JP3507883B2 - Substrate for film production produced by the same method as the substrate surface treatment method - Google Patents

Substrate for film production produced by the same method as the substrate surface treatment method

Info

Publication number
JP3507883B2
JP3507883B2 JP2000054221A JP2000054221A JP3507883B2 JP 3507883 B2 JP3507883 B2 JP 3507883B2 JP 2000054221 A JP2000054221 A JP 2000054221A JP 2000054221 A JP2000054221 A JP 2000054221A JP 3507883 B2 JP3507883 B2 JP 3507883B2
Authority
JP
Japan
Prior art keywords
substrate
light
surface treatment
light energy
treatment method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000054221A
Other languages
Japanese (ja)
Other versions
JP2001240487A (en
Inventor
毅 楠森
八三 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2000054221A priority Critical patent/JP3507883B2/en
Publication of JP2001240487A publication Critical patent/JP2001240487A/en
Application granted granted Critical
Publication of JP3507883B2 publication Critical patent/JP3507883B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、セラミックス単結
晶基板の表面処理方法とそれにより得られる基板に関す
るものであり、さらに詳しくは、、特に酸化物エレクト
ロニクスの基盤となるエピタキシャル薄膜を作製するた
めに必要な、サブナノメートル次元の平滑度の結晶格子
面を有する基板とそれを得るための表面処理方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface treatment method for a ceramic single crystal substrate and a substrate obtained by the method. More specifically, the present invention relates to a method for producing an epitaxial thin film as a base for oxide electronics. The present invention relates to a substrate having a required crystal lattice plane with a smoothness of sub-nanometer dimension and a surface treatment method for obtaining the substrate.

【0002】[0002]

【従来の技術】チタン酸ストロンチウムや酸化チタン
(TiO2 )等の単結晶基板の表面処理に関する従来技
術として、例えば、電気ヒーターを用いた真空中での加
熱法やフッ酸緩衝液等によるエッチング法が知られてい
る。前者は基板を加熱して表面原子が蒸発したり表面拡
散することにより、また、後者は酸やアルカリなどの液
に基板を浸して表面層を溶かすことによって平坦な表面
を得るものである。また、光加熱による表面処理もある
が、この光加熱による表面処理は、これまでシリコン半
導体基板などの可視光線から遠赤外線の領域の光に対し
て大きな吸収を示す色の着いた基板物質に対して行われ
てきた。
2. Description of the Related Art Conventional techniques relating to the surface treatment of single crystal substrates such as strontium titanate and titanium oxide (TiO 2 ) include, for example, a heating method in a vacuum using an electric heater and an etching method using a hydrofluoric acid buffer solution. It has been known. The former is to obtain a flat surface by heating the substrate to evaporate or diffuse the surface atoms, and the latter to soak the substrate in a liquid such as acid or alkali to dissolve the surface layer. There is also surface treatment by light heating, but this surface treatment by light heating is applied to the substrate material with a color that shows a large absorption for light in the visible to far infrared region such as a silicon semiconductor substrate. Has been done.

【0003】前述した従来技術のうち、電気ヒーターに
よる加熱方法では、シリコン半導体等の低い融点を持つ
基板物質に対して基板温度を1000℃程度に上げるこ
とで平坦な表面が得られている。該セラミックス単結晶
基板のような、より高い融点を持つ基板物質に対して平
坦な結晶格子面を得るためには、清浄雰囲気で、また、
金属酸化物系基板では清浄な酸素雰囲気中で、1000
−1200℃以上の高温に基板温度を上げることが必要
である。しかし、前記従来技術を用いて基板温度を10
00−1200℃以上に上げることは、酸素雰囲気中で
はかなり困難であり、また、ヒーターの寿命の問題のほ
か、基板とヒーターとの熱接触を良好かつ再現性よく保
つことが困難である等の理由から、産業への応用上実用
的でない。
Among the above-mentioned conventional techniques, in the heating method using an electric heater, a flat surface is obtained by raising the substrate temperature to about 1000 ° C. for a substrate material having a low melting point such as a silicon semiconductor. In order to obtain a flat crystal lattice plane for a substrate material having a higher melting point such as the ceramic single crystal substrate, in a clean atmosphere,
For a metal oxide substrate, 1000 in a clean oxygen atmosphere.
It is necessary to raise the substrate temperature to a high temperature of -1200 ° C or higher. However, the substrate temperature is reduced to 10 by using the above conventional technique.
It is quite difficult to raise the temperature to 00-1200 ° C or higher in an oxygen atmosphere, and in addition to the problem of the life of the heater, it is difficult to maintain good thermal contact between the substrate and the heater with good reproducibility. For practical reasons, it is not practical for industrial application.

【0004】エッチングによる方法では、基板の結晶格
子欠陥や基板面の研磨傷からの選択的なエッチングが起
こりやすい。そのため、ピットと呼ばれる凹凸が生じや
すいという問題点を有している。さらに、この技術は湿
式法であるため、酸化物エレクトロニクス等で重要な基
盤技術となる、基板表面処理から薄膜作製・素子加工の
一連の行程をすべて清浄な真空中で行うin−situ
(その場)プロセスに適用できないという問題点を有す
る。
In the etching method, selective etching easily occurs due to crystal lattice defects of the substrate and polishing scratches on the substrate surface. Therefore, there is a problem that irregularities called pits are likely to occur. Furthermore, since this technology is a wet method, it is an in-situ process in which a series of steps from substrate surface treatment to thin film production / element processing, which is an important basic technology in oxide electronics, is performed in a clean vacuum.
(In-situ) There is a problem that it cannot be applied to the process.

【0005】光加熱による基板表面処理方法では、該セ
ラミックス基板が通常の状態では可視光線から遠赤外線
までの領域の光に対して大きな吸収を示さないことか
ら、サブナノメートル次元の平滑度を持つ結晶格子面を
得ることができなかった。
In the substrate surface treatment method by light heating, since the ceramic substrate does not absorb a large amount of light in the range from visible rays to far infrared rays in a normal state, a crystal having a sub-nanometer dimension smoothness is obtained. I could not get the lattice plane.

【0006】[0006]

【発明が解決しようとする課題】このような状況の中
で、本発明者らは、前記従来技術に鑑みて、セラミック
ス単結晶基板について、サブナノメートルの次元で平坦
な結晶格子面を有する基板を得ることを可能とする新し
い基板表面処理方法を開発することを目標として鋭意研
究を積み重ねた結果、基板を予備加熱して酸素欠損によ
る光吸収中心(色中心)を生じさせ、さらに光エネルギ
ーを照射することにより所期の目的を達成し得ることを
見出し、本発明を完成するに至った。本発明の目的は、
前記従来技術の問題点を解決し、サブナノメートルの次
元で平坦な結晶格子面を有する基板表面を得る簡便な基
板処理方法と、本方法により得られる膜作製用基板を提
供することにある。
Under these circumstances, the inventors of the present invention have, in view of the above-mentioned prior art, propose a ceramic single crystal substrate having a flat crystal lattice plane in the sub-nanometer dimension. As a result of intensive research aimed at developing a new substrate surface treatment method that makes it possible to obtain the substrate, the substrate is preheated to generate a light absorption center (color center) due to oxygen deficiency and further irradiated with light energy. By doing so, they have found that the intended purpose can be achieved, and have completed the present invention. The purpose of the present invention is to
An object of the present invention is to provide a simple substrate processing method for solving the above-mentioned problems of the prior art and obtaining a substrate surface having a flat crystal lattice plane in the sub-nanometer dimension, and a film-forming substrate obtained by this method.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
の本発明は、以下の技術的手段から構成される。 (1)光加熱を行いセラミックス単結晶基板の表面を処
理する方法であって、次の工程;1)該基板を還元雰囲
気中で予備加熱し、酸素欠損による光吸収中心(色中
心)を生じさせる工程、2)続いて、光照射を行い、該
光吸収中心による光エネルギーの吸収により効率良く高
温加熱処理を行いサブナノメートルの次元で平坦な結晶
格子面を有する基板を得る工程、3)さらに該基板を酸
素雰囲気中で加熱することにより該光吸収中心を取り除
く工程、を含むことを特徴とする基板表面処理方法。 (2)前記光エネルギーの波長が、遠赤外線から可視光
線までの領域であることを特徴とする前記(1)に記載
の表面処理方法。 (3)前記基板が、通常の状態では光エネルギーの吸収
率が小さいが、真空、水素又は希ガスによる還元雰囲気
中で予備加熱を行うことで酸素欠損による該光吸収中心
が生じ、光エネルギーの吸収率が増加する物質であるこ
とを特徴とする前記(1)に記載の表面処理方法。 (4)前記(1)から(3)のいずれか1項に記載の表
面処理方法で作製したサブナノメートルの次元で平坦な
結晶格子面を有する膜作製用基板。 (5)セラミックス単結晶基板上にエピタキシャル薄膜
を作製する方法であって、次の工程; 1)前記(1)に記載の方法によりサブナノメートルの
次元で平坦な結晶格子面を有する基板を作製する工程、 2)該基板表面を大気に曝すことなく、清浄な表面を保
ったままエピタキシャル多層積層薄膜を作製する工程、
による一連の操作を同一チャンバー内で行うことを特徴
とする方法。
The present invention for solving the above-mentioned problems comprises the following technical means. (1) A method of treating the surface of a ceramic single crystal substrate by photoheating, which comprises the following steps; 1) preheating the substrate in a reducing atmosphere to generate light absorption centers (color centers) due to oxygen vacancies. 2) Subsequently, light irradiation is performed, and high-temperature heat treatment is efficiently performed by absorption of light energy by the light absorption centers to obtain a substrate having a flat crystal lattice plane in the sub-nanometer dimension. 3) Further And a step of removing the light absorption center by heating the substrate in an oxygen atmosphere. (2) The surface treatment method as described in (1) above, wherein the wavelength of the light energy is in a range from far infrared rays to visible rays. (3) In the normal state, the substrate has a small absorption rate of light energy, but by performing preheating in a reducing atmosphere of vacuum, hydrogen or a rare gas, the light absorption center due to oxygen deficiency is generated and The surface treatment method according to (1) above, which is a substance having an increased absorptance. (4) A film-forming substrate having a sub-nanometer-dimensional flat crystal lattice plane, which is produced by the surface treatment method according to any one of (1) to (3). (5) A method for producing an epitaxial thin film on a ceramic single crystal substrate, which comprises the following steps: 1) A substrate having a flat crystal lattice plane in the sub-nanometer dimension is produced by the method described in (1) above. Step 2) a step of producing an epitaxial multilayer laminated thin film while maintaining a clean surface without exposing the substrate surface to the atmosphere,
A method characterized in that a series of operations according to step 1 is performed in the same chamber.

【0008】次に、本発明についてさらに詳細に説明す
る。本発明によれば、前記目的は真空等の還元雰囲気に
した容器内で該基板に予備加熱を行った後、さらに光エ
ネルギーを照射することにより達成される。本発明にお
いて、セラミックス単結晶基板として、通常の状態では
光エネルギーの吸収率が小さいが、真空、水素、希ガス
等の還元雰囲気中で予備加熱を行うことで酸素欠損によ
る光吸収中心(色中心)が生じ、光エネルギーの吸収率
が増加する物質であれば、適宜の物質が使用される。こ
のような基板としては、例えば、チタン酸ストロンチウ
ム(SrTiO3 チタン酸バリウム(BaTiO3 )、
酸化チタン(TiO2 )、酸化スズ(SnO2 )、酸化
インジウム(In23 )等が例示されるが、これらに
限らず、これらと同等のものであれば適宜使用できる。
Next, the present invention will be described in more detail.
It According to the present invention, the purpose is to reduce the atmosphere such as vacuum.
After preheating the substrate in the container,
It is achieved by irradiating with energy. In the present invention
As a ceramic single crystal substrate,
Light energy absorption rate is low, but vacuum, hydrogen, rare gas
By preheating in a reducing atmosphere such as
Light absorption center (color center) is generated, and the absorption rate of light energy
If the substance increases, the appropriate substance is used. This
Substrates such as, for example, strontium titanate
Mu (SrTiO3 Barium titanate (BaTiO3 ),
Titanium oxide (TiO2), Tin oxide (SnO)2 ), Oxidation
Indium (In2 O3 ) Etc. are illustrated, but in these
The material is not limited to the above, and any equivalent material can be used as appropriate.

【0009】本発明では、真空や水素及び希ガスなどの
還元雰囲気中で該基板に、基板ホルダー(固定台)を介
しての光エネルギー付与やヒーター加熱あるいは高出力
の光エネルギーを照射する等の方法で予備加熱を行い、
酸素欠損による光吸収中心を生じさせる(黒化させ
る)。この場合、加熱手段は、高出力の赤外線ランプの
光を共焦点ミラーを用いて集光し、光導入用の石英製の
窓を通して真空容器内の基板の表面に照射する方法を用
いる。基板は白金板の上に固定し、直接照射光及び白金
板からの反射光による光エネルギー附与と、光照射によ
り加熱された白金板との接触による熱伝導により予備加
熱される。加熱時の条件は、赤外線ランプの出力を1k
W、容器内を真空に保ち真空度は8×10 -6 Pa(6×
10 -8 Torr)である。続けて、これに光照射を行う
と該光吸収中心により光エネルギーが基板に効率良く吸
収され加熱される。すなわち、基板中に酸素欠損により
生じた光吸収中心が光エネルギーを吸収し、基板自体が
発熱する。この場合、予備加熱と光照射による基板表面
の加熱はほぼ同時に起こるために、両者のプロセスの間
には明確な区別はない。光照射の手段及び条件は予備加
熱の条件と同じであり、予備加熱を含めて光照射は1時
間行う。光照射を続けると加熱により光吸収中心がさら
に増加し光エネルギーが加速度的に吸収され、融点の高
いセラミックス単結晶基板の表面処理を行うのに十分な
高温度まで基板温度を上げることができる。その結果、
サブナノメートル次元の平滑度を持つ結晶格子面を有す
る表面が得られる。
In the present invention, light energy is applied to the substrate through a substrate holder (fixing table) in a vacuum or a reducing atmosphere such as hydrogen and a rare gas, heater heating, or high-power light energy irradiation. Preheat by the method
It produces (blackens) a light absorption center due to oxygen deficiency. In this case, the heating means uses a method in which the light of a high-power infrared lamp is condensed using a confocal mirror and is irradiated onto the surface of the substrate in the vacuum container through a quartz window for introducing light. The substrate is fixed on a platinum plate and is preheated by applying light energy by direct irradiation light and reflected light from the platinum plate and heat conduction by contact with the platinum plate heated by the light irradiation. The heating condition is that the output of the infrared lamp is 1k.
W, the inside of the container is kept vacuum and the degree of vacuum is 8 × 10 −6 Pa (6 ×
10 -8 Torr) . Subsequently, when this is irradiated with light, light energy is efficiently absorbed by the substrate by the light absorption center and the substrate is heated. That is, the light absorption center generated by oxygen deficiency in the substrate absorbs light energy, and the substrate itself generates heat. In this case, since the preheating and the heating of the substrate surface by light irradiation occur almost at the same time, there is no clear distinction between the two processes. The means and conditions for light irradiation are the same as the conditions for preheating, and light irradiation including preheating is performed for 1 hour. When light irradiation is continued, the number of light absorption centers is further increased by heating and the light energy is absorbed at an accelerated rate, and the substrate temperature can be raised to a sufficiently high temperature for surface treatment of the ceramic single crystal substrate having a high melting point. as a result,
A surface having a crystal lattice plane with sub-nanometer smoothness is obtained.

【0010】処理を行って黒化した基板中の光吸収中心
は700〜800℃以下の低温でも酸素雰囲気中で加熱
処理することにより除去することができ、これにより、
光吸収中心のない透明な基板に戻すことができる。ま
た、本発明の基板処理の一連の操作は、真空チャンバー
等の同一容器内で連続して行うことができるので、処理
を行った後の基板表面を大気に曝すことなく、清浄な表
面を保ったままエピタキシャル多層積層薄膜を作製する
ことが可能である。
The light absorption centers in the blackened substrate after the treatment can be removed by heat treatment in an oxygen atmosphere even at a low temperature of 700 to 800 ° C. or less.
It can be returned to a transparent substrate with no light absorption center. In addition, since a series of operations of the substrate treatment of the present invention can be continuously performed in the same container such as a vacuum chamber, a clean surface can be maintained without exposing the substrate surface after the treatment to the atmosphere. It is possible to produce an epitaxial multilayer laminated thin film as it is.

【0011】[0011]

【発明の実施の形態】以下、本発明による基板の表面処
理方法及び該方法を用いて得られる膜作製用基板上に蒸
着した薄膜の一実施形態を図面により詳細に説明する。
本発明の一実施形態として、チタン酸ストロンチウム単
結晶基板に対して該表面処理を行う例を示す。一連の処
理はすべて還元雰囲気である真空に保った同一容器内7
で行う。該基板5は予備加熱を行うために白金板等の基
板固定台6上に置き、光導入窓4に対面するように固定
する(図1)。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a substrate surface treatment method according to the present invention and a thin film deposited on a film-forming substrate obtained by the method will be described in detail below with reference to the drawings.
As one embodiment of the present invention, an example in which the surface treatment is performed on a strontium titanate single crystal substrate is shown. A series of treatments are performed in the same container, which is kept in a vacuum that is a reducing atmosphere.
Done in. The substrate 5 is placed on a substrate fixing base 6 such as a platinum plate for preheating, and fixed so as to face the light introduction window 4 (FIG. 1).

【0012】1kW程度の高出力赤外線ランプ1からの
光エネルギー2を共焦点ミラー等の集光装置3を用い
て、光導入窓4を通して基板5上に照射する。基板は図
2(a)に示す様に透明であり、可視光線から遠赤外線
の領域に渡って光エネルギーの大きな吸収が起こらな
い。従って、光エネルギー2は基板5を透過し、主に基
板の下にある白金板6を加熱する。
Light energy 2 from a high-power infrared lamp 1 of about 1 kW is irradiated onto a substrate 5 through a light introduction window 4 by using a condensing device 3 such as a confocal mirror. The substrate is transparent as shown in FIG. 2 (a), and a large absorption of light energy does not occur from the visible light region to the far infrared region. Therefore, the light energy 2 passes through the substrate 5 and mainly heats the platinum plate 6 under the substrate.

【0013】加熱された白金板6との熱接触により基板
の予備加熱が行われる。真空雰囲気中で加熱されること
により、基板中に酸素欠損が生じ、図2(b)に示すよ
うに、光吸収中心の生成(黒化)が始まる。基板が黒化
し始めると、基板自体が光エネルギーを吸収し発熱す
る。その結果、基板表面処理に必要な高温度まで基板が
加熱され、サブナノメートル次元の平滑度を持つ結晶格
子面を有する表面が得られる。
The substrate is preheated by thermal contact with the heated platinum plate 6. By being heated in a vacuum atmosphere, oxygen deficiency occurs in the substrate, and as shown in FIG. 2B, generation (blackening) of light absorption centers starts. When the substrate begins to turn black, the substrate itself absorbs light energy and generates heat. As a result, the substrate is heated to the high temperature necessary for the substrate surface treatment, and a surface having a crystal lattice plane with sub-nanometer smoothness is obtained.

【0014】上記の処理を行い、黒化した基板(図2
(b))は、再び、酸化雰囲気中で加熱を行うことによ
り、光吸収中心のない透明な基板に戻すことができる。
図2(c)は、光エネルギー加熱を行い、サブナノメー
トル次元の平滑度を持つ結晶格子面を得た後に、酸素雰
囲気中で再び加熱し、透明に戻して得た本発明の基板の
写真である。上記方法で表面処理した基板上に、パルス
レーザー蒸着法でY系酸化物超伝導体(YBa2 Cu3
7 )薄膜を形成し、セラミックス単結晶基板上にエピ
タキシャル薄膜を作製した。本発明で形成できる薄膜と
しては、例えば、YBa2 Cu37 、Bi2 Sr2
2 Cu3y 等のCu系酸化物高温超伝導体やLa
1-x Pbx MnO3 、La1-x Srx MnO3 の様に磁
気抵抗効果や巨大磁気抵抗効果を示すMn系酸化物など
が挙げられる。
A blackened substrate (FIG.
(B)) can be returned to a transparent substrate having no light absorption center by heating again in an oxidizing atmosphere.
FIG. 2 (c) is a photograph of the substrate of the present invention obtained by heating with light energy to obtain a crystal lattice plane having a sub-nanometer dimensional smoothness, and then heating again in an oxygen atmosphere to restore the transparency. is there. On the substrate surface-treated by the above method, a Y-based oxide superconductor (YBa 2 Cu 3
An O 7 ) thin film was formed and an epitaxial thin film was formed on the ceramic single crystal substrate. Examples of the thin film that can be formed by the present invention include YBa 2 Cu 3 O 7 and Bi 2 Sr 2 C.
Cu-based oxides such as a 2 Cu 3 O y High temperature superconductors and La
Examples thereof include 1-x Pb x MnO 3 and La 1-x Sr x MnO 3 , Mn-based oxides exhibiting a magnetoresistive effect or a giant magnetoresistive effect.

【0015】以下に、基板表面処理及び処理を行った基
板上に作製した膜に関する結果を説明する。図3は原子
間力顕微鏡(AFM)による基板の表面形態の観察結果
である。図3(a)は表面処理を行う前のチタン酸スト
ロンチウム単結晶基板の表面形態である。図3(b)は
従来の抵抗加熱ヒーターにより真空容器内で800℃で
加熱処理した基板の表面形態である。図3(a)と図3
(b)の間にはほとんど差が見られない。つまり、基板
温度800℃程度では表面改質がほとんど行われず結晶
格子面を持つ基板表面が得られないことが分かる。他
方、本発明による処理を行った基板の表面(図3
(c))には一定の間隔でステップが見られる。このス
テップの高さは単結晶の1格子の高さ(0.3905n
m)とほぼ同じであることから、テラス状の結晶格子面
すなわちサブナノメートル次元の平滑度を持つ単結晶基
板が得られていることを示している。ステップは、実際
に切り出して研磨した基板面が(001)結晶格子面と
完全に一致していないために生じたものである。
The results regarding the substrate surface treatment and the film produced on the treated substrate will be described below. FIG. 3 is an observation result of the surface morphology of the substrate by an atomic force microscope (AFM). FIG. 3A shows the surface morphology of the strontium titanate single crystal substrate before the surface treatment. FIG. 3B shows the surface morphology of the substrate heat-treated at 800 ° C. in a vacuum container by a conventional resistance heater. FIG. 3A and FIG.
There is almost no difference between (b). That is, it is understood that the surface modification is hardly performed and the substrate surface having the crystal lattice plane cannot be obtained at the substrate temperature of about 800 ° C. On the other hand, the surface of the substrate treated by the present invention (see FIG.
In (c), steps are seen at regular intervals. The height of this step is the height of one lattice of the single crystal (0.3905n
Since it is almost the same as that of m), it indicates that a single crystal substrate having a terrace-shaped crystal lattice plane, that is, a smoothness of sub-nanometer dimension is obtained. The step occurs because the substrate surface actually cut out and polished does not completely match the (001) crystal lattice plane.

【0016】次に、RHEED(反射型高速電子線回
折)による表面観察の結果を図4に示す。表面がサブナ
ノメートル次元の完全に近い平坦であるとRHEEDに
よる電子線の回折像は円弧上にスポット(点)となって
現れる。図4(a)は本発明による表面処理を行った基
板の表面のRHEED回折像である。円弧上に回折点が
並んでいる。もし、表面が格子面に対してナノメートル
次元の凹凸を持っていると、回折点が紙面縦方向に伸び
たストリークと呼ばれる線状になる。図4(a)の回折
点にこのストリーク状のものが含まれていないことか
ら、完全に近い平坦な結晶格子面が得られていることが
分かる。他方、図4(b)に示した回折像は800℃で
処理を行った基板の表面の回折像である。紙面縦方向に
ストリーク状のパターンが現れていることから、表面が
結晶格子面に対しまだナノメートル次元の凹凸を有する
ことを示している。つまり、AFMの結果と同じく、基
板温度800℃で表面処理を行っても表面改質がほとん
ど進まないが、本発明による基板表面処理方法を用いる
とサブナノメートルの平滑度を持つ結晶格子面が得られ
ることが分かる。
Next, FIG. 4 shows the result of surface observation by RHEED (reflection high-speed electron beam diffraction). If the surface is almost completely flat in the sub-nanometer dimension, the diffraction image of the electron beam by RHEED appears as spots (points) on the arc. FIG. 4A is an RHEED diffraction image of the surface of the substrate that has been surface-treated according to the present invention. Diffraction points are lined up on an arc. If the surface has nanometer-dimensional irregularities with respect to the lattice plane, the diffraction point becomes a linear shape called a streak extending in the longitudinal direction of the paper. Since the streak shape is not included in the diffraction points in FIG. 4A, it can be seen that a nearly perfect flat crystal lattice plane is obtained. On the other hand, the diffraction image shown in FIG. 4B is a diffraction image of the surface of the substrate processed at 800 ° C. A streak pattern appears in the longitudinal direction of the paper, which indicates that the surface still has nanometer-dimensional irregularities with respect to the crystal lattice plane. That is, similar to the result of AFM, the surface modification hardly proceeds even when the surface treatment is performed at the substrate temperature of 800 ° C. However, when the substrate surface treatment method according to the present invention is used, a crystal lattice plane having a sub-nanometer smoothness is obtained. You can see that

【0017】図5は表面処理を行った本発明の基板上
に、図6は処理を行う前の基板上にパルスレーザー蒸着
法で作製したY系酸化物超伝導体(YBa2 Cu3
7 )薄膜の表面の走査型電子顕微鏡(SEM)写真を示
す。処理を行う前の基板上に作製した膜(図6)には多
数の表面粒子が生成していることが分かる。これらの粒
子は基板上の凹凸が核となり成長したものであると考え
られ、特に多元素からなるペロブスカイト系酸化物など
の場合に顕著に現れる。他方、本発明による基板上に同
一条件で作製した膜の表面には粒子がほとんど見られ
ず、良質な膜が作製できることが分かる。該薄膜は、表
面処理を行った基板を真空容器から一旦大気中に出して
AFMで観察した後、再び真空容器内に戻してからパル
スレーザー蒸着法で成膜したものであるが、真空容器か
ら出さずに表面処理と成膜を連続して行った膜でも同等
以上の品質のものが得られる。
FIG. 5 shows the surface-treated substrate of the present invention, and FIG. 6 shows the Y-based oxide superconductor (YBa 2 Cu 3 O) prepared by the pulse laser deposition method on the substrate before the treatment.
7 ) A scanning electron microscope (SEM) photograph of the surface of the thin film is shown. It can be seen that many surface particles are generated on the film (FIG. 6) formed on the substrate before the treatment. It is considered that these particles are grown by using the irregularities on the substrate as nuclei, and are particularly prominent in the case of a perovskite-based oxide composed of multiple elements. On the other hand, almost no particles are found on the surface of the film formed on the substrate according to the present invention under the same conditions, which shows that a high-quality film can be formed. The thin film is formed by exposing the surface-treated substrate once to the atmosphere from the vacuum container and observing it with an AFM, then returning it to the vacuum container again and then forming the film by the pulse laser deposition method. It is possible to obtain a film having a quality equal to or higher than that of a film obtained by continuously performing the surface treatment and the film formation without producing the film.

【0018】[0018]

【実施例】次に、実施例に基づいて本発明を具体的に説
明するが、本発明は当該実施例によって何ら限定される
ものではない。 実施例 チタン酸ストロンチウム単結晶基板を真空容器内の基板
固定台の白金板上に置き、1kWの赤外線を集光装置を
用いて石英製光導入窓を通して該基板上に照射した。真
空容器は加熱前に4×10 -7 Pa(3×10 -9 Tor
r)まで真空引きを行い、光照射加熱時も8×10 -6
a(6×10 -8 Torr)の真空度に保った。直接照射
光及び白金板からの反射光による光エネルギーの付与
と、光照射により加熱された白金板との熱接触により基
板を予備加熱し、酸素欠損による光吸収中心を生成させ
た。続けて、これに予備加熱と同じ条件で1時間の光照
射を行い、高温に基板温度を加熱して、サブナノメート
ル次元の平滑度を持つ結晶格子面を有する表面を形成し
た。なお真空中で光加熱により小片試料部のみを高温ま
で加熱しその温度を測定する場合、熱電対によるか放射
温度計が用いられる。熱電対を使う方法では、試料の熱
容量が小さいことや熱電対との熱接触などの問題が起因
して正確な温度が測れない。また、加熱用の光が真空容
器内で複雑に散乱・吸収され、その散乱光が温度測定に
干渉することに加えて、基板が透明であるためにその正
確な放射率が得られないこと等の理由で、放射温度計を
使っても加熱時の基板の表面温度を測定することができ
ない。そこで基板温度を推定するために、管状電気炉
(最高1350℃まで加熱が可能な)を用いて管内の雰
囲気温度1350℃・真空度1.3×10 -1 Pa(1×
10 -3 Torr)の状態で基板の加熱実験を行った。し
かしこの温度でも光吸収中心の生成が起こらなかったこ
とから、光加熱において到達した基板の温度は1350
℃よりも高いと推定した。次に、上記の光加熱法で表面
処理して黒化させた基板を、酸素雰囲気中において80
0℃で加熱処理して、光吸収中心を除去して透明な基板
に戻した。この処理後も、サブナノメートルの平滑度は
変わらないことがAFM測定で確認された。この基板上
に、YAG固体レーザの第4高調波を用いたパルスレー
ザー蒸着法でY系酸化物高温超伝導体(YBa2 Cu3
7 )の薄膜を作製した。作製条件は基板温度740
℃、蒸着時の酸素圧は50Paである。また、蒸着した
薄膜の膜厚は約30nmである。
EXAMPLES Next, the present invention will be specifically described based on examples, but the present invention is not limited to the examples. Example A strontium titanate single crystal substrate was placed on a platinum plate of a substrate fixing base in a vacuum container, and 1 kW infrared rays were irradiated onto the substrate through a quartz light introducing window using a light concentrating device. The vacuum vessel should be heated to 4 × 10 -7 Pa (3 × 10 -9 Tor) before heating.
Vacuum is applied up to r) , and 8 × 10 -6 P even during light irradiation heating
The vacuum degree of a (6 × 10 −8 Torr ) was maintained. The substrate was preheated by the application of light energy by the direct irradiation light and the reflected light from the platinum plate and the thermal contact with the platinum plate heated by the light irradiation to generate the light absorption center by the oxygen deficiency. Subsequently, this was irradiated with light for 1 hour under the same conditions as the preheating, and the substrate temperature was heated to a high temperature to form a surface having a crystal lattice plane having a smoothness of sub-nanometer dimension. When only the small sample portion is heated to a high temperature by light heating in vacuum and the temperature is measured, a thermocouple or a radiation thermometer is used. In the method using the thermocouple, the temperature cannot be accurately measured due to the problems such as the small heat capacity of the sample and the thermal contact with the thermocouple. In addition, the heating light is scattered / absorbed in a complicated manner in the vacuum container, and the scattered light interferes with the temperature measurement. In addition, since the substrate is transparent, its accurate emissivity cannot be obtained. For this reason, the surface temperature of the substrate during heating cannot be measured even by using a radiation thermometer. Therefore, in order to estimate the substrate temperature, a tubular electric furnace (capable of heating up to 1350 ° C.) is used, and the atmospheric temperature inside the tube is 1350 ° C. and the degree of vacuum is 1.3 × 10 −1 Pa (1 ×
A substrate heating experiment was conducted under the condition of 10 −3 Torr) . However, since the generation of the light absorption center did not occur even at this temperature, the temperature of the substrate reached by the light heating was 1350.
It was estimated to be higher than ° C. Next, the substrate which has been surface-treated and blackened by the above-mentioned light heating method is subjected to 80 ° C. in an oxygen atmosphere.
A heat treatment was carried out at 0 ° C. to remove the light absorption center, and the transparent substrate was returned. It was confirmed by AFM measurement that the smoothness of sub-nanometer was not changed even after this treatment. On this substrate, a Y-based high-temperature oxide superconductor (YBa 2 Cu 3 ) was formed by a pulse laser deposition method using the fourth harmonic of a YAG solid-state laser.
A thin film of O 7 ) was prepared. Manufacturing conditions are substrate temperature 740
C., the oxygen pressure during vapor deposition is 50 Pa. The film thickness of the vapor-deposited thin film is about 30 nm.

【0019】[0019]

【発明の効果】以上説明したように、チタン酸ストロン
チウム(SrTiO3 )、チタン酸バリウム(BaTi
3 )、酸化チタン(TiO2 )、酸化スズ(SnO
2 )、酸化インジウム(In23 )等の基板の様に光
吸収が少なく高い融点を持つ物質でも、還元雰囲気中で
の加熱で光吸収中心を生じさせられれば、高出力の光エ
ネルギーを与えるだけの簡単な方法によりサブナノメー
トル次元の平滑度の結晶格子面を有する基板表面を得る
ことができる。本発明の基板を用いれば酸化物などの膜
を作製する場合に、不純物表面粒子の生成を大幅に押さ
えることができる。面粒子発生は酸化物エレクトロニク
スの基盤技術である膜の積層素子化を行う際の大きな問
題点であり、本発明による基板はこれをブレークスルー
するものである。
As described above, strontium titanate (SrTiO 3 ) and barium titanate (BaTi) are used.
O 3 ), titanium oxide (TiO 2 ), tin oxide (SnO)
2 ), Indium Oxide (In 2 O 3 ) and other substrates with low light absorption and high melting point can generate high output light energy if they generate light absorption centers by heating in a reducing atmosphere. A substrate surface having a crystal lattice plane with a sub-nanometer dimension of smoothness can be obtained by a simple method of giving. When the substrate of the present invention is used, generation of impurity surface particles can be significantly suppressed when forming a film such as an oxide. The generation of surface particles is a serious problem in forming a laminated element of a film which is a basic technology of oxide electronics, and the substrate according to the present invention breaks through this problem.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態によるセラミックス単結晶
基板の表面処理方法を説明する図である。
FIG. 1 is a diagram illustrating a surface treatment method for a ceramic single crystal substrate according to an embodiment of the present invention.

【図2】(a)は表面処理を行う前のチタン酸ストロン
チウム基板の写真である。(b)は本発明の一実施形態
により表面処理を行う過程で、予備加熱を行い光吸収中
心を導入(黒化)した基板の写真である。(c)は光加
熱で表面処理を行った後、酸素雰囲気中で加熱し光吸収
中心を取り除いた本発明の基板である。
FIG. 2 (a) is a photograph of a strontium titanate substrate before surface treatment. (B) is a photograph of a substrate on which pre-heating was performed and light absorption centers were introduced (blackened) in the process of surface treatment according to an embodiment of the present invention. (C) is the substrate of the present invention in which the light absorption center is removed by heating in an oxygen atmosphere after the surface treatment by light heating.

【図3】(a)は表面処理を行う前の、(b)は抵抗ヒ
ーター加熱法により800℃まで加熱した、(c)は本
発明の一形態により表面処理を行った基板表面の原子間
力顕微鏡(AFM)による観察像である。
FIG. 3A is a view before performing a surface treatment, FIG. 3B is a resistance heater heating method to 800 ° C., and FIG. 3C is an interatomic surface of a substrate surface-treated according to one embodiment of the present invention. It is an image observed by a force microscope (AFM).

【図4】(a)は本発明の一形態により表面処理を行っ
た基板表面の、(b)は抵抗ヒーター加熱法により真空
中で800℃まで加熱した基板表面の反射型高速電子線
回折(RHEED)による回折像である。
FIG. 4A is a reflection type high-energy electron diffraction pattern of a substrate surface which is surface-treated according to one embodiment of the present invention, and FIG. 4B is a substrate surface heated to 800 ° C. in vacuum by a resistance heater heating method ( It is a diffraction image by RHEED).

【図5】本発明による表面処理を行った後の基板上に蒸
着したY系酸化物超伝導体(YBa2 Cu3 7 )薄膜
の表面の走査型電子顕微鏡(SEM)写真である。
FIG. 5 is a scanning electron microscope (SEM) photograph of the surface of the Y-based oxide superconductor (YBa 2 Cu 3 O 7 ) thin film deposited on the substrate after the surface treatment according to the present invention.

【図6】本発明による表面処理を行う前の基板上に蒸着
したY系酸化物超伝導体(YBa2 Cu37 )薄膜の
表面の走査型電子顕微鏡(SEM)写真である。
FIG. 6 is a scanning electron microscope (SEM) photograph of the surface of the Y-based oxide superconductor (YBa 2 Cu 3 O 7 ) thin film deposited on the substrate before the surface treatment according to the present invention.

【符号の説明】[Explanation of symbols]

1 光エネルギー源(高出力赤外線ランプ等) 2 光エネルギー 3 集光装置(共焦点ミラー等) 4 光導入窓(石英等) 5 セラミックス単結晶基板(チタン酸ストロンチウム
等) 6 基板固定台(白金板等) 7 容器(真空等の還元雰囲気に保った真空チャンバー
等の容器)
1 Light energy source (high-power infrared lamp, etc.) 2 Light energy 3 Focusing device (confocal mirror, etc.) 4 Light introduction window (quartz, etc.) 5 Ceramic single crystal substrate (strontium titanate, etc.) 6 Substrate fixing table (platinum plate) Etc.) 7 containers (containers such as vacuum chambers kept in a reducing atmosphere such as vacuum)

フロントページの続き (56)参考文献 特開 昭64−20689(JP,A) 特開 平2−263799(JP,A) 特開 平4−83714(JP,A) 特開 平4−260695(JP,A) 特開 平6−183894(JP,A) 特開 平6−234595(JP,A) 特開 平8−83802(JP,A) 特開 平8−102560(JP,A) 楠森 毅 ほか,チタン酸ストロンチ ウム単結晶基板の表面処理技術,名古屋 工業技術研究所報告,2000年 8月25 日,Vol.49, No.1,pp.87 −90 (58)調査した分野(Int.Cl.7,DB名) C30B 1/00 - 35/00 WPI(DIALOG) JSTPlus(JOIS)Continuation of the front page (56) Reference JP-A-64-20689 (JP, A) JP-A-2-263799 (JP, A) JP-A-4-83714 (JP, A) JP-A-4-260695 (JP , A) JP-A-6-183894 (JP, A) JP-A-6-234595 (JP, A) JP-A-8-83802 (JP, A) JP-A-8-102560 (JP, A) Kusumori Tsuyoshi Others, Surface treatment technology for strontium titanate single crystal substrate, Report of Nagoya Institute of Technology, August 25, 2000, Vol. 49, No. 1, pp. 87-90 (58) Fields investigated (Int.Cl. 7 , DB name) C30B 1/00-35/00 WPI (DIALOG) JSTPlus (JOIS)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 光加熱を行いセラミックス単結晶基板の
表面を処理する方法であって、次の工程; 1)該基板を還元雰囲気中で予備加熱し、酸素欠損によ
る光吸収中心(色中心)を生じさせる工程、 2)続いて、光照射を行い、該光吸収中心による光エネ
ルギーの吸収により効率良く高温加熱処理を行いサブナ
ノメートルの次元で平坦な結晶格子面を有する基板を得
る工程、 3)さらに該基板を酸素雰囲気中で加熱することにより
該光吸収中心を取り除く工程、 を含むことを特徴とする基板表面処理方法。
1. A method for treating the surface of a ceramic single crystal substrate by photoheating, comprising the steps of: 1) preheating the substrate in a reducing atmosphere to obtain light absorption centers (color centers) due to oxygen vacancies. 2) Subsequently, light irradiation is performed, and high-temperature heat treatment is efficiently performed by absorption of light energy by the light absorption centers to obtain a substrate having a flat crystal lattice plane in the sub-nanometer dimension. ) Further, a step of removing the light absorption center by heating the substrate in an oxygen atmosphere, and a substrate surface treatment method.
【請求項2】 前記光エネルギーの波長が、遠赤外線か
ら可視光線までの領域であることを特徴とする請求項1
に記載の表面処理方法。
2. The wavelength of the light energy is in the region from far infrared rays to visible light.
The surface treatment method described in.
【請求項3】 前記基板が、通常の状態では光エネルギ
ーの吸収率が小さいが、真空、水素又は希ガスによる
元雰囲気中で予備加熱を行うことで酸素欠損による該光
吸収中心が生じ、光エネルギーの吸収率が増加する物質
であることを特徴とする請求項1に記載の表面処理方
法。
3. The substrate has a small absorption rate of light energy in a normal state, but the substrate is preheated in a reducing atmosphere of vacuum, hydrogen or a rare gas to absorb the light energy due to oxygen deficiency. 2. The surface treatment method according to claim 1, wherein the substance is a substance that has a center and an absorption rate of light energy increases.
【請求項4】 前記請求項1から3のいずれか1項に記
載の表面処理方法で作製したサブナノメートルの次元で
平坦な結晶格子面を有する膜作製用基板。
4. A film-forming substrate having a sub-nanometer-dimensional flat crystal lattice plane, which is produced by the surface treatment method according to any one of claims 1 to 3.
【請求項5】 セラミックス単結晶基板上にエピタキシ
ャル薄膜を作製する方法であって、次の工程; 1)請求項1に記載の方法によりサブナノメートルの次
元で平坦な結晶格子面を有する基板を作製する工程、 2)該基板表面を大気に曝すことなく、清浄な表面を保
ったままエピタキシャル多層積層薄膜を作製する工程、 による一連の操作を同一チャンバー内で行うことを特徴
とする方法。
5. A method for producing an epitaxial thin film on a ceramic single crystal substrate, which comprises the following steps: 1) A substrate having a flat crystal lattice plane in the sub-nanometer dimension by the method according to claim 1. And 2) a step of producing an epitaxial multilayer laminated thin film while keeping a clean surface without exposing the surface of the substrate to the atmosphere, and performing a series of operations in the same chamber.
JP2000054221A 2000-02-29 2000-02-29 Substrate for film production produced by the same method as the substrate surface treatment method Expired - Lifetime JP3507883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000054221A JP3507883B2 (en) 2000-02-29 2000-02-29 Substrate for film production produced by the same method as the substrate surface treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000054221A JP3507883B2 (en) 2000-02-29 2000-02-29 Substrate for film production produced by the same method as the substrate surface treatment method

Publications (2)

Publication Number Publication Date
JP2001240487A JP2001240487A (en) 2001-09-04
JP3507883B2 true JP3507883B2 (en) 2004-03-15

Family

ID=18575506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000054221A Expired - Lifetime JP3507883B2 (en) 2000-02-29 2000-02-29 Substrate for film production produced by the same method as the substrate surface treatment method

Country Status (1)

Country Link
JP (1) JP3507883B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6420689A (en) * 1987-07-15 1989-01-24 Sumitomo Electric Industries Manufacture of diamond light emitting device
JPH02263799A (en) * 1989-04-03 1990-10-26 Sumitomo Metal Ind Ltd Base plate heating device and its operation
JPH0483714A (en) * 1990-07-25 1992-03-17 Matsushita Electric Ind Co Ltd Production of thin-film superconductor
FR2667437B1 (en) * 1990-09-28 1992-10-30 Commissariat Energie Atomique PROCESS FOR THE PREPARATION BY RAPID ANNEALING OF A THIN LAYER OF CRYSTALLIZED MATERIAL OF THE OXIDE TYPE AND SUBSTRATE COATED WITH A THIN LAYER OBTAINED BY THIS PROCESS.
JPH06183894A (en) * 1992-05-25 1994-07-05 Nippon Telegr & Teleph Corp <Ntt> Method for forming surface of oxide single crystal
JP3350994B2 (en) * 1993-02-12 2002-11-25 住友電気工業株式会社 Manufacturing method of diamond sheet
JP3015261B2 (en) * 1994-09-12 2000-03-06 科学技術振興事業団 Heat treatment method of sapphire single crystal substrate to improve surface characteristics
JPH08102560A (en) * 1994-09-30 1996-04-16 Hideomi Koinuma Surface treatment for strontium titanate substrate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
楠森 毅 ほか,チタン酸ストロンチウム単結晶基板の表面処理技術,名古屋工業技術研究所報告,2000年 8月25日,Vol.49, No.1,pp.87−90

Also Published As

Publication number Publication date
JP2001240487A (en) 2001-09-04

Similar Documents

Publication Publication Date Title
TWI225105B (en) Method for producing metal oxide thin film
JPS6392012A (en) Laminated article and manufacture of the same
JPH0228322A (en) Preliminary treatment of semiconductor substrate
JPH05804A (en) Film forming device for large area multiple oxide superconducting thin film
Imai et al. Ultraviolet-laser-induced crystallization of sol-gel derived indium oxide films
JPS63312964A (en) Manufacture of indium-tin-oxide layer
JP3507883B2 (en) Substrate for film production produced by the same method as the substrate surface treatment method
CN110373636B (en) Preparation method of molybdenum silicide transition metal compound film material
JPH04104903A (en) Production oxide high-temperature superconducting thin film
KR20060060613A (en) The method of forming thin film with high dielectric permittivity
JPS605233B2 (en) Method for manufacturing high melting point compound thin film
JPH07112960B2 (en) Generation of clean, well-aligned CdTe surfaces using laser ablation
JP3078853B2 (en) Oxide film formation method
Salihoglu et al. Crystallization of Ge in SiO2 matrix by femtosecond laser processing
JPS62212293A (en) Epitaxial growth with molecular rays
JPH0714805A (en) Method and device of forming electrode
JP3136764B2 (en) Method for producing chalcopyrite thin film
JPH11111713A (en) Improvement of insulating film and manufacture of semi conductor device
Sugiyama et al. Feasibility study of a direct bonding technique for laser crystals
JPH0294631A (en) Formation of thin film and apparatus therefor
JPH06158270A (en) Production of high yield strength film for laser
JPH02200782A (en) Formation of lead titanate thin film
JP2000077740A (en) Piezoelectric thin film element and manufacture thereof
JPH10135148A (en) Laser irradiation system and application thereof
JP3944963B2 (en) Manufacturing method and manufacturing apparatus for oxide superconducting thin film

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3507883

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term