JPH08102560A - Surface treatment for strontium titanate substrate - Google Patents

Surface treatment for strontium titanate substrate

Info

Publication number
JPH08102560A
JPH08102560A JP6236189A JP23618994A JPH08102560A JP H08102560 A JPH08102560 A JP H08102560A JP 6236189 A JP6236189 A JP 6236189A JP 23618994 A JP23618994 A JP 23618994A JP H08102560 A JPH08102560 A JP H08102560A
Authority
JP
Japan
Prior art keywords
substrate
sto
high temperature
strontium titanate
surface treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6236189A
Other languages
Japanese (ja)
Inventor
Hideomi Koinuma
秀臣 鯉沼
Mamoru Yoshimoto
護 吉本
Osamu Ishiyama
修 石山
Makoto Shinohara
真 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP6236189A priority Critical patent/JPH08102560A/en
Publication of JPH08102560A publication Critical patent/JPH08102560A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE: To finely control epitaxial growth with a unit of atomic layer by annealing a strontium titanate substrate at a high temperature in an oxygen atmosphere and forming the topmost surface structure of TiO2 . CONSTITUTION: A strontium titanate substrate, hereinafter referred to as STO substrate, is annealed at a high temperature of approximately 1000±200 deg.C in an oxygen atmosphere. Thus, the topmost surface of the STO substrate is formed of approximately 100% TiO2 . When The STO substrate is heated to nearly 1000 deg.C, Ti, which is the element of the substrate, stays on the surface of the substrate. However, Sr jumps out from the surface of the substrate, and as a result, SrO is not allowed to remain on the topmost surface of the substrate. Such mechanism allows the TiO2 plane to be formed on the topmost surface of the substrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高温超伝導薄膜あるい
は強誘電体薄膜をエピタキシャル成長させるチタン酸ス
トロンチウム(SrTiO3 )基板(以下STO基板と
称する)の表面処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface treatment method for a strontium titanate (SrTiO 3 ) substrate (hereinafter referred to as an STO substrate) for epitaxially growing a high temperature superconducting thin film or a ferroelectric thin film.

【0002】[0002]

【従来の技術】STO基板にSrTiO3 等の薄膜をエ
ピタキシャル成長させる場合、通常、成膜前に基板表面
を清浄化する処理が行われており、その表面清浄化方法
としては、従来、購入したSTO〔001〕基板を有機
溶剤等で洗浄した後、真空中でスパッタエッチ(Arス
パッタ等)し、さらにアニールするといった方法が一般
に採用されている。
2. Description of the Related Art When a thin film of SrTiO 3 or the like is epitaxially grown on an STO substrate, a process for cleaning the substrate surface is usually performed before film formation. As a method for cleaning the surface, conventionally purchased STO is used. A method in which a [001] substrate is washed with an organic solvent or the like, then sputter-etched (Ar sputtered, etc.) in vacuum, and further annealed is generally adopted.

【0003】[0003]

【発明が解決しようとする課題】ところで、上記した従
来の方法によれば、表面処理を行った後でも、STO基
板の最表面にTiO2 面とSrO面とが混在しており
(図3の模式図参照)、このことが、後のエピタキシャ
ル成長を精密に制御できない要因となっている。
By the way, according to the above-mentioned conventional method, the TiO 2 surface and the SrO surface are mixed on the outermost surface of the STO substrate even after the surface treatment (see FIG. 3). This is a factor that makes it impossible to precisely control the subsequent epitaxial growth.

【0004】すなわち、STO基板にSrTiO3 等の
薄膜を原子層の単位で制御性良く成長させる場合、ST
O基板の最表面は完全なTiO2 面またはSrO面とす
ることが良いと言われており、基板の最表面にTiO2
面とSrO面とが混在していると、その不完全性が結晶
成長過程において反映され、その影響がエピタキシャル
成長を原子層単位で精密に制御する上での阻害要因とな
る。
That is, when a thin film of SrTiO 3 or the like is grown on an STO substrate in atomic layer units with good controllability,
The outermost surface of the O board is said that it is good to complete TiO 2 side or SrO surface, TiO 2 on the outermost surface of the substrate
When the planes and the SrO planes are mixed, the imperfections are reflected in the crystal growth process, and the influence thereof becomes a hindrance factor for precisely controlling the epitaxial growth in atomic layer units.

【0005】本発明はそのような事情に鑑みてなされた
もので、STO基板の最表面の終端構造をほぼ完全なT
iO2 面とすることが可能な処理方法の提供を目的とす
る。
The present invention has been made in view of such a situation, and the termination structure on the outermost surface of the STO substrate is almost completely T-shaped.
It is an object of the present invention to provide a treatment method capable of forming an iO 2 surface.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の表面処理方法は、STO基板を酸素雰囲気
下で高温アニールすることにより、TiO2 面で終端さ
れた最表面構造を得ることによって特徴づけられる。
In order to achieve the above object, in the surface treatment method of the present invention, an STO substrate is annealed at a high temperature in an oxygen atmosphere to obtain an outermost surface structure terminated with a TiO 2 surface. Characterized by:

【0007】ここで、本発明において採用する高温アニ
ールの温度は750℃〜1300℃の範囲が適当で、ま
た、アニール時の雰囲気酸素の圧力は特に限定はなく、
常圧(1atm) 、加圧または減圧のいずれの状態でもよ
い。
Here, the temperature of the high temperature annealing adopted in the present invention is appropriately in the range of 750 ° C. to 1300 ° C., and the atmospheric oxygen pressure during annealing is not particularly limited.
It may be at atmospheric pressure (1 atm), pressurized or depressurized.

【0008】[0008]

【作用】STO〔001〕基板を、酸素雰囲気下で10
00℃±200℃程度の高温でアニールすると、STO
基板の最表面はほぼ100%TiO2 面で終端される。
これは、STO基板を1000℃付近にまで加熱する
と、基板の構成元素であるTiは基板表面にとどまる
が、Srは基板表面から飛び出してしまい、その結果と
して基板最表面にはSrOが存在しなくなる、といった
メカニズムによるものと考えられる。
The STO [001] substrate is placed under oxygen atmosphere for 10
When annealed at a high temperature of around 00 ℃ ± 200 ℃, STO
The outermost surface of the substrate is terminated with almost 100% TiO 2 surface.
This is because when the STO substrate is heated to around 1000 ° C., Ti, which is a constituent element of the substrate, remains on the substrate surface, but Sr jumps out from the substrate surface, and as a result, SrO does not exist on the outermost surface of the substrate. It is thought to be due to a mechanism such as.

【0009】なお、以上の点を考慮すると、本発明の表
面処理方法を実施する際の高温アニールの温度範囲は、
Srのみが基板表面から飛び出すのに必要な温度の最低
値付近を下限値とし、また上限値は高温加熱によりTi
が基板表面から飛び出さない程度の温度とする必要があ
り、その具体的な数値は先に述べたように750℃〜1
300℃が適当である。
In consideration of the above points, the temperature range of high temperature annealing for carrying out the surface treatment method of the present invention is
The lower limit is near the minimum temperature required for Sr to jump out from the substrate surface, and the upper limit is Ti due to high temperature heating.
Must be set to a temperature at which it does not jump out of the substrate surface, and its specific numerical value is 750 ° C. to 1 as described above.
300 ° C is suitable.

【0010】[0010]

【実施例】まず、購入したSTO〔001〕基板(無処
理)を試料とし、その試料を処理炉内に配置して、常圧
(1atm) の酸素雰囲気下で1000℃に加熱して10時
間の高温アニールを行い、この処理後の試料の表面を、
CAICISS(Coaxial Impact Collision Ion Scatte
ring Spectroscopy)により測定した。また、購入したま
まの状態のSTO〔001〕基板を試料として、同様に
CAICISSにより測定したところ、図1に示すTO
FスペクトルSP1とSP3が得られた。
EXAMPLE First, a purchased STO [001] substrate (untreated) was used as a sample, and the sample was placed in a processing furnace and heated to 1000 ° C. under an oxygen atmosphere at atmospheric pressure (1 atm) for 10 hours. High temperature annealing, and the surface of the sample after this treatment
CAICSS (Coaxial Impact Collision Ion Scatte)
ring spectroscopy). Further, when the STO [001] substrate in the as-purchased state was used as a sample and similarly measured by CAICISS, the TO
F spectra SP1 and SP3 were obtained.

【0011】その測定結果から、未処理の試料のTOF
スペクトルSP3では、TiとSrの双方の信号が観測さ
れ、その最表面にTiO2 面とSrO面が混在している
のに対し、高温アニールを施した試料のTOFスペクト
ルSP1では、Sr信号が極めて小さくて、最表面がほぼ
100%のTiO2 面となっていることが判明した。こ
のことから、本発明の表面処理方法が、STO基板の最
表面の終端構造をほぼ完全なTiO2 面とするのに適し
た優れた方法であることが確認できた。
From the measurement results, the TOF of the untreated sample was
In the spectrum SP3, both signals of Ti and Sr are observed, and the TiO 2 surface and the SrO surface are mixed on the outermost surface, whereas in the TOF spectrum SP1 of the sample annealed at high temperature, the Sr signal is extremely high. It was found that it was small and the outermost surface was a TiO 2 surface of almost 100%. From this, it was confirmed that the surface treatment method of the present invention is an excellent method suitable for making the outermost terminal structure of the STO substrate a nearly perfect TiO 2 surface.

【0012】そして、前記した表面処理を施した試料表
面に、MBE法等によりSr薄膜をエピタキシャル成長
させた後、その試料の最表面構造をCAICISSによ
り測定したところ、図1に示すTOFスペクトルSP2が
得られ、この測定結果から基板最表面が完全なSrO面
の状態になっていることが判った。従って、STO基板
の最表面を100%TiO2 面とすることで、その基板
表面にSrTiO3 の薄膜を原子層の単位で精密に制御
しつつ成長させることが可能となることが確認できた。
Then, after the Sr thin film was epitaxially grown on the surface of the sample subjected to the above-mentioned surface treatment by the MBE method or the like, and the outermost surface structure of the sample was measured by CAICISS, the TOF spectrum SP2 shown in FIG. 1 was obtained. From this measurement result, it was found that the outermost surface of the substrate was a perfect SrO surface. Therefore, it was confirmed that by making the outermost surface of the STO substrate 100% TiO 2 surface, it becomes possible to grow a thin film of SrTiO 3 on the surface of the substrate while precisely controlling it in atomic layer units.

【0013】ここで、CAICISSのTOFスペクト
ル測定により、STO基板の最表面構造が100%Ti
2 面であるか否かを評価できる理由を以下に説明す
る。まず、SrTiO3 はペロブスカイト構造をとって
いることから、STO基板の表面に、図2に示すよう
に、He+ を〔111〕の方位から照射(入射角α=3
5°)してその散乱強度を測定すると、STO基板の表
面第1原子層が完全なTiO2 面であれば、Tiのシャ
ドーコーンに第2層目のSrが隠れてTi信号のみが観
測される。逆に、表面第1原子層が完全なSrO面であ
ると、Srのシャドーコーンに第2層目のTiが隠れて
Sr信号のみが観測される。一方、TiO2 面とSrO
面が混在した状態であると、CAICISSのTOFス
ペクトルはSrとTiの両方のピークが出現した状態と
なる。従って、このようなCAICISSによるTOF
スペクトル測定を行うことにより、STO基板の最表面
の構造完全性(100%TiO2 面)を評価できる。
Here, according to the TOF spectrum measurement by CAICISS, the outermost surface structure of the STO substrate is 100% Ti.
The reason why it can be evaluated whether or not it is the O 2 surface will be described below. First, since SrTiO 3 has a perovskite structure, the surface of the STO substrate is irradiated with He + from the [111] direction (incident angle α = 3 as shown in FIG. 2).
5 °) and the scattering intensity was measured, and if the surface first atomic layer of the STO substrate was a perfect TiO 2 surface, the Sr of the second layer was hidden in the shadow cone of Ti, and only the Ti signal was observed. It On the contrary, when the surface first atomic layer is a perfect SrO plane, the second layer Ti is hidden in the Sr shadow cone and only the Sr signal is observed. On the other hand, TiO 2 surface and SrO
When the surfaces are mixed, the TOF spectrum of CAICISS has both Sr and Ti peaks. Therefore, such TOF by CAICISS
By performing spectrum measurement, the structural integrity (100% TiO 2 surface) of the outermost surface of the STO substrate can be evaluated.

【0014】なお、本発明の表面処理方法を実施する際
の高温アニールは、1000℃の温度で10時間程度の
熱処理が好ましいが、先に述べたように、アニール温度
は750℃〜1300℃の範囲であれば本発明方法は実
施可能で、また、アニールの処理時間は、設定するアニ
ール温度の高低に応じて適宜に変更してもよい。
The high temperature annealing for carrying out the surface treatment method of the present invention is preferably a heat treatment at a temperature of 1000 ° C. for about 10 hours, but as described above, the annealing temperature is 750 ° C. to 1300 ° C. Within the range, the method of the present invention can be carried out, and the annealing treatment time may be appropriately changed depending on the level of the annealing temperature to be set.

【0015】さらに、本発明の方法は、SrTiO3
膜をエピタキシャル成長させる場合のほか、Bi2Sr2
uO6 等の他の高温超伝導薄膜あるいは強誘電体薄膜を
STO基板に成長させる際の前処理に適用できることは
勿論である。
Furthermore, the method of the present invention is not limited to the case where the SrTiO 3 thin film is epitaxially grown, and Bi 2 Sr 2 C is also used.
Of course, it can be applied to the pretreatment for growing another high temperature superconducting thin film such as uO 6 or a ferroelectric thin film on the STO substrate.

【0016】[0016]

【発明の効果】以上説明したように、本発明の表面処理
方法によれば、最表面がほぼ100%TiO2 面で終端
されたSTO〔001〕基板を安定して作製することが
できるので、STO基板上に高温超伝導薄膜や強誘電体
薄膜をエピタキシャル成長させるにあたり、その成長様
式を精密に制御することが可能になる。その結果、これ
ら薄膜の高品質化が進み、ひいては種々の高性能電子デ
バイスの開発等の実現が可能となる。
As described above, according to the surface treatment method of the present invention, an STO [001] substrate whose outermost surface is terminated by almost 100% TiO 2 surface can be stably manufactured. When epitaxially growing a high-temperature superconducting thin film or a ferroelectric thin film on an STO substrate, it becomes possible to precisely control the growth mode. As a result, the quality of these thin films is improved, and eventually it becomes possible to develop various high-performance electronic devices.

【図面の簡単な説明】[Brief description of drawings]

【図1】CAICISSによりSTO基板の最表面の終
端構造を評価した結果を示すTOFスペクトルで、SP1
は本発明方法により処理したSTO〔001〕基板のT
OFスペクトル、SP2は本発明方法により処理したST
O〔001〕基板上にSr薄膜をエピタキシャル成長さ
せた試料のTOFスペクトル、SP3は無処理のSTO
〔001〕基板のTOFスペクトル
FIG. 1 is a TOF spectrum showing the result of evaluation of the terminal structure on the outermost surface of the STO substrate by CAICISS.
Is the T of the STO [001] substrate processed by the method of the present invention.
OF spectrum, SP2 is ST processed by the method of the present invention
TOF spectrum of a sample obtained by epitaxially growing an Sr thin film on an O [001] substrate, SP3 is untreated STO
TOF spectrum of [001] substrate

【図2】そのCAICISSによる評価法の説明図FIG. 2 is an explanatory diagram of the evaluation method by CAICISS.

【図3】STO基板の最表面にTiO2 面とSrO面と
が混在している状態を模式的に示す図
FIG. 3 is a diagram schematically showing a state where the TiO 2 surface and the SrO surface are mixed on the outermost surface of the STO substrate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石山 修 京都府京都市中京区西ノ京桑原町1番地 株式会社島津製作所三条工場内 (72)発明者 篠原 真 京都府京都市中京区西ノ京桑原町1番地 株式会社島津製作所三条工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Osamu Ishiyama 1 Nishinokyo Kuwabara-cho, Nakagyo-ku, Kyoto Prefecture Kyoto Sanjo Factory Sanjo Factory (72) Inventor Shin Shinohara 1 Nishinokyo Kuwabara-cho, Nakagyo-ku, Kyoto Prefecture Kyoto Shimadzu Sanjo Factory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 高温超伝導薄膜または強誘電体薄膜をエ
ピタキシャル成長させる基板の表面処理方法であって、
チタン酸ストロンチウム基板を酸素雰囲気下で高温アニ
ールすることにより、TiO2 面で終端された最表面構
造を得ることを特徴とするチタン酸ストロンチウム基板
の表面処理方法。
1. A method for surface treatment of a substrate for epitaxially growing a high temperature superconducting thin film or a ferroelectric thin film, comprising:
A surface treatment method for a strontium titanate substrate, which comprises obtaining an outermost surface structure terminated by a TiO 2 surface by annealing the strontium titanate substrate at a high temperature in an oxygen atmosphere.
JP6236189A 1994-09-30 1994-09-30 Surface treatment for strontium titanate substrate Pending JPH08102560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6236189A JPH08102560A (en) 1994-09-30 1994-09-30 Surface treatment for strontium titanate substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6236189A JPH08102560A (en) 1994-09-30 1994-09-30 Surface treatment for strontium titanate substrate

Publications (1)

Publication Number Publication Date
JPH08102560A true JPH08102560A (en) 1996-04-16

Family

ID=16997099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6236189A Pending JPH08102560A (en) 1994-09-30 1994-09-30 Surface treatment for strontium titanate substrate

Country Status (1)

Country Link
JP (1) JPH08102560A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001240487A (en) * 2000-02-29 2001-09-04 Natl Inst Of Advanced Industrial Science & Technology Meti Method for substrate surface treatment, and substrate for film formation manufactured by this method
WO2020248517A1 (en) * 2019-06-14 2020-12-17 清华大学 Method for treating srtio3 single grain boundary or multiple grain boundary substrate by means of ultra-high vacuum annealing, and method for preparing fese superconducting film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001240487A (en) * 2000-02-29 2001-09-04 Natl Inst Of Advanced Industrial Science & Technology Meti Method for substrate surface treatment, and substrate for film formation manufactured by this method
WO2020248517A1 (en) * 2019-06-14 2020-12-17 清华大学 Method for treating srtio3 single grain boundary or multiple grain boundary substrate by means of ultra-high vacuum annealing, and method for preparing fese superconducting film

Similar Documents

Publication Publication Date Title
Fox et al. Pt/ti/sio2/si substrates
Fitzgibbons et al. TiO2 film properties as a function of processing temperature
US7020374B2 (en) Optical waveguide structure and method for fabricating the same
US5834803A (en) Oriented ferroelectric thin film element and process for preparing the same
US20020164827A1 (en) Microelectronic piezoelectric structure and method of forming the same
Bäuerle Laser-induced formation and surface processing of high-temperature superconductors
Lai et al. Nucleation and growth of highly oriented lead titanate thin films prepared by a sol-gel method
JPH08102560A (en) Surface treatment for strontium titanate substrate
EP0987218A1 (en) Process for the formation of oxide ceramic thin film
JPH10120494A (en) Production of ferroelectric thin film
US20020009612A1 (en) Microelectronic piezoelectric structure and method of forming the same
Chang et al. Single and multilayer ferroelectric PbZrxTi1− xO3 (PZT) on BaTiO3
Verardi et al. Epitaxial piezoelectric PZT thin films obtained by pulsed laser deposition
Wang et al. Preparation of Zr-rich PZT and La-doped PbTiO3 thin films by RF magnetron sputtering and their properties for pyroelectric applications
JPS59114829A (en) Formation of silicon nitride film
Lee et al. Preparation and electrical properties of high quality PZT thin films on RuOx electrode
JPH10287983A (en) Production of titanium-containing ceramic thin film
Yoon et al. Fabrication and characterization of ferroelectric oxide thin films
JPH05229827A (en) Method for forming ferroelectric film
JPH10219460A (en) Ceramic thin film and its production
Kageyama et al. Pyroelectric Property of Pb 5Ge 3O 11 Thin Films Prepared by Laser Ablation
JPH08970B2 (en) Method for forming multi-element compound thin film
JPH0953188A (en) Production of preferentially oriented platinum thin film electrode and functional element using the same
Kanno et al. Preparation of Pb-based ferroelectric thin films at room temperature using excimer-laser-assisted multi-ion-beam sputtering
JPH06183894A (en) Method for forming surface of oxide single crystal

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040309