群に属する各
種構成成分は下記第1表のような割合としてニーダにて
一括して混練りした。但し第1表で示す数値は重量%で
ある。
The various constituent components belonging to the above-mentioned resin compositions a, b, c, and the group were kneaded together in a kneader in the proportions shown in Table 1 below. However, the numerical values shown in Table 1 are% by weight.

尚、別に酸無水物/ジグリシジルエーテルビスフェノー
ルA系,酸無水物/エポキシノボラック系およびポリ−
p−ビニルフェノール/ジグリシジルエーテルビスフェ
ノールA系の各エポキシ樹脂にシリカを80重量%もし
くは75重量%含有したエポキシ樹脂組成物を従来例1
〜4として用意した。
Separately, acid anhydride / diglycidyl ether bisphenol A type, acid anhydride / epoxy novolac type and poly-
Conventional Example 1 of an epoxy resin composition containing 80% by weight or 75% by weight of silica in each p-vinylphenol / diglycidyl ether bisphenol A epoxy resin
Prepared as ~ 4.

次いで自己融着性絶縁電線を用いて38ターン/コイ
ル,23セグメントの偏平状電機子巻線を用意し、第1
表で示した実施例並びに比較例,及び別に用意した従来
例に係るエポキシ樹脂組成物による無鉄心電機子をトラ
ンスファ成形法により製造した。ここで無鉄心電機子は
外径94mm,電機子巻線部の主磁束鎖交部分の厚さ2.2m
mであり成形の条件は実施例並びに比較例では160゜C±5d
eg,3min,100kgf/cm2であり、従来例では、155゜C±5deg,
5min,100kgf/cm2とし、更に150℃,6Hrsの後硬化を
行なったものである。
Next, a flat armature winding of 38 turns / coil, 23 segments is prepared using the self-bonding insulated electric wire.
Ironless core armatures made of the epoxy resin compositions according to the examples and comparative examples shown in the table and the separately prepared conventional example were manufactured by the transfer molding method. Here, the ironless core armature has an outer diameter of 94 mm and the thickness of the main magnetic flux linkage part of the armature winding part is 2.2 m.
m and the molding conditions were 160 ° C ± 5d in Examples and Comparative Examples.
eg, 3min, 100kgf / cm 2 , and in the conventional example, 155 ° C ± 5deg,
After 5 minutes and 100 kgf / cm 2 , it was further post-cured at 150 ° C. and 6 Hrs.

上記無鉄心電機子の耐熱衝撃性を一括して下記第2表に
示す。但し熱衝撃は熱風循環型恒温槽にて予め120℃
に加熱した無鉄心電機子各10台を−30℃に保ったメ
タノール中に投入する操作を10回繰り返えしたもので
ある。
The thermal shock resistance of the ironless core armatures are collectively shown in Table 2 below. However, thermal shock is 120 ° C in advance in a hot air circulation type thermostat.
The operation of charging 10 iron-free core armatures each heated in above into methanol kept at −30 ° C. was repeated 10 times.

本発明に係る実施例1〜10および比較例1〜13は従
来例に比較して電機子巻線を封止して無鉄心電機子とす
る作業が極めて効率的である。特に不飽和ポリエステル
樹脂中に3官能トリアジン化合物を含有するので重合硬
化が極めて速く、従来例で示したエポキシ樹脂のように
後硬化を施こすことなく本来の物性を確保できる。半面
比較例1〜13の場合は速硬化であるための硬化歪の増
大に伴なう無鉄心電機子の耐熱衝撃性が第2表にて明ら
かなように著しく損なわれ、モータ特性を維持すること
が困難である。
In Examples 1 to 10 and Comparative Examples 1 to 13 according to the present invention, the work of sealing the armature winding to form a coreless armature is extremely efficient as compared with the conventional example. In particular, since the unsaturated polyester resin contains the trifunctional triazine compound, the polymerization and curing are extremely fast, and the original physical properties can be secured without post-curing unlike the epoxy resin shown in the conventional example. In the case of Comparative Examples 1-13, the thermal shock resistance of the ironless core armature accompanying the increase in hardening strain due to rapid hardening is significantly impaired as shown in Table 2, and the motor characteristics are maintained. Is difficult.

次に実施例1〜10,比較例1〜14および従来例1〜
4の無鉄心電機子をモータとし、DC13.5Vファン付フ
リーエリア連続運転を80℃雰囲気中で行なった。1500
Hrs経過後の無鉄心電機子の状態を一括して第3表およ
び第4表に示す。尚、初期の無鉄心電機子の温度は18
0〜185℃である。
Next, Examples 1 to 10, Comparative Examples 1 to 14 and Conventional Example 1
Using the ironless core armature of No. 4 as a motor, continuous free area operation with a DC 13.5V fan was performed in an atmosphere of 80 ° C. 1500
Tables 3 and 4 collectively show the state of the ironless core armature after the passage of Hrs. The initial temperature of the ironless core armature is 18
It is 0-185 degreeC.

第3表で明らかなように本発明に係る実施例1〜10は
エポキシ樹脂を使用した従来例と同様に無鉄心電機子の
温度が180〜185℃に達しているにも拘らずモータ
特性を長期に渡って維持している。しかし比較例1〜1
4では無鉄心電機子製造時の硬化歪の増大がモータ特性
維持のうえで重大な影響を及ぼしていることが明らかで
ある。また、第4表で明らかなように本発明に係る実施
例1〜10はブラシの摩耗に対しても従来例と同様であ
り、モータとしての耐久性も実用的に十分な特性を有し
ている。
As is apparent from Table 3, Examples 1 to 10 according to the present invention show motor characteristics in spite of the temperature of the ironless core armature reaching 180 to 185 ° C. as in the conventional example using the epoxy resin. It has been maintained for a long time. However, Comparative Examples 1 to 1
In No. 4, it is clear that an increase in hardening strain during manufacturing of the ironless core armature has a significant influence on maintaining the motor characteristics. Further, as is clear from Table 4, Examples 1 to 10 according to the present invention are similar to the conventional example even with respect to the abrasion of the brush, and the durability as a motor has practically sufficient characteristics. There is.

発明の効果 以上のように本発明は、電機子巻線の封止樹脂として重
合硬化の極めて速い不飽和ポリエステル樹脂に着目し、
その実用的な耐熱性を確保するため3官能トリアジン化
合物を採用し、かつ、無機充填剤を電機子巻線の封止樹
脂硬化物の70重量%以上とし、しかも粒子径が20μ
m以下と50μm以上との無機質粒状充填剤を70/3
0〜30/70(重量比)としたので重合硬化に伴なう
硬化歪の影響を排除し、従来と同様な耐熱衝撃性を有
し、しかも高温下で長期に渡って安定したモータ特性を
維持し得る無鉄心電機子が極めて能率的に得ることがで
きる。
Effects of the Invention As described above, the present invention focuses on an unsaturated polyester resin that is extremely fast in polymerization and curing as a sealing resin for an armature winding,
In order to ensure its practical heat resistance, a trifunctional triazine compound is adopted, and the inorganic filler is 70% by weight or more of the cured resin of the sealing resin for the armature winding, and the particle size is 20μ.
70/3 or less of inorganic particulate filler having a particle size of m or less and 50 μm or more
Since it is set to 0 to 30/70 (weight ratio), the influence of curing strain due to polymerization and curing is eliminated, and it has the same thermal shock resistance as before and has stable motor characteristics for a long time at high temperature. A sustainable ironless armature can be obtained very efficiently.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】少なくとも電機子巻線部分を封止する熱硬
化性樹脂組成物が、 (a):5〜40重量%の3官能トリアジン化合物を含有
する不飽和ポリエステル樹脂と、 (b):70〜85重量%の無機質充填剤と、 (c):添加剤と からなる無鉄心電機子において、 前記(b)群の無機質充填剤は、粒子径20μm以下の無
機質充填剤と粒子径50μm以上の無機質充填剤の重量
比が70/30〜30/70の範囲内としたことを特徴
とする無鉄心電機子。
1. A thermosetting resin composition for sealing at least an armature winding portion, (a): an unsaturated polyester resin containing 5 to 40% by weight of a trifunctional triazine compound, and (b): An iron-free core armature comprising 70 to 85% by weight of an inorganic filler, (c): an additive, wherein the inorganic filler of the group (b) is an inorganic filler having a particle diameter of 20 μm or less and a particle diameter of 50 μm or more. An ironless armature, wherein the weight ratio of the inorganic filler is 70/30 to 30/70.
JP11113584A 1984-05-31 1984-05-31 Ironless armature Expired - Lifetime JPH0640717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11113584A JPH0640717B2 (en) 1984-05-31 1984-05-31 Ironless armature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11113584A JPH0640717B2 (en) 1984-05-31 1984-05-31 Ironless armature

Publications (2)

Publication Number Publication Date
JPS60255030A JPS60255030A (en) 1985-12-16
JPH0640717B2 true JPH0640717B2 (en) 1994-05-25

Family

ID=14553335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11113584A Expired - Lifetime JPH0640717B2 (en) 1984-05-31 1984-05-31 Ironless armature

Country Status (1)

Country Link
JP (1) JPH0640717B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4091422B2 (en) 2000-10-25 2008-05-28 コンセプション エ デヴロップマン ミシュラン,ソシエテ アノニム Rotating electrical apparatus and manufacturing method thereof
CN111262351B (en) * 2020-01-15 2021-11-16 浙江盘毂动力科技有限公司 Motor stator structure and encapsulating method thereof

Also Published As

Publication number Publication date
JPS60255030A (en) 1985-12-16

Similar Documents

Publication Publication Date Title
JPS6160655B2 (en)
US5490319A (en) Thermotropic liquid crystal polymer composition and insulator
US4128527A (en) Dynamoelectric machine having coil windings and core encapsulated with resin-filler composition
US5459190A (en) Thermotropic liquid crystal polymer composition and insulator
EP0553831B1 (en) Thermotropic liquid crystal polymer composition and insulator
JPH0640717B2 (en) Ironless armature
US3504431A (en) Method of manufacturing insulated electrical members
JP2506627B2 (en) Ironless armature
JP3508166B2 (en) Resin-sealed electromagnetic winding
JPH07298538A (en) Stator for motor
JP3171028B2 (en) Manufacturing method of mold armature
JPS6248236A (en) Electromagnetic device
JP5753033B2 (en) Resin composition and coil
JP3863800B2 (en) Resin-encapsulated iron core with excellent iron loss characteristics
JPS6323535A (en) Manufacture of magnet-integrated coreless armature
JPS58186348A (en) Resin-molded motor
JPS58194307A (en) Resin-molded electromagnetic winding
JPH08283448A (en) Resin composite material
JPS60167661A (en) Manufature of coreless armature
JPH06197484A (en) Resin-sealed electromagnetic winding
US3414856A (en) Insulated electrical conductor
JPS60167662A (en) Coreless armature
JP2002097377A (en) Molding composition
JPS5936805B2 (en) Electrical equipment sealed and impregnated with a resin composition
JP3485200B2 (en) Electronic components with thermal fuse

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term