JPH10287983A - Production of titanium-containing ceramic thin film - Google Patents

Production of titanium-containing ceramic thin film

Info

Publication number
JPH10287983A
JPH10287983A JP9097768A JP9776897A JPH10287983A JP H10287983 A JPH10287983 A JP H10287983A JP 9097768 A JP9097768 A JP 9097768A JP 9776897 A JP9776897 A JP 9776897A JP H10287983 A JPH10287983 A JP H10287983A
Authority
JP
Japan
Prior art keywords
titanium
substrate
film
layer
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9097768A
Other languages
Japanese (ja)
Inventor
Hiroshi Aoyama
拓 青山
Tadaaki Kuno
忠昭 久野
Satoru Miyashita
悟 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP9097768A priority Critical patent/JPH10287983A/en
Publication of JPH10287983A publication Critical patent/JPH10287983A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To easily and swiftly form Ti-contg. ceramic thin film having regulated crystal orientation properties on all substrates by forming a Ti compound layer on a substrate, forming amorphous ceramic precursor film thereon and crystallizing this. SOLUTION: The Ti compound layer formed on the substrate itself contributes to the formation of crystal nuclei and has operation of promoting the subsequent growth of crystals. In this way, crystal nuclei having high density are formed on the substrate side, the growth of crystals progresses in one direction toward the direction of the surface of film on the upper layer, and the crystallization is completed. Therefore, the obtd. crystalline film is not formed into polycrystalline film but into Ti-contg. ceramic thin film excellent in crystal orientation properties. The Ti compound layer to be formed on the substrate is composed of any of a metallic Ti layer, a TiO2 layer and a lead titanate layer, and the thickness of this layer is regulated to <=10 nm. Furthermore, the amorphous ceramic precursor film can be formed by applying a sol using an organic metallic compound as a raw material and executing drying.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、結晶性に由来する
物性(圧電性、焦電性、強誘電性等)を利用した薄膜デ
バイスの主たる構成要素である、セラミックス薄膜を製
造する方法に関する。とりわけ、チタンを含有するセラ
ミックス薄膜を製造する方法に関し、得られたセラミッ
クス薄膜は広く電子デバイスに応用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a ceramic thin film, which is a main component of a thin film device utilizing physical properties derived from crystallinity (piezoelectricity, pyroelectricity, ferroelectricity, etc.). In particular, regarding a method of manufacturing a ceramic thin film containing titanium, the obtained ceramic thin film is widely applied to electronic devices.

【0002】[0002]

【従来の技術】セラミックス薄膜材料の物性やそれを電
子デバイスの構成要素として組み込んだ際のデバイス特
性等は、セラミックス薄膜の結晶性や配向性に大きく左
右される。結晶性薄膜の作成方法は二種類に大別され
る。一つは単結晶基板あるいは基板上に方位が揃った結
晶性膜を形成し、その上に所望のセラミックス薄膜をエ
ピタキシャル成長させるものである。もう一つの方法
は、基板上に所望の結晶膜の前駆体である、非晶質膜を
形成させておいてから、これを焼成もしくは光照射など
で外部からエネルギーを与えることによって結晶性薄膜
を得るものである。これはいわゆるポストアニール方式
に代表される成膜法である。
2. Description of the Related Art The physical properties of a ceramic thin film material and the device characteristics when it is incorporated as a component of an electronic device are greatly affected by the crystallinity and orientation of the ceramic thin film. The method of forming a crystalline thin film is roughly classified into two types. One is to form a crystalline film having a uniform orientation on a single crystal substrate or a substrate and epitaxially grow a desired ceramic thin film thereon. Another method is to form an amorphous film, which is a precursor of a desired crystalline film, on a substrate and then apply external energy by firing or light irradiation to form a crystalline thin film. What you get. This is a film forming method represented by a so-called post-annealing method.

【0003】[0003]

【発明が解決しようとする課題】しかし、前述の二種類
の成膜方法にはいずれも課題がある。先ず、エピタキシ
ャル成長による成膜法であると、基板(あるいはその上
に形成した結晶膜)の結晶格子定数が所望のセラミック
ス薄膜の格子定数に近いものを選択しなければならず、
材料選択の自由度が小さい、あるいは、ふさわしい基板
が存在しない場合もあるといった課題を有する。また、
一般にエピタキシャル成長は成膜速度が遅く、比較的厚
さを要する膜には成膜時間がかかりすぎて量産に不向き
であることも問題点として挙げられる。
However, both of the above two types of film forming methods have problems. First, in the case of a film forming method by epitaxial growth, it is necessary to select a film having a crystal lattice constant of a substrate (or a crystal film formed thereon) close to a lattice constant of a desired ceramic thin film.
There is a problem that the degree of freedom in material selection is small or there is no suitable substrate in some cases. Also,
In general, epitaxial growth has a low film forming rate, and a film requiring a relatively large thickness takes too much film forming time, which is not suitable for mass production.

【0004】一方、ポストアニール方式の場合である
が、この方法だと、非晶質膜から結晶膜への移行過程に
おいて、結晶核が膜中のいたるところにランダムに発生
してしまうため、多結晶膜となってしまい、目的とする
結晶配向性の制御が極めて困難であるという課題を有す
る。
On the other hand, in the case of the post-annealing method, in this method, crystal nuclei are randomly generated throughout the film during the transition from the amorphous film to the crystalline film. There is a problem that it becomes a crystal film, and it is extremely difficult to control the target crystal orientation.

【0005】しかしながら、ポストアニール方式は、そ
の製造プロセスの簡便さから量産に適しているといった
利点もある。そこで本発明者らは、このポストアニール
方式に着目し、従来の欠点を克服すべく鋭意研究を進め
た結果、チタンを構成元素として含むセラミックス薄膜
に対しては上述の課題を解決する方法を見いだすに至っ
たのである。即ち、あらゆる基板上に、制御された結晶
配向性を有するチタン含有セラミックス薄膜を簡便かつ
迅速に成膜する方法を提供することが本発明の目的であ
る。
[0005] However, the post-annealing method also has an advantage that it is suitable for mass production because of its simple manufacturing process. Accordingly, the present inventors have focused on this post-annealing method and have conducted intensive research to overcome the conventional disadvantages. As a result, the present inventors have found a method for solving the above-described problems with respect to a ceramic thin film containing titanium as a constituent element. It was reached. That is, an object of the present invention is to provide a method for easily and quickly forming a titanium-containing ceramic thin film having a controlled crystal orientation on any substrate.

【0006】[0006]

【課題を解決するための手段】本発明のチタン含有セラ
ミックス薄膜の製造方法は、(1)基板上にチタン(T
i)化合物層を形成する工程と、(2)前記チタン化合
物層上に非晶質状のセラミックス前駆体膜を形成する工
程と、(3)これを結晶化させる工程とからなることを
特徴とする。また、本発明のチタン含有セラミックス薄
膜の製造方法は、前記基板上に形成されるチタン(T
i)化合物層が、金属チタン(Ti)層、酸化チタン
(TiO2)層、チタン酸鉛(PbTiO3)層のいずれ
かであることを特徴とする。また、本発明のチタン含有
セラミックス薄膜の製造方法は、前記基板上に形成され
るチタン(Ti)化合物層の厚みが、10nm以下であ
ることを特徴とする。また、本発明のチタン含有セラミ
ックス薄膜の製造方法は、前記非晶質状のセラミックス
前駆体膜の形成が、有機金属化合物を原料とするゾルを
塗布、乾燥することで達成されることを特徴とする。ま
た、本発明のチタン含有セラミックス薄膜の製造方法
は、(1)基板上にチタン(Ti)化合物(金属チタ
ン、酸化チタンなど)層を形成する工程と、(2)前記
チタン化合物層上に、鉛とジルコニウムを含有し、かつ
チタンを含有しないゾルを塗布、乾燥する工程と、
(3)鉛、ジルコニウム及びチタンを含有するゾルを塗
布、乾燥する工程をn回(nは1以上の整数)繰り返す
工程と、(4)これを結晶化させる工程とからなること
を特徴とする。また、本発明のチタン含有セラミックス
薄膜の製造方法は、1)基板上にチタン(Ti)化合物
(金属チタン、酸化チタンなど)層を形成する工程と、
(2)前記チタン化合物層上に、鉛とジルコニウムを含
有し、かつチタンを含有しないゾルを塗布、乾燥する工
程と、(3)これを結晶化させる工程と、(4)鉛、ジ
ルコニウム及びチタンを含有するゾルを塗布、乾燥する
工程をn回(nは1以上の整数)繰り返す工程と、
(5)これを結晶化させる工程とからなることを特徴と
する。
According to the present invention, there is provided a method for producing a titanium-containing ceramic thin film.
(i) forming a compound layer; (2) forming an amorphous ceramic precursor film on the titanium compound layer; and (3) crystallizing the same. I do. Further, the method for producing a titanium-containing ceramic thin film of the present invention comprises the step of forming a titanium (T
i) The compound layer is one of a metal titanium (Ti) layer, a titanium oxide (TiO2) layer, and a lead titanate (PbTiO3) layer. In the method for producing a titanium-containing ceramic thin film according to the present invention, the thickness of the titanium (Ti) compound layer formed on the substrate is 10 nm or less. The method for producing a titanium-containing ceramic thin film of the present invention is characterized in that the formation of the amorphous ceramic precursor film is achieved by applying and drying a sol made of an organometallic compound as a raw material. I do. Further, the method for producing a titanium-containing ceramic thin film of the present invention includes: (1) a step of forming a titanium (Ti) compound (eg, titanium metal, titanium oxide) layer on a substrate; A step of applying and drying a sol containing lead and zirconium, and not containing titanium,
(3) a step of repeating a step of applying and drying a sol containing lead, zirconium and titanium n times (n is an integer of 1 or more); and (4) a step of crystallizing the same. . Further, the method for producing a titanium-containing ceramic thin film of the present invention comprises the following steps: 1) forming a titanium (Ti) compound (eg, titanium metal, titanium oxide) layer on a substrate;
(2) a step of applying and drying a sol containing lead and zirconium but not containing titanium on the titanium compound layer; (3) a step of crystallizing the sol; (4) a lead, zirconium and titanium Repeating the step of applying and drying a sol containing n times (n is an integer of 1 or more);
(5) crystallizing this.

【0007】[0007]

【発明の実施の形態】上述に示した工程を経ることで、
基板上に形成された薄いチタン化合物層そのものが結晶
核生成に寄与し、これに引き続く結晶成長を促進する作
用を有する。これにより基板側(近傍)に高密度な結晶
核が生成し、上層の膜表面方向に向かって一方向に結晶
成長が進み結晶化が完結すると考えられる。そのため、
得られた結晶性膜は多結晶膜になることなく、結晶配向
性に優れたチタン含有セラミックス薄膜となる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS By going through the steps described above,
The thin titanium compound layer itself formed on the substrate has a function of contributing to the generation of crystal nuclei and promoting subsequent crystal growth. Thus, it is considered that high-density crystal nuclei are generated on the substrate side (near), and crystal growth proceeds in one direction toward the surface of the upper layer to complete crystallization. for that reason,
The resulting crystalline film does not become a polycrystalline film, but becomes a titanium-containing ceramic thin film having excellent crystal orientation.

【0008】以上作用について簡単に述べたが、以下実
施例に基づき、本発明を更に詳細に説明する。
The operation has been briefly described above, but the present invention will be described in more detail with reference to the following examples.

【0009】(実施例1)シリコンウエハー(直径4イ
ンチ、厚み250μm)上にスパッタによりPtを厚み
0.2μm形成させたものを用意し、これを後に使用す
る基板とした。一方、酢酸鉛及びチタニウムテトライソ
プロポキシドを所定濃度含有するゾル溶液を調整し、ゾ
ル溶液1とした。
(Example 1) A silicon wafer (diameter: 4 inches, thickness: 250 μm) was prepared by forming Pt to a thickness of 0.2 μm by sputtering, and this was used as a substrate to be used later. On the other hand, a sol solution containing a predetermined concentration of lead acetate and titanium tetraisopropoxide was prepared to obtain a sol solution 1.

【0010】用意した前記基板のPt膜の上に更にスパ
ッタにより厚さ約5nmチタン(Ti)層を形成させ、
その上にゾル溶液1をスピンコートで塗布した。180
℃オーブンで10分間乾燥後、350℃オーブンで30
分間脱脂を行うことにより、厚さ約0.2μmの非晶質
膜が前記基板上に得られた。更にこの上に、ゾル溶液1
の塗布、乾燥、脱脂を4回繰り返し、総膜厚は約1.0
μmの非晶質膜とした。これを電気炉で大気雰囲気中5
00℃にて30分間焼成を行い結晶化を行った(試料
1)。一方、比較のため従来法による試料も作成した。
すなわち、基板上にTi層を形成せずに直接Pt上にゾ
ル溶液1をスピンコートで塗布し、得られた厚さ約1.
0μmの非晶質膜を500℃電気炉内にて大気雰囲気中
30分間の焼成を行い結晶化させた(比較例1)。
On the prepared Pt film of the substrate, a titanium (Ti) layer having a thickness of about 5 nm is further formed by sputtering.
The sol solution 1 was applied thereon by spin coating. 180
After drying in an oven at 350 ° C for 10 minutes,
By performing degreasing for a minute, an amorphous film having a thickness of about 0.2 μm was obtained on the substrate. On top of this, sol solution 1
Coating, drying and degreasing four times, the total film thickness is about 1.0
A μm amorphous film was obtained. This is put in an electric furnace in air atmosphere 5
Baking was performed at 00 ° C. for 30 minutes to perform crystallization (Sample 1). On the other hand, a sample according to the conventional method was also prepared for comparison.
That is, the sol solution 1 is applied directly on Pt by spin coating without forming a Ti layer on the substrate, and the obtained thickness is about 1.
The 0 μm amorphous film was crystallized by firing in an air atmosphere at 500 ° C. for 30 minutes in an air atmosphere (Comparative Example 1).

【0011】試料1、比較例1ともX線回折による結晶
解析の結果、基板上にペロブスカイト型PbTiO3
(PT)薄膜が得られていることがわかった。更に両者
の結晶配向性を調べるため、PT(111)面に対して
X線回折のロッキングカーブの測定を行った。試料面に
対するX線入射角をθとし、θからのずれをΔω(Δ
θ)と表記する。試料1では、Δω(Δθ)=±10°
の範囲内で(111)面からの回折強度を測定したとこ
ろ、Δω=0°を中心に半値幅約1°の非常に鋭いピー
クが観測された(図1)。これより、試料1では、非常
に配向性の強いPT膜が得られたことがわかる。これ
は、最初に基板上に形成したTi層が結晶成長開始点と
して作用し、基板側から表面層に向かって垂直方向に結
晶成長が進んだためと考えられる。一方比較例1では、
Δω(Δθ)=±10°の範囲内で(111)面からの
回折強度はほぼ一定であり、このPT膜はランダム配向
をもった多結晶膜であることがわかった(図2)。試料
1と比較例1ではこのように結晶構造面で顕著な差異が
認められた。
As a result of crystal analysis by X-ray diffraction for both sample 1 and comparative example 1, a perovskite-type PbTiO3
It was found that a (PT) thin film was obtained. Further, in order to examine the crystal orientation of both, a rocking curve of X-ray diffraction was measured for the PT (111) plane. The incident angle of the X-ray to the sample surface is θ, and the deviation from θ is Δω (Δ
θ). In sample 1, Δω (Δθ) = ± 10 °
When the diffraction intensity from the (111) plane was measured within the range, a very sharp peak having a half width of about 1 ° centered on Δω = 0 ° was observed (FIG. 1). From this, it can be seen that in Sample 1, a PT film having extremely strong orientation was obtained. This is considered to be because the Ti layer formed first on the substrate acts as a crystal growth starting point, and crystal growth proceeds in the vertical direction from the substrate side toward the surface layer. On the other hand, in Comparative Example 1,
Within the range of Δω (Δθ) = ± 10 °, the diffraction intensity from the (111) plane was almost constant, and it was found that this PT film was a polycrystalline film having random orientation (FIG. 2). Thus, a remarkable difference in crystal structure was observed between Sample 1 and Comparative Example 1.

【0012】以上本実施例に示したように、基板上にチ
タン(Ti)(化合物)層を形成してからその上に非晶
質層を形成してこれを結晶化させると、基板側(近傍)
に高密度な結晶核が生成し、基板垂直方向(膜厚方向)
に向かって一方向に結晶成長が進み結晶化が完結すると
考えられる。そのため、得られた結晶性膜は従来のよう
に多結晶膜になることなく、結晶配向性に優れたセラミ
ックス薄膜となる。尚、本実施例ではいわゆるゾルゲル
法によるPT膜作製の例を示したが、他の組成や非晶質
前駆体成膜法(スパッタなど)に対しても本実施例と同
様な効果が確認された。また結晶化方法も、本実施例で
は最も標準的な加熱焼成法の場合を述べたが、これに限
定することなく、レーザー照射をはじめ外部からエネル
ギーを供給して結晶化させる方法は広く一般に何でも適
用でき、本発明の効果が得られる。
As shown in this embodiment, when a titanium (Ti) (compound) layer is formed on a substrate and then an amorphous layer is formed thereon and crystallized, an amorphous layer is formed. Near)
High density crystal nuclei are formed in the substrate,
It is considered that crystal growth proceeds in one direction toward, and crystallization is completed. Therefore, the obtained crystalline film does not become a polycrystalline film as in the related art, but becomes a ceramic thin film having excellent crystal orientation. In this example, an example of producing a PT film by the so-called sol-gel method was shown. However, the same effect as in this example was confirmed for other compositions and amorphous precursor film formation methods (such as sputtering). Was. Also, the crystallization method is described in the present embodiment in the case of the most standard heating and firing method.However, without being limited to this, any method of crystallizing by supplying energy from the outside including laser irradiation is widely and generally used. It can be applied and the effects of the present invention can be obtained.

【0013】(実施例2)シリコンウエハー(直径4イ
ンチ、厚み250μm)上にスパッタによりPtを厚み
0.2μm形成させたものを用意し、これを後に使用す
る基板とした。一方、酢酸鉛、ジルコニウムアセチルア
セトナート及びチタニウムテトライソプロポキシドを所
定濃度含有するゾル溶液を調整し、ゾル溶液1とした。
Example 2 A silicon wafer (4 inches in diameter, 250 μm in thickness) having Pt formed in a thickness of 0.2 μm by sputtering was prepared and used as a substrate to be used later. On the other hand, a sol solution containing a predetermined concentration of lead acetate, zirconium acetylacetonate and titanium tetraisopropoxide was prepared, and was referred to as sol solution 1.

【0014】用意した前記基板のPt膜の上に更にスパ
ッタにより厚さ約5nm酸化チタン(TiO2)層を形
成させ、その上にゾル溶液1をスピンコートで塗布し
た。200℃オーブンで10分間乾燥後、400℃オー
ブンで30分間脱脂を行うことにより、厚さ約0.2μ
mの非晶質膜が前記基板上に得られた。更にこの上に、
ゾル溶液1の塗布、乾燥、脱脂を4回繰り返し、総膜厚
は約1.0μmの非晶質膜とした。これを急速昇温ラン
プアニール装置(RTA)で酸素雰囲気中800℃にて
1分間焼成を行い結晶化を行った(試料1)。一方、比
較のため従来法による試料も作成した。すなわち、基板
上にTiO2層を形成せずに直接Pt上にゾル溶液1を
スピンコートで塗布し、得られた厚さ約1.0μmの非
晶質膜を800℃RTAにて酸素雰囲気中1分間の焼成
を行い結晶化させた(比較例1)。
A titanium oxide (TiO 2) layer having a thickness of about 5 nm was further formed on the prepared Pt film of the substrate by sputtering, and a sol solution 1 was applied thereon by spin coating. After drying in a 200 ° C. oven for 10 minutes, degrease in a 400 ° C. oven for 30 minutes to obtain a thickness of about 0.2 μm.
m amorphous films were obtained on the substrate. Further on this,
The application, drying and degreasing of the sol solution 1 were repeated four times to obtain an amorphous film having a total thickness of about 1.0 μm. This was fired at 800 ° C. for 1 minute in an oxygen atmosphere by a rapid temperature rising lamp annealing apparatus (RTA) to crystallize (sample 1). On the other hand, a sample according to the conventional method was also prepared for comparison. That is, the sol solution 1 is applied directly on Pt by spin coating without forming a TiO2 layer on the substrate, and the obtained amorphous film having a thickness of about 1.0 μm is subjected to RTA at 800 ° C. in an oxygen atmosphere. It was baked for a minute and crystallized (Comparative Example 1).

【0015】以上により得られた試料1と比較例1の結
晶化膜を各々X線回折により分析を行ったところペロブ
スカイト型Pb(Zr0.5、Ti0.5)O3(PZT)で
あることが判明した。
When the crystallized films of Sample 1 and Comparative Example 1 obtained as described above were analyzed by X-ray diffraction, they were found to be perovskite-type Pb (Zr0.5, Ti0.5) O3 (PZT). did.

【0016】さて、PZTは圧電体であり、この圧電性
を利用した薄膜デバイスを構築するには当然その特性を
示す圧電定数(d31)が大きな値をとることが望まし
い。そこで、試料1と比較例1の圧電特性を評価するた
め、各々の上部に厚み0.1μmのAl電極を蒸着によ
り形成し、これと基板上のPt電極との間の起電力測定
から圧電定数(d31)を求めた。結果を表1に示す。
Now, PZT is a piezoelectric material, and in order to construct a thin film device utilizing this piezoelectricity, it is naturally desirable that the piezoelectric constant (d31) showing its characteristic has a large value. Therefore, in order to evaluate the piezoelectric characteristics of Sample 1 and Comparative Example 1, an Al electrode having a thickness of 0.1 μm was formed on each of the upper portions by vapor deposition, and a piezoelectric constant was obtained from the measurement of the electromotive force between this and a Pt electrode on the substrate. (D31) was determined. Table 1 shows the results.

【0017】表1より明らかなように、試料1の圧電定
数は比較例1に比べ大きな値を示し、非常に優れた圧電
特性を有する薄膜PZTが得られたことがわかった。前
述の実施例1と同様に結晶配向性をX線ロッキングカー
ブ測定により調べたところ、試料1のPZT(111)
面の法線ベクトルが基板垂直方向に配向しているのに対
し、比較例1ではランダム配向であった。このような結
晶構造の違いが圧電特性の差となって現れるものと考え
られる。
As apparent from Table 1, the piezoelectric constant of Sample 1 was larger than that of Comparative Example 1, indicating that a thin film PZT having very excellent piezoelectric characteristics was obtained. When the crystal orientation was examined by X-ray rocking curve measurement in the same manner as in Example 1 described above, the PZT (111)
While the normal vector of the plane was oriented in the direction perpendicular to the substrate, Comparative Example 1 was randomly oriented. It is considered that such a difference in crystal structure appears as a difference in piezoelectric characteristics.

【0018】以上本実施例に示したように、基板上に酸
化チタン(TiO2)層を形成してからその上に非晶質
層を形成してこれを結晶化させると、基板側(近傍)に
高密度な結晶核が生成し、基板垂直方向(膜厚方向)に
向かって一方向に結晶成長が進み結晶化が完結すると考
えられる。そのため、得られた結晶性膜は従来のように
多結晶膜になることなく、結晶配向性に優れたセラミッ
クス薄膜となり、その結果得られた膜の電気特性(圧電
特性)が向上した。本実施例ではいわゆるゾルゲル法で
作製したPZT膜の圧電特性に着目した例を示したが、
他の組成や非晶質前駆体成膜法(スパッタなど)に対し
ても実験を行ったところ、本実施例と同様な効果が確認
され、圧電性をはじめ焦電性、強誘電性等の薄膜物性改
善が可能であった。また結晶化方法についても、本実施
例では最も標準的な加熱焼成法の場合を述べたが、これ
に限定することなく、レーザー照射をはじめ外部からエ
ネルギーを供給して結晶化させる方法は広く一般に何で
も適用でき、本発明の効果が得られる。
As shown in this embodiment, when a titanium oxide (TiO 2) layer is formed on a substrate and then an amorphous layer is formed thereon and crystallized, an amorphous layer is formed on the substrate side (near). It is considered that high-density crystal nuclei are generated, and crystal growth proceeds in one direction in a direction perpendicular to the substrate (thickness direction) to complete crystallization. Therefore, the obtained crystalline film did not become a polycrystalline film as in the prior art, but became a ceramic thin film having excellent crystal orientation, and as a result, the electrical characteristics (piezoelectric characteristics) of the obtained film were improved. In this embodiment, an example is shown in which attention is paid to the piezoelectric characteristics of a PZT film manufactured by a so-called sol-gel method.
Experiments were performed on other compositions and amorphous precursor film formation methods (such as sputtering), and the same effects as in this example were confirmed. It was possible to improve the physical properties of the thin film. Regarding the crystallization method, the present embodiment described the case of the most standard heating and firing method.However, without being limited to this, a method of crystallizing by supplying energy from the outside including laser irradiation is generally widely used. Anything can be applied, and the effects of the present invention can be obtained.

【0019】[0019]

【表1】 [Table 1]

【0020】(実施例3)シリコンウエハー(直径4イ
ンチ、厚み250μm)上にスパッタによりPtを厚み
0.2μm形成させたものを用意し、これを後に使用す
る基板とした。一方、酢酸鉛、ジルコニウムアセチルア
セトナート及びチタニウムテトライソプロポキシドを所
定濃度含有するゾル溶液を調整し、ゾル溶液1とした。
(Example 3) A silicon wafer (4 inches in diameter, 250 μm in thickness) having Pt formed in a thickness of 0.2 μm by sputtering was prepared and used as a substrate to be used later. On the other hand, a sol solution containing a predetermined concentration of lead acetate, zirconium acetylacetonate and titanium tetraisopropoxide was prepared, and was referred to as sol solution 1.

【0021】用意した前記基板のPt膜の上に更にスパ
ッタにより酸化チタン(TiO2)層を形成させた。こ
の時、TiO2層の厚みを変えた試料を6水準作製した
(試料1〜3及び比較例1〜3、計6枚)。各々のTi
O2層の厚みは表2に示したとおりである。これら6水
準の基板上に各々ゾル溶液1をスピンコートで塗布し
た。200℃オーブンで10分間乾燥後、400℃オー
ブンで30分間脱脂を行うことにより、厚さ約0.2μ
mの非晶質膜が前記基板上に得られた。更にこの上に、
ゾル液塗布、乾燥、脱脂を4回繰り返し、総膜厚は約
1.0μmの非晶質膜とした。これを急速昇温ランプア
ニール装置(RTA)で酸素雰囲気中800℃にて1分
間焼成を行い結晶化を行った。
A titanium oxide (TiO2) layer was further formed on the prepared Pt film of the substrate by sputtering. At this time, six samples were prepared in which the thickness of the TiO2 layer was changed (samples 1-3 and comparative examples 1-3, a total of six). Each Ti
The thickness of the O2 layer is as shown in Table 2. The sol solution 1 was spin-coated on each of these six levels of substrates. After drying in a 200 ° C. oven for 10 minutes, degrease in a 400 ° C. oven for 30 minutes to obtain a thickness of about 0.2 μm.
m amorphous films were obtained on the substrate. Further on this,
The application of the sol solution, drying and degreasing were repeated four times to obtain an amorphous film having a total film thickness of about 1.0 μm. This was fired at 800 ° C. for 1 minute in an oxygen atmosphere by a rapid temperature rising lamp annealing apparatus (RTA) to perform crystallization.

【0022】以上により得られた試料1〜3及び比較例
1〜3の結晶化膜を各々X線回折により分析を行ったと
ころペロブスカイト型Pb(Zr0.5、Ti0.5)O3
(PZT)であることが判明した。
The crystallized films of Samples 1 to 3 and Comparative Examples 1 to 3 obtained above were analyzed by X-ray diffraction. As a result, perovskite-type Pb (Zr0.5, Ti0.5) O3
(PZT).

【0023】さて、PZTは圧電体であり、この圧電性
を利用した薄膜デバイスを構築するには当然その特性を
示す圧電定数(d31)が大きな値をとることが望まし
い。そこで、各試料の圧電特性を評価するため、各々の
上部に厚み0.1μmのAl電極を蒸着により形成し、
これと基板上のPt電極との間の起電力測定から圧電定
数(d31)を求めた。結果を表2に示す。
Now, PZT is a piezoelectric material, and in order to construct a thin film device utilizing this piezoelectricity, it is naturally desirable that the piezoelectric constant (d31) showing its characteristic has a large value. Therefore, in order to evaluate the piezoelectric characteristics of each sample, an Al electrode having a thickness of 0.1 μm was formed on each of the samples by vapor deposition.
The piezoelectric constant (d31) was determined from the measurement of the electromotive force between this and the Pt electrode on the substrate. Table 2 shows the results.

【0024】表2より明らかなように、下地のTiO2
層の厚みが10nm以下である試料1〜3の圧電定数は
比較例1〜3(TiO2層が10nmより厚い)に比べ
大きな値を示し、非常に優れた圧電特性を有する薄膜P
ZTが得られたことがわかった。前述の実施例1と同様
に結晶配向性をX線ロッキングカーブ測定により調べた
ところ、試料1〜3のPZT(111)面の法線ベクト
ルが基板垂直方向に配向しているのに対し、比較例1〜
3ではランダム配向であった。このような結晶構造の違
いが圧電特性の差となって現れるものと考えられる。
As is clear from Table 2, the underlying TiO2
The piezoelectric constants of Samples 1 to 3 having a layer thickness of 10 nm or less are larger than those of Comparative Examples 1 to 3 (the TiO2 layer is thicker than 10 nm), and the thin film P having very excellent piezoelectric properties is obtained.
It was found that ZT was obtained. When the crystal orientation was examined by X-ray rocking curve measurement in the same manner as in Example 1 described above, the normal vectors of the PZT (111) planes of Samples 1 to 3 were oriented in the direction perpendicular to the substrate. Example 1
In No. 3, the alignment was random. It is considered that such a difference in crystal structure appears as a difference in piezoelectric characteristics.

【0025】以上本実施例に示したように、基板上に酸
化チタン(TiO2)層を形成してからその上に非晶質
層を形成してこれを結晶化させると、特にTiO2層の
厚さが10nm以下の場合、基板側(近傍)に高密度な
結晶核が生成し、基板垂直方向(膜厚方向)に向かって
一方向に結晶成長が進み結晶化が完結すると考えられ
る。そのため、得られた結晶性膜は従来のように多結晶
膜になることなく、結晶配向性に優れたセラミックス薄
膜となり、その結果得られた膜の電気特性(圧電特性)
が向上した。同様な効果が基板上のチタン化合物として
金属チタンを用いた場合も確認された。本実施例ではい
わゆるゾルゲル法で作製したPZT膜の圧電特性に着目
した例を示したが、他の組成や非晶質前駆体成膜法(ス
パッタなど)に対しても実験を行ったところ、本実施例
と同様な効果が確認され、圧電性をはじめ焦電性、強誘
電性等の薄膜物性改善が可能であった。また結晶化方法
についても、本実施例では最も標準的な加熱焼成法の場
合を述べたが、これに限定することなく、レーザー照射
をはじめ外部からエネルギーを供給して結晶化させる方
法は広く一般に何でも適用でき、本発明の効果が得られ
る。
As shown in this embodiment, when a titanium oxide (TiO2) layer is formed on a substrate and then an amorphous layer is formed thereon and crystallized, the thickness of the TiO2 layer is particularly high. When the thickness is 10 nm or less, it is considered that high-density crystal nuclei are generated on the substrate side (near), crystal growth proceeds in one direction toward the substrate vertical direction (film thickness direction), and crystallization is completed. Therefore, the obtained crystalline film does not become a polycrystalline film as in the past, but becomes a ceramic thin film having excellent crystal orientation, and the electrical characteristics (piezoelectric characteristics) of the resulting film are obtained.
Improved. A similar effect was confirmed when titanium metal was used as the titanium compound on the substrate. In this embodiment, an example was described in which attention was paid to the piezoelectric characteristics of a PZT film manufactured by a so-called sol-gel method. However, when an experiment was performed for another composition or an amorphous precursor film formation method (such as sputtering), The same effect as that of the present example was confirmed, and it was possible to improve thin film physical properties such as piezoelectricity, pyroelectricity, and ferroelectricity. Regarding the crystallization method, the present embodiment described the case of the most standard heating and firing method.However, without being limited to this, a method of crystallizing by supplying energy from the outside including laser irradiation is generally widely used. Anything can be applied, and the effects of the present invention can be obtained.

【0026】[0026]

【表2】 [Table 2]

【0027】(実施例4)シリコンウエハー(直径4イ
ンチ、厚み250μm)上にスパッタによりPtを厚み
0.2μm形成させたものを用意し、これを後に使用す
る基板とした。一方、酢酸鉛、ジルコニウムアセチルア
セトナート及びチタニウムテトライソプロポキシドを所
定濃度含有するゾル溶液を調整し、ゾル溶液1とした。
また、酢酸鉛及びチタニウムテトライソプロポキシドを
所定濃度含有するゾル溶液も調整し、ゾル溶液2とし
た。
Example 4 A silicon wafer (4 inches in diameter, 250 μm in thickness) having Pt formed in a thickness of 0.2 μm on a silicon wafer was prepared and used as a substrate to be used later. On the other hand, a sol solution containing a predetermined concentration of lead acetate, zirconium acetylacetonate and titanium tetraisopropoxide was prepared, and was referred to as sol solution 1.
In addition, a sol solution containing a predetermined concentration of lead acetate and titanium tetraisopropoxide was also prepared, and a sol solution 2 was obtained.

【0028】用意した前記基板のPt膜上にゾル溶液2
をスピンコートで塗布した。200℃オーブンで10分
間乾燥後、400℃オーブンで30分間脱脂を行うこと
により、非晶質膜を前記基板上に形成した。この時、ゾ
ル溶液2の塗布条件を変えて、表3に示す異なる膜厚の
ものを作製した(試料1〜3、比較例1〜3)。更にそ
の上に、ゾル溶液1をスピンコートで塗布し、200℃
オーブンで10分間乾燥後、400℃オーブンで30分
間脱脂を行った。更にゾル溶液1の塗布、乾燥、脱脂を
4回繰り返すことで、総膜厚は約1.0μmの非晶質膜
を得た。これを急速昇温ランプアニール装置(RTA)
で酸素雰囲気中800℃にて1分間焼成を行い結晶化を
行った。一方、従来法による試料も作成した。すなわ
ち、ゾル溶液2は使用せず、基板上のPt上に直接ゾル
溶液1をスピンコートで塗布し、得られた厚さ約1.0
μmの非晶質膜を800℃RTAにて酸素雰囲気中1分
間の焼成を行い結晶化させた(比較例4)。
The sol solution 2 is formed on the prepared Pt film of the substrate.
Was applied by spin coating. After drying in a 200 ° C. oven for 10 minutes, degreasing was performed in a 400 ° C. oven for 30 minutes to form an amorphous film on the substrate. At this time, the coating conditions of the sol solution 2 were changed to produce films having different film thicknesses as shown in Table 3 (Samples 1 to 3, Comparative Examples 1 to 3). Further, a sol solution 1 is applied thereon by spin coating,
After drying in an oven for 10 minutes, degreasing was performed in a 400 ° C. oven for 30 minutes. Further, by repeating the application, drying and degreasing of the sol solution 1 four times, an amorphous film having a total film thickness of about 1.0 μm was obtained. This is a rapid temperature ramp lamp annealing system (RTA)
For 1 minute at 800 ° C. in an oxygen atmosphere for crystallization. On the other hand, a sample according to the conventional method was also prepared. That is, the sol solution 2 was not used, and the sol solution 1 was applied directly on Pt on the substrate by spin coating, and the obtained thickness was about 1.0.
The μm amorphous film was crystallized by firing at 800 ° C. RTA in an oxygen atmosphere for 1 minute (Comparative Example 4).

【0029】以上により得られた試料1〜3と比較例1
〜4の結晶化膜を各々X線回折により分析を行った。そ
の結果、得られた結晶化膜は、試料1〜3と比較例1〜
3ではペロブスカイト型のPbTiO3(PT)とPb
(Zr0.5、Ti0.5)O3(PZT)の2層構造である
ことが判明した。一方、試料4では得られた結晶化膜は
ペロブスカイト型Pb(Zr0.5、Ti0.5)O3(PZ
T)であることが判明した。
Samples 1 to 3 obtained above and Comparative Example 1
Each of the crystallized films Nos. To 4 was analyzed by X-ray diffraction. As a result, the obtained crystallized films were Samples 1 to 3 and Comparative Examples 1 to
In No. 3, perovskite type PbTiO3 (PT) and Pb
It turned out that it has a two-layer structure of (Zr0.5, Ti0.5) O3 (PZT). On the other hand, in Sample 4, the obtained crystallized film was a perovskite-type Pb (Zr0.5, Ti0.5) O3 (PZ
T).

【0030】さて、PZT(PT)は圧電体であり、こ
の圧電性を利用した薄膜デバイスを構築するには当然そ
の特性を示す圧電定数(d31)が大きな値をとることが
望ましい。そこで、試料1と比較例1の圧電特性を評価
するため、各々の上部に厚み0.1μmのAl電極を蒸
着により形成し、これと基板上のPt電極との間の起電
力測定から圧電定数(d31)を求めた。結果を表3に示
す。
Now, PZT (PT) is a piezoelectric material, and in order to construct a thin film device utilizing this piezoelectricity, it is naturally desirable that the piezoelectric constant (d31) showing its characteristic has a large value. Therefore, in order to evaluate the piezoelectric characteristics of Sample 1 and Comparative Example 1, an Al electrode having a thickness of 0.1 μm was formed on each of the upper portions by vapor deposition, and a piezoelectric constant was obtained from the measurement of the electromotive force between this and a Pt electrode on the substrate. (D31) was determined. Table 3 shows the results.

【0031】表3より明らかなように、下地のPTの厚
みが10nm以下である試料1〜3の圧電定数は比較例
1〜3(PTの厚みが10nmより大きい)、あるいは
比較例4(PT層なし)に比べ大きな値を示し、非常に
優れた圧電特性を有する薄膜PZTが得られたことがわ
かった。前述の実施例1と同様に結晶配向性をX線ロッ
キングカーブ測定により調べたところ、試料1〜3のP
ZT(111)面の法線ベクトルが基板垂直方向に配向
しているのに対し、比較例1〜4ではランダム配向であ
った。このような結晶構造の違いが圧電特性の差となっ
て現れるものと考えられる。
As is clear from Table 3, the piezoelectric constants of Samples 1 to 3 in which the thickness of the underlying PT is 10 nm or less are Comparative Examples 1 to 3 (thickness of the PT is larger than 10 nm) or Comparative Example 4 (PT (No layer), indicating that a thin film PZT having very excellent piezoelectric properties was obtained. The crystal orientation was examined by X-ray rocking curve measurement in the same manner as in Example 1 described above.
While the normal vector of the ZT (111) plane was oriented in the direction perpendicular to the substrate, Comparative Examples 1 to 4 were randomly oriented. It is considered that such a difference in crystal structure appears as a difference in piezoelectric characteristics.

【0032】以上本実施例に示したように、基板上にP
T前駆体層を形成させると、特にPT層の厚さが10n
m以下の場合、結晶化工程において、先ず基板側(近
傍)に高密度な結晶核が生成し、これが種となってその
上に形成した非晶質膜に対しては、基板垂直方向(膜厚
方向)に向かって一方向に結晶成長が進み結晶化が完結
すると考えられる。そのため、得られた結晶性膜は従来
のように多結晶膜になることなく、結晶配向性に優れた
セラミックス薄膜となり、その結果得られた膜の電気特
性(圧電特性)が向上した。本実施例ではいわゆるゾル
ゲル法で作製したPZT膜の圧電特性に着目した例を示
したが、他の組成や非晶質前駆体成膜法(スパッタな
ど)に対しても実験を行ったところ、本実施例と同様な
効果が確認され、圧電性をはじめ焦電性、強誘電性等の
薄膜物性改善が可能であった。また結晶化方法について
も、本実施例では最も標準的な加熱焼成法の場合を述べ
たが、これに限定することなく、レーザー照射をはじめ
外部からエネルギーを供給して結晶化させる方法は広く
一般に何でも適用でき、本発明の効果が得られる。
As described above, as shown in this embodiment, P
When the T precursor layer is formed, especially the thickness of the PT layer is 10 n
In the crystallization step, first, a high-density crystal nucleus is generated on the substrate side (near) in the crystallization step, and the nucleus is used as a seed for the amorphous film formed thereon. It is considered that the crystal growth proceeds in one direction (thickness direction) and the crystallization is completed. Therefore, the obtained crystalline film did not become a polycrystalline film as in the prior art, but became a ceramic thin film having excellent crystal orientation, and as a result, the electrical characteristics (piezoelectric characteristics) of the obtained film were improved. In this embodiment, an example was described in which attention was paid to the piezoelectric characteristics of a PZT film manufactured by a so-called sol-gel method. However, when an experiment was performed for another composition or an amorphous precursor film formation method (such as sputtering), The same effect as that of the present example was confirmed, and it was possible to improve thin film physical properties such as piezoelectricity, pyroelectricity, and ferroelectricity. Regarding the crystallization method, the present embodiment described the case of the most standard heating and firing method.However, without being limited to this, a method of crystallizing by supplying energy from the outside including laser irradiation is generally widely used. Anything can be applied, and the effects of the present invention can be obtained.

【0033】[0033]

【表3】 [Table 3]

【0034】(実施例5)シリコンウエハー(直径4イ
ンチ、厚み250μm)上にスパッタによりPtを厚み
0.2μm形成させたものを用意し、これを後に使用す
る基板とした。一方、酢酸鉛、ジルコニウムアセチルア
セトナート及びチタニウムテトライソプロポキシドを所
定濃度含有するゾル溶液を調整し、ゾル溶液1とした。
また、酢酸鉛及びジルコニウムアセチルアセトナートを
所定濃度含有するゾル溶液も調整し、ゾル溶液2とし
た。
Example 5 A silicon wafer (diameter: 4 inches, thickness: 250 μm) was prepared by forming Pt to a thickness of 0.2 μm by sputtering, and this was used as a substrate to be used later. On the other hand, a sol solution containing a predetermined concentration of lead acetate, zirconium acetylacetonate and titanium tetraisopropoxide was prepared, and was referred to as sol solution 1.
In addition, a sol solution containing a predetermined concentration of lead acetate and zirconium acetylacetonate was also prepared to obtain a sol solution 2.

【0035】用意した前記基板のPt膜上にスパッタに
より厚さ約5nm酸化チタン(TiO2)層を形成さ
せ、その上にゾル溶液2をスピンコートで塗布した。2
00℃オーブンで10分間乾燥後、400℃オーブンで
30分間脱脂を行うことにより、厚さ約10nmの非晶
質が膜前記基板上に得られた。更にその上に、ゾル溶液
1をスピンコートで塗布し、200℃オーブンで10分
間乾燥後、400℃オーブンで30分間脱脂を行った。
更にゾル溶液1の塗布、乾燥、脱脂を4回繰り返すこと
で、総膜厚は約1.0μmの非晶質膜を得た。これを急
速昇温ランプアニール装置(RTA)で酸素雰囲気中8
00℃にて1分間焼成を行い結晶化を行った(試料
1)。一方、比較のため従来法による試料も作成した。
すなわち、基板上へのスパッタによる酸化チタン(Ti
O2)層の形成やゾル溶液2の塗布は行わず、基板上の
Pt上に直接ゾル溶液1をスピンコートで塗布し、得ら
れた厚さ約1.0μmの非晶質膜を800℃RTAにて
酸素雰囲気中1分間の焼成を行い結晶化させた(比較例
1)。
A titanium oxide (TiO2) layer having a thickness of about 5 nm was formed on the prepared Pt film of the substrate by sputtering, and a sol solution 2 was applied thereon by spin coating. 2
After drying in a 00 ° C. oven for 10 minutes, degreasing was performed in a 400 ° C. oven for 30 minutes to obtain an amorphous film having a thickness of about 10 nm on the substrate. Further, the sol solution 1 was applied thereon by spin coating, dried in a 200 ° C. oven for 10 minutes, and then degreased in a 400 ° C. oven for 30 minutes.
Further, by repeating the application, drying and degreasing of the sol solution 1 four times, an amorphous film having a total film thickness of about 1.0 μm was obtained. This is heated in an oxygen atmosphere by a rapid temperature rising lamp annealing apparatus (RTA) 8
Crystallization was performed by baking at 00 ° C. for 1 minute (sample 1). On the other hand, a sample according to the conventional method was also prepared for comparison.
That is, titanium oxide (Ti
The O2) layer is not formed or the sol solution 2 is not applied, but the sol solution 1 is applied directly on the Pt on the substrate by spin coating, and the obtained amorphous film having a thickness of about 1.0 μm is subjected to RTA at 800 ° C. For 1 minute in an oxygen atmosphere to crystallize (Comparative Example 1).

【0036】以上により得られた試料1と比較例1の結
晶化膜を各々X線回折により分析を行った。その結果、
得られた結晶化膜はペロブスカイト型Pb(Zr0.5、
Ti0.5)O3(PZT)であることが判明した。
The crystallized films of Sample 1 and Comparative Example 1 obtained above were each analyzed by X-ray diffraction. as a result,
The obtained crystallized film was a perovskite type Pb (Zr0.5,
Ti0.5) O3 (PZT).

【0037】さて、PZTは圧電体であり、この圧電性
を利用した薄膜デバイスを構築するには当然その特性を
示す圧電定数(d31)が大きな値をとることが望まし
い。そこで、試料1と比較例1の圧電特性を評価するた
め、各々の上部に厚み0.1μmのAl電極を蒸着によ
り形成し、これと基板上のPt電極との間の起電力測定
から圧電定数(d31)を求めた。結果を表4に示す。
Now, PZT is a piezoelectric material, and in order to construct a thin film device utilizing this piezoelectricity, it is naturally desirable that the piezoelectric constant (d31) showing its characteristics has a large value. Therefore, in order to evaluate the piezoelectric characteristics of Sample 1 and Comparative Example 1, an Al electrode having a thickness of 0.1 μm was formed on each of the upper portions by vapor deposition, and a piezoelectric constant was obtained from the measurement of the electromotive force between this and a Pt electrode on the substrate. (D31) was determined. Table 4 shows the results.

【0038】表4より明らかなように、試料1の圧電定
数は比較例1に比べ大きな値を示し、非常に優れた圧電
特性を有する薄膜PZTが得られたことがわかった。前
述の実施例1と同様に結晶配向性をX線ロッキングカー
ブ測定により調べたところ、試料1のPZT(111)
面の法線ベクトルが基板垂直方向に配向しているのに対
し、比較例1ではランダム配向であった。このような結
晶構造の違いが圧電特性の差となって現れるものと考え
られる。
As apparent from Table 4, the piezoelectric constant of Sample 1 was larger than that of Comparative Example 1, and it was found that a thin film PZT having very excellent piezoelectric characteristics was obtained. When the crystal orientation was examined by X-ray rocking curve measurement in the same manner as in Example 1 described above, the PZT (111)
While the normal vector of the plane was oriented in the direction perpendicular to the substrate, Comparative Example 1 was randomly oriented. It is considered that such a difference in crystal structure appears as a difference in piezoelectric characteristics.

【0039】以上本実施例に示したように、基板上にチ
タン化合物層を形成し、その上にPb、Zrを含む前駆
体層を形成させて結晶化させると、先ず基板側(近傍)
に高密度なPZT結晶核が生成し、これが種となってそ
の上に形成した非晶質膜に対しては、基板垂直方向(膜
厚方向)に向かって一方向に結晶成長が進み結晶化が完
結すると考えられる。そのため、得られたPZT結晶膜
は従来のように多結晶膜になることなく、結晶配向性に
優れたセラミックス薄膜となり、その結果得られた膜の
電気特性(圧電特性)が向上した。同様の効果が基板上
に金属チタン層を形成した場合にも確認された。本実施
例ではいわゆるゾルゲル法で作製したPZT膜の圧電特
性に着目した例を示したが、他の組成や非晶質前駆体成
膜法(スパッタなど)に対しても実験を行ったところ、
本実施例と同様な効果が確認され、圧電性をはじめ焦電
性、強誘電性等の薄膜物性改善が可能であった。また結
晶化方法についても、本実施例では最も標準的な加熱焼
成法の場合を述べたが、これに限定することなく、レー
ザー照射をはじめ外部からエネルギーを供給して結晶化
させる方法は広く一般に何でも適用でき、本発明の効果
が得られる。
As shown in this embodiment, when a titanium compound layer is formed on a substrate, and a precursor layer containing Pb and Zr is formed thereon and crystallized, first, the substrate side (near)
A high-density PZT crystal nucleus is generated, and crystal growth proceeds in one direction in the direction perpendicular to the substrate (thickness direction) with respect to the amorphous film formed thereon as a seed. Is considered complete. Therefore, the obtained PZT crystal film did not become a polycrystalline film as in the related art, but became a ceramic thin film having excellent crystal orientation, and as a result, the electrical characteristics (piezoelectric characteristics) of the obtained film were improved. The same effect was confirmed when a titanium metal layer was formed on a substrate. In this embodiment, an example was described in which attention was paid to the piezoelectric characteristics of a PZT film manufactured by a so-called sol-gel method. However, when an experiment was performed for another composition or an amorphous precursor film formation method (such as sputtering),
The same effect as that of the present example was confirmed, and it was possible to improve thin film physical properties such as piezoelectricity, pyroelectricity, and ferroelectricity. Regarding the crystallization method, the present embodiment described the case of the most standard heating and firing method.However, without being limited to this, a method of crystallizing by supplying energy from the outside including laser irradiation is generally widely used. Anything can be applied, and the effects of the present invention can be obtained.

【0040】[0040]

【表4】 [Table 4]

【0041】(実施例6)シリコンウエハー(直径4イ
ンチ、厚み250μm)上にスパッタによりPtを厚み
0.2μm形成させたものを用意し、これを後に使用す
る基板とした。一方、酢酸鉛、ジルコニウムアセチルア
セトナート及びチタニウムテトライソプロポキシドを所
定濃度含有するゾル溶液を調整し、ゾル溶液1とした。
また、酢酸鉛及びジルコニウムアセチルアセトナートを
所定濃度含有するゾル溶液も調整し、ゾル溶液2とし
た。
Example 6 A silicon wafer (4 inches in diameter, 250 μm in thickness) having Pt formed in a thickness of 0.2 μm by sputtering was prepared and used as a substrate to be used later. On the other hand, a sol solution containing a predetermined concentration of lead acetate, zirconium acetylacetonate and titanium tetraisopropoxide was prepared, and was referred to as sol solution 1.
In addition, a sol solution containing a predetermined concentration of lead acetate and zirconium acetylacetonate was also prepared to obtain a sol solution 2.

【0042】用意した前記基板のPt膜上にスパッタに
より厚さ約5nm酸化チタン(TiO2)層を形成さ
せ、その上にゾル溶液2をスピンコートで塗布した。2
00℃オーブンで10分間乾燥後、400℃オーブンで
30分間脱脂を行うことにより、厚さ約10nmの非晶
質が膜前記基板上に得られた。これを急速昇温ランプア
ニール装置(RTA)で酸素雰囲気中800℃で1分間
焼成した。更にその上に、ゾル溶液1をスピンコートで
塗布し、200℃オーブンで10分間乾燥後、400℃
オーブンで30分間脱脂を行った。更にゾル溶液1の塗
布、乾燥、脱脂を4回繰り返すことで、総膜厚は約1.
0μmの非晶質膜を得た。これを急速昇温ランプアニー
ル装置(RTA)で酸素雰囲気中800℃にて1分間焼
成を行い結晶化を行った(試料1)。一方、比較のため
従来法による試料も作成した。すなわち、基板上へのス
パッタによる酸化チタン(TiO2)層の形成やゾル溶
液2の塗布、結晶化は行わず、基板上のPt上に直接ゾ
ル溶液1をスピンコートで塗布し、得られた厚さ約1.
0μmの非晶質膜を800℃RTAにて酸素雰囲気中1
分間の焼成を行い結晶化させた(比較例1)。
A titanium oxide (TiO2) layer having a thickness of about 5 nm was formed on the prepared Pt film of the substrate by sputtering, and a sol solution 2 was applied thereon by spin coating. 2
After drying in a 00 ° C. oven for 10 minutes, degreasing was performed in a 400 ° C. oven for 30 minutes to obtain an amorphous film having a thickness of about 10 nm on the substrate. This was baked at 800 ° C. for 1 minute in an oxygen atmosphere by a rapid temperature rising lamp annealing apparatus (RTA). Further, the sol solution 1 is applied thereon by spin coating, dried in a 200 ° C. oven for 10 minutes, and then dried at 400 ° C.
Degreasing was performed in an oven for 30 minutes. Further, by repeating the application, drying and degreasing of the sol solution 1 four times, the total film thickness becomes about 1.
An amorphous film of 0 μm was obtained. This was fired at 800 ° C. for 1 minute in an oxygen atmosphere by a rapid temperature rising lamp annealing apparatus (RTA) to crystallize (sample 1). On the other hand, a sample according to the conventional method was also prepared for comparison. That is, the formation of a titanium oxide (TiO2) layer by sputtering on the substrate, the application of the sol solution 2, and the crystallization are not performed, and the sol solution 1 is directly applied on Pt on the substrate by spin coating, and the obtained thickness is obtained. About 1.
A 0 μm amorphous film was formed in an oxygen atmosphere at 800 ° C. RTA for 1 minute.
It was baked for a minute and crystallized (Comparative Example 1).

【0043】以上により得られた試料1と比較例1の結
晶化膜を各々X線回折により分析を行った。その結果、
得られた結晶化膜はペロブスカイト型Pb(Zr0.5、
Ti0.5)O3(PZT)であることが判明した。
The crystallized films of Sample 1 and Comparative Example 1 obtained above were each analyzed by X-ray diffraction. as a result,
The obtained crystallized film was a perovskite type Pb (Zr0.5,
Ti0.5) O3 (PZT).

【0044】さて、PZTは圧電体であり、この圧電性
を利用した薄膜デバイスを構築するには当然その特性を
示す圧電定数(d31)が大きな値をとることが望まし
い。そこで、試料1と比較例1の圧電特性を評価するた
め、各々の上部に厚み0.1μmのAl電極を蒸着によ
り形成し、これと基板上のPt電極との間の起電力測定
から圧電定数(d31)を求めた。結果を表5に示す。
Now, PZT is a piezoelectric material, and in order to construct a thin film device utilizing this piezoelectricity, it is naturally desirable that the piezoelectric constant (d31) showing its characteristics has a large value. Therefore, in order to evaluate the piezoelectric characteristics of Sample 1 and Comparative Example 1, an Al electrode having a thickness of 0.1 μm was formed on each of the upper portions by vapor deposition, and a piezoelectric constant was obtained from the measurement of the electromotive force between this and a Pt electrode on the substrate. (D31) was determined. Table 5 shows the results.

【0045】表5より明らかなように、試料1の圧電定
数は比較例1に比べ大きな値を示し、非常に優れた圧電
特性を有する薄膜PZTが得られたことがわかった。前
述の実施例1と同様に結晶配向性をX線ロッキングカー
ブ測定により調べたところ、試料1のPZT(111)
面の法線ベクトルが基板垂直方向に配向しているのに対
し、比較例1ではランダム配向であった。このような結
晶構造の違いが圧電特性の差となって現れるものと考え
られる。
As is clear from Table 5, the piezoelectric constant of Sample 1 was larger than that of Comparative Example 1, indicating that a thin film PZT having very excellent piezoelectric characteristics was obtained. When the crystal orientation was examined by X-ray rocking curve measurement in the same manner as in Example 1 described above, the PZT (111)
While the normal vector of the plane was oriented in the direction perpendicular to the substrate, Comparative Example 1 was randomly oriented. It is considered that such a difference in crystal structure appears as a difference in piezoelectric characteristics.

【0046】以上本実施例に示したように、基板上にチ
タン化合物層を形成し、その上にPb、Zrを含む前駆
体層を形成させて結晶化させると、先ず基板側(近傍)
に高密度なPZT結晶核が生成し、これが種となってそ
の上に形成した非晶質膜に対しては、基板垂直方向(膜
厚方向)に向かって一方向に結晶成長が進み結晶化が完
結すると考えられる。そのため、得られたPZT結晶膜
は従来のように多結晶膜になることなく、結晶配向性に
優れたセラミックス薄膜となり、その結果得られた膜の
電気特性(圧電特性)が向上した。同様の効果が基板上
に金属チタン層を形成した場合にも確認された。本実施
例ではいわゆるゾルゲル法で作製したPZT膜の圧電特
性に着目した例を示したが、他の組成や非晶質前駆体成
膜法(スパッタなど)に対しても実験を行ったところ、
本実施例と同様な効果が確認され、圧電性をはじめ焦電
性、強誘電性等の薄膜物性改善が可能であった。また結
晶化方法についても、本実施例では最も標準的な加熱焼
成法の場合を述べたが、これに限定することなく、レー
ザー照射をはじめ外部からエネルギーを供給して結晶化
させる方法は広く一般に何でも適用でき、本発明の効果
が得られる。
As shown in the present embodiment, when a titanium compound layer is formed on a substrate and a precursor layer containing Pb and Zr is formed thereon and crystallized, first, the substrate side (near)
A high-density PZT crystal nucleus is generated, and crystal growth proceeds in one direction in the direction perpendicular to the substrate (thickness direction) with respect to the amorphous film formed thereon as a seed. Is considered complete. Therefore, the obtained PZT crystal film did not become a polycrystalline film as in the related art, but became a ceramic thin film having excellent crystal orientation, and as a result, the electrical characteristics (piezoelectric characteristics) of the obtained film were improved. The same effect was confirmed when a titanium metal layer was formed on a substrate. In this embodiment, an example was described in which attention was paid to the piezoelectric characteristics of a PZT film manufactured by a so-called sol-gel method.
The same effect as that of the present example was confirmed, and it was possible to improve thin film physical properties such as piezoelectricity, pyroelectricity, and ferroelectricity. Regarding the crystallization method, in this example, the case of the most standard heating and firing method was described, but without being limited to this, a method of crystallizing by supplying energy from the outside including laser irradiation is widely and generally used. Anything can be applied, and the effects of the present invention can be obtained.

【0047】[0047]

【表1】 [Table 1]

【0048】[0048]

【発明の効果】 以上示したように、基板上にチタン含
有セラミックス薄膜を形成するにあたり、先ず基板上に
チタン化合物層を形成することによって、得られた結晶
膜は多結晶膜になることなく、結晶配向性に優れたチタ
ン含有セラミックス薄膜となる。これに伴い、電気特性
(圧電特性)が向上する。従って、本発明の製造方法で
得られたセラミックス薄膜はその物性を利用したデバイ
スの構成要素として組み込まれたときに優れた特性を発
揮することができる。
As described above, in forming a titanium-containing ceramic thin film on a substrate, first, a titanium compound layer is formed on a substrate, so that the obtained crystalline film does not become a polycrystalline film. It becomes a titanium-containing ceramic thin film having excellent crystal orientation. As a result, electric characteristics (piezoelectric characteristics) are improved. Therefore, the ceramic thin film obtained by the production method of the present invention can exhibit excellent characteristics when incorporated as a component of a device utilizing its physical properties.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の試料1のPZT(111)面のロッ
キングングカーブ図。
FIG. 1 is a locking curve diagram of a PZT (111) plane of a sample 1 of the present invention.

【図2】 従来例のPZT(111)面のロッキングン
グカーブ図。
FIG. 2 is a diagram showing a locking curve of a PZT (111) surface according to a conventional example.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C30B 29/32 C04B 35/49 A ──────────────────────────────────────────────────続 き Continued on front page (51) Int.Cl. 6 Identification code FI C30B 29/32 C04B 35/49 A

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 (1)基板上にチタン(Ti)化合物層
を形成する工程と、(2)前記チタン化合物層上に非晶
質状のセラミックス前駆体膜を形成する工程と、(3)
これを結晶化させる工程とからなることを特徴とするチ
タン含有セラミックス薄膜の製造方法。
(1) a step of forming a titanium (Ti) compound layer on a substrate; (2) a step of forming an amorphous ceramic precursor film on the titanium compound layer; (3)
A method for producing a titanium-containing ceramic thin film.
【請求項2】 基板上に形成されるチタン(Ti)化合
物層が、金属チタン(Ti)層であることを特徴とする
請求項1記載のチタン含有セラミックス薄膜の製造方
法。
2. The method according to claim 1, wherein the titanium (Ti) compound layer formed on the substrate is a metal titanium (Ti) layer.
【請求項3】 基板上に形成されるチタン(Ti)化合
物層が、酸化チタン(TiO2)層であることを特徴と
する請求項1記載のチタン含有セラミックス薄膜の製造
方法。
3. The method according to claim 1, wherein the titanium (Ti) compound layer formed on the substrate is a titanium oxide (TiO2) layer.
【請求項4】 基板上に形成されるチタン(Ti)化合
物層が、チタン酸鉛(PbTiO3)層であることを特
徴とする請求項1記載のチタン含有セラミックス薄膜の
製造方法。
4. The method according to claim 1, wherein the titanium (Ti) compound layer formed on the substrate is a lead titanate (PbTiO3) layer.
【請求項5】 基板上に形成されるチタン(Ti)化合
物層の厚みが、10nm以下であることを特徴とする請
求項1から4いずれか記載のチタン含有セラミックス薄
膜の製造方法。
5. The method for producing a titanium-containing ceramic thin film according to claim 1, wherein the thickness of the titanium (Ti) compound layer formed on the substrate is 10 nm or less.
【請求項6】 非晶質状のセラミックス前駆体膜の形成
が、有機金属化合物を原料とするゾルを塗布、乾燥する
ことで達成されることを特徴とする請求項1から5いず
れか記載のチタン含有セラミックス薄膜の製造方法。
6. The method according to claim 1, wherein the formation of the amorphous ceramic precursor film is achieved by applying and drying a sol made of an organometallic compound as a raw material. A method for producing a titanium-containing ceramic thin film.
【請求項7】 (1)基板上にチタン(Ti)化合物層
を形成する工程と、(2)前記チタン化合物層上に、鉛
とジルコニウムを含有し、かつチタンを含有しないゾル
を塗布、乾燥する工程と、(3)鉛、ジルコニウム及び
チタンを含有するゾルを塗布、乾燥する工程をn回(n
は1以上の整数)繰り返す工程と、(4)これを結晶化
させる工程とからなることを特徴とするチタン含有セラ
ミックス薄膜の製造方法。
7. A step of forming a titanium (Ti) compound layer on a substrate, and a step of applying and drying a sol containing lead and zirconium and not containing titanium on the titanium compound layer. And (3) a step of applying and drying a sol containing lead, zirconium and titanium by n times (n
Is an integer of 1 or more), and (4) a step of crystallizing the same.
【請求項8】 (1)基板上にチタン(Ti)化合物層
を形成する工程と、(2)前記チタン化合物層上に、鉛
とジルコニウムを含有し、かつチタンを含有しないゾル
を塗布、乾燥する工程と、(3)これを結晶化させる工
程と、(4)鉛、ジルコニウム及びチタンを含有するゾ
ルを塗布、乾燥する工程をn回(nは1以上の整数)繰
り返す工程と、(5)これを結晶化させる工程とからな
ることを特徴とするチタン含有セラミックス薄膜の製造
方法。
8. A step of (1) forming a titanium (Ti) compound layer on a substrate; and (2) coating and drying a sol containing lead and zirconium and not containing titanium on the titanium compound layer. (3) a step of (3) crystallizing the same, and (4) a step of applying and drying a sol containing lead, zirconium and titanium n times (n is an integer of 1 or more), and (5) A) a step of crystallizing the thin film.
【請求項9】 基板上に形成されるチタン(Ti)化合
物層が、金属チタン(Ti)層であることを特徴とする
請求項7または請求項8記載のチタン含有セラミックス
薄膜の製造方法。
9. The method for producing a titanium-containing ceramic thin film according to claim 7, wherein the titanium (Ti) compound layer formed on the substrate is a metal titanium (Ti) layer.
【請求項10】 基板上に形成されるチタン(Ti)化
合物層が、酸化チタン(TiO2)層であることを特徴
とする請求項7または請求項8記載のチタン含有セラミ
ックス薄膜の製造方法。
10. The method for producing a titanium-containing ceramic thin film according to claim 7, wherein the titanium (Ti) compound layer formed on the substrate is a titanium oxide (TiO2) layer.
JP9097768A 1997-04-15 1997-04-15 Production of titanium-containing ceramic thin film Pending JPH10287983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9097768A JPH10287983A (en) 1997-04-15 1997-04-15 Production of titanium-containing ceramic thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9097768A JPH10287983A (en) 1997-04-15 1997-04-15 Production of titanium-containing ceramic thin film

Publications (1)

Publication Number Publication Date
JPH10287983A true JPH10287983A (en) 1998-10-27

Family

ID=14201050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9097768A Pending JPH10287983A (en) 1997-04-15 1997-04-15 Production of titanium-containing ceramic thin film

Country Status (1)

Country Link
JP (1) JPH10287983A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009114038A (en) * 2007-11-08 2009-05-28 Denso Corp Method of manufacturing crystal oriented ceramic
JP2010100515A (en) * 2008-09-24 2010-05-06 Ngk Insulators Ltd Method for producing crystallographically oriented ceramic
US9586401B2 (en) 2013-03-14 2017-03-07 Ricoh Company, Ltd. Piezoelectric thin film element, inkjet recording head, and inkjet image-forming apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009114038A (en) * 2007-11-08 2009-05-28 Denso Corp Method of manufacturing crystal oriented ceramic
JP2010100515A (en) * 2008-09-24 2010-05-06 Ngk Insulators Ltd Method for producing crystallographically oriented ceramic
US9586401B2 (en) 2013-03-14 2017-03-07 Ricoh Company, Ltd. Piezoelectric thin film element, inkjet recording head, and inkjet image-forming apparatus

Similar Documents

Publication Publication Date Title
JP4662112B2 (en) Ferroelectric thin film and manufacturing method thereof
EP0513478B1 (en) Method for controlling crystal orientation of ferroelectric thin film
WO2009157189A1 (en) Piezoelectric element and method for manufacturing the same
JP6347086B2 (en) Ferroelectric ceramics
TWI755444B (en) Membrane structure and method for producing the same
US7229662B2 (en) Heterolayered ferroelectric thin films and methods of forming same
JP2000208828A (en) Piezoelectric thin film element and its manufacture
JP2011079733A (en) Manufacturing apparatus and manufacturing method
JP2004292218A (en) Ferroelectric film
JPH10287983A (en) Production of titanium-containing ceramic thin film
TWI717498B (en) Membrane structure and manufacturing method thereof
JPH06107491A (en) Production of crystalline thin film
Higuchi et al. Microstructure characterization of sol-gel derived PZT films
JP2003031863A (en) Piezoelectric thin film element
JP3118702B2 (en) Method for manufacturing non-volatile memory thin film
JPH10291887A (en) Production of ceramic thin film
JPH065946A (en) Manufacture of ferroelectric thin film
JP2718414B2 (en) Method for producing lead titanate thin film
JP3438509B2 (en) Ceramic thin film and method for producing the same
JPH10291886A (en) Production of thin ceramic film
JPH10291885A (en) Production of thin oxide ceramic film
JP2002324924A (en) Method of manufacturing piezoelectric element
JPH11106279A (en) Production of ceramic thin membrane
JP2000077740A (en) Piezoelectric thin film element and manufacture thereof
JPH0695443B2 (en) Method of manufacturing ferroelectric thin film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040430

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040701

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040825

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20041022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060912