JPS6323535A - Manufacture of magnet-integrated coreless armature - Google Patents

Manufacture of magnet-integrated coreless armature

Info

Publication number
JPS6323535A
JPS6323535A JP16690786A JP16690786A JPS6323535A JP S6323535 A JPS6323535 A JP S6323535A JP 16690786 A JP16690786 A JP 16690786A JP 16690786 A JP16690786 A JP 16690786A JP S6323535 A JPS6323535 A JP S6323535A
Authority
JP
Japan
Prior art keywords
magnet
composition
resin
thermopolymerizable
thermopolymerizable resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16690786A
Other languages
Japanese (ja)
Inventor
Fumitoshi Yamashita
文敏 山下
Masami Wada
正美 和田
Osamu Nishio
修 西尾
Masaaki Nishitsu
西津 正晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16690786A priority Critical patent/JPS6323535A/en
Publication of JPS6323535A publication Critical patent/JPS6323535A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an annular multipolarized magnet which can respond accurately to controlling operation by pressurizing, melting and curing thermally polymerizable resin magnet composition made of magnet powder thermally softened by thermal conduction from a metal mold in advance, glass fiber and resin composition. CONSTITUTION:A molded cured material 4b of a thermally polymerizable resin magnet composition is obtained by thermally softening the composition by means of thermal conduction from a metal mold and the molding pressure of the composition 3 for sealing an armature winding 1, molding it in a predetermined state, and fusion-bonding and curing it before gelling the composition 3. The composition 3 comprise 70 - 90wt.% of magnet powder, 1 - 10wt.% of glass fiber, and 10 - 20wt.% of resin composition. According to this manufacturing method, a highly accurate annular multipolarized magnet can be efficiently produced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は無鉄心モータの中、とくにOA分野で使用され
ることの多い制御用無鉄心モータの電機子に関し、更に
詳しくは、少なくとも電機子巻線部分を封止する熱重合
性樹脂の成形圧力により、予め熱軟化せしめた熱重合性
樹脂磁石組成物を直接加圧せしめ、双方の熱硬化物樹脂
成分のゲル化以前で互いに溶着・硬化する磁石一体型無
a(心電接子の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to the armature of ironless motors, especially ironless motors for control that are often used in the OA field. The thermopolymerizable resin magnet composition, which has been heat softened in advance, is directly pressed by the molding pressure of the thermopolymerizable resin that seals the parts, and the magnets weld and harden together before both thermosetting resin components gel. This relates to a method for manufacturing an integrated electrocardiogram connector.

従来の技術 無鉄心モータは、その制御応答性が極めて速い利点を生
かしてインクリメンタル動作を行わせることが多(パル
スモータでは追従できない制御分野で使用される例が多
い。このような制御用途に使用されろ無鉄心電機子は絶
縁電線や自己融着性絶縁電線によって形成した電機子巻
線を熱重合性樹脂組成物で封止し、且つ当該熱重合性樹
脂組成物に環状多極着磁磁石(FG)を必要に応して磁
気シールド部材を介して接着したものが実用に供されて
いた。かかる環状多極着磁磁石は電機子よ共に回転し、
該動作を着磁面に対向したホール素子或は磁気抵抗素子
などを介して制御回路に遂次信号をフィードバックする
動作を行う。
Conventional technology Ironless motors are often used in control fields that take advantage of their extremely fast control response to perform incremental operations (often used in control fields where pulse motors cannot follow the same characteristics. The ironless core armature is made by sealing an armature winding made of insulated wire or self-bonding insulated wire with a thermopolymerizable resin composition, and adding an annular multipolar magnet to the thermopolymerizable resin composition. (FG) bonded via a magnetic shielding member as necessary has been put into practical use.Such an annular multipolar magnetized magnet rotates together with the armature.
This operation is performed by sequentially feeding back signals to the control circuit via a Hall element or a magnetoresistive element facing the magnetized surface.

−上記無鉄心モータの特11g並びに信頼性は、通常電
機子部分に負うところが大きい。とくに高頻度、且つ高
精度の制御動作を行わせる場合にはモータ機能の維持確
保のため、電機子巻線を封止する熱重合性樹脂組成物の
高温下での安定性や環状多極着磁磁石の該着磁面の電機
子軸に対する寸法精度が重要である。
- The characteristics and reliability of the above-mentioned ironless motor are usually largely due to the armature. In particular, when performing high-frequency and high-precision control operations, in order to maintain motor function, the stability of the thermopolymerizable resin composition that seals the armature winding at high temperatures and the annular multipole bonding are important. The dimensional accuracy of the magnetized surface of the magnet with respect to the armature axis is important.

従来、一般に電機子巻線を封止ずろ熱重合性樹脂組成物
としてはエポキシ樹脂に充填剤、内部離型剤および、そ
の他必要に応して加える添加剤からなる多成分系の複合
材オ′1か使用されていた。ぞして一方の環状多極着磁
磁石としては一般弐MOF e 12018(但し、式
中MはBa、Srなどから選ばれろ1種または2種以上
、11ば45〜6.2の整数〉で示されるフェライト磁
石粉末をポリアミド樹脂のような熱可塑11g (/I
+脂に分散・造打1した複合物の射出成形品である所謂
、熱可塑性樹脂磁石が使用されていた。
Conventionally, the thermopolymerizable resin composition for sealing armature windings has generally been a multi-component composite material consisting of an epoxy resin, a filler, an internal mold release agent, and other additives added as necessary. 1 was used. Therefore, one annular multi-pole magnetized magnet is a general MOF e 12018 (where M is one or more selected from Ba, Sr, etc., and 11 is an integer from 45 to 6.2). The indicated ferrite magnet powder was mixed with 11 g of thermoplastic such as polyamide resin (/I
So-called thermoplastic resin magnets, which are injection molded composites dispersed and molded in fat, were used.

熱可塑性樹11t’f磁石は必要に応して磁気シールド
部拐を介し、電機子巻線を予め封止した熱重合性樹脂組
成物の成形硬化物表面に接着した構成が採られていた。
The thermoplastic resin 11t'f magnet was adhered to the surface of a molded cured product of a thermopolymerizable resin composition in which the armature winding had been previously sealed, via a magnetic shield part if necessary.

先ず、電機子巻線を封止する熱重合性樹脂組成物として
エポキシ樹脂組成物が好んて使用される理由について述
へる。
First, the reason why an epoxy resin composition is preferably used as a thermopolymerizable resin composition for sealing armature windings will be described.

エポキシ樹脂は耐熱性・機械的強度・耐薬品性の優れた
重合硬化物が得られることや電機子巻線とのコンパティ
ヒリティに優れたものであることは周知である。中でも
開環重合によって比較的緩やかに重合硬化する特性は硬
化歪が少なく高度な寸法精度と耐熱衝撃性とを有する無
鉄心電機子を得るために有利である。更に電機子巻線封
1」−時の溶融粘度が低いので緻密な構造の電機子巻線
封止が容易であり、このため電機子巻線の変形少なくモ
ータ特性をR+I#、持するために有利だからである。
It is well known that epoxy resins can yield polymerized cured products with excellent heat resistance, mechanical strength, and chemical resistance, and that they have excellent compatibility with armature windings. Among these, the property of relatively slow polymerization and curing through ring-opening polymerization is advantageous for obtaining iron-core armatures with little curing distortion, high dimensional accuracy, and thermal shock resistance. Furthermore, since the melt viscosity when sealing the armature winding is low, it is easy to seal the armature winding with a dense structure, and therefore the armature winding is less deformed and the motor characteristics are R+I#. This is because it is advantageous.

更に溶融粘度が低いことはアルミナ、水酸化アルミニュ
ウム、シリノJ1硅酸ジルコニウムなどの充填剤をJ、
を較的多量に添加することができるので電機子巻線の導
体と、これを封止する熱重合性樹脂♀[1成物との熱膨
張差が減小し、或はまた熱重合性樹脂組成物の熱伝導率
が比較的大きくなるなと無鉄心電機子としての実用的な
寸法kh度の維持・確保などに有利である。
Furthermore, the low melt viscosity means that fillers such as alumina, aluminum hydroxide, Silino J1 zirconium silicate, etc.
Since it is possible to add a relatively large amount of If the thermal conductivity of the composition is relatively high, it is advantageous for maintaining and ensuring a practical dimension of kh degree as a coreless armature.

発明か解決しようとする問題点 上記の如くエポキシ樹脂組成物はモータとしての高度な
信頼性、並びに耐久性を確保するための重要な無鉄心電
機子構成部材である反面、エポキシ樹脂の重合硬化が比
較的緩やかに進行するという事実は電機子巻線封止作業
の観点から生産性−\の重大な欠点となっていた。
Problems to be Solved by the Invention As mentioned above, the epoxy resin composition is an important component of the ironless armature to ensure high reliability and durability as a motor, but on the other hand, the polymerization and curing of the epoxy resin is difficult. The fact that the process progresses relatively slowly has been a serious drawback in terms of productivity from the point of view of the armature winding sealing operation.

一方、上記電機子巻線部分部拐に環状多極着磁磁石を直
接らしくは必要に応して用いる磁気シールド部4Aを介
して接着するという事実は、該磁石の多極着磁面の電機
子軸に対する寸法精度の確保か困Flfであるばかりか
、当該作業自体が生産性の観点からみろと障害であった
On the other hand, the fact that the annular multi-pole magnetized magnet is bonded directly to the armature winding portion, but via the magnetic shield section 4A, which is used as necessary, makes it possible to Not only was it difficult to ensure dimensional accuracy for the child shaft, but the work itself was an obstacle from a productivity standpoint.

上記、環状多極着磁磁石の該着磁面の電機子軸に対する
寸法ti〜度の変動はポール素子や磁気抵抗虫暦子との
空隙変動を意味ずろから制御回路・\均−一  5 − な信号を遂次フィードバックすることが難しく、モータ
特性として、特に回転ムラやワウフラッタに重大な影響
を及ぼずものであった。
The variation in the dimension ti~ degree of the magnetized surface of the annular multi-pole magnetized magnet with respect to the armature axis does not necessarily mean the variation in the air gap between the pole element and the magnetoresistive element, so the control circuit/uniformity 5- It was difficult to continuously feed back such signals, and it did not have a significant effect on motor characteristics, especially uneven rotation and wow and flutter.

本発明は高頻度、月つ高精度の制御動作に対応可能な高
精度の環状多極着磁磐石を極めて能率的に生産するため
製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a manufacturing method for extremely efficiently producing a highly accurate annular multi-pole magnetized rock capable of responding to high-frequency, monthly high-precision control operations.

問題点を解決するための手段 本発明は、少なくとら電機子巻線部分を封止する熱重合
性樹脂組成物の成形圧力により、予め金型からの熱伝導
によって熱軟化した下記(a) 、 (b) 。
Means for Solving the Problems The present invention provides at least the following (a) which has been thermally softened by heat conduction from a mold by molding pressure of a thermopolymerizable resin composition that seals at least the armature winding portion. (b).

(c)群からなる熱重合性樹脂磁石組成物を加圧せしめ
、双方の熱硬化性成分のケル化以前で互いに溶着、硬化
するものである。
The thermopolymerizable resin magnet compositions of group (c) are pressurized to weld and harden together before both thermosetting components become gelatinized.

(a)  磁石粉末・70〜90重量%(b)  カラ
ス繊維・1〜]O重量%(c)  (!J脂絹成代物1
0〜20重量%作用 先ず、本発明で言う電機子巻線とは絶縁電線もしくは自
己融着性絶縁電線によって巻装した巻線−6= 群であり、その巻線端末は通常整流子に電気的に接続さ
れたものを言う。このような電機子巻線の形状は偏平状
からカップ状まで無鉄心モータの設計思想に基づき任意
の形状を選択することかできろ。更に電機子巻線は整流
子と共に電機子軸をも包含した構成であっても差し支え
ない。
(a) Magnet powder 70-90% by weight (b) Glass fiber 1-]O weight% (c) (!J fat silk substitute 1
0 to 20% by weight action First, the armature winding referred to in the present invention is a winding wound with insulated wire or self-bonding insulated wire, and the terminal of the winding is usually connected to the commutator. It refers to something that is connected. The shape of the armature winding may be any shape, from a flat shape to a cup shape, based on the design philosophy of the ironless motor. Furthermore, the armature winding may include the armature shaft as well as the commutator.

次に、本発明で言う熱重合性樹脂組成物とはエポキシ樹
脂でも差し支えはないが、生産性確保の観点で特開昭6
0−255030号公報で開示されているような典型的
なラジカル重合機構で硬化する不飽和ポリエステル樹脂
が好ましい。ここで言う好ましい不飽和ポリエステル樹
脂とは不飽和ポリエステルアルキドのアリル系共重合1
1−単量体溶液であり、更に重合禁止剤等種々の添加剤
を必要に応じて添加したものである。ここで不飽和ポリ
エステルアルキドとはカルボン酸成分として不飽和ジカ
ルボン酸と必要により飽和ジカルボン酸とからなりアル
コール成分としてグリコール成分とからなる。不飽和ジ
カルボン酸としてはフマル酸、マレイン酸、イタコン酸
、シトラコン酸などがある。飽和ジカルボン酸としては
オルソフタル酸、イソフタル酸なども使用できるが好ま
しくはテレフタル酸である。テレフタル酸が好ましい理
由は該分子構造が対称であるため不飽和ポリエステルア
ルキドか直鎖状になるため不飽和酸量を増やさなくとも
共重合性単量体との反応性に冨み、その硬化物の耐熱性
が優れたものとなるからである。更には結晶性が高いの
で室温で非粘着、且つ固体のものが得やすいために取り
扱い易いためである。またグリコール成分としてはエチ
レングリコールド2−および1・3−プロパンジオール
、]・3−および1・4−−ブタンジオール、ジエチレ
ングリコール、ジプロピレングリコール、ネオペンチル
グリコール、ビスフェノール類およびそのアルキレンオ
キサイド付加物、水素化ビスフェノール類およびそのア
ルキレンオキサイド付加物、ハロゲン化ヒスフェノール
のアルキレンオキサイド付加物、1・4−シクロヘキザ
ンジメタノールなどがある。
Next, the thermopolymerizable resin composition referred to in the present invention may be an epoxy resin, but from the viewpoint of ensuring productivity,
Unsaturated polyester resins that cure by a typical radical polymerization mechanism as disclosed in Japanese Patent No. 0-255030 are preferred. The preferred unsaturated polyester resin mentioned here is allyl copolymerization of unsaturated polyester alkyd 1
1-monomer solution, to which various additives such as polymerization inhibitors are added as necessary. The unsaturated polyester alkyd herein is composed of an unsaturated dicarboxylic acid as a carboxylic acid component and, if necessary, a saturated dicarboxylic acid, and a glycol component as an alcohol component. Examples of unsaturated dicarboxylic acids include fumaric acid, maleic acid, itaconic acid, and citraconic acid. As the saturated dicarboxylic acid, orthophthalic acid, isophthalic acid, etc. can also be used, but terephthalic acid is preferable. The reason why terephthalic acid is preferable is that its molecular structure is symmetrical, making it a linear chain rather than an unsaturated polyester alkyd, so it has high reactivity with copolymerizable monomers without increasing the amount of unsaturated acid, and its cured product This is because the heat resistance is excellent. Furthermore, because of its high crystallinity, it is non-adhesive at room temperature and can be easily obtained as a solid, making it easy to handle. In addition, glycol components include ethylene glycol 2- and 1,3-propanediol, ].3- and 1,4-butanediol, diethylene glycol, dipropylene glycol, neopentyl glycol, bisphenols and their alkylene oxide adducts, Examples include hydrogenated bisphenols and their alkylene oxide adducts, alkylene oxide adducts of halogenated hisphenols, and 1,4-cyclohexanedimethanol.

」二記不飽和ポリエステルアルキドの共重合性単量体溶
液としてはアリル系共重合性単量体を使用する。アリル
系共重合性単量体が好ましい理由はアリル基の共鳴(退
化性連鎖移動反応)により室温では極めて不活性である
から貯蔵性に優れたものが得られるからである。
2. As the copolymerizable monomer solution of the unsaturated polyester alkyd, an allyl copolymerizable monomer is used. The reason why allyl-based copolymerizable monomers are preferred is that they are extremely inactive at room temperature due to the resonance (degenerative chain transfer reaction) of the allyl groups, so that products with excellent storage stability can be obtained.

以上の不飽和ポリエステル樹脂は炭酸カルシウム、溶融
石英、クレー、タルク、硅酸ジルコニウム、アルミナ、
水酸化アルミニウム、硅砂、寒水石なとの無機質粒状充
填剤、内部離型剤、補強剤、着色剤、重合開始剤などと
常法に従って混練し多成分系の複合材料とする。これ等
の構成成分や、その具体的な組成は無鉄心電機子の特性
並びに信頼性を満足する範囲で適宜決定されるものであ
る。
The above unsaturated polyester resins include calcium carbonate, fused silica, clay, talc, zirconium silicate, alumina,
It is kneaded with inorganic granular fillers such as aluminum hydroxide, silica sand, and agarite, an internal mold release agent, a reinforcing agent, a coloring agent, a polymerization initiator, etc. in a conventional manner to form a multi-component composite material. These constituent components and their specific compositions are appropriately determined within a range that satisfies the characteristics and reliability of the iron-core armature.

次に本発明で言う(a) 、 (b) 、 (c) 3
群から成る熱重合性樹脂磁石組成物とは基本的には少な
くとも電機子巻線を封止する熱重合性樹脂組成物の熱重
合性樹脂組成分と相容性のあるものが望ましい。従って
、例えば熱重合性樹脂組成物の当該熱重合性樹脂が不飽
和ポリエステル樹脂であれば、それと同じ系のものとす
ることが望ましい。以下、(a) 、 (b) 。
Next, (a), (b), (c) 3 referred to in the present invention
Basically, the thermopolymerizable resin magnet composition consisting of the group is preferably one that is compatible with at least the thermopolymerizable resin component of the thermopolymerizable resin composition that seals the armature winding. Therefore, for example, if the thermopolymerizable resin of the thermopolymerizable resin composition is an unsaturated polyester resin, it is desirable to use the same type of resin. Below, (a) and (b).

−9= (c)3群を個別に説明する。−9= (c) The three groups will be explained individually.

(a)群・・・磁石粉末・70〜90重・量%、本発明
で言う磁石粉末とは一般式MOFB+20+e(但し式
中MはBa、Srなどから選ばれる一種または2種以上
、nは4.5〜6.2の整数)で示されるフェライト磁
石粉末、或はSm(co、Co。
Group (a): Magnet powder - 70 to 90% by weight, the magnet powder referred to in the present invention has the general formula MOFB+20+e (where M is one or more selected from Ba, Sr, etc., and n is 4.5 to 6.2) or Sm (co, Co.

Fe、M)n(但し式中Mは周期律表の■族、V族、■
族、■族に属する元素の1種または2種以、nは5〜9
の整数)で例示される希土類コバルト磁石粉末など一般
に樹脂磁石の磁石素材として使用される全ての磁石粉末
を使用するこ七ができる。
Fe, M) n (where M in the formula represents group ■, group V of the periodic table,
1 or 2 or more elements belonging to group Ⅰ, n is 5 to 9
It is possible to use all magnet powders that are generally used as magnet materials for resin magnets, such as rare earth cobalt magnet powders (integers).

また、それらの磁石粉末はカーボンファンクショナルシ
ランや有機チタネート化合物で表面処理したものであっ
ても差し支えない。
Moreover, the surface of these magnet powders may be treated with carbon functional silane or organic titanate compound.

上記磁石粉末は熱重合性樹脂組成物の70〜90重量%
を占めろ。70重量%未満であると環訣多極着磁磁石と
しての磁気特性が不十分きなり、90重量%を越えると
磁気特性のバラツキが大きくなって多極着磁後の磁束が
均質とならない欠点が生しる。また、流動性が低下する
ため電機子巻線を封1にする熱重合P4:樹脂絹成物の
成形圧力と金型からの熱伝導とては表面状態が良好で、
旧っ均質な熱重合性樹脂磁石組成物の成形硬化物が得ら
れなくなるからである。
The above magnet powder is 70 to 90% by weight of the thermopolymerizable resin composition.
Occupy. If it is less than 70% by weight, the magnetic properties as a ring-shaped multipolar magnetized magnet will be insufficient, and if it exceeds 90% by weight, the magnetic flux after multipole magnetization will not be homogeneous due to large variations in magnetic properties. Live. In addition, thermal polymerization P4, which seals the armature winding due to decreased fluidity, has a good surface condition in terms of molding pressure of the resin silk composition and heat conduction from the mold.
This is because it is no longer possible to obtain a molded and cured product of a homogeneous thermopolymerizable resin magnet composition.

(b)群・・・ガラス繊維 1〜]O重量%本発明で言
うガラス繊維とは単繊維径10μ■〕程度の通常無アル
カリカラス繊維であって、これをカーボンファンクショ
ナルシランなとを添加した集束剤にて400本捏度に紡
糸し0.5〜61IIInにストランドノノットシた原
料状態のものが好」;シい。しかし該ガラス繊維は熱重
合性樹脂磁石組成物中においては均質に分散させる必要
かある。このようなカラス繊維、ば熱重合性樹脂磁石組
成物の1〜10重量%を占める。1重量%未満であると
熱重合性(61脂磁石組成物の成形硬化物の1制熱衝撃
11−か低下するばかりか磁気シールド部材を併用した
無鉄心電機子においては着磁面に亀裂か発生し、この亀
裂が原因となって着磁面の磁束レヘルが極端に変動し結
果的に制御性を著しく世う。一方、10重量%を越える
と熱重合性樹脂磁石組成物の流動性が低下し電機子巻線
を封止する熱重合性樹脂組成物の成形圧力と金型からの
熱伝導とからは表面状態か良好であって、しかも均質な
成形硬化物とすることが困難となる。更にガラス繊維の
局在的な凝集はとくに着磁幅(極間ピッチ)50μm以
下の微細着磁において着磁面の磁束レベルの極端な変動
の原因となり、結果的に制御性を著しく損なう重大な影
響をもたらす。
Group (b)...Glass fiber 1~]0% by weight The glass fiber referred to in the present invention is usually alkali-free glass fiber with a single fiber diameter of about 10μ■, to which carbon functional silane is added. It is preferable that the raw material is spun to a kneading degree of 400 strands using a sizing agent, and the strands are knotted to a knot of 0.5 to 61 In. However, it is necessary to homogeneously disperse the glass fibers in the thermopolymerizable resin magnet composition. Such glass fibers account for 1 to 10% by weight of the thermopolymerizable resin magnet composition. If it is less than 1% by weight, not only will the thermal polymerizability of the molded cured product of the 61-fat magnet composition decrease, but also cracks may occur on the magnetized surface in iron-core armatures that are used in combination with magnetic shielding members. These cracks cause extreme fluctuations in the magnetic flux level on the magnetized surface, resulting in a significant deterioration in controllability.On the other hand, if it exceeds 10% by weight, the fluidity of the thermopolymerizable resin magnet composition will deteriorate. Due to the reduced molding pressure of the thermopolymerizable resin composition that seals the armature windings and the heat conduction from the mold, it becomes difficult to obtain a homogeneous molded cured product with a good surface condition. Furthermore, localized aggregation of glass fibers causes extreme fluctuations in the magnetic flux level on the magnetized surface, especially in fine magnetization with a magnetization width (pitch between poles) of 50 μm or less, resulting in a significant loss of controllability. have a significant impact.

(c)・・・樹脂組成物・10〜20重量%本発明て言
う樹脂組成物とはモータ特性、並びに信頼性を満足する
範囲で決定された磁石粉末並びにカラス繊維を均質に分
散せしめるものであり、これにより樹脂磁石組成物とす
るものである。このような樹脂♀[1成物は熱重合性樹
脂成分と加工助剤なとの添加剤成分とに区分されろ。熱
重合性樹脂組成分は基本的に電機子巻線を封止する熱重
合性樹脂組成物の熱重合性樹脂成分と相溶性があること
が好ましい。従って電機子巻線を封止する熱重合11:
 at脂絹成代物熱重合性樹脂成分かアリル系不飽和ポ
リエステル樹脂てあれば熱重合性樹脂磁石組成物の熱重
合性樹脂成分もアリル系不飽和ポリエステル樹脂とする
ことか好ましい。一方の添加剤成分は加工助剤として高
級アルコール4頂、高級脂肪酸類、高級脂肪酸エステル
類或は脂肪酸の金属石鹸類なとを適宜必要に応じて用い
ることができる。これ等は熱重合性樹脂磁石組成物の混
練方式や混線条件によって適宜使用することがてきるか
モータ特性や信頼性の維持・確保に重大な影響を及ぼさ
ない範囲でなければならない。尚、添卯剤成分としは前
述した加工助剤に限定するものてないことは勿論である
(c) Resin composition - 10 to 20% by weight The resin composition referred to in the present invention is one in which magnet powder and glass fibers are uniformly dispersed within a range that satisfies motor characteristics and reliability. This makes it a resin magnet composition. Such resin components are divided into a thermopolymerizable resin component and an additive component such as a processing aid. It is preferable that the thermopolymerizable resin component basically be compatible with the thermopolymerizable resin component of the thermopolymerizable resin composition that seals the armature winding. Thermal polymerization 11 thus sealing the armature winding:
If the at fat silk synthetic thermopolymerizable resin component is an allyl unsaturated polyester resin, it is preferable that the thermopolymerizable resin component of the thermopolymerizable resin magnet composition is also an allyl unsaturated polyester resin. As one of the additive components, a higher alcohol tetramodal, higher fatty acids, higher fatty acid esters, or metal soaps of fatty acids can be used as a processing aid, as appropriate. These must be used appropriately depending on the kneading method of the thermopolymerizable resin magnet composition and the cross-wire conditions, and must be within a range that does not seriously affect the maintenance and assurance of motor characteristics and reliability. It goes without saying that the additive components are not limited to the processing aids mentioned above.

実施例 以下、本発明を実施例を用いて更に詳しく説明する。Example Hereinafter, the present invention will be explained in more detail using Examples.

但し、、本発明は実施例によって限定されるらのではな
い。
However, the present invention is not limited to the examples.

先ず本発明の対像となる磁石一体型無鉄心電機子の構成
を第1図に示す。図において、1は自己融着性絶縁電線
を偏平状に巻装した電機子巻線である。2は整流子で、
電機子巻線1と電気的に接続されている。3は少なくと
ら電機子巻線1を封止してなる熱重合性樹脂組成物の成
形硬化物、4aは熱重合性樹脂磁石組成物の環状予備成
形品、4−bは金型からの熱伝導と電機子巻線1を封止
する熱重合性樹脂組成物3の成形圧力とて熱軟化並びに
所定の状態に成形され、且つ前記熱重合性樹脂組成物3
のゲル化以前で互いに溶着・硬化した熱重合性樹脂磁石
♀■成代物成形硬化物である。該成形硬化物4bは例示
のように外周面に多極着磁が施される。5は熱重合性樹
脂磁石組成物と熱重合性樹脂組成物との双方が互いに溶
着・硬化し一体化した付近に環状に設けられた磁気シー
ルド部材である。磁気シールド部材5は一般に界磁磁石
による多極着磁の外乱防護や電機子巻線1のリアクタン
スが起因ずろ多極着磁の外乱防護に有効な部月てあり、
この場合のように多極着磁面に沿うような環状構造を採
用するのが普通である。但し磁気シールド部材5は熱重
合性樹脂磁石組成物4bと熱重合性樹脂組成物3との双
方が互いに溶着・硬化し、一体化するのに必要な小さな
1通孔5′が段げられている。このような貫通孔5′は
磁気シールド部材5のシールド機能と磁石一体型無鉄心
電機子の機械的な強度や耐熱衝撃性なとモータ特性と信
頼性との両者が満足する範囲で構造決定されるものであ
る。6は電機子軸、7は軸受であり、それ等は通常磁石
一体型無鉄心電機子の成形工程を経たのちに機械的に取
り付けられる。
First, FIG. 1 shows the configuration of a magnet-integrated coreless armature, which is the counterpart of the present invention. In the figure, reference numeral 1 denotes an armature winding in which a self-bonding insulated wire is wound in a flat shape. 2 is a commutator,
It is electrically connected to the armature winding 1. 3 is a molded and cured product of a thermopolymerizable resin composition obtained by sealing at least the armature winding 1, 4a is an annular preformed product of a thermopolymerizable resin magnet composition, and 4-b is a heat emitted from a mold. The thermopolymerizable resin composition 3 that seals conduction and the armature winding 1 is thermally softened and molded into a predetermined state by the molding pressure, and the thermopolymerizable resin composition 3
This is a thermopolymerizable resin magnet ♀■ composite molded and cured product that has been welded and hardened together before gelation. The molded cured product 4b is subjected to multipolar magnetization on the outer circumferential surface as illustrated. Reference numeral 5 denotes a magnetic shielding member provided in an annular shape near the area where both the thermopolymerizable resin magnet composition and the thermopolymerizable resin composition are welded and cured to be integrated. The magnetic shielding member 5 is generally effective in protecting against disturbances caused by multi-pole magnetization caused by field magnets and disturbances caused by shift multi-pole magnetization caused by the reactance of the armature winding 1.
As in this case, it is common to adopt an annular structure along the multipolar magnetized surface. However, the magnetic shielding member 5 is stepped with a small one-hole 5' necessary for both the thermopolymerizable resin magnet composition 4b and the thermopolymerizable resin composition 3 to be welded and hardened together and integrated. There is. The structure of such a through hole 5' is determined within a range that satisfies both the shielding function of the magnetic shielding member 5, the mechanical strength and thermal shock resistance of the magnet-integrated coreless armature, and the motor characteristics and reliability. It is something that Reference numeral 6 indicates an armature shaft, and reference numeral 7 indicates a bearing, which are usually mechanically attached after the molding process of the magnet-integrated coreless armature.

上記のような磁石一体型無鉄心電機子の実施例に用いた
電機子巻線1を封止する熱重合性樹脂組成物3および熱
重合性樹脂磁石組成物4bの熱重合性樹脂成分としては
いずれもテレフタル酸系不飽和ポリエステルアルキドの
アリル系共重合性単量体溶液である所謂、アリル系不飽
和ポリエステルK1l1脂とした。ここで熱重合性樹脂
磁石組成物を成形硬化物4bとする段階て当該組成物・
\の磁界印加は行わないのが通常である。従ってアリル
系不飽和ポリエステル樹脂中の共重合性単量体濃度は当
該組成物の成形硬化物の磁気特性に何等影響を及ぼすこ
とはない。すなわちアリル系不飽和ポリエステル樹脂中
の共重合性単量体の濃度は当該組成物或はその成形硬化
物の取り扱い性や作業性を加味しなからモータ特性や信
頼性を維持・確保できる範囲で決定する。尚、実施例に
おけるアリル系不飽和ポリエステル樹脂中の共重合性単
量体はシアリルオルソフタレートとし、その濃度は15
%とした。15%とした理由はアリル系不飽和ポリエス
テル樹脂が室温で固体となるので取り扱い易く、且つ当
該組成物の成形硬化物の収縮率の増大成は機械的強度の
低下を招かない範囲であって、しかも表面状態の良好な
ものが得やすいからである。
The thermopolymerizable resin components of the thermopolymerizable resin composition 3 and the thermopolymerizable resin magnet composition 4b for sealing the armature winding 1 used in the examples of the magnet-integrated coreless armature as described above are as follows. In both cases, the so-called allylic unsaturated polyester K11 fat, which is an allyl copolymerizable monomer solution of terephthalic acid unsaturated polyester alkyd, was used. Here, in the step of forming the thermopolymerizable resin magnet composition into a molded cured product 4b, the composition
Normally, no magnetic field is applied. Therefore, the concentration of the copolymerizable monomer in the allylic unsaturated polyester resin has no effect on the magnetic properties of the molded and cured product of the composition. In other words, the concentration of the copolymerizable monomer in the allylic unsaturated polyester resin should be within a range that can maintain and ensure motor characteristics and reliability, taking into consideration the handling and workability of the composition or its molded and cured product. decide. In addition, the copolymerizable monomer in the allylic unsaturated polyester resin in the examples was sialyl orthophthalate, and its concentration was 15
%. The reason for setting it at 15% is that the allylic unsaturated polyester resin is solid at room temperature, so it is easy to handle, and the shrinkage rate of the molded cured product of the composition is within a range that does not cause a decrease in mechanical strength. Moreover, it is easy to obtain a material with a good surface condition.

先ず、実施例に用いた電機子巻線を封止する熱重合性樹
脂組成物の組成はテレフタル酸系不飽和ポリエステル(
1,5、72重量%〉、重合開始剤(0,1,6重量%
〉、無機質粒状充填剤(75゜4−6重量%)、無機質
繊維状充填剤(6,29重量%)、加工助剤(0,79
重量%)、内部離型剤(1,、58重量%)である。
First, the composition of the thermopolymerizable resin composition for sealing the armature winding used in the examples is terephthalic acid-based unsaturated polyester (
1,5,72% by weight>, polymerization initiator (0,1,6% by weight)
〉, inorganic granular filler (75°4-6% by weight), inorganic fibrous filler (6,29% by weight), processing aid (0,79% by weight)
% by weight) and internal mold release agent (1.58% by weight).

次に本発明の要点となる熱重合性樹脂磁石組成物の組成
を(a) 、 Cb) 、 (c)群に区分し、−括し
て第1表に示す。但し表中には本発明例の比較例も示し
た。表中a群の磁石粉末はS r OF e12018
、B群はカラス繊維、0群の加工助剤成分はペンタエリ
スリト−ルCI7トリエステル、内部離型剤成分はステ
アリン酸ノlルシウム、表面光沢剤成分はポリエチレン
粉末、化学繊維成分は3 mm長のビニロンチョンブト
ストランドであり、それ等の数値の重量%を示ずもので
ある。
Next, the composition of the thermopolymerizable resin magnet composition, which is the key point of the present invention, is divided into groups (a), Cb), and (c), and is summarized in Table 1. However, the table also shows comparative examples of the invention examples. The magnet powder of group a in the table is S r OF e12018
, Group B is glass fiber, Group 0 processing aid component is pentaerythritol CI7 triester, internal mold release agent component is norsium stearate, surface brightener component is polyethylene powder, and chemical fiber component is 3 mm. These are long vinyl strands and do not indicate weight percentages.

−]、7− 」二記熱重合性樹脂磁石絹代物は混練方式として押出機
によるものをE10−ルによるものをRとして第1表に
一括表示した。また、熱重合性樹脂磁石組成物は混練後
に7 mesh全通程度に粗粉砕し第1図4. aの如
き環状に賦形する。この段階での精度を含めた取り扱い
性を第1表に一括表示した。
-], 7-'' The kneading method for the thermopolymerizable resin magnet silk materials listed in Table 1 is shown in Table 1 with the kneading method using an extruder and the kneading method using an E10-ru as R. After kneading, the thermopolymerizable resin magnet composition was coarsely pulverized to about 7 mesh (see Figure 1, 4). Shape into a ring shape as shown in a. The ease of handling including accuracy at this stage is summarized in Table 1.

但し取り扱い性の良好なものを○、そうでないものが×
である。第1表のように(b)群のガラス繊維の代替と
して化学繊維成分を使用すると著しく取り扱い性か阻害
されろ。
However, those that are easy to handle are marked ○, and those that are not so easy are marked ×.
It is. As shown in Table 1, if a chemical fiber component is used as a substitute for the glass fiber in group (b), the handling property will be significantly impaired.

上記熱重合性樹脂磁石組成物の成形硬化物の磁気特性を
最大エネルギー積(Bl()maxて代表させ第1表に
一括表示した。磁石粉末量が90重量%を越えると磁気
性能の変動が大きくなる。
The magnetic properties of the molded and cured product of the above thermopolymerizable resin magnet composition are represented by the maximum energy product (Bl()max) and are summarized in Table 1. If the amount of magnet powder exceeds 90% by weight, the magnetic performance will fluctuate. growing.

上記熱重合性樹脂磁石組成物々電機子巻線並びにそれを
釘止する熱重合性樹脂組成物とて第1図のような磁石一
体型無鉄心電機子を製造し、熱重合性樹脂磁石組成物の
成形硬化物の外観並びに亀裂の有無を第1表に一括表示
した、成形硬化物の表面状態や均質さが良好なものは○
、そうでない= 18 = ものが×である。このような表面状態や均質さは主とし
て熱重合性樹脂磁石組成物の熱軟化性や流動性に依存す
るものであるから、そのような特性が損なわれる90重
量%を越える磁石粉末量の範囲で×となる。
Using the above thermopolymerizable resin magnet composition, the armature winding, and the thermopolymerizable resin composition to which it is nailed, a magnet-integrated iron core armature as shown in Figure 1 is manufactured, and the thermopolymerizable resin magnet composition is The appearance of the molded and cured product and the presence or absence of cracks are listed in Table 1, and the molded and cured product with good surface condition and homogeneity is ○.
, otherwise = 18 = thing is ×. Since such surface condition and homogeneity mainly depend on the thermal softening property and fluidity of the thermopolymerizable resin magnet composition, it is important to note that such properties are impaired in the amount of magnet powder exceeding 90% by weight. × becomes.

また熱重合性樹脂磁石組成物の成形硬化物に亀裂がない
ものがQlそうでないものが×である。
In addition, the molded cured product of the thermopolymerizable resin magnet composition is rated Q1, and those without cracks are rated x.

この亀裂は着磁面にも及ぶものであるからモータ特性に
重大な影響を与える。亀裂が生じないのはガラス繊維を
1重量%以上とした場合である。しかしガラス繊維が1
0重量%を越えると成形硬化物の外観が劣るため着研後
の磁束量の変動が大となり好ましくない。
Since this crack extends to the magnetized surface, it seriously affects the motor characteristics. Cracks do not occur when the glass fiber content is 1% by weight or more. However, glass fiber is 1
If it exceeds 0% by weight, the appearance of the molded cured product will be poor and the amount of magnetic flux will fluctuate greatly after polishing, which is not preferable.

」1記、磁石一体型無鉄心電機子の耐熱衝撃性は120
℃と一30℃との間で20回繰り返し、熱重合性樹脂磁
石組成物の成形硬化物に亀裂が発生しないことを確かめ
た。
” 1. Thermal shock resistance of the magnet-integrated coreless armature is 120
℃ and -30℃ 20 times, and it was confirmed that no cracks were generated in the molded and cured product of the thermopolymerizable resin magnet composition.

上記、磁石一体型無鉄心電機子をモータとし、その代表
特性としての回転ムラ、ワウフラッタ、FG出力を第1
表に一括表示した。表から明らか=20= なように本発明例では安定したモータ特性が得られるも
のである。
The above-mentioned magnet-integrated ironless armature is used as a motor, and the representative characteristics of rotation unevenness, wow and flutter, and FG output are as follows.
All are displayed in a table. As is clear from the table =20=, stable motor characteristics can be obtained in the example of the present invention.

発明の効果 以−1−の実施例でも明らかなように本発明に係る磁石
一体型無鉄心電機子は、制御モータとして、とくに磁気
シールド部材を併用しても高度な特性、並びに信頼性が
確保できるものである。そして、電機子巻線を熱重合性
樹脂組成物て封止する作業段階で熱重合性樹脂磁石組成
物を成形硬化物とするものであるから製造手段としても
極めて合理的であると言える。
Effects of the Invention As is clear from the embodiments described below, the magnet-integrated coreless armature according to the present invention can be used as a control motor, especially when used in combination with a magnetic shielding member, ensuring advanced characteristics and reliability. It is possible. Furthermore, since the thermopolymerizable resin magnet composition is molded into a cured product at the step of sealing the armature winding with the thermopolymerizable resin composition, it can be said to be an extremely rational manufacturing method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は磁石一体型無鉄心電機子の斜視図、第2図は同
要部断面図、第3図は同要部分解斜視図である。 1・・・・・・電機子巻線、3・・・・・・熱重合性樹
脂組成物の成形硬化物、4a・・・・・・熱重合性樹脂
磁石組成物の環状賦形体、4゜b・・・・・・熱重合性
樹脂磁石組成物の成形硬化物、5・・・・・・磁気シー
ルド部材。 第2図 第3図
FIG. 1 is a perspective view of a magnet-integrated coreless armature, FIG. 2 is a cross-sectional view of the main part, and FIG. 3 is an exploded perspective view of the main part. 1... Armature winding, 3... Molded cured product of thermopolymerizable resin composition, 4a... Annular shaped body of thermopolymerizable resin magnet composition, 4゜b... Molded cured product of thermopolymerizable resin magnet composition, 5... Magnetic shielding member. Figure 2 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)少なくとも電機子巻線を封止する熱重合性樹脂組
成物の成形圧力により、予め熱軟化せしめた下記(a)
、(b)、(c)群から成る熱重合性樹脂磁石組成物を
加圧し、双方の熱硬化性樹脂成分のゲル化以前で互いに
溶着・硬化する磁石一体型無鉄心電機子の製造方法。 (a)磁石粉末:70〜90重量% (b)ガラス繊維:1〜10重量% (c)樹脂組成物:10〜20重量%
(1) The following (a) which has been thermally softened in advance by molding pressure of a thermopolymerizable resin composition that seals at least the armature winding.
, (b) and (c) groups are pressurized to weld and harden them together before both thermosetting resin components gel. (a) Magnet powder: 70-90% by weight (b) Glass fiber: 1-10% by weight (c) Resin composition: 10-20% by weight
(2)熱重合性樹脂組成物と熱重合性樹脂磁石組成物と
の溶着部分に磁気シールド部材を介在せしめる特許請求
の範囲第1項記載の磁石一体型無鉄心電機子の製造方法
(2) A method for manufacturing a magnet-integrated coreless armature according to claim 1, wherein a magnetic shielding member is interposed at the welded portion of the thermopolymerizable resin composition and the thermopolymerizable resin magnet composition.
JP16690786A 1986-07-16 1986-07-16 Manufacture of magnet-integrated coreless armature Pending JPS6323535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16690786A JPS6323535A (en) 1986-07-16 1986-07-16 Manufacture of magnet-integrated coreless armature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16690786A JPS6323535A (en) 1986-07-16 1986-07-16 Manufacture of magnet-integrated coreless armature

Publications (1)

Publication Number Publication Date
JPS6323535A true JPS6323535A (en) 1988-01-30

Family

ID=15839850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16690786A Pending JPS6323535A (en) 1986-07-16 1986-07-16 Manufacture of magnet-integrated coreless armature

Country Status (1)

Country Link
JP (1) JPS6323535A (en)

Similar Documents

Publication Publication Date Title
GB1422278A (en) Stabilized polyester compositions
JPH10504423A (en) Polymer-based compositions for producing magnetic and magnetizable molded articles
CN102898797A (en) Modified polyester hot-sticking-resistant permanent magnetic material and preparation method thereof
JPS6323535A (en) Manufacture of magnet-integrated coreless armature
CN111363228B (en) EEA filling modified magnetic particle material for injection molding and preparation method thereof
CN101656134A (en) High temperature resistant bonding rare earth magnet and preparation method thereof
JP3508166B2 (en) Resin-sealed electromagnetic winding
JPS6323534A (en) Manufacture of magnet-integrated coreless armature
JPS60255030A (en) Coreless armature
JP2558790B2 (en) Resin magnet manufacturing method
JPS63241085A (en) Sealing method using reactive plastisol dispersion composition
JPS58186348A (en) Resin-molded motor
JPS6248236A (en) Electromagnetic device
JP3171028B2 (en) Manufacturing method of mold armature
JPH06197484A (en) Resin-sealed electromagnetic winding
JPS63233504A (en) Resin magnet molding material
JPS58194307A (en) Resin-molded electromagnetic winding
JP2506627B2 (en) Ironless armature
KR100549369B1 (en) Bulk molding compound for mold motor
JP2803053B2 (en) Epoxy resin composition and semiconductor encapsulation device
JP2017110115A (en) Unsaturated polyester resin composition, granular body of unsaturated polyester resin composition, and electric motor
JP3485059B2 (en) Unsaturated polyester resin composition for coil encapsulation and coil encapsulation molded product
JP2558791B2 (en) Resin magnet manufacturing method
JPS60167661A (en) Manufature of coreless armature
JPS6260454A (en) Manufacture of coreless armature