JP3506316B2 - Exhaust gas purification catalyst and exhaust gas purification device - Google Patents

Exhaust gas purification catalyst and exhaust gas purification device

Info

Publication number
JP3506316B2
JP3506316B2 JP23468098A JP23468098A JP3506316B2 JP 3506316 B2 JP3506316 B2 JP 3506316B2 JP 23468098 A JP23468098 A JP 23468098A JP 23468098 A JP23468098 A JP 23468098A JP 3506316 B2 JP3506316 B2 JP 3506316B2
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
gas purifying
layer
zeolite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23468098A
Other languages
Japanese (ja)
Other versions
JP2000051707A (en
Inventor
伸司 山本
智美 江藤
真弘 高谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP23468098A priority Critical patent/JP3506316B2/en
Publication of JP2000051707A publication Critical patent/JP2000051707A/en
Application granted granted Critical
Publication of JP3506316B2 publication Critical patent/JP3506316B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関のエンジ
ン始動時の排気ガスを浄化する排気ガス浄化用触媒に関
する。本発明は又、自動車等の内燃機関からエンジン始
動直後の低温時に排出される排気ガス中の炭化水素(以
下、「HC」と称す)、一酸化炭素(以下、「CO」と
称す)及び窒素酸化物(以下、「NOx」と称す)のう
ち、特に、HCを効率良く浄化することができる排気ガ
ス浄化用触媒及びこの触媒を含む排気ガス浄化装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying catalyst for purifying exhaust gas when starting an engine of an internal combustion engine. The present invention also relates to hydrocarbons (hereinafter referred to as “HC”), carbon monoxide (hereinafter referred to as “CO”), and nitrogen in exhaust gas discharged from an internal combustion engine of an automobile or the like at a low temperature immediately after the engine is started. Among oxides (hereinafter referred to as “NOx”), it particularly relates to an exhaust gas purifying catalyst capable of efficiently purifying HC and an exhaust gas purifying apparatus including the catalyst.

【0002】[0002]

【従来の技術】近年、内燃機関のエンジン始動時の低温
域で大量に排出されるHCの浄化を目的に、ゼオライト
を用いたHC吸着触媒が開発されている。該HC吸着触
媒は、三元触媒が活性化しないエンジン始動時の低温域
において、大量に排出されるHCを一時的に吸着、保持
し、次に排気ガス温度上昇により三元触媒が活性化した
時に、HCを徐々に脱離し、しかも浄化するというもの
である。
2. Description of the Related Art In recent years, an HC adsorption catalyst using zeolite has been developed for the purpose of purifying a large amount of HC discharged in a low temperature range at the time of engine start of an internal combustion engine. The HC adsorbing catalyst temporarily adsorbs and retains a large amount of HC discharged in a low temperature range at the time of engine startup in which the three-way catalyst is not activated, and then the three-way catalyst is activated due to a rise in exhaust gas temperature. At times, HC is gradually desorbed and purified.

【0003】ところで、ゼオライトを用いたHC吸着触
媒では、排ガス中のHC種分布とゼオライトの有する細
孔径との間に相関があるため、最適な細孔径を持つゼオ
ライトを設定する必要がある。従来は、MFI型(ZS
M5)をメインに、他の細孔径を有するゼオライト(例
えばUSY等)をブレンドし、細孔分布を調整していた
が、耐久後にはゼオライト種によって細孔径の歪みや吸
着・脱離特性が異なるため、排ガスHC種の吸着が不十
分であるという問題があった。
By the way, in the HC adsorption catalyst using zeolite, there is a correlation between the distribution of HC species in the exhaust gas and the pore size of the zeolite, so it is necessary to set the zeolite having the optimum pore size. Conventionally, MFI type (ZS
M5) was mainly blended with zeolites having other pore sizes (such as USY) to adjust the pore distribution, but after endurance, the pore size distortion and adsorption / desorption characteristics differ depending on the zeolite species. Therefore, there is a problem that the adsorption of the exhaust gas HC species is insufficient.

【0004】一方、三元貴金属の触媒としては、従来は
Rh,Pt,Pd等の貴金属種を同一層に共存させた仕
様や、Rh層とPd層を塗り分けた仕様等が提案されて
いた。例えば、特開平2−56247号公報に示される
様にゼオライトを主成分とする第1層の上に、Pt,P
d,Rh等の貴金属を主成分とする第2層を設けた排気
ガス浄化用触媒が提案されている。
On the other hand, as a catalyst for a ternary noble metal, conventionally, a specification in which noble metal species such as Rh, Pt, and Pd coexist in the same layer, and a specification in which the Rh layer and the Pd layer are separately coated have been proposed. . For example, as shown in JP-A-2-56247, Pt, P is formed on the first layer containing zeolite as a main component.
An exhaust gas purifying catalyst provided with a second layer containing a noble metal such as d or Rh as a main component has been proposed.

【0005】また、エンジン始動直後の低温時に排出さ
れる排気ガス中のHCの低減を目的に、HCを吸着材を
用いて一時的に貯蔵し、三元触媒が活性化した後脱離さ
せ、三元触媒で浄化する方法が検討されている。
Further, for the purpose of reducing HC in the exhaust gas discharged at a low temperature immediately after the engine is started, HC is temporarily stored using an adsorbent and is desorbed after the three-way catalyst is activated. A method of purifying with a three-way catalyst is being studied.

【0006】かかるHC吸着材(炭化水素吸着材)を用
いた発明としては、例えば、特開平6−74019号公
報、特開平7−144119号公報、特開平6−142
457号公報、特開平5−59942号公報、特開平7
−102957号公報等に開示されているものがある。
Examples of the invention using such an HC adsorbent (hydrocarbon adsorbent) include, for example, JP-A-6-74019, JP-A-7-144119, and JP-A-6-142.
457, JP-A-5-59942, JP-A-7
There is one disclosed in Japanese Patent Laid-Open No. 102957.

【0007】特開平6−74019号公報は、排気流路
にバイパス流路を設け、エンジン始動直後のコールド時
に排出されるHCをバイパス流路に配置したHC吸着材
に一旦吸着させ、その後流路を切り換え、下流の三元触
媒が活性化した後、排気ガスの一部をHC吸着触媒に通
じ、脱離したHCを徐々に後段の三元触媒で浄化するシ
ステムを提案している。
In Japanese Patent Laid-Open No. 6-74019, a bypass passage is provided in the exhaust passage so that HC discharged during cold immediately after the engine is started is once adsorbed by an HC adsorbent arranged in the bypass passage, and thereafter the passage is formed. It is proposed that after switching between the two, the downstream three-way catalyst is activated, part of the exhaust gas is passed to the HC adsorption catalyst, and the desorbed HC is gradually purified by the latter three-way catalyst.

【0008】また、特開平7−144119号公報は、
コールド時に前段の三元触媒に熱を奪わせ中段のHC吸
着材の吸着効率を向上し、前段の三元触媒活性化後は、
タンデム配置した中段のHC吸着材を介して後段の三元
触媒に反応熱を伝熱し易くし、後段の三元触媒での浄化
を促進するシステムを提案している。また、特開平6−
142457号公報は、低温域で吸着したHCが脱離す
る際に、脱離HCを含む排気ガスを熱交換器で予熱し三
元触媒での浄化を促進するコールドHC吸着除去システ
ムを提案している。
Further, Japanese Patent Application Laid-Open No. 7-144119 discloses that
When cold, heat is absorbed by the three-way catalyst in the front stage to improve the adsorption efficiency of the HC adsorbent in the middle stage, and after activation of the three-way catalyst in the front stage,
We propose a system that facilitates the transfer of reaction heat to the rear-stage three-way catalyst through the tandem-arranged middle-stage HC adsorbent and promotes purification by the rear-stage three-way catalyst. In addition, JP-A-6-
Japanese Patent No. 142457 proposes a cold HC adsorption / removal system that promotes purification with a three-way catalyst by preheating exhaust gas containing desorbed HC in a heat exchanger when HC adsorbed in a low temperature range is desorbed. There is.

【0009】一方、特開平5−59942号公報は、触
媒配置とバルブによる排気ガスの流路を切り換えによっ
て、HC吸着材の昇温を緩慢にし、コールドHCの吸着
効率を向上するシステムを提案している。特開平7−1
02957号公報は、後段の酸化・三元触媒の浄化性能
を向上するため、前段の三元触媒と中段のHC吸着材の
間に空気を供給し、後段の酸化・三元触媒の活性化を促
進するシステムを提案している。
On the other hand, Japanese Laid-Open Patent Publication No. 5-59942 proposes a system for slowing the temperature rise of the HC adsorbent and improving the adsorption efficiency of cold HC by switching the catalyst arrangement and the flow path of the exhaust gas by the valve. ing. JP-A-7-1
JP-A-02957 discloses that in order to improve the purification performance of the latter-stage oxidation / three-way catalyst, air is supplied between the former-stage three-way catalyst and the middle-stage HC adsorbent to activate the latter-stage oxidation / three-way catalyst. We propose a system to promote.

【0010】[0010]

【発明が解決しようとする課題】上記の如きゼオライト
層などのHC吸着材層の上に三元層を設けた排気ガス浄
化用触媒では、内燃機関の始動直後の排気ガス低温域に
おいてゼオライトに吸着されたHCが、排気ガス温度の
上昇に伴い脱離してくる際、排気ガスがリッチになるた
め、理論空燃比域での浄化に有効な三元触媒が十分に働
かず、HC,CO,NOxのバランスのよい浄化ができ
なくなるという問題がある。また、従来では、ゼオライ
ト層と三元層のコート層比率に関しては、特に提示して
いなかったが、HC吸着触媒では、ゼオライト層と三元
層の構造が最適でないと、HC吸着・脱離・浄化のサイ
クルが有効に行なわれないという問題がある。
An exhaust gas purifying catalyst having a ternary layer on an HC adsorbent layer such as a zeolite layer as described above is adsorbed by zeolite in a low temperature range of exhaust gas immediately after the start of an internal combustion engine. When the generated HC is desorbed as the exhaust gas temperature rises, the exhaust gas becomes rich, so the three-way catalyst effective for purification in the stoichiometric air-fuel ratio region does not work sufficiently, and HC, CO, NOx There is a problem that it will not be possible to achieve a well-balanced purification. Further, conventionally, although the ratio of the coat layers of the zeolite layer and the ternary layer was not particularly shown, if the structure of the zeolite layer and the ternary layer is not optimum in the HC adsorption catalyst, HC adsorption / desorption / There is a problem that the purification cycle is not performed effectively.

【0011】一方、〔従来の技術〕の項において述べた
上記公報中に記載されたHC吸着材を用いたシステムで
は、HC吸着材の耐久性が不充分なため、耐久後にはH
C吸着効率が低下し、しかも、後段の三元触媒が活性化
する前にHCが脱離しエミッションを悪化させてしま
う。そこで、HC吸着材の吸着効率の向上や脱離遅延化
を図るため、高温ガスのバイパス法や三元触媒暖機のた
めの熱交換器が使用されているが、システム構成が煩雑
化し十分な効果が得られず、しかも、コストが著しく上
昇する。このため、耐久性と吸着効率の高いHC吸着材
が望まれている。
On the other hand, in the system using the HC adsorbent described in the above-mentioned publication mentioned in the section [Prior Art], the durability of the HC adsorbent is insufficient, so that H
The C adsorption efficiency is lowered, and moreover, HC is desorbed before the subsequent three-way catalyst is activated, and the emission is deteriorated. Therefore, in order to improve the adsorption efficiency of HC adsorbent and delay desorption, a heat exchanger for hot gas bypass method and three-way catalyst warm-up is used, but the system configuration becomes complicated and sufficient. No effect is obtained, and the cost is significantly increased. Therefore, an HC adsorbent having high durability and high adsorption efficiency is desired.

【0012】特に、HC吸着材から脱離するHCの浄化
を目的とした三元触媒は、初期から耐久後まで高い浄化
性能を維持するため貴金属を多量に使用したり、早期活
性化を図るため空気を導入している。このため、使用す
る貴金属量が少なくても高い性能が得られる触媒が望ま
れているが、貴金属量を低減した場合、耐久性が不十分
で、耐久後は低温域での触媒活性や浄化性能が悪化する
という問題点があった。
Particularly, the three-way catalyst for purifying HC desorbed from the HC adsorbent uses a large amount of noble metal or maintains early purification in order to maintain high purification performance from the initial stage to the end of durability. Introducing air. Therefore, a catalyst that can obtain high performance even with a small amount of noble metal used is desired, but when the amount of noble metal is reduced, the durability is insufficient, and after endurance, the catalyst activity and purification performance in the low temperature range There was a problem that was worse.

【0013】[0013]

【課題を解決するための手段】本発明は、このような従
来の排気ガス浄化用触媒に対して、モノリス担体を用い
た一体構造型の排気ガス浄化用触媒であって、所定のモ
ノリス担体上にゼオライトを主成分とするHC吸着材を
含むHC吸着材層を設け、更に該HC吸着材層の上に所
定の貴金属を触媒成分として含む触媒成分層を設け、更
にまた該触媒成分層の上に所定の上方触媒成分層を設け
て成り、該HC吸着材層と該触媒成分層との重量比が所
定範囲にある排気ガス浄化用触媒とすることなどで、上
記問題点を解決することを目的としている。
SUMMARY OF THE INVENTION The present invention is an integrated structure type exhaust gas purifying catalyst using a monolith carrier, in contrast to such a conventional exhaust gas purifying catalyst, which is provided on a predetermined monolith carrier. Is provided with an HC adsorbent layer containing an HC adsorbent containing zeolite as a main component, a catalyst component layer containing a predetermined noble metal as a catalyst component is further provided on the HC adsorbent layer, and further on the catalyst component layer. In order to solve the above problems, an exhaust gas purifying catalyst is provided in which a predetermined upper catalyst component layer is provided, and the weight ratio of the HC adsorbent layer to the catalyst component layer is within a predetermined range. Has an aim.

【0014】即ち、本発明の排気ガス浄化用触媒は、G
SA(Geometrical Surface Ar
ea:幾何学的表面積)が10cm/cm〜35c
/cmのモノリス担体上に、炭化水素吸着材を含
むHC吸着材層、触媒成分を含む触媒成分層及び上方触
媒成分層をこの順でコートして成る排気ガス浄化用触媒
であって、上記HC吸着材層の炭化水素吸着材がゼオラ
イトを主成分とし、上記触媒成分層が、パラジウム(P
d)、白金(Pt)及びロジウム(Rh)から成る群よ
り選ばれた少なくとも一種の貴金属を触媒成分とすると
ともに、そのうちの少なくともPdを含有し、上記上方
触媒成分層がジルコニウム酸化物と活性アルミナを含有
し、このジルコニウム酸化物が、Pt、Rh、Ce、N
d及びLaから成る群より選ばれた一種を金属換算で1
〜30モル%、Zrを70〜98モル%含み、上記HC
吸着材層と上記触媒成分層との重量比が9:1〜1:4
であり、上記モノリス担体のセル内の平坦部における上
記HC吸着材層と上記触媒成分層の厚みの合計である、
コート層厚みが30μm〜400μmである、ことを特
徴とする。
That is, the exhaust gas purifying catalyst of the present invention is G
SA (Geometrical Surface Ar)
ea: geometric surface area) 10 cm 2 / cm 3 to 35 c
A catalyst for purifying exhaust gas, comprising an HC adsorbent layer containing a hydrocarbon adsorbent, a catalyst component layer containing a catalyst component, and an upper catalyst component layer coated in this order on a monolithic carrier of m 2 / cm 3. , The hydrocarbon adsorbent of the HC adsorbent layer is mainly composed of zeolite, and the catalyst component layer is palladium (P
d), at least one noble metal selected from the group consisting of platinum (Pt) and rhodium (Rh) is used as a catalyst component, and at least Pd among them is contained, and the upper catalyst component layer has zirconium oxide and activated alumina. This zirconium oxide contains Pt, Rh, Ce, N
1 selected from the group consisting of d and La in terms of metal
To 30 mol% and Zr of 70 to 98 mol%, the above HC
The weight ratio of the adsorbent layer to the catalyst component layer is 9: 1 to 1: 4.
Is the total thickness of the HC adsorbent layer and the catalyst component layer in the flat portion in the cell of the monolith carrier,
The coat layer has a thickness of 30 μm to 400 μm.

【0015】また、本発明の排気ガス浄化装置は、上述
のような排気ガス浄化用触媒の前段に、Pd、PdとP
t、又はPdとRhを含みPd担持濃度が4〜20重量
%であるPd担持粉末を含有し、触媒1L当たりのPd
担持量が100g/cf(3.5g/L)〜1000g
/cf(35.4g/L)であるPd含有触媒を配置
し、上記排気ガス浄化用触媒が吸着する炭化水素量を、
この排気ガス浄化用触媒の炭化水素飽和吸着量の70%
以下に設定したことを特徴とする。
In the exhaust gas purifying apparatus of the present invention, Pd, Pd and Pd are provided in front of the exhaust gas purifying catalyst as described above.
t or Pd-supporting powder containing Pd and Rh and having a Pd-supporting concentration of 4 to 20% by weight, and containing Pd per 1 L of catalyst.
Carrying amount is 100 g / cf (3.5 g / L) to 1000 g
/ Cf (35.4 g / L) of the Pd-containing catalyst is arranged, and the amount of hydrocarbons adsorbed by the exhaust gas purifying catalyst is
70% of the saturated hydrocarbon adsorption amount of this exhaust gas purification catalyst
It is characterized by the following settings.

【0016】[0016]

【発明の実施の形態】まず、本発明の実施の態様につい
て説明する。本発明の排気ガス浄化用触媒のコート層構
造は、特定のモノリス担体上にHCの吸着に有効なゼオ
ライト、好ましくはβ−ゼオライトをHC吸着材の主成
分とするHC吸着材層を設け、更に該HC吸着材層の上
にPd、Pt及びRhから成る群より選ばれた少なくと
も一種の貴金属、特にPdを触媒成分として含む触媒成
分層を設けたもので、上記[従来の技術]の項に記載し
た「HC吸着触媒」の一種である。ここで、β−ゼオラ
イトの使用量は、触媒1Lあたり、10g〜400gが
好ましい。β−ゼオライトの使用量が10g未満ではH
C吸着性能が十分に発現せず、逆に400gを越えても
HC吸着性能及び脱離遅延化効果は飽和し、経済的にも
有効でない。モノリス担体上にHC吸着材層、その上に
いわゆる三元浄化能を有する触媒成分層(三元層又は三
元触媒層)を設けることで、HC吸着材層のゼオライト
から脱離してくるHCの後処理の効率化が図れる。この
ように、多層構造の一体型触媒として構成しているた
め、2ブリック型に比べ熱損失が少なく、触媒成分層の
活性化が早く、しかもHC吸着材から脱離したHCが触
媒成分層と十分に接触できるため、脱離HCを効率良く
浄化できる。
BEST MODE FOR CARRYING OUT THE INVENTION First, embodiments of the present invention will be described. The exhaust gas purifying catalyst coat layer structure of the present invention comprises a HC adsorbent layer containing a zeolite effective for adsorbing HC, preferably β-zeolite as a main component of the HC adsorbent, on a specific monolithic carrier. A catalyst component layer containing at least one noble metal selected from the group consisting of Pd, Pt, and Rh, in particular Pd as a catalyst component, is provided on the HC adsorbent layer. It is a type of the described "HC adsorption catalyst". Here, the amount of β-zeolite used is preferably 10 g to 400 g per 1 L of the catalyst. If the amount of β-zeolite used is less than 10 g, H
The C adsorption performance is not sufficiently expressed, and conversely, even if it exceeds 400 g, the HC adsorption performance and the desorption retarding effect are saturated, which is not economically effective. By providing an HC adsorbent layer on the monolith carrier and a catalyst component layer (three-way layer or three-way catalyst layer) having a so-called three-way purification capability on the HC adsorbent layer, the HC desorbed from the zeolite of the HC adsorbent layer can be reduced. Post-processing efficiency can be improved. As described above, since the catalyst is constituted as an integrated type catalyst having a multilayer structure, the heat loss is smaller than that of the 2-brick type catalyst, the activation of the catalyst component layer is quicker, and the HC desorbed from the HC adsorbent acts as the catalyst component layer. Since sufficient contact can be made, desorbed HC can be efficiently purified.

【0017】また、該HC吸着材層と該触媒成分層の重
量比は9:1〜1:4である。当該規定値より触媒成分
層の割合が多くなると、下層に配置されたHC吸着材層
(ゼオライト層)へのガス拡散が悪くなり、十分な吸着
性能が得られない。当該規定値より触媒成分層の割合が
少なくなると、脱離してくるHCの酸化性能及び排気ガ
スの浄化性能が十分に得られなくなる。更に、該HC吸
着材層と該触媒成分層を設けるモノリス担体(特定のモ
ノリス担体)は、そのGSAが10cm/cm〜3
5cm/cmである。当該規定値よりGSAが大き
くなると、HC吸着材層のHCの脱離が速くなり、未浄
化のまま排出される脱離HCが増える。また、当該規定
値より小さいと、HCのHC吸着材層内への拡散が遅く
吸着性能が十分に発現せず、排気ガスと触媒成分層との
接触が悪くなり排気ガス成分の浄化性能が十分に得られ
なくなる。
The weight ratio of the HC adsorbent layer to the catalyst component layer is 9: 1 to 1: 4. When the proportion of the catalyst component layer is higher than the specified value, gas diffusion to the HC adsorbent layer (zeolite layer) arranged in the lower layer becomes poor, and sufficient adsorption performance cannot be obtained. If the proportion of the catalyst component layer is less than the specified value, the oxidizing performance of desorbed HC and the exhaust gas purification performance cannot be sufficiently obtained. Furthermore, the monolithic carrier (specific monolithic carrier) provided with the HC adsorbent layer and the catalyst component layer has a GSA of 10 cm 2 / cm 3 to 3.
It is 5 cm 2 / cm 3 . When GSA is larger than the specified value, desorption of HC in the HC adsorbent layer is accelerated, and desorbed HC discharged without being purified increases. On the other hand, if it is less than the specified value, the diffusion of HC into the HC adsorbent layer is slow and the adsorption performance is not sufficiently expressed, the contact between the exhaust gas and the catalyst component layer is deteriorated, and the exhaust gas component purification performance is sufficient. Will not be obtained.

【0018】また、本発明の排気ガス浄化用触媒におい
ては、HC吸着材で吸着したHCが脱離する際の浄化効
率を向上するため、HC吸着材層の上部に、Pdを含有
する触媒成分層(Pd含有触媒成分層)を配置するが、
このPd含有触媒成分層に、Zr、Nd及びLaから成
る群より選ばれた一種を金属換算で1〜40モル%、セ
リウムを60〜98モル%含むセリウム酸化物を含有さ
せることができる。
Further, in the exhaust gas purifying catalyst of the present invention, in order to improve the purifying efficiency when the HC adsorbed by the HC adsorbent is desorbed, a catalyst component containing Pd is provided on the upper portion of the HC adsorbent layer. A layer (Pd-containing catalyst component layer) is arranged,
The Pd-containing catalyst component layer may contain cerium oxide containing 1 to 40 mol% and 60 to 98 mol% of cerium in terms of metal of one selected from the group consisting of Zr, Nd and La.

【0019】特に、Pdの浄化性能と耐久性を向上させ
るため、Pd含有触媒成分層中に、Zr、Nd及びLa
から成る群より選ばれた一種を金属換算で1〜40モル
%、セリウムを60〜98モル%含むセリウム酸化物を
含有させることによって、酸素吸蔵能の高いセリウム酸
化物が、リッチ雰囲気及びストイキ近傍で格子酸素や吸
着酸素を放出し易くなるため、Pdの酸化状態を排気ガ
スの浄化に適したものとし、Pdの触媒能の低下を抑制
できる。かかるセリウム酸化物の使用量は、触媒1Lあ
たり5〜100gである。5g未満だと十分な貴金属の
分散性が得られず、100gより多く使用しても改良効
果は飽和し有効でない。
Particularly, in order to improve the purification performance and durability of Pd, Zr, Nd and La are contained in the Pd-containing catalyst component layer.
By containing a cerium oxide containing 1 to 40 mol% and 60 to 98 mol% of cerium in terms of metal of one selected from the group consisting of cerium oxide having a high oxygen storage capacity, a rich atmosphere and a vicinity of stoichiometry can be obtained. Since it becomes easy to release lattice oxygen and adsorbed oxygen, the oxidation state of Pd can be made suitable for purification of exhaust gas, and a decrease in catalytic ability of Pd can be suppressed. The amount of the cerium oxide used is 5 to 100 g per 1 L of the catalyst. If it is less than 5 g, sufficient dispersibility of noble metal cannot be obtained, and if it is used more than 100 g, the improving effect is saturated and it is not effective.

【0020】更に、本発明の排気ガス浄化用触媒では、
Pdの耐被毒性や浄化性能を向上するため、Pd含有触
媒成分層の上部に、Pt、Rh、Ce、Nd及びLaか
ら成る群より選ばれた一種を金属換算で1〜30モル
%、Zrを70〜98モル%含むジルコニウム酸化物、
活性アルミナを含有する触媒成分層(上方触媒成分層)
を配置する。上記のPtやRhが担持される基材として
は、PtやRhの耐久性を向上させるため、ジルコニウ
ム酸化物が適切である。特に、酸素吸蔵能の高いセリウ
ム含有ジルコニウム酸化物が、リッチ雰囲気及びストイ
キ近傍で格子酸素や吸着酸素を放出し易くなるため、P
tやRhの酸化状態を排気ガスの浄化に適したものと
し、PtやRhの触媒能の低下を抑制できる。
Further, in the exhaust gas purifying catalyst of the present invention,
In order to improve the poisoning resistance and purification performance of Pd, one kind selected from the group consisting of Pt, Rh, Ce, Nd, and La is added to the upper part of the Pd-containing catalyst component layer in an amount of 1 to 30 mol% in terms of metal, and Zr. Zirconium oxide containing 70 to 98 mol% of
Catalyst component layer containing activated alumina (upper catalyst component layer)
To place. As the base material on which Pt or Rh is supported, zirconium oxide is suitable in order to improve the durability of Pt and Rh. In particular, cerium-containing zirconium oxide having a high oxygen storage capacity easily releases lattice oxygen and adsorbed oxygen in a rich atmosphere and in the vicinity of stoichiometry.
The oxidation state of t and Rh can be made suitable for purification of exhaust gas, and the reduction of the catalytic ability of Pt and Rh can be suppressed.

【0021】かかるジルコニウム酸化物のCe含有量は
0.01モル%〜30モル%である。Ce含有量が0.
01モル%未満ではZrOのみの場合と変わらず、上
記した元素のZrOのCeの酸素吸蔵能による改良効
果が現れない。また、Ce含有量が30モル%を越える
とこの効果が飽和もしくは逆にBET比表面積や熱安定
性が低下する。ジルコニウム酸化物の使用量は、触媒1
Lあたり5〜100gである。5g未満だと十分な貴金
属の分散性が得られず、100gより多く使用しても改
良効果は飽和し有効でない。
The Ce content of the zirconium oxide is 0.01 mol% to 30 mol%. Ce content is 0.
If it is less than 01 mol% unchanged in the case of only ZrO 2, the improving effect by the oxygen storage capacity of ZrO 2 of Ce of the elements described above does not appear. On the other hand, when the Ce content exceeds 30 mol%, this effect is saturated or, conversely, the BET specific surface area and thermal stability decrease. The amount of zirconium oxide used is 1
It is 5 to 100 g per L. If it is less than 5 g, sufficient dispersibility of noble metal cannot be obtained, and if it is used more than 100 g, the improving effect is saturated and it is not effective.

【0022】また、Pdの低温活性を向上するため、K
やBaを含有させことができる。かかる元素の含有量は
触媒1L中1〜40gである。1g未満では、HC類の
貴金属に対する吸着被毒の緩和やPdのシンタリングを
抑制できず、逆に、40gを越えても有為な増量効果が
得られず、逆に性能を低下させる。
In order to improve the low temperature activity of Pd, K
And Ba can be contained. The content of such an element is 1 to 40 g in 1 L of the catalyst. If it is less than 1 g, the adsorption poisoning of HCs against noble metals cannot be alleviated and the sintering of Pd cannot be suppressed, and conversely, if it exceeds 40 g, a significant amount increasing effect cannot be obtained and the performance is deteriorated.

【0023】また、本発明の触媒の他の好適な実施態様
では、HC吸着・脱離能特性と脱離HCの浄化性能を有
効に発現するため、特定モノリス担体上に、β−ゼオラ
イトを含む少なくとも一種以上のゼオライトを主成分と
するHC吸着材層を設け、該HC吸着材層の上に、触媒
成分としてPdを含有する触媒成分層(Pd含有触媒成
分層)を設け、該Pd含有触媒成分層の上に、触媒成分
としてRhを含有する触媒成分層(Rh含有上方触媒成
分層)を設ける。
In another preferred embodiment of the catalyst of the present invention, β-zeolite is contained on the specific monolith carrier in order to effectively exhibit the HC adsorption / desorption ability characteristics and the purification performance of desorbed HC. An HC adsorbent layer containing at least one or more zeolite as a main component is provided, and a catalyst component layer containing Pd as a catalyst component (Pd-containing catalyst component layer) is provided on the HC adsorbent layer. A catalyst component layer containing Rh as a catalyst component (Rh-containing upper catalyst component layer) is provided on the component layer.

【0024】このように、モノリス担体上にHC吸着材
層、その上に触媒成分層を設けることで、HC吸着材層
のゼオライトから脱離してくるHCの後処理の効率化が
図れる。更に、HC吸着材層の上に、HC酸化活性に優
れたPdを触媒成分として配置し、その上にRh含有上
方触媒成分層を設けることで、三元浄化能を有する触媒
成分層内が脱離HCによってリッチ雰囲気になっても、
HC、CO、NOxの浄化をバランス良く行うことがで
きる。更に、リン(P)や鉛(Pb)等による被毒の影
響を受けやすいPdを内側に配置することで、被毒の影
響を少なくできる。また、下層に配置されたHC吸着材
層は、上層の触媒成分層に比べて暖気が遅いため、吸着
したHCを少しでも長く保持でき、逆に触媒成分層は早
く暖気し活性化されるため、HCの吸着・脱離・浄化の
バランスが良い。
As described above, by providing the HC adsorbent layer on the monolith carrier and the catalyst component layer on the HC adsorbent layer, the efficiency of the post-treatment of HC desorbed from the zeolite of the HC adsorbent layer can be improved. Furthermore, by disposing Pd, which has excellent HC oxidation activity, as a catalyst component on the HC adsorbent layer, and providing the Rh-containing upper catalyst component layer thereon, the inside of the catalyst component layer having the three-way purification ability is removed. Even if it becomes a rich atmosphere due to separation HC,
It is possible to purify HC, CO, and NOx in good balance. Furthermore, by arranging Pd inside which is easily affected by poisoning due to phosphorus (P), lead (Pb), etc., the effect of poisoning can be reduced. Also, the HC adsorbent layer arranged in the lower layer has a slower warm-up time than the catalyst component layer in the upper layer, so that the adsorbed HC can be retained for as long as possible, and on the contrary, the catalyst component layer warms up quickly and is activated. Good balance of adsorption, desorption and purification of HC.

【0025】更に、上述した本発明の触媒の好適実施態
様では、HC吸着材層と、触媒成分層(Pd含有触媒成
分層)及び上方触媒成分層(Rh含有上方触媒成分層)
の総コート重量比(上方触媒成分層が存在しない場合、
HC吸着材層と触媒成分層の総コート重量比)は5:1
〜1:2である。触媒成分層の割合が当該規定値より多
くなると、下層に配置されたHC吸着材層へのガス拡散
が悪くなり、十分な吸着性能が得られない。触媒成分層
(及びRh含有上方触媒成分層)の割合が当該規定値よ
り少なくなると、脱離してくるHCの酸化性能及び排気
ガスの浄化性能が十分に得られなくなる。
Furthermore, in the preferred embodiment of the catalyst of the present invention described above, the HC adsorbent layer, the catalyst component layer (Pd-containing catalyst component layer) and the upper catalyst component layer (Rh-containing upper catalyst component layer).
Total coat weight ratio of (if upper catalyst component layer is not present,
The total coating weight ratio of the HC adsorbent layer and the catalyst component layer) is 5: 1.
~ 1: 2. When the ratio of the catalyst component layer is higher than the specified value, gas diffusion to the HC adsorbent layer disposed in the lower layer is deteriorated and sufficient adsorption performance cannot be obtained. If the ratio of the catalyst component layer (and the Rh-containing upper catalyst component layer) is less than the specified value, the oxidizing performance of desorbed HC and the exhaust gas purification performance cannot be sufficiently obtained.

【0026】なお、本発明の排気ガス浄化用触媒では、
HC吸着材層と、三元浄化能を有する触媒成分層及びR
h含有上方触媒成分層をGSAが10cm/cm
35cm/cmのモノリス担体の上に設ける。当該
規定値よりGSAが大きくなると、HC吸着材層のHC
の脱離が速くなり、未浄化のまま排出される脱離HCが
増える。また、当該規定値より小さいと、排気ガスと触
媒成分層との接触が悪くなり排気ガス成分の浄化性能が
十分に得られなくなる。
In the exhaust gas purifying catalyst of the present invention,
HC adsorbent layer, catalyst component layer having three-way purification ability, and R
GSA of the h-containing upper catalyst component layer is 10 cm 2 / cm 3 to
It is provided on a monolithic carrier of 35 cm 2 / cm 3 . When GSA becomes larger than the specified value, HC in the HC adsorbent layer
Desorption becomes faster, and desorption HC that is discharged without being purified increases. On the other hand, when the value is smaller than the specified value, the contact between the exhaust gas and the catalyst component layer is deteriorated, and the exhaust gas component purification performance cannot be sufficiently obtained.

【0027】更に、上記好適実施態様に係る排気ガス浄
化用触媒では、アルカリ金属及びアルカリ土類金属から
成る群より選ばれた少なくとも一種を、HC吸着材層及
び/又は触媒成分層、あるいはHC吸着材層、触媒成分
層及びRh含有上方触媒成分層の少なくとも1層に含浸
担持する。使用できるアルカリ金属及びアルカリ土類金
属としては、リチウム(Li)、ナトリウム(Na)、
カリウム(K)、セシウム(Cs)、マグネシウム(M
g)、カルシウム(Ca)、ストロンチウム(Sr)及
びバリウム(Ba)から成る群より選ばれた少なくとも
一種の元素である。
Further, in the exhaust gas purifying catalyst according to the above preferred embodiment, at least one selected from the group consisting of alkali metals and alkaline earth metals is used in the HC adsorbent layer and / or the catalyst component layer, or the HC adsorbing layer. At least one of the material layer, the catalyst component layer and the Rh-containing upper catalyst component layer is impregnated and supported. Alkali metals and alkaline earth metals that can be used include lithium (Li), sodium (Na),
Potassium (K), Cesium (Cs), Magnesium (M
g), at least one element selected from the group consisting of calcium (Ca), strontium (Sr) and barium (Ba).

【0028】使用できるアルカリ金属及びアルカリ土類
金属の化合物は、酸化物、酢酸塩及び水酸化物等の水溶
性のものである。これにより、貴金属の近傍に塩基性元
素であるアルカリ金属及び/又はアルカリ土類金属を分
散性良く担持することが可能となる。
The alkali metal and alkaline earth metal compounds that can be used are water-soluble compounds such as oxides, acetates and hydroxides. This makes it possible to support the alkali metal and / or alkaline earth metal, which is a basic element, in the vicinity of the noble metal with good dispersibility.

【0029】即ち、アルカリ金属及び/又はアルカリ土
類金属化合物から成る粉末の水溶液を、ウォッシュコー
ト成分を担持した上記モノリス担体に含浸し、乾燥し、
次いで空気中及び/又は空気流通下で200〜600℃
の比較的低温で焼成するものである。かかる焼成温度が
200℃未満だとアルカリ金属及びアルカリ土類金属化
合物が酸化物形態になることが十分にできず、逆に60
0℃を越えても焼成温度の効果は飽和し、顕著な差異は
得られない。
That is, an aqueous solution of a powder of an alkali metal and / or alkaline earth metal compound is impregnated into the above monolith carrier carrying a washcoat component and dried,
Then in air and / or under air flow 200-600 ° C
Is fired at a relatively low temperature. If the baking temperature is less than 200 ° C., the alkali metal and alkaline earth metal compounds cannot be sufficiently converted into an oxide form.
Even if the temperature exceeds 0 ° C., the effect of the firing temperature is saturated, and no significant difference can be obtained.

【0030】また、本発明の排気ガス浄化用触媒におい
て、HC吸着材層のゼオライト成分としては、エンジン
始動時に大量に排出されるHCを有効に吸着するため
に、大小2種の細孔径を有するSi/2Al比が10〜
500のH型β−ゼオライトを主成分とすることが望ま
しい。該β−ゼオライトは、他のゼオライトに比べて耐
熱性が高く、構造安定性に優れる。また、他のゼオライ
トが吸着に有効なHC分子径範囲が狭いのに対し、β−
ゼオライトは大小2種の細孔径を有するため、細孔が入
り組み細孔構造を複雑にし、多種のHCを有効に吸着で
きる。
Further, in the exhaust gas purifying catalyst of the present invention, the zeolite component of the HC adsorbent layer has two kinds of pore sizes, large and small, in order to effectively adsorb a large amount of HC discharged at the time of engine start. Si / 2Al ratio is 10
It is desirable to use 500 H-type β-zeolite as a main component. The β-zeolite has higher heat resistance than other zeolites and excellent structural stability. Also, while other zeolites have a narrow HC molecular size range effective for adsorption, β-
Since zeolite has two kinds of pore sizes, large and small, the pores are combined to complicate the pore structure, and various kinds of HC can be effectively adsorbed.

【0031】また、該β−ゼオライトのSi/2Al比
は10〜500の範囲であることが望ましい。Si/2
Al比が10未満になると、排気ガス中に共存する水分
子の吸着阻害が大きく、有効にHCを吸着することがで
きない。逆にSi/2Al比が500を超えると、HC
の吸着量が減少する。
Further, the Si / 2Al ratio of the β-zeolite is preferably in the range of 10 to 500. Si / 2
When the Al ratio is less than 10, the adsorption of water molecules coexisting in the exhaust gas is largely inhibited and HC cannot be effectively adsorbed. Conversely, if the Si / 2Al ratio exceeds 500, HC
Adsorption amount of is reduced.

【0032】更に、本発明の排気ガス浄化用触媒におい
て、HC吸着材層のゼオライト種については、主成分で
あるH型β−ゼオライトと共に、更にMFI型,Y型,
USY型,モルデナイト,フェリエライト,A型ゼオラ
イト,X型ゼオライト,AlPO4,SAPOのうち少
なくとも1種を用いる。これらゼオライトは、排気ガス
中のHC種の組成比に応じて、ゼオライト種の細孔分布
を変化させ、吸着能を向上させる。β−ゼオライトと共
にこれらゼオライト種を混合させることにより、吸着可
能なHC種の範囲が更に広くなる。逆に言えば、吸着し
たいHC種に対して、その吸着に可能な種々のゼオライ
ト種を適宜組み合わせることができる。尚、モルデナイ
ト、Y型、USY型及びMFI型ゼオライトから成る群
より選ばれた少なくとも一種を、全HC吸着材量の5重
量%〜45重量%含有させることができる。5重量%未
満だと十分な細孔径分布効果が得られず、逆に45重量
%より多く使用すると、この効果が飽和もしくはβ−ゼ
オライトの性能改良効果を低下させる。
Further, in the exhaust gas purifying catalyst of the present invention, regarding the zeolite species of the HC adsorbent layer, MFI type, Y type, and
At least one of USY type, mordenite, ferrierite, A type zeolite, X type zeolite, AlPO4 and SAPO is used. These zeolites change the pore distribution of the zeolite species according to the composition ratio of the HC species in the exhaust gas and improve the adsorption capacity. By mixing these zeolite species with β-zeolite, the range of HC species that can be adsorbed is further widened. Conversely, to the HC species to be adsorbed, various zeolite species capable of adsorbing the HC species can be appropriately combined. It should be noted that at least one selected from the group consisting of mordenite, Y-type, USY-type, and MFI-type zeolite can be contained in an amount of 5 wt% to 45 wt% of the total amount of HC adsorbent. If it is less than 5% by weight, a sufficient pore size distribution effect cannot be obtained. On the contrary, if it is used in excess of 45% by weight, this effect saturates or the performance improving effect of β-zeolite is lowered.

【0033】また、本発明の排気ガス浄化用触媒におい
て、HC吸着材層のゼオライトには、Pd(パラジウ
ム),Mg(マグネシウム),Ca(カルシウム),S
r(ストロンチウム),Ba(バリウム),Ag
(銀),Y(イットリウム),La(ランタン),Ce
(セリウム),Nd(ネオジウム),P(リン),B
(ホウ素),Zr(ジルコニウム)から選ばれた少なく
とも1種を含有せしめることが好ましい。ゼオライト
は、H型でも十分な吸着能力を有するが、Pd,Mg,
Ca,Sr,Ba,Ag,Y,La,Ce,Nd,P,
B,Zr等をイオン交換法、含浸法、浸漬法等の通常の
方法を用いて担持することにより、吸着特性、脱離抑制
能やゼオライトの耐久性をさらに向上させることができ
る。
In the exhaust gas purifying catalyst of the present invention, the zeolite of the HC adsorbent layer contains Pd (palladium), Mg (magnesium), Ca (calcium), S.
r (strontium), Ba (barium), Ag
(Silver), Y (yttrium), La (lanthanum), Ce
(Cerium), Nd (neodymium), P (phosphorus), B
It is preferable to contain at least one selected from (boron) and Zr (zirconium). Zeolite has sufficient adsorption capacity even in H type, but Pd, Mg,
Ca, Sr, Ba, Ag, Y, La, Ce, Nd, P,
By loading B, Zr and the like using a usual method such as an ion exchange method, an impregnation method, and a dipping method, it is possible to further improve the adsorption characteristics, the desorption suppressing ability and the durability of the zeolite.

【0034】更に、β−ゼオライトを主成分としたHC
吸着材の高温下における構造安定性(耐熱性)、コール
ドHCの吸着能や温度上昇時のHC脱離抑制能を向上す
るため、Pt、Pd、P、B、Mg及びCaから成る群
より選ばれた一種を含有することができる。かかる元素
の含有量は、HC吸着材に対して、0.1重量%〜10
重量%である。0.1重量%未満だと十な改良効果が得
られず、逆に10重量%より多く使用すると、ゼオライ
トの細孔が閉塞しHC吸着能が低下する。
Further, HC containing β-zeolite as a main component
Selected from the group consisting of Pt, Pd, P, B, Mg and Ca in order to improve the structural stability (heat resistance) of the adsorbent at high temperatures, the ability to adsorb cold HC and the ability to suppress HC desorption when the temperature rises. Can be included in the The content of such an element is 0.1% by weight to 10% with respect to the HC adsorbent.
% By weight. If it is less than 0.1% by weight, a sufficient improvement effect cannot be obtained. On the contrary, if it is used in excess of 10% by weight, the pores of the zeolite are blocked and the HC adsorbing ability is lowered.

【0035】また、本発明の排気ガス浄化用触媒におけ
る触媒成分層、Rh含有上方触媒成分層の少なくともい
ずれかに、更にPtを共存させることも好ましい。何故
なら、PtがPdあるいはRhと共存することにより、
更に耐被毒性を向上することができるからである。
Further, it is also preferable to further coexist Pt in at least one of the catalyst component layer and the Rh-containing upper catalyst component layer in the exhaust gas purifying catalyst of the present invention. Because Pt coexists with Pd or Rh,
This is because the poisoning resistance can be further improved.

【0036】更に、本発明の排気ガス浄化用触媒におい
て、ゼオライトを主成分とするHC吸着材層には、C
e、Nd及びLaから成る群より選ばれた少なくとも一
種を金属換算で1〜40モル%含むジルコニウム酸化物
と、Rhを含有せしめることが好ましい。上記触媒成分
層及びRh含有上方触媒成分層でも、十分な脱離HCの
浄化性能を有すが、ゼオライトを主成分とするHC吸着
材層に、Rhと、Ce、Nd及びLaから成る群より選
ばれた少なくとも一種を金属換算で1〜40モル%含む
ジルコニウム酸化物が含まれることによって、脱離HC
の浄化性能を更に向上させることができる。
Further, in the exhaust gas purifying catalyst of the present invention, C is contained in the HC adsorbent layer containing zeolite as a main component.
It is preferable to contain Rh and a zirconium oxide containing 1 to 40 mol% of at least one selected from the group consisting of e, Nd and La in terms of metal. Although the catalyst component layer and the Rh-containing upper catalyst component layer also have sufficient purification performance of desorbed HC, the HC adsorbent layer containing zeolite as a main component is composed of Rh, Ce, Nd, and La. The inclusion of zirconium oxide containing at least one selected from 1 to 40 mol% in terms of metal causes elimination of HC.
The purification performance of can be further improved.

【0037】また、本発明の排気ガス浄化用触媒の触媒
成分層(貴金属層)において、更にアルミナを含有させ
ることが好ましい。特に、高温耐久後のアルミナの構造
安定性を高め、α−アルミナへの相転移やBET比表面
積の低下を抑制するために、上記アルミナにはCe、Z
r及びLaから成る群より選ばれた少なくとも一種が金
属換算で1〜10モル%含有される。1モル%未満では
十分な添加効果が得られず、10モル%を超えると添加
効果は飽和してしまう。かかるアルミナの使用量は、触
媒1Lあたり10〜200gである。10g未満だと充
分な貴金属の分散性が得られず、200gより多く使用
しても触媒性能は飽和し、顕著な改良効果は得られな
い。
Further, it is preferable that the catalyst component layer (noble metal layer) of the exhaust gas purifying catalyst of the present invention further contains alumina. In particular, in order to enhance the structural stability of alumina after high-temperature durability and suppress the phase transition to α-alumina and the decrease in BET specific surface area, the above-mentioned alumina contains Ce and Z.
At least one selected from the group consisting of r and La is contained in an amount of 1 to 10 mol% in terms of metal. If it is less than 1 mol%, a sufficient addition effect cannot be obtained, and if it exceeds 10 mol%, the addition effect is saturated. The amount of such alumina used is 10 to 200 g per 1 L of the catalyst. If it is less than 10 g, sufficient dispersibility of the noble metal cannot be obtained, and even if it is used more than 200 g, the catalytic performance is saturated, and a remarkable improvement effect cannot be obtained.

【0038】更に、本発明の排気ガス浄化用触媒の触媒
成分層において、上記触媒成分(貴金属)に加え、更に
セリウム酸化物を含有することもできる。当該セリウム
酸化物は、Zr、Nd及びLaから成る群より選ばれた
少なくとも一種を金属換算で1〜40モル%、その残部
としてCeを金属換算で60〜99モル%含むものであ
る。セリウム酸化物を含有させることにより、酸素吸蔵
能の高いセリウム酸化物がリッチ雰囲気及びストイキ近
傍で格子酸素や吸着酸素を放出し、貴金属の酸化状態を
排気ガスの浄化に適したものとし、触媒性能の低下を抑
制できる。1〜40モル%としたのは、セリウム酸化物
(CeO)にZr、Nd及びLaから成る群より選ば
れた少なくとも一種の元素を添加して、CeOの酸素
放出能やBET比表面積、熱安定性を顕著に改良するた
めである。1モル%未満ではCeOのみの場合と変わ
らず、上記した元素の添加効果が現れず、40モル%を
越えるとこの効果が飽和もしくは逆に低下する。
Further, the catalyst component layer of the exhaust gas purifying catalyst of the present invention may further contain cerium oxide in addition to the above catalyst component (noble metal). The cerium oxide contains at least one selected from the group consisting of Zr, Nd, and La in terms of metal of 1 to 40 mol%, and the balance of Ce in the range of 60 to 99 mol% of metal. By including cerium oxide, cerium oxide with high oxygen storage capacity releases lattice oxygen and adsorbed oxygen in rich atmosphere and in the vicinity of stoichiometry, making the oxidation state of precious metal suitable for purification of exhaust gas and improving catalyst performance. Can be suppressed. The content of 1 to 40 mol% means that at least one element selected from the group consisting of Zr, Nd and La is added to cerium oxide (CeO 2 ), and the oxygen-releasing ability and BET specific surface area of CeO 2 are This is to significantly improve the thermal stability. When it is less than 1 mol%, the effect of adding the above-mentioned elements does not appear as in the case of only CeO 2 , and when it exceeds 40 mol%, this effect is saturated or, conversely, decreases.

【0039】更に、本発明の排気ガス浄化用触媒の好適
実施態様におけるRh含有上方触媒成分層には、更にC
e、Nd及びLaから成る群より選ばれた少なくとも一
種を含むジルコニウム酸化物を含有させることもでき
る。当該ジルコニウム酸化物は、Ce、Nd及びLaか
ら成る群より選ばれた少なくとも一種の元素を金属換算
で1〜40モル%、その残部としてZrを金属換算で6
0〜99モル%含むものである。1〜40モル%とした
のは、ジルコニウム酸化物(ZrO)にCe、Nd及
びLaから成る群より選ばれた一種の元素を添加して、
ZrOの酸素放出能やBET比表面積、更には熱安定
性を顕著に改良するためである。1モル%未満ではZr
のみの場合と変わらず、上記した元素の添加効果が
現れず、40モル%を越えるとこの効果が飽和もしくは
低下する。
Further, in the preferred embodiment of the exhaust gas purifying catalyst of the present invention, the Rh-containing upper catalyst component layer further contains C
It is also possible to contain a zirconium oxide containing at least one selected from the group consisting of e, Nd and La. The zirconium oxide contains 1 to 40 mol% of at least one element selected from the group consisting of Ce, Nd, and La in terms of metal, and the balance Zr is 6 in terms of metal.
It contains 0 to 99 mol%. 1 to 40 mol% means that one element selected from the group consisting of Ce, Nd and La is added to zirconium oxide (ZrO 2 ),
This is because the oxygen releasing ability, the BET specific surface area, and the thermal stability of ZrO 2 are remarkably improved. If less than 1 mol% Zr
As in the case of O 2 only, the effect of adding the above-mentioned elements does not appear, and when it exceeds 40 mol%, this effect is saturated or deteriorated.

【0040】 該Rh含有上方触媒成分層に、Ce、N
d及びLaから成る群より選ばれた少なくとも一種を含
むジルコニウム酸化物粉末を含有させることにより、
ジルコニウム酸化物がリッチ雰囲気及びストイキ近傍で
格子酸素や吸着酸素を放出し、貴金属の酸化状態を排気
ガスの浄化に適したものとするため、貴金属の触媒性能
の低下を抑制できる。
In the Rh-containing upper catalyst component layer, Ce, N
By incorporating a powder of zirconium oxide containing at least one selected from the group consisting of d and La,
Since the zirconium oxide releases lattice oxygen and adsorbed oxygen in a rich atmosphere and in the vicinity of stoichiometry and makes the oxidation state of the noble metal suitable for purifying exhaust gas, it is possible to suppress deterioration of the catalytic performance of the noble metal.

【0041】また、本発明の排気ガス浄化用触媒におい
て、使用されるアルカリ金属及び/又はアルカリ土類金
属には、Li、Na、K、Cs、Mg、Ca、Sr及び
Baが含まれる。これらを触媒成分層に含有させると、
リッチ雰囲気下でのHC吸着被毒作用を緩和し、また貴
金属のシンタリングを抑制するため、低温活性や還元雰
囲気での活性を更に向上させることができる。その含有
量は触媒1L中1〜40gで、1g未満では、HCの吸
着被毒や貴金属のシンタリングを抑制できず、40gを
越えても有為な増量効果が得られず逆に性能を低下させ
る。
In the exhaust gas purifying catalyst of the present invention, the alkali metal and / or alkaline earth metal used include Li, Na, K, Cs, Mg, Ca, Sr and Ba. When these are contained in the catalyst component layer,
Since the HC adsorption poisoning effect in a rich atmosphere is mitigated and the sintering of precious metal is suppressed, the low temperature activity and the activity in a reducing atmosphere can be further improved. The content is 1 to 40 g in 1 L of the catalyst, and if it is less than 1 g, adsorption poisoning of HC and sintering of precious metals cannot be suppressed, and even if it exceeds 40 g, a significant amount increasing effect is not obtained and conversely the performance deteriorates. Let

【0042】本発明の排気ガス浄化用触媒を製造するに
当たっては、HC吸着層及び触媒成分層の性能を有効に
発現させるために、HC吸着材層(ゼオライト層)を内
層側に配置し、触媒成分層(パラジウム層)をその上の
中層側とし、更にその上の表層側へRh含有上方触媒成
分層(ロジウム層)を配置する。
In producing the exhaust gas purifying catalyst of the present invention, the HC adsorbent layer (zeolite layer) is disposed on the inner layer side in order to effectively develop the performance of the HC adsorbent layer and the catalyst component layer. The component layer (palladium layer) is on the intermediate layer side thereabove, and the Rh-containing upper catalyst component layer (rhodium layer) is further arranged on the surface layer side thereabove.

【0043】該触媒成分層、上方触媒成分層における貴
金属(触媒成分)の原料化合物としては、ジニトロジア
ンミン酸塩、塩化物、硝酸塩等の水溶性のものであれば
任意のものが使用できる。水の除去は、例えば濾過法や
蒸発乾固法等の公知の方法の中から適宜選択して行うこ
とができる。本発明に用いる貴金属担持粉末を得るため
の最初の熱処理は、特に制限されないが、添加した貴金
属を分散性良く担持するため、例えば400℃〜800
℃の比較的低温で空気中及び/又は空気流通下で焼成を
行うことが好ましい。
As the raw material compound of the noble metal (catalyst component) in the catalyst component layer and the upper catalyst component layer, any compound can be used as long as it is a water-soluble compound such as dinitrodiammine acid salt, chloride or nitrate. Water can be removed by appropriately selecting from known methods such as filtration and evaporation to dryness. The first heat treatment for obtaining the noble metal-supported powder used in the present invention is not particularly limited, but is 400 ° C. to 800 ° C. for supporting the added noble metal with good dispersibility.
It is preferable to carry out the calcination in the air and / or under the air flow at a relatively low temperature of ° C.

【0044】更に、該HC吸着材層のゼオライトに、P
d,Mg,Ca,Sr,Ba,Ag,Y,La,Ce,
Nd,P,B,Zrから選ばれた少なくとも1種以上を
含浸担持させることもできる。これら金属化合物は、酸
化物、酢酸塩、硝酸塩及び水酸化物等の水溶性のもの
を、イオン交換法、含浸法、浸漬法等の通常の方法を用
いて担持することにより、ゼオライト上に分散性を良く
して担持することが可能となる。担持後の水分除去法と
しては、乾燥し、次いで空気中及び/又は空気流通下で
200〜600℃の比較的低温で焼成するものである。
かかる焼成温度が200℃未満だと金属化合物が酸化物
形態になることが充分にできず、逆に600℃を越えて
も焼成温度の効果は飽和し、顕著な差異は得られない。
Further, P is added to the zeolite of the HC adsorbent layer.
d, Mg, Ca, Sr, Ba, Ag, Y, La, Ce,
At least one selected from Nd, P, B, and Zr can be impregnated and supported. These metal compounds are dispersed on zeolite by supporting water-soluble compounds such as oxides, acetates, nitrates and hydroxides by a usual method such as an ion exchange method, an impregnation method and an immersion method. It is possible to improve the property and carry it. As a method of removing water after supporting, drying is carried out, and then firing is carried out at a relatively low temperature of 200 to 600 ° C. in air and / or under air circulation.
If the firing temperature is lower than 200 ° C., the metal compound cannot be sufficiently converted into an oxide form, and conversely, if it exceeds 600 ° C., the effect of the firing temperature is saturated, and a significant difference cannot be obtained.

【0045】更には、触媒成分層、上方触媒成分層に
は、Ptを含有させることもできる。原料化合物として
は、ジニトロジアンミン酸塩、塩化物、硝酸塩等の水溶
性のものであれば任意のものが使用できる。
Further, Pt may be contained in the catalyst component layer and the upper catalyst component layer. As the raw material compound, any compound can be used as long as it is a water-soluble compound such as dinitrodiammine acid salt, chloride and nitrate.

【0046】更に、好ましくは、該触媒成分層(貴金属
層)に、アルミナ粉末やジルコニウム酸化物粉末に、Z
r、Nd及びLaから成る群より選ばれる少なくとも一
種を含有するセリウム酸化物を添加することにより、還
元雰囲気下において、貴金属の酸化状態を、排気ガス浄
化に適した状態に、より有効に維持することができる。
Further, preferably, the catalyst component layer (noble metal layer), the alumina powder or the zirconium oxide powder, Z
By adding a cerium oxide containing at least one selected from the group consisting of r, Nd and La, the oxidation state of the noble metal is effectively maintained in a state suitable for exhaust gas purification in a reducing atmosphere. be able to.

【0047】また、好ましくは、該上方触媒成分層に、
Ce、Nd及びLaから成る群より選ばれる少なくとも
一種を含むジルコニウム酸化物粉末を加えることもでき
る。当該Ce、Nd及びLaから成る群より選ばれる少
なくとも一種を含むジルコニウム酸化物粉末を添加する
ことにより、還元雰囲気下において、貴金属の酸化状態
を、排気ガス浄化に適した状態に、より有効に維持する
ことができる。
Also, preferably, in the upper catalyst component layer,
It is also possible to add a zirconium oxide powder containing at least one selected from the group consisting of Ce, Nd and La. By adding a zirconium oxide powder containing at least one selected from the group consisting of Ce, Nd and La, the oxidation state of the noble metal can be more effectively maintained in a state suitable for exhaust gas purification in a reducing atmosphere. can do.

【0048】このようにして得られる本発明に係る排気
ガス浄化用触媒は、無担体でも有効に使用することがで
きるが、粉砕してスラリーとし、特定のモノリス担体に
コートして、400〜900℃で焼成して用いる。具体
的には、HC吸着材層(内層側)として、β−ゼオライ
トを主成分としたゼオライト粉末にシリカゾルを加えて
湿式にて粉砕してスラリーとし、モノリス担体に付着さ
せ、400〜650℃の範囲の温度で空気中及び/又は
空気流通下で焼成を行う。次に、触媒成分層(中層側)
として、Pd担持粉末と、アルミナ粉末と、上記セリウ
ム酸化物粉末に、アルミナゾルを加えて湿式にて粉砕し
てスラリーとし、モノリス担体に付着させ、400〜6
50℃の範囲の温度で空気中及び/又は空気流通下で焼
成を行う。次に、上方触媒成分層(表層側)として、R
h担持粉末と、アルミナ粉末と、上記ジルコニウム酸化
物粉末に、アルミナゾルを加えて湿式にて粉砕してスラ
リーとし、モノリス担体に付着させ、400〜650℃
の範囲の温度で空気中及び/又は空気流通下で焼成を行
う。上記触媒成分層及び上方触媒成分層には、更にPt
を加えてもよい。
The thus obtained exhaust gas purifying catalyst according to the present invention can be effectively used even without a carrier, but it is crushed into a slurry and coated on a specific monolith carrier to obtain 400 to 900. It is used after firing at ℃. Specifically, as the HC adsorbent layer (inner layer side), silica sol is added to zeolite powder containing β-zeolite as a main component, and the mixture is wet pulverized to form a slurry, which is attached to a monolith carrier, and the temperature is 400 to 650 ° C. Firing is carried out in the air and / or under the air flow at a temperature within the range. Next, catalyst component layer (middle layer side)
As the Pd-supported powder, the alumina powder, and the cerium oxide powder, alumina sol is added, and the mixture is pulverized by a wet process to form a slurry, which is attached to a monolith carrier, and 400 to 6
Firing is performed in the air and / or under the air flow at a temperature in the range of 50 ° C. Next, as the upper catalyst component layer (surface layer side), R
h-supported powder, alumina powder, and zirconium oxide powder are added with alumina sol and pulverized by a wet process to form a slurry, which is attached to a monolith carrier and 400 to 650 ° C.
Calcination is carried out in the air and / or under the air flow at a temperature in the range. Pt is further added to the catalyst component layer and the upper catalyst component layer.
May be added.

【0049】触媒担体であるモノリス担体としては、公
知の触媒担体の中から適宜選択して使用することがで
き、例えば耐火性材料から成るハニカム状のモノリス担
体やメタル担体等が挙げられる。このハニカム材料とし
ては、一般にセラミックなどのコージェライト質のもの
が多く用いられるが、フェライト系ステンレス等の金属
材料から成るハニカム材料を用いることも可能であり、
更には触媒成分粉末そのものをハニカム形状に成形して
も良い。触媒の形状をハニカム状とし、本発明では、更
に該ハニカム状担体(モノリス担体)のGSAを10c
/cm〜35cm/cmとしており、HC吸
着材層と排気ガスとの接触を制限し、吸着HCのHC吸
着材層からの脱離を遅延化するのに極めて有効である。
The monolithic carrier which is a catalyst carrier can be appropriately selected and used from known catalyst carriers, and examples thereof include a honeycomb-shaped monolithic carrier made of a refractory material and a metal carrier. As the honeycomb material, generally, a cordierite material such as ceramic is often used, but it is also possible to use a honeycomb material made of a metal material such as ferritic stainless steel,
Further, the catalyst component powder itself may be formed into a honeycomb shape. The catalyst has a honeycomb shape, and in the present invention, the honeycomb-shaped carrier (monolith carrier) further has a GSA of 10c.
has the m 2 / cm 3 ~35cm 2 / cm 3, to limit the contact between the exhaust gas and the HC adsorbent layer, which is highly effective in delaying the desorption from the HC adsorbent layer of the adsorbent HC.

【0050】更に、モノリス担体のセル数を、1平方イ
ンチ当たり50〜600セルとすることによって、HC
吸着材層と排気ガスとの接触を制限し、吸着HCのHC
吸着材層からの脱離を遅延化するのに極めて有効であ
る。
Further, by setting the number of cells of the monolith carrier to be 50 to 600 cells per square inch, the HC
Limit the contact between the adsorbent layer and the exhaust gas,
It is extremely effective in delaying desorption from the adsorbent layer.

【0051】更に、モノリス担体の水力直径を、0.7
5mm〜5mmとすることによって、HC吸着材層内へ
の排気ガス拡散速度を低下し、吸着HCのHC吸着材層
からの脱離を遅延化するのに極めて有効である。
Further, the hydraulic diameter of the monolith carrier is 0.7
By setting it to 5 mm to 5 mm, it is extremely effective in reducing the exhaust gas diffusion rate into the HC adsorbent layer and delaying the desorption of adsorbed HC from the HC adsorbent layer.

【0052】モノリス担体に付着させる触媒成分層の量
は、触媒成分層全体のトータルで、触媒1Lあたり、5
0g〜600gが好ましい。三元浄化能を有する触媒成
分層が多い程、触媒活性や触媒寿命の面から好ましい
が、該触媒成分層のコート厚が厚くなりすぎると、触媒
成分層内部のHC吸着材層への排気ガスの拡散が不良と
なり、逆に、HCの吸着性能が低下する。また、HC吸
着材層が多い程、HCの脱離遅延化の面から好ましい
が、該HC吸着材層のコート厚が厚くなりすぎると、脱
離HCと触媒成分層との接触が不良となり、逆に脱離H
Cの浄化活性が低下する。このため、HC吸着材層と触
媒成分層のコート重量比率を5:1〜1:2に設定する
ことが好ましい。更に、モノリス担体セル内の平坦部に
おけるコート層厚み、即ちHC吸着材層の厚みと触媒成
分層の厚みとの合計厚みは、30μm〜400μmが好
ましい。ウオッシュコート成分を担持するモノリス担体
のGSA、セル数、水力直径を当該規定値内とすること
により、HCの脱離を遅延化するのに十分なHC吸着材
層厚みを確保でき、脱離HCの浄化性能が向上する。
The amount of the catalyst component layer adhered to the monolithic carrier is 5 per 1 L of the catalyst in total of the entire catalyst component layer.
0g-600g is preferable. The more the catalyst component layer having the three-way purifying ability is, the more preferable it is in terms of the catalyst activity and the catalyst life. However, if the coat thickness of the catalyst component layer is too thick, the exhaust gas to the HC adsorbent layer inside the catalyst component layer is increased. Diffusion becomes poor, and conversely, the HC adsorption performance deteriorates. Further, the more the HC adsorbent layer is, the more preferable it is from the viewpoint of delaying the desorption of HC, but if the coat thickness of the HC adsorbent layer becomes too thick, the contact between the desorbed HC and the catalyst component layer becomes poor, On the contrary, desorption H
The purifying activity of C decreases. Therefore, it is preferable to set the coat weight ratio of the HC adsorbent layer and the catalyst component layer to 5: 1 to 1: 2. Further, the coat layer thickness in the flat portion in the monolith carrier cell, that is, the total thickness of the HC adsorbent layer and the catalyst component layer, is preferably 30 μm to 400 μm. By keeping the GSA, the number of cells, and the hydraulic diameter of the monolith carrier carrying the washcoat component within the specified values, it is possible to secure a sufficient HC adsorbent layer thickness to delay the desorption of HC, and desorb HC The purification performance of is improved.

【0053】次に、本発明の排気ガス浄化装置の実施の
態様について説明する。この浄化装置は、上述した本発
明の排気ガス浄化用触媒(HC吸着触媒)の前段、即ち
排気流路の上流側に、Pd、PdとPt、又はPdとR
hを含み、Pdの担持濃度が4重量〜20重量%となる
ようにPdを担持したPd担持粉末を含み、且つ触媒1
L当たりのPd担持量が100g/cf(3.5g/
L)〜1000g/cf(35.4g/L)であるPd
含有触媒(三元触媒)を配置した排気ガス浄化装置に関
するものである(図3等を参照)。この排気ガス浄化装
置では、上記排気ガス浄化用触媒(HC吸着触媒)が吸
着するHC量が、エンジン始動直後の低温域に排出され
るHC量の70%以下、好ましくは10%〜70%に設
定される。
Next, an embodiment of the exhaust gas purifying apparatus of the present invention will be described. This purification device has Pd, Pd and Pt, or Pd and R at the front stage of the above-described exhaust gas purification catalyst (HC adsorption catalyst) of the present invention, that is, at the upstream side of the exhaust passage.
The catalyst 1 contains Pd-supporting powder containing h and containing Pd so that the supported concentration of Pd is 4 to 20% by weight.
The amount of Pd supported per L is 100 g / cf (3.5 g /
L) to Pd of 1000 g / cf (35.4 g / L)
The present invention relates to an exhaust gas purification device in which a contained catalyst (three-way catalyst) is arranged (see FIG. 3 and the like). In this exhaust gas purification device, the amount of HC adsorbed by the exhaust gas purification catalyst (HC adsorption catalyst) is 70% or less, preferably 10% to 70%, of the amount of HC exhausted in the low temperature range immediately after the engine is started. Is set.

【0054】本発明のHC吸着触媒がエンジン始動直後
の低温時における排気ガス中のHCの全量を吸着した場
合、触媒成分層の温度上昇に伴って脱離が開始すると、
HC吸着材層の上部に配置した触媒成分層が酸素不足状
態に長時間曝されるため、脱離HCに対する浄化性能が
著しく低下する。そこで、上記HC吸着触媒の前段に、
低温域でのHC浄化性能に優れるPd含有触媒を配置
し、HC吸着触媒が吸着するHC量を、該HC吸着触媒
のHC飽和吸着量の70%以下に設定することが、HC
吸着材層の上部に配置した触媒成分層の脱離HCに対す
る浄化性能を維持、向上するために好ましい。しかし、
HC吸着触媒が吸着するHC量が、該HC吸着触媒のH
C飽和吸着量の70%超になった場合、HC吸着材のコ
ールドHC吸着効率が低下し、また、脱離も速くなるた
め、脱離HCの浄化性能が著しく低下する。
When the HC adsorbing catalyst of the present invention adsorbs all the amount of HC in the exhaust gas at a low temperature immediately after the engine is started, when desorption starts as the temperature of the catalyst component layer rises,
Since the catalyst component layer arranged above the HC adsorbent layer is exposed to the oxygen-deficient state for a long time, the purification performance for desorbed HC is significantly reduced. Therefore, before the above HC adsorption catalyst,
By disposing a Pd-containing catalyst excellent in HC purification performance in a low temperature range and setting the amount of HC adsorbed by the HC adsorption catalyst to 70% or less of the saturated adsorption amount of HC of the HC adsorption catalyst,
It is preferable in order to maintain and improve the purification performance for the desorbed HC of the catalyst component layer arranged above the adsorbent layer. But,
The amount of HC adsorbed by the HC adsorption catalyst depends on the H of the HC adsorption catalyst.
If it exceeds 70% of the C saturated adsorption amount, the cold HC adsorption efficiency of the HC adsorbent decreases, and the desorption becomes faster, so that the purification performance of desorbed HC deteriorates remarkably.

【0055】また、本発明に係る排気ガス浄化装置の好
適態様においては、上記Pd担持粉末の担持濃度が4重
量%〜15重量%で、且つ上記Pd含有触媒のパラジウ
ムの担持量が100g/cf(3.5g/L)〜500
g/cf(17.7g/L)であって、更に、エンジン
始動時(ファーストアイドル)の点火時期が、エンジン
始動直後から40秒以下の時間、上死点から1°〜30
°以下遅角される。これにより、排気温度の上昇を速
め、HC吸着触媒の前段に配置したPd含有触媒の活性
化を速め、該HC吸着触媒が吸着するHC量を該HC吸
着触媒のHC飽和吸着量の70%以下に設定される。
In a preferred embodiment of the exhaust gas purifying apparatus according to the present invention, the loading concentration of the Pd-supporting powder is 4% to 15% by weight, and the loading amount of palladium of the Pd-containing catalyst is 100 g / cf. (3.5 g / L) to 500
g / cf (17.7 g / L), and the ignition timing at engine start (first idle) is 40 seconds or less immediately after engine start, and 1 ° to 30 from top dead center.
Be retarded less than °. This accelerates the rise in exhaust temperature, accelerates the activation of the Pd-containing catalyst arranged in front of the HC adsorption catalyst, and reduces the amount of HC adsorbed by the HC adsorption catalyst to 70% or less of the saturated HC adsorption amount of the HC adsorption catalyst. Is set to.

【0056】また、他の好適実施態様では、上記Pd担
持粉末の担持濃度が4重量%〜15重量%以下であり、
且つ上記Pd含有触媒のパラジウム担持量が100g/
cf(3.5g/L)〜500g/cf(17.7g/
L)以下であって、エンジン始動直後から60秒間、空
気流量10L/分以上の空気を供給し、エンジン始動直
後のコールド空燃比を希薄化(A/F=12〜18)す
ることによって、該Pd含有触媒の活性化を速め、該H
C吸着触媒が吸着するHC量を該HC吸着触媒のHC飽
和吸着量の70%以下に設定する。
In another preferred embodiment, the supported concentration of the Pd-supported powder is 4% by weight to 15% by weight,
Moreover, the amount of palladium supported on the Pd-containing catalyst is 100 g /
cf (3.5 g / L) to 500 g / cf (17.7 g /
L) or less, and air is supplied at an air flow rate of 10 L / min or more for 60 seconds immediately after the engine is started to dilute the cold air-fuel ratio immediately after the engine is started (A / F = 12 to 18). The activation of the Pd-containing catalyst is accelerated, and the H
The amount of HC adsorbed by the C adsorption catalyst is set to 70% or less of the saturated adsorption amount of HC of the HC adsorption catalyst.

【0057】更に、他の好適実施態様では、該HC吸着
触媒からHCの脱離が開始する直前に、空燃比を14.
6以上に制御するか、又は空気ポンプ等の手段を用い該
HC吸着触媒の上流若しくは該HC吸着触媒中に、酸素
及び/又は空気が添加される。吸着したHCがHC吸着
材から脱離を開始する前又は脱離開始と同時に、HC吸
着触媒の上流又は該HC吸着触媒中に、酸素及び/又は
空気を添加し、HC吸着材層の上部の触媒成分層に酸素
を供給することによって、脱離HCの浄化性能が向上す
る。
Furthermore, in another preferred embodiment, the air-fuel ratio is set to 14.4 immediately before the desorption of HC from the HC adsorption catalyst is started.
Oxygen and / or air is added to the upstream side of the HC adsorbing catalyst or into the HC adsorbing catalyst using a means such as an air pump or the like. Before or at the same time as the start of desorption of the adsorbed HC from the HC adsorbent, oxygen and / or air is added to the upstream side of the HC adsorbent catalyst or into the HC adsorbent catalyst, and By supplying oxygen to the catalyst component layer, the purification performance of desorbed HC is improved.

【0058】更に、他の好適実施態様では、HC吸着触
媒から脱離するHCの浄化効率を向上させるために、H
C吸着触媒の前部(入口近傍)に設置された温度検出器
の検出値が所定温度以上になった時に、HC吸着触媒の
後部(出口近傍)に設置したA/F検知器が14.6以
上になるように、該HC吸着触媒の上流又は該HC吸着
触媒中に、酸素及び/又は空気を添加する(図3参
照)。
Furthermore, in another preferred embodiment, in order to improve the purification efficiency of HC desorbed from the HC adsorption catalyst, H 2
When the detected value of the temperature detector installed in the front part (near the inlet) of the C adsorption catalyst exceeds a predetermined temperature, the A / F detector installed in the rear part (near the outlet) of the HC adsorption catalyst is 14.6. As described above, oxygen and / or air is added upstream of the HC adsorption catalyst or in the HC adsorption catalyst (see FIG. 3).

【0059】HC吸着触媒の入口近傍に設置された温度
検出器の検出値が所定温度例えば110℃未満では、H
C吸着触媒の触媒成分層の活性化が不十分であるため、
酸素及び/又は空気の添加によって、逆に脱離HCの浄
化性能が低下する。更に、HC吸着触媒の上流に添加す
る酸素及び/又は空気は、HC吸着触媒の出口近傍に設
置したA/F検知器が14.6以上になるように添加す
ることが好ましい。A/Fが14.6未満では、HC吸
着触媒の触媒成分層の浄化性能の改良効果が十分でな
い。
When the value detected by the temperature detector installed near the inlet of the HC adsorption catalyst is below a predetermined temperature, for example, 110 ° C., H
Since the activation of the catalyst component layer of the C adsorption catalyst is insufficient,
Conversely, the addition of oxygen and / or air lowers the purification performance of desorbed HC. Further, the oxygen and / or air added upstream of the HC adsorption catalyst is preferably added so that the A / F detector installed near the outlet of the HC adsorption catalyst has a value of 14.6 or more. When the A / F is less than 14.6, the effect of improving the purification performance of the catalyst component layer of the HC adsorption catalyst is not sufficient.

【0060】更に、HC吸着触媒から脱離するHCの浄
化効率を向上させるために、HC吸着触媒の触媒成分層
中に挿入された温度検出器の検出値が所定温度以上にな
った時に、HC吸着触媒の出口近傍に設置したA/F検
知器が14.6以上になるように、該HC吸着触媒の上
流又は該HC吸着触媒中に、酸素及び/又は空気を添加
する(図4参照)。HC吸着触媒の触媒成分層中に挿入
された温度検出器の検出値が所定温度未満では、HC吸
着触媒の三元触媒層の活性化が不十分であるため、酸素
及び/又は空気を添加によって、逆に脱離HCの浄化性
能が低下する。更に、HC吸着触媒の上流に添加する酸
素及び/又は空気は、HC吸着触媒の出口近傍に設置し
たA/F検知器が14.6以上になるように添加するこ
とが好ましい。A/Fが14.6未満では、HC吸着触
媒の触媒成分層の浄化性能の改良効果が十分でない。
Further, in order to improve the purification efficiency of HC desorbed from the HC adsorption catalyst, when the detection value of the temperature detector inserted in the catalyst component layer of the HC adsorption catalyst exceeds a predetermined temperature, the HC Oxygen and / or air is added upstream of the HC adsorption catalyst or in the HC adsorption catalyst so that the A / F detector installed near the outlet of the adsorption catalyst is 14.6 or higher (see FIG. 4). . If the value detected by the temperature detector inserted in the catalyst component layer of the HC adsorption catalyst is lower than the predetermined temperature, the activation of the three-way catalyst layer of the HC adsorption catalyst is insufficient. Conversely, the purification performance of desorbed HC decreases. Further, the oxygen and / or air added upstream of the HC adsorption catalyst is preferably added so that the A / F detector installed near the outlet of the HC adsorption catalyst has a value of 14.6 or more. When the A / F is less than 14.6, the effect of improving the purification performance of the catalyst component layer of the HC adsorption catalyst is not sufficient.

【0061】更に、HC吸着触媒から脱離するHCの浄
化効率を向上させるために、入口近傍と出口近傍に設置
したA/F検知器の検出値からHCの脱離が検知された
時に、HC吸着触媒の出口近傍に配置したA/F検知器
A/F=14.6以上になるように、該HC吸着触媒の
上流又は該HC吸着触媒中に、酸素及び/又は空気を添
加する(図4参照)。
Further, in order to improve the purification efficiency of HC desorbed from the HC adsorbing catalyst, when the desorption of HC is detected from the detection values of A / F detectors installed near the inlet and the outlet, Oxygen and / or air is added upstream of the HC adsorption catalyst or in the HC adsorption catalyst so that the A / F detector A / F = 14.6 or more arranged near the outlet of the adsorption catalyst (see FIG. 4).

【0062】HC吸着触媒の上流に添加される酸素及び
/又は空気量を最小限にし、HC吸着触媒の触媒成分層
の活性化を著しく促進するには、HC吸着触媒の入口近
傍と出口近傍に設置したA/F検知器の検出値の差から
HCの脱離が検知された時に、HC吸着触媒の出口近傍
に設置したA/F検知器が14.6以上になるように添
加することが好ましい。A/Fが14.6未満では、H
C吸着触媒の触媒成分層の浄化性能が改良効果が十分で
ない。
In order to minimize the amount of oxygen and / or air added to the upstream side of the HC adsorbing catalyst and significantly accelerate the activation of the catalyst component layer of the HC adsorbing catalyst, the vicinity of the inlet and the outlet of the HC adsorbing catalyst should be set. When the desorption of HC is detected from the difference in the detection values of the installed A / F detectors, the A / F detectors installed near the outlet of the HC adsorption catalyst may be added so that the amount becomes 14.6 or more. preferable. When A / F is less than 14.6, H
The effect of improving the purification performance of the catalyst component layer of the C adsorption catalyst is not sufficient.

【0063】また、本発明の浄化装置の好適な実施態様
では、HC吸着触媒の前段に該Pd含有触媒を配置した
排気ガス浄化装置において、該Pd含有触媒での未浄化
成分(HC,CO,NOx)を効率良く浄化するため、
該Pd含有触媒がRhを含み、このRh量を、下流側に
配置した該HC吸着触媒に含まれるロジウム量より少な
くすることが好ましい。該Pd含有触媒に含まれるRh
量をその下流側に配置したHC吸着触媒に含まれるRh
量より少なくすることによって、ホット域での未浄化成
分(HC,CO,NOx)を効率良く浄化でき、該Pd
含有触媒で浄化できなかった低濃度の排気ガス成分の浄
化性能が向上する。
Further, in a preferred embodiment of the purifying apparatus of the present invention, in the exhaust gas purifying apparatus in which the Pd-containing catalyst is arranged before the HC adsorption catalyst, unpurified components (HC, CO, To efficiently purify NOx),
It is preferable that the Pd-containing catalyst contains Rh and the amount of Rh be smaller than the amount of rhodium contained in the HC adsorption catalyst arranged on the downstream side. Rh contained in the Pd-containing catalyst
Rh contained in the HC adsorption catalyst whose amount is arranged downstream thereof
By making the amount less than the amount, the unpurified components (HC, CO, NOx) in the hot region can be efficiently purified, and the Pd
The purification performance of low concentration exhaust gas components that could not be purified by the contained catalyst is improved.

【0064】また、該Pd含有触媒に含まれるRh量と
下流側に配置したHC吸着触媒に含まれるRh量の重量
比は、等量(1/1)以下とすることが好ましい。該R
hの重量比が等量以上では低濃度排気ガス成分の浄化性
能が十分に発現しない。
The weight ratio of the Rh amount contained in the Pd-containing catalyst to the Rh amount contained in the HC adsorption catalyst arranged on the downstream side is preferably equal to or less than 1/1. The R
If the weight ratio of h is equal to or more than the equal value, the purification performance of low-concentration exhaust gas components is not sufficiently exhibited.

【0065】更に、本発明の浄化装置の他の好適な実施
態様について説明する。本実施態様では、HC吸着触媒
から脱離するHCの浄化効率を向上させるために、排気
ガス上流にPd含有触媒を配置し、その下流にHC吸着
触媒を二個以上(本発明に係るHC吸着触媒と、該HC
吸着触媒と同一のHC吸着触媒)配置した排気ガス浄化
装置である。HC吸着触媒を二個以上配置することによ
って、エンジン始動直後に排出される低温域のHCを分
散吸着させ、HC吸着材の上部に配置した触媒成分層が
酸素不足状態に曝される時間を短縮し、脱離HCに対す
る浄化性能を著しく向上させる。
Further, another preferred embodiment of the purifying device of the present invention will be described. In this embodiment, in order to improve the purification efficiency of HC desorbed from the HC adsorption catalyst, a Pd-containing catalyst is arranged upstream of the exhaust gas, and two or more HC adsorption catalysts are arranged downstream thereof (HC adsorption catalyst according to the present invention). Catalyst and the HC
This is an exhaust gas purification device in which the same HC adsorption catalyst as the adsorption catalyst) is arranged. By arranging two or more HC adsorption catalysts, it is possible to disperse and adsorb HC in the low temperature range that is discharged immediately after the engine is started, and to shorten the time when the catalyst component layer placed on top of the HC adsorbent is exposed to oxygen deficiency. However, the purification performance for desorbed HC is significantly improved.

【0066】また、更に他の好適実施態様では、排気ガ
ス上流にPd含有触媒を配置し、その下流にHC吸着触
媒を二個以上配置し、該複数個のHC吸着触媒が、エン
ジンからの距離が異なる位置に設けられ、各HC吸着触
媒の昇温速度が異なる排気ガス浄化装置である。複数個
配置したHC吸着触媒の昇温速度が異なることによっ
て、前段のHC吸着触媒の未浄化脱離HCを後段のHC
吸着触媒で再吸着させ、脱離HCに対する浄化性能を著
しく向上させる。
In still another preferred embodiment, a Pd-containing catalyst is arranged upstream of the exhaust gas, two or more HC adsorbing catalysts are arranged downstream thereof, and the plurality of HC adsorbing catalysts are arranged at a distance from the engine. Is an exhaust gas purifying apparatus that is provided at different positions and has a different temperature rising rate of each HC adsorption catalyst. Due to the different temperature rising rates of the HC adsorbing catalysts arranged in plurality, the unpurified desorbed HC of the HC adsorbing catalysts of the preceding stage can
It is re-adsorbed by the adsorption catalyst to remarkably improve the purification performance for desorbed HC.

【0067】図12に、本発明の排気ガス浄化装置の実
施に当たりリーン化時間を設定するための手順を示すフ
ローシートを示す。リーン化時間は、このフローに従っ
て定められた。シート中、S1〜S18は以下の意味を
有する。
FIG. 12 shows a flow sheet showing a procedure for setting a lean time in implementing the exhaust gas purifying apparatus of the present invention. Leaning time was defined according to this flow. In the sheet, S1 to S18 have the following meanings.

【0068】尚、このフローは、所定時間毎に実行され
る。 S1 エンジン始動時かどうか判定する。例えば、前
回このフローを実行したときのスターターSWがONで
あり、今回OFFのとき始動時と判断し、S2〜S5の
初期設定を行う。 S2 HC吸着触媒の温度(入口温度あるいは触媒成
分層温度)を検出する。簡単には、エンジン冷却水温度
で代用しても良い。 S3 S2で求めた触媒温度に基づいてHC吸着触媒
の吸着容量を推定する。 S4 S2で求めた吸着容量に基づいてHC吸着触媒
からHCの脱離が開始される時期(始動からの経過時
間)を推定する。 S5 S2で求めた吸着容量に基づいてHCの脱離が
始まってから完了するまで要する時間を推定する。 S6 エンジン始動時からの経過時間を計測する。 S7 HC吸着触媒からHCが脱離する時期になった
かどうか判定する。ここでは、S4で推定したHC脱離
開始と始動からの経過時間を比較することで判定してい
るが、他の方法としては、エンジン始動後も触媒温度の
検出あるいは推定を継続して行い、この触媒温度と脱離
温度とを比較することで判定を行っても良い。 S8 始動後の経過時間が所定時間(例えば60秒)
未満かどうかを判定する。 S9 S8の判定がYESの場合、空燃比をリーンに
設定する。空燃比を理論空燃比より10%程度リーンに
すると、触媒の活性開始温度が低下し、触媒の早期活性
を図ることができる。 S10 S8の判定がNOの場合、空燃比をストイキ
に設定する。(リーン空燃比による運転は、NOxの発
生量を増加させるデメリットもあるので、必要最小限と
する。) S11 始動後の経過時間が所定時間(例えば40
秒)未満かどうかを判定する。 S12 S11の判定がYESの場合、点火時期を通
常時の点火時期よりも遅角側の時期に設定する。点火時
期を遅角させことにより、排気ガス温度を上昇させ、か
つ、未燃のHCを触媒に供給することで触媒の早期活性
を図ることができる。 S13 S11の判定がNOの場合、点火時期を通常
の点火時期に設定する。(点火時期の遅角は、発生トル
クを低下させる(=燃費が悪化する)デメリットもある
ので、必要最小限とする。) S14 HCの脱離が開始されてからの経過時間を計
測する。 S15 HC脱離中であるかどうかを判定する。 S16 触媒下流に配設した空燃比センサの出力が、
所定値未満かどうか、すなわち、所定のリーン空燃比を
越えていないかどうか判定する。S15でHC脱離中と
判断された場合は、基本的には次のS17でリーン空燃
比制御を実行するが、触媒下流空燃比センサが所定のリ
ーン空燃比以上を示したら通常制御を行う。 S17 S15でYESの場合、空燃比をリーンに設
定する。HC脱離中は、触媒がリッチ雰囲気となってH
Cの酸化処理効率が低下するので、空燃比をリーンとし
て効率の低下を防止する。HCの脱離特性に合わせて、
脱離するHC量に見合う酸素を供給する程度にリーン空
燃比を設定すると良い。 S18 S15でNOの場合(=HCの脱離が完了し
た後)は、通常制御を行う。
It should be noted that this flow is executed every predetermined time. S1 Determine if the engine is starting. For example, when the starter SW is ON when this flow was executed last time and is OFF this time, it is determined that the starter SW is being started, and the initial setting of S2 to S5 is performed. The temperature of the S2 HC adsorption catalyst (inlet temperature or catalyst component layer temperature) is detected. For simplicity, the engine cooling water temperature may be used instead. The adsorption capacity of the HC adsorption catalyst is estimated based on the catalyst temperature obtained in S3 and S2. Based on the adsorption capacity obtained in S4 and S2, the time when the desorption of HC from the HC adsorption catalyst is started (the elapsed time from the start) is estimated. Based on the adsorption capacity obtained in S5 and S2, the time required from the desorption of HC to the completion thereof is estimated. S6 Measure the elapsed time from the engine start. S7: Determine whether it is time to release HC from the HC adsorption catalyst. Here, the determination is made by comparing the HC desorption start estimated in S4 and the elapsed time from the start, but as another method, the catalyst temperature is continuously detected or estimated even after the engine is started, The determination may be made by comparing the catalyst temperature and the desorption temperature. S8 The elapsed time after the start is a predetermined time (for example, 60 seconds)
Determine if less than. If the determination in S9 and S8 is YES, the air-fuel ratio is set to lean. If the air-fuel ratio is made leaner by about 10% than the stoichiometric air-fuel ratio, the activation start temperature of the catalyst is lowered, and early activation of the catalyst can be achieved. If the determination in S10 and S8 is NO, the air-fuel ratio is set to stoichiometric. (Operating with a lean air-fuel ratio has the disadvantage of increasing the amount of NOx generated, so it is kept to a minimum.) S11 Elapsed time after starting for a predetermined time (for example, 40
Second)). If the determinations in S12 and S11 are YES, the ignition timing is set to a timing that is on the retard side with respect to the ignition timing during normal operation. By retarding the ignition timing, the exhaust gas temperature is raised and unburned HC is supplied to the catalyst, so that the catalyst can be activated early. If the determination in S13 and S11 is NO, the ignition timing is set to the normal ignition timing. (The ignition timing retardation has the disadvantage that it reduces the generated torque (= deteriorates fuel efficiency), so it should be kept to the minimum necessary.) S14 Measure the elapsed time from the start of desorption of HC. S15 It is determined whether or not HC desorption is in progress. S16 The output of the air-fuel ratio sensor arranged downstream of the catalyst is
It is determined whether it is less than a predetermined value, that is, whether it exceeds a predetermined lean air-fuel ratio. When it is determined in S15 that the HC is being desorbed, basically, the lean air-fuel ratio control is executed in the next S17, but the normal control is performed when the catalyst downstream air-fuel ratio sensor shows a predetermined lean air-fuel ratio or more. If YES in S17 and S15, the air-fuel ratio is set to lean. During desorption of HC, the catalyst becomes rich atmosphere and H
Since the efficiency of the C oxidation treatment decreases, the air-fuel ratio is made lean to prevent the efficiency from decreasing. According to the desorption characteristics of HC,
It is advisable to set the lean air-fuel ratio to the extent that oxygen corresponding to the amount of desorbed HC is supplied. If NO in S18 and S15 (= after completion of desorption of HC), normal control is performed.

【0069】[0069]

【実施例】本発明を次の実施例及び比較例により説明す
る。 実施例1 β−ゼオライト粉末(H型、Si/2Al=75)51
1g、MFI(ZSM5)粉末57g、シリカゾル(固
形分20%)1215g、純水1800gを磁性ボール
ミルに投入し、混合粉砕してスラリー液を得た。このス
ラリー液をコージェライト質モノリス担体(300セル
/6ミル、GSA24.1cm/cm、水力直径
1.3mm)に付着させ、空気流にてセル内の余剰のス
ラリーを取り除いて乾燥し、400℃で1時間焼成し
た。この時の塗布量として、焼成後に100g/Lにな
るまでコーティング作業を繰り返し、触媒−aを得た。
The present invention will be described with reference to the following examples and comparative examples. Example 1 β-zeolite powder (H type, Si / 2Al = 75) 51
1 g, 57 g of MFI (ZSM5) powder, 1215 g of silica sol (solid content 20%), and 1800 g of pure water were charged into a magnetic ball mill and mixed and ground to obtain a slurry liquid. This slurry liquid was attached to a cordierite monolith carrier (300 cells / 6 mil, GSA24.1 cm 2 / cm 3 , hydraulic diameter 1.3 mm), excess slurry in the cells was removed by an air stream, and dried, It was baked at 400 ° C. for 1 hour. At this time, the coating operation was repeated until the coating amount became 100 g / L after firing to obtain catalyst-a.

【0070】Ce3mol%(CeOに換算して9.
5重量%)を含むアルミナ粉末に、ジニトロジアミンパ
ラジウム水溶液を含浸或いは高速攪拌中で噴霧し、15
0℃で24時間乾燥した後、400℃で1時間、次い
で、600℃で1時間焼成し、Pd担持アルミナ粉末
(粉末a)を得た。この粉末aのPd濃度は6.23重
量%であった。粉末aには、ランタン、ジルコニウム、
ネオジウム等が含まれてもよい。
Ce 3 mol% (converted to CeO 2 , 9.
Alumina powder containing 5% by weight) was impregnated with an aqueous solution of dinitrodiaminepalladium or sprayed under high-speed stirring,
After drying at 0 ° C. for 24 hours, it was baked at 400 ° C. for 1 hour and then at 600 ° C. for 1 hour to obtain a Pd-supported alumina powder (powder a). The Pd concentration of this powder a was 6.23% by weight. The powder a includes lanthanum, zirconium,
Neodymium or the like may be included.

【0071】La1モル%(Laに換算して1重
量%)とZr32モル%(ZrOに換算して25重量
%)含有セリウム酸化物粉末に、ジニトロジアミンパラ
ジウム水溶液を含浸或いは高速攪拌中で噴霧し、150
℃で24時間乾燥した後、400℃で1時間、次いで、
600℃で1時間焼成し、Pd担持セリウム酸化物粉末
(粉末b)を得た。この粉末bのPd濃度は2.0重量
%であった。
A cerium oxide powder containing 1 mol% La (1 wt% in terms of La 2 O 3 ) and 32 mol% Zr (25 wt% in terms of ZrO 2 ) was impregnated with a dinitrodiamine palladium aqueous solution or stirred at high speed. Spray in, 150
After drying at ℃ for 24 hours, at 400 ℃ for 1 hour, then
It was baked at 600 ° C. for 1 hour to obtain a Pd-supporting cerium oxide powder (powder b). The Pd concentration of this powder b was 2.0% by weight.

【0072】上記Pd担持アルミナ粉末(粉末a)56
2g、Pd担持セリウム酸化物粉末(粉末b)288
g、硝酸酸性アルミナゾル950g(ベーマイトアルミ
ナ10重量%に10重量%の硝酸を添加することによっ
て得られたゾル)及び純水1000gを磁性ボールミル
に投入し、混合粉砕してスラリー液を得た。このスラリ
ー液を上記コート触媒−aに付着させ、空気流にてセル
内の余剰のスラリーを取り除いて乾燥し、400℃で1
時間焼成し、コート層重量60g/Lを塗布し、触媒−
bを得た。
The above Pd-supported alumina powder (powder a) 56
2 g, Pd-supporting cerium oxide powder (powder b) 288
g, 950 g of nitric acid-acidified alumina sol (sol obtained by adding 10 wt% nitric acid to 10 wt% of boehmite alumina) and 1000 g of pure water were put into a magnetic ball mill and mixed and ground to obtain a slurry liquid. This slurry liquid is attached to the above-mentioned coated catalyst-a, the excess slurry in the cell is removed by an air flow and dried, and the slurry is dried at 400 ° C. for 1 hour.
Baking for 60 hours / coating layer weight of 60g / L
b was obtained.

【0073】Zr3重量%を含むアルミナ粉末に、硝酸
ロジウム水溶液を含浸或いは高速攪拌中で噴霧し、15
0℃で24時間乾燥した後、400℃で1時間、次い
で、600℃で1時間焼成し、Rh担持アルミナ粉末
(粉末c)を得た。この粉末cのRh濃度は1.25重
量%であった。
Alumina powder containing 3% by weight of Zr was impregnated with an aqueous solution of rhodium nitrate or sprayed under high-speed stirring.
After drying at 0 ° C. for 24 hours, it was calcined at 400 ° C. for 1 hour and then at 600 ° C. for 1 hour to obtain Rh-supported alumina powder (powder c). The Rh concentration of this powder c was 1.25% by weight.

【0074】上記Rh担持アルミナ粉末(粉末c)36
6g、La1モル%(Laに換算して1.2重量
%)とCe20モル%(CeOに換算して25.8重
量%)のジルコニウム酸化物粉末300g、硝酸酸性ア
ルミナゾル1135gを磁性ボールミルに投入し、混合
粉砕してスラリー液を得た。このスラリー液を上記コー
ト触媒−bに付着させ、空気流にてセル内の余剰のスラ
リーを取り除いて乾燥し、400℃で1時間焼成し、コ
ート層重量40g/Lを塗布し、触媒を得た。上記セリ
ウム酸化物粉末、アルミナ粉末にはランタン、ネオジウ
ム等が含まれてもよい。次いで、上記触媒成分担持コー
ジェライト質モノリス担体に酢酸バリウム溶液を付着さ
せた後、400℃で1時間焼成し、BaOとして10g
/Lを含有させた。これにより、本実施例の排気ガス浄
化用触媒(HC吸着触媒)を得た。
The Rh-supported alumina powder (powder c) 36
6 g, La 1 mol% (1.2 wt% in terms of La 2 O 3 ) and 300 mol% Ce (25.8 wt% in terms of CeO 2 ) zirconium oxide powder 300 g, nitric acid-acidified alumina sol 1135 g The mixture was put into a ball mill and mixed and ground to obtain a slurry liquid. This slurry liquid was attached to the above coated catalyst-b, excess slurry in the cell was removed by an air flow, dried, and baked at 400 ° C. for 1 hour to apply a coating layer weight of 40 g / L to obtain a catalyst. It was The cerium oxide powder and the alumina powder may contain lanthanum, neodymium and the like. Next, a barium acetate solution was attached to the above-mentioned catalyst component-supporting cordierite monolithic carrier, followed by firing at 400 ° C. for 1 hour to obtain BaO of 10 g.
/ L was included. As a result, an exhaust gas purification catalyst (HC adsorption catalyst) of this example was obtained.

【0075】実施例2 ゼオライトとして、β−ゼオライト粉末(H型、Si/
2Al=75)313g、MFI(ZSM5)粉末25
5g、シリカゾル(固形分20%)1215gを用いた
以外は、実施例1と同様にして排気ガス浄化用触媒を得
た。
Example 2 As zeolite, β-zeolite powder (H type, Si /
2Al = 75) 313 g, MFI (ZSM5) powder 25
An exhaust gas purifying catalyst was obtained in the same manner as in Example 1 except that 5 g and 1215 g of silica sol (solid content 20%) were used.

【0076】実施例3 ゼオライトとして、β−ゼオライト粉末(H型、Si/
2Al=75)454g、MFI(ZSM5)粉末57
g、USY粉末57g、シリカゾル(固形分20%)1
215gを用いた以外は、実施例1と同様にして排気ガ
ス浄化用触媒を得た。
Example 3 As zeolite, β-zeolite powder (H type, Si /
2Al = 75) 454 g, MFI (ZSM5) powder 57
g, USY powder 57 g, silica sol (solid content 20%) 1
An exhaust gas purifying catalyst was obtained in the same manner as in Example 1 except that 215 g was used.

【0077】実施例4 ゼオライトとして、β−ゼオライト粉末(H型、Si/
2Al=75)454g、MFI(ZSM5)粉末57
g、AlPO4粉末57g、シリカゾル(固形分20
%)1215gを用いた以外は、実施例1と同様にして
排気ガス浄化用触媒を得た。
Example 4 As zeolite, β-zeolite powder (H type, Si /
2Al = 75) 454 g, MFI (ZSM5) powder 57
g, AlPO4 powder 57 g, silica sol (solid content 20
%) 1215 g was used to obtain an exhaust gas purifying catalyst in the same manner as in Example 1.

【0078】実施例5 ゼオライトとして、β−ゼオライト粉末(H型、Si/
2Al=75)454g、MFI(ZSM5)粉末57
g、SAPO4粉末57g、シリカゾル(固形分20
%)1215gを用いた以外は、実施例1と同様にして
排気ガス浄化用触媒を得た。
Example 5 As zeolite, β-zeolite powder (H type, Si /
2Al = 75) 454 g, MFI (ZSM5) powder 57
g, SAPO4 powder 57 g, silica sol (solid content 20
%) 1215 g was used to obtain an exhaust gas purifying catalyst in the same manner as in Example 1.

【0079】実施例6 ゼオライトとして、β−ゼオライト粉末(H型、Si/
2Al=75)454g、MFI(ZSM5)粉末57
g、モルデナイト粉末57g、シリカゾル(固形分20
%)1215gを用いた以外は、実施例1と同様にして
排気ガス浄化用触媒を得た。
Example 6 As zeolite, β-zeolite powder (H type, Si /
2Al = 75) 454 g, MFI (ZSM5) powder 57
g, mordenite powder 57 g, silica sol (solid content 20
%) 1215 g was used to obtain an exhaust gas purifying catalyst in the same manner as in Example 1.

【0080】実施例7 ゼオライトとして、β−ゼオライト粉末(H型、Si/
2Al=75)454g、MFI(ZSM5)粉末57
g、フェリエライト粉末23.5g、A型ゼオライト粉
末23.5g、シリカゾル(固形分20%)1215g
を用いた以外は、実施例1と同様にして排気ガス浄化用
触媒を得た。
Example 7 As zeolite, β-zeolite powder (H type, Si /
2Al = 75) 454 g, MFI (ZSM5) powder 57
g, ferrierite powder 23.5 g, A-type zeolite powder 23.5 g, silica sol (solid content 20%) 1215 g
An exhaust gas purifying catalyst was obtained in the same manner as in Example 1 except that was used.

【0081】実施例8 MFI(ZSM5)粉末に、Pdを含浸担持し、150
℃で24時間乾燥した後、450℃で1時間焼成し、P
d担持MFI粉末(Pd濃度2.0重量%)を得た。M
FI粉末の代わりに、Pd担持MFI粉末を用い、コー
ジェライト質モノリス担体(200セル/10ミル、G
SA19.0cm/cm、水力直径1.53mm)
を用いた以外は、実施例1と同様にして排気ガス浄化用
触媒を得た。
Example 8 Pd was impregnated and supported on MFI (ZSM5) powder to give 150
After drying at ℃ for 24 hours, calcination at 450 ℃ for 1 hour, P
A d-supported MFI powder (Pd concentration: 2.0% by weight) was obtained. M
Instead of FI powder, Pd-supported MFI powder was used, and cordierite monolith carrier (200 cells / 10 mils, G
SA 19.0 cm 2 / cm 3 , hydraulic diameter 1.53 mm)
An exhaust gas purifying catalyst was obtained in the same manner as in Example 1 except that was used.

【0082】実施例9 MFI(ZSM5)粉末に、Pを含浸担持し、150℃
で24時間乾燥した後、450℃で1時間焼成し、P担
持MFI粉末(Pd濃度0.4重量%)を得た。MFI
粉末の代わりに、P担持MFI粉末を用い、実施例8と
同一のモノリス担体を用いた以外は、実施例1と同様に
して排気ガス浄化用触媒を得た。
Example 9 MFI (ZSM5) powder was impregnated with P and supported at 150 ° C.
After being dried for 24 hours at 450 ° C., it was baked at 450 ° C. for 1 hour to obtain P-supported MFI powder (Pd concentration 0.4% by weight). MFI
An exhaust gas purifying catalyst was obtained in the same manner as in Example 1 except that P-supporting MFI powder was used in place of the powder and the same monolith carrier as in Example 8 was used.

【0083】実施例10 MFI(ZSM5)粉末に、Caを含浸担持し、150
℃で24時間乾燥した後、450℃で1時間焼成し、C
a担持MFI粉末(Ca濃度0.2重量%)を得た。M
FI粉末の代わりに、Ca担持MFI粉末を用い、実施
例8と同一のモノリス担体を用いた以外は、実施例1と
同様にして排気ガス浄化用触媒を得た。
Example 10 Ca was impregnated and supported on MFI (ZSM5) powder to give 150
After drying at ℃ for 24 hours, calcination at 450 ℃ for 1 hour, C
An a-supported MFI powder (Ca concentration: 0.2% by weight) was obtained. M
An exhaust gas purifying catalyst was obtained in the same manner as in Example 1 except that Ca-supporting MFI powder was used instead of the FI powder and the same monolith carrier as in Example 8 was used.

【0084】実施例11 MFI(ZSM5)粉末に、Mgを含浸担持し、150
℃で24時間乾燥した後、450℃で1時間焼成し、M
g担持MFI粉末(Mg濃度0.4重量%)を得た。M
FI粉末の代わりに、Mg担持MFI粉末を用い、実施
例8と同一のモノリス担体を用いた以外は、実施例1と
同様にして排気ガス浄化用触媒を得た。
Example 11 Mg was impregnated and supported on MFI (ZSM5) powder to obtain 150
After drying at ℃ for 24 hours, calcination at 450 ℃ for 1 hour, M
A g-supported MFI powder (Mg concentration 0.4% by weight) was obtained. M
An exhaust gas purification catalyst was obtained in the same manner as in Example 1 except that Mg supporting MFI powder was used in place of the FI powder and the same monolith carrier as in Example 8 was used.

【0085】実施例12 MFI(ZSM5)粉末に、Laを含浸担持し、150
℃で24時間乾燥した後、450℃で1時間焼成し、L
a担持MFI粉末(La濃度0.4重量%)を得た。M
FI粉末の代わりに、La担持MFI粉末を用い、実施
例8と同一のモノリス担体を用いた以外は、実施例1と
同様にして排気ガス浄化用触媒を得た。
Example 12 MFI (ZSM5) powder was impregnated with La to carry 150
After drying at ℃ for 24 hours, calcination at 450 ℃ for 1 hour, L
An a-supported MFI powder (La concentration: 0.4% by weight) was obtained. M
An exhaust gas purification catalyst was obtained in the same manner as in Example 1 except that the La-supported MFI powder was used instead of the FI powder and the same monolith carrier as in Example 8 was used.

【0086】実施例13 MFI(ZSM5)粉末に、B(ホウ素)を含浸担持
し、150℃で24時間乾燥した後、450℃で1時間
焼成し、B担持MFI粉末(B濃度0.4重量%)を得
た。MFI粉末の代わりに、B担持MFI粉末を用い、
実施例8と同一のモノリス担体を用いた以外は、実施例
1と同様にして排気ガス浄化用触媒を得た。
Example 13 MFI (ZSM5) powder was impregnated and supported with B (boron), dried at 150 ° C. for 24 hours, and then calcined at 450 ° C. for 1 hour to obtain B-supported MFI powder (B concentration: 0.4% by weight). %) Was obtained. Instead of MFI powder, B-supported MFI powder was used,
An exhaust gas purifying catalyst was obtained in the same manner as in Example 1 except that the same monolith carrier as in Example 8 was used.

【0087】実施例14 MFI(ZSM5)粉末に、P,Ca,Zr,Laを逐
次含浸、乾燥、焼成により担持したP−Ca−Zr−L
a担持MFI粉末(各金属濃度0.1重量%、総金属濃
度0.4重量%)を得た。MFI粉末の代わりに、P−
Ca−Zr−La担持MFI粉末を用い、実施例8と同
一のモノリス担体を用いた以外は、実施例1と同様にし
て排気ガス浄化用触媒を得た。
Example 14 P-Ca-Zr-L obtained by sequentially impregnating MFI (ZSM5) powder with P, Ca, Zr and La, drying and firing.
An a-supported MFI powder (each metal concentration 0.1% by weight, total metal concentration 0.4% by weight) was obtained. Instead of MFI powder, P-
An exhaust gas purifying catalyst was obtained in the same manner as in Example 1 except that the Ca-Zr-La-supported MFI powder was used and the same monolith carrier as in Example 8 was used.

【0088】実施例15 MFI(ZSM5)粉末に、P,Mg,Zr,Ceを逐
次含浸、乾燥、焼成により担持したP−Mg−Zr−C
e担持MFI粉末(各金属濃度0.1重量%、総金属濃
度0.4重量%)を得た。MFI粉末の代わりに、P−
Mg−Zr−Ce担持MFI粉末を用い、実施例8と同
一のモノリス担体を用いた以外は、実施例1と同様にし
て排気ガス浄化用触媒を得た。
Example 15 P-Mg-Zr-C supported by sequentially impregnating MFI (ZSM5) powder with P, Mg, Zr and Ce, drying and firing.
An e-supported MFI powder (each metal concentration: 0.1% by weight, total metal concentration: 0.4% by weight) was obtained. Instead of MFI powder, P-
An exhaust gas purification catalyst was obtained in the same manner as in Example 1, except that the Mg-Zr-Ce-supported MFI powder was used and the same monolith carrier as in Example 8 was used.

【0089】実施例16 MFI(ZSM5)粉末に、B,Ca,La,Ndを逐
次含浸、乾燥、焼成により担持したB−Ca−La−N
d担持MFI粉末(各金属濃度0.1重量%、総金属濃
度0.4重量%)を得た。MFI粉末の代わりに、B−
Ca−La−Nd担持MFI粉末を用い、実施例8と同
一のモノリス担体を用いた以外は、実施例1と同様にし
て排気ガス浄化用触媒を得た。
Example 16 B-Ca-La-N supported by sequentially impregnating MFI (ZSM5) powder with B, Ca, La and Nd, drying and firing.
A d-supported MFI powder (each metal concentration: 0.1% by weight, total metal concentration: 0.4% by weight) was obtained. Instead of MFI powder, B-
An exhaust gas purifying catalyst was obtained in the same manner as in Example 1 except that the Ca-La-Nd-supported MFI powder was used and the same monolith carrier as in Example 8 was used.

【0090】実施例17 Zr3重量%を含むアルミナ粉末に、硝酸ロジウム水溶
液を含浸或いは高速攪拌中で噴霧し、150℃で24時
間乾燥した後、400℃で1時間、次いで、600℃で
1時間焼成し、Rh担持アルミナ粉末(粉末c)を得
た。この粉末cのRh濃度は1.25重量%であった。
La1モル%(Laに換算して1.2重量%)と
Ce20モル%(CeOに換算して25.8重量%)
のジルコニウム酸化物粉末に、ジニトロジアミン白金水
溶液を含浸或いは高速攪拌中で噴霧し、150℃で24
時間乾燥した後、400℃で1時間、次いで、600℃
で1時間焼成し、Pt担持ジルコニウム酸化物粉末(粉
末d)を得た。この粉末dのPt濃度は1.53重量%
であった。上記Rh担持アルミナ粉末c366g、Pt
担持ジルコニウム酸化物粉末(粉末d)300g、硝酸
酸性アルミナゾル1135gを磁性ボールミルに投入
し、混合粉砕してスラリー液を得た。このスラリー液を
上記コート触媒−b(但し、モノリス担体は実施例8と
同一)に塗布する以外は、実施例1と同様にして排気ガ
ス浄化用触媒を得た。
Example 17 Alumina powder containing 3% by weight of Zr was impregnated with an aqueous rhodium nitrate solution or sprayed under high-speed stirring and dried at 150 ° C. for 24 hours, then at 400 ° C. for 1 hour, and then at 600 ° C. for 1 hour. Firing was performed to obtain Rh-supported alumina powder (powder c). The Rh concentration of this powder c was 1.25% by weight.
La 1 mol% (1.2 wt% converted to La 2 O 3 ) and Ce 20 mol% (25.8 wt% converted to CeO 2 )
The zirconium oxide powder of No. 2 was impregnated with an aqueous solution of dinitrodiamine platinum or sprayed under high-speed stirring at 24 ° C at 150 ° C.
After drying for 1 hour, 400 ℃ for 1 hour, then 600 ℃
And was baked for 1 hour to obtain a Pt-supported zirconium oxide powder (powder d). The Pt concentration of this powder d is 1.53% by weight.
Met. Rh-supported alumina powder c366g, Pt
300 g of supported zirconium oxide powder (powder d) and 1135 g of nitric acid-acidified alumina sol were put into a magnetic ball mill and mixed and pulverized to obtain a slurry liquid. An exhaust gas purification catalyst was obtained in the same manner as in Example 1 except that this slurry liquid was applied to the above coated catalyst-b (however, the monolith carrier was the same as in Example 8).

【0091】実施例18La1モル%(La に換算して1重量%)とZr
32モル%(ZrO に換算して25重量%)含有セリ
ウム酸化物粉末に、ジニトロジアミン白金水溶液を含浸
或いは高速攪拌中で噴霧し、150℃で24時間乾燥し
た後、400℃で1時間、次いで、600℃で1時間焼
成し、Pt担持セリウム酸化物粉末(粉末e)を得た。
この粉末eのPt濃度は2.0重量%であった。 上記P
d担持アルミナ粉末(粉末a)562g、Pd担持セリ
ウム酸化物粉末(粉末b)144g、Pt担持セリウム
酸化物粉末(粉末e)144g、硝酸酸性アルミナゾル
950g(ベーマイトアルミナ10重量%に10重量%
の硝酸を添加することによって得られたゾル)及び純水
1000gを磁性ボールミルに投入し、混合粉砕してス
ラリー液を得た。このスラリー液を上記コート触媒−a
(但し、モノリス担体は実施例8と同一)に塗布する以
外は、実施例1と同様にして触媒−cを得た。上記Rh
担持アルミナ粉末c366g、La1モル%(La
に換算して2重量%)とCe20モル%(CeO
換算して25.8重量%)のジルコニウム酸化物粉末3
00g、硝酸酸性アルミナゾル1135g及び純水10
00gを磁性ボールミルに投入し、混合粉砕してスラリ
ー液を得た。このスラリー液を上記コート触媒−cに塗
布する以外は、実施例1と同様にして排気ガス浄化用触
媒を得た。
Example 18 1 mol% La ( 1 wt% in terms of La 2 O 3 ) and Zr
Serum containing 32 mol% ( 25 wt% in terms of ZrO 2 ).
Impregnated um oxide powder with dinitrodiamine platinum aqueous solution
Alternatively, spray under high speed stirring and dry at 150 ° C for 24 hours.
After baking at 400 ° C for 1 hour, then at 600 ° C for 1 hour
Then, a Pt-supported cerium oxide powder (powder e) was obtained.
The Pt concentration of this powder e was 2.0% by weight. Above P
d-supported alumina powder (powder a) 562 g, Pd-supported cerium oxide powder (powder b) 144 g, Pt-supported cerium oxide powder (powder e) 144 g, nitric acid acidic alumina sol 950 g (10% by weight of boehmite alumina 10% by weight)
The sol obtained by adding the nitric acid of 1.) and 1000 g of pure water were put into a magnetic ball mill and mixed and ground to obtain a slurry liquid. This slurry liquid was used as the above coated catalyst-a.
A catalyst-c was obtained in the same manner as in Example 1 except that the monolith carrier was the same as in Example 8. Rh above
Supported alumina powder c366 g, La 1 mol% (La 2 O
2% by weight in terms of 3 ) and 20 mol% Ce (25.8% by weight in terms of CeO 2 ) zirconium oxide powder 3
00g, nitric acid acidic alumina sol 1135g and pure water 10
00 g was put into a magnetic ball mill and mixed and pulverized to obtain a slurry liquid. An exhaust gas purification catalyst was obtained in the same manner as in Example 1 except that this slurry liquid was applied to the above coated catalyst-c.

【0092】実施例19 酢酸バリウム溶液に代わりに酢酸カリウム溶液を用い、
同様の手順でKOとして1g/Lを含有させ、実施例
8と同一のモノリス担体を用いた以外は、実施例1と同
様にして排気ガス浄化用触媒を得た。
Example 19 A potassium acetate solution was used in place of the barium acetate solution,
An exhaust gas purifying catalyst was obtained in the same manner as in Example 1 except that 1 g / L was added as K 2 O in the same procedure and the same monolith carrier as in Example 8 was used.

【0093】実施例20 MFI(ZSM5)粉末に、Agを含浸担持し、150
℃で24時間乾燥した後、450℃で1時間焼成し、A
g担持MFI粉末(Ag濃度0.4重量%)を得た。M
FI粉末の代わりに、Ag担持MFI粉末を用い、実施
例8と同一のモノリス担体を用いた以外は、実施例1と
同様にして排気ガス浄化用触媒を得た。
Example 20 Ag was impregnated and supported on MFI (ZSM5) powder to obtain 150
After drying at ℃ for 24 hours, calcination at 450 ℃ for 1 hour, A
A g-supported MFI powder (Ag concentration 0.4% by weight) was obtained. M
An exhaust gas purification catalyst was obtained in the same manner as in Example 1 except that Ag-supported MFI powder was used in place of the FI powder and the same monolith carrier as in Example 8 was used.

【0094】比較例1 コージェライト質モノリス担体(900セル/4ミル、
GSA41.1cm/cm、水力直径0.74m
m)を用いた以外は、実施例1と同様にして排気ガス浄
化用触媒を得た。
Comparative Example 1 Cordierite monolithic carrier (900 cells / 4 mils,
GSA41.1cm 2 / cm 3, the hydraulic diameter 0.74m
An exhaust gas purification catalyst was obtained in the same manner as in Example 1 except that m) was used.

【0095】比較例2 第2層(触媒成分層=三元層)をRh層、第3層(上方
触媒成分層=三元層)をPd層とした以外は、実施例1
と同様にして排気ガス浄化用触媒を得た。
Comparative Example 2 Example 1 except that the second layer (catalyst component layer = ternary layer) was the Rh layer and the third layer (upper catalyst component layer = ternary layer) was the Pd layer.
An exhaust gas purifying catalyst was obtained in the same manner as in.

【0096】比較例3 第1層(HC吸着剤層=ゼオライト層)と、第2及び第
3層(三元層)の総コート層重量比率を、10:1とし
た以外は、実施例1と同様にして排気ガス浄化用触媒を
得た。
Comparative Example 3 Example 1 was repeated except that the total coating layer weight ratio of the first layer (HC adsorbent layer = zeolite layer) and the second and third layers (ternary layer) was 10: 1. An exhaust gas purifying catalyst was obtained in the same manner as in.

【0097】参考例1 第1層(ゼオライト層)と、第2及び第3三元層の総コ
ート層重量比率を、1:5とした以外は、実施例1と同
様にして排気ガス浄化用触媒を得た。
Reference Example 1 Exhaust gas purifying was carried out in the same manner as in Example 1 except that the total coating layer weight ratio of the first layer (zeolite layer) to the second and third ternary layers was 1: 5. A catalyst was obtained.

【0098】比較例4 第1層のゼオライト種として、A型ゼオライトのみを用
い、比較例1と同一のモノリス担体を用いた以外は、実
施例1と同様にして排気ガス浄化用触媒を得た。
Comparative Example 4 An exhaust gas purifying catalyst was obtained in the same manner as in Example 1, except that only the A-type zeolite was used as the zeolite species in the first layer and the same monolith carrier as in Comparative Example 1 was used. .

【0099】比較例5 第1層のゼオライト種として、USYのみを用い、比較
例1と同一のモノリス担体を用いた以外は、実施例1と
同様にして排気ガス浄化用触媒を得た。
Comparative Example 5 An exhaust gas purifying catalyst was obtained in the same manner as in Example 1 except that only USY was used as the zeolite seed of the first layer and the same monolith carrier as in Comparative Example 1 was used.

【0100】比較例6 第1層のゼオライト種として、MFIのみを用い、比較
例1と同一のモノリス担体を用いた以外は、実施例1と
同様にして排気ガス浄化用触媒を得た。
Comparative Example 6 An exhaust gas purifying catalyst was obtained in the same manner as in Example 1 except that only MFI was used as the zeolite seed of the first layer and the same monolith carrier as in Comparative Example 1 was used.

【0101】以上各実施例、参考例及び比較例で得られ
た排気ガス浄化用触媒の仕様を表1及び表2に示す。
The specifications of the exhaust gas purifying catalysts obtained in the above Examples, Reference Examples and Comparative Examples are shown in Tables 1 and 2.

【0102】[0102]

【表1】 [Table 1]

【0103】[0103]

【表2】 [Table 2]

【0104】図1は、コート層構造の概略図である。FIG. 1 is a schematic view of the coat layer structure.

【0105】各実施例、参考例及び比較例について、下
記評価条件でHC浄化特性評価(ECモード、LA−4
のA−bag)を、図2の評価システムを用いて行っ
た。その結果を表3及び表4に示す。
Regarding each example, reference example and comparative example, HC purification characteristic evaluation (EC mode, LA-4
A-bag) was performed using the evaluation system of FIG. The results are shown in Tables 3 and 4.

【0106】耐久条件 エンジン排気量 3000cc 燃料 ガソリン(Pb=12mg/u
sg,S=300ppm) 触媒入口ガス温度 650℃ 耐久時間 100時間 性能評価条件 触媒容量(片バンク) 三元触媒1.3L+HC吸着触
媒2.6L 評価車両 日産自動車株式会社製 V型6
気筒 3.3Lエンジン エンジン始動時に排出される(触媒入口のガス中の)炭
化水素
Endurance condition Engine displacement 3000 cc Fuel gasoline (Pb = 12 mg / u
sg, S = 300ppm) Catalyst inlet gas temperature 650 ° C Endurance time 100 hours Performance evaluation condition Catalyst capacity (one bank) Three-way catalyst 1.3L + HC adsorption catalyst 2.6L Evaluation vehicle Nissan Motor Co., Ltd. V type 6
Cylinder 3.3L engine Hydrocarbons (in gas at catalyst inlet) exhausted at engine startup

【0107】[0107]

【表3】 [Table 3]

【0108】[0108]

【表4】 [Table 4]

【0109】比較例に比べ実施例は、触媒活性が高く、
後述する本発明の効果を確認することができた。
Compared with the comparative example, the example has a higher catalytic activity,
The effects of the present invention described below could be confirmed.

【0110】前段触媒例1 セリウム3モル%(CeOに換算して8.7重量
%)、ジルコニウム3モル%(ZrOに換算して6.
3重量%)とランタン2モル%(Laに換算して
5.5重量%)を含有するアルミナ粉末(粉末A)に硝
酸パラジウム水溶液を含浸し、150℃で12時間乾燥
した後、400℃で1時間焼成して、Pd担持アルミナ
粉末(粉末B)を得た。この粉末BのPd濃度は16重
量%であった。ランタン1モル%(Laに換算し
て2重量%)とジルコニウム32モ%(ZrOに換算
して25重量%)を含むセリウム酸化物粉末(粉末C)
に硝酸パラジウム水溶液を含浸し、150℃で12時間
乾燥した後、400℃で1時間焼成して、Pd担持セリ
ウム酸化物(La0.01Zr0.32CeO0.67
)粉末(粉末D)を得た。この粉末DのPd濃度は
6.0重量%であった。
Precatalyst Example 1 3 mol% cerium (8.7 wt% in terms of CeO 2 ) and 3 mol% zirconium (6% in terms of ZrO 2 ).
Alumina powder (powder A) containing 3% by weight of lanthanum and 2% by mole of lanthanum (5.5% by weight in terms of La 2 O 3 ) was impregnated with an aqueous palladium nitrate solution and dried at 150 ° C. for 12 hours. The Pd-supported alumina powder (powder B) was obtained by firing at 400 ° C. for 1 hour. The Pd concentration of this powder B was 16% by weight. Cerium oxide powder (powder C) containing 1 mol% lanthanum (2 wt% in terms of La 2 O 3 ) and 32 mol% zirconium (25 wt% in terms of ZrO 2 ).
Was impregnated with an aqueous palladium nitrate solution, dried at 150 ° C. for 12 hours, and then calcined at 400 ° C. for 1 hour to obtain a Pd-supporting cerium oxide (La 0.01 Zr 0.32 CeO 0.67).
x ) powder (powder D) was obtained. The Pd concentration of this powder D was 6.0% by weight.

【0111】上記粉末B565g、粉末D377gと活
性アルミナ58.5g、硝酸水溶液2000gを磁性ボ
ールミルに投入し、混合・粉砕してスラリーを得た。こ
のスラリー液をコージェライト質モノリス担体(1.0
L、600セル/4ミル、GSA34.5cm/cm
、水力直径0.93mm)に付着させ、空気流にてセ
ル内の余剰のスラリーを除去・乾燥し、400℃で1時
間焼成した。この作業を2度行い、コート量重量100
g/L−担体の触媒を得た。Pd担持量は320.0g
/cf(11.3g/L)であった(触媒A)。
565 g of Powder B, 377 g of Powder D, 58.5 g of activated alumina and 2000 g of nitric acid aqueous solution were put into a magnetic ball mill, mixed and pulverized to obtain a slurry. This slurry liquid was used as a cordierite monolith carrier (1.0
L, 600 cells / 4 mil, GSA34.5 cm 2 / cm
(3 , hydraulic diameter 0.93 mm), the excess slurry in the cell was removed by an air flow, dried, and calcined at 400 ° C. for 1 hour. Do this work twice, and coat weight 100
A catalyst of g / L-support was obtained. Pd carrying amount is 320.0g
/ Cf (11.3 g / L) (Catalyst A).

【0112】次いで、上記触媒成分担持コージェライト
質モノリス担体に酢酸バリウム溶液を付着させた後、4
00℃で1時間焼成し、BaOとして10g/Lを含有
させた(触媒B)。
Then, a barium acetate solution was attached to the above-mentioned catalyst component-supporting cordierite monolithic carrier, and then 4
It was calcined at 00 ° C. for 1 hour to contain 10 g / L as BaO (catalyst B).

【0113】前段触媒例2 上記粉末B565g、粉末D377gと活性アルミナ5
8.5g、硝酸水溶液2000gを磁性ボールミルに投
入し、混合・粉砕してスラリーを得た。このスラリー液
をコージェライト質モノリス担体に付着させ、空気流に
てセル内の余剰のスラリーを除去・乾燥し、400℃で
1時間焼成した。この作業を2度行い、コート量重量9
1.7g/L−担体の触媒を得た。パラジウム担持量は
293.3g/cf(10.36g/L)であった(触
媒C)。
First Stage Catalyst Example 2 Powder B565g, powder D377g and activated alumina 5
A magnetic ball mill was charged with 8.5 g and a nitric acid aqueous solution of 2000 g, and mixed and pulverized to obtain a slurry. This slurry liquid was attached to a cordierite monolithic carrier, excess slurry in the cell was removed by an air flow, dried, and calcined at 400 ° C. for 1 hour. Do this work twice, and coat weight 9
A catalyst of 1.7 g / L-support was obtained. The amount of palladium carried was 293.3 g / cf (10.36 g / L) (catalyst C).

【0114】Zr3重量%を含むアルミナ粉末(粉末
E)に硝酸ロジウム水溶液を含浸し、150℃で12時
間乾燥した後、400℃で1時間焼成して、Rh担持ア
ルミナ粉末(粉末F)を得た。この粉末FのRh濃度は
4.0重量%であった。La1モル%Ce20モル%Z
r79モル%のジルコニウム酸化物粉末(粉末G)にジ
ニトロジアンミン酸白金水溶液を含浸し、150℃で1
2時間乾燥した後、400℃で1時間焼成して、Pt担
持ジルコニウム酸化物粉末(粉末H)を得た。この粉末
HのPt濃度は4.0重量%であった。
An alumina powder containing 3% by weight of Zr (powder E) was impregnated with an aqueous rhodium nitrate solution, dried at 150 ° C. for 12 hours, and then baked at 400 ° C. for 1 hour to obtain an Rh-supported alumina powder (powder F). It was The Rh concentration of this powder F was 4.0% by weight. La1 mol% Ce20 mol% Z
A zirconium oxide powder (powder G) having an r of 79 mol% was impregnated with an aqueous platinum dinitrodiammnate solution, and the mixture was dried at 150 ° C. for 1 hour.
After drying for 2 hours, it was baked at 400 ° C. for 1 hour to obtain a Pt-supported zirconium oxide powder (powder H). The Pt concentration of this powder H was 4.0% by weight.

【0115】上記粉末F117.5g、粉末H117.
5gと、活性アルミナ15g、硝酸水溶液1000gを
磁性ボールミルに投入し、混合・粉砕してスラリーを得
た。このスラリー液を前記Pd含有触媒成分層を担持し
たコージェライト質モノリス担体(触媒C)に付着さ
せ、空気流にてセル内の余剰のスラリーを除去・乾燥
し、400℃で1時間焼成した。コート量25g/L
(コート量総重量116.7g/L)−担体の触媒を得
た。Rhの担持量は13.3g/cf(0.48g/
L)、Ptの担持量は13.3g/cf(0.48g/
L)であった(触媒D)。次いで、上記触媒成分担持コ
ージェライト質モノリス担体(触媒D)に酢酸バリウム
溶液を付着させた後、400℃で1時間焼成し、BaO
として10g/Lを含有させた(触媒E)。
The powder F117.5 g and the powder H117.
A magnetic ball mill was charged with 5 g, 15 g of activated alumina, and 1000 g of a nitric acid aqueous solution, and mixed and pulverized to obtain a slurry. This slurry liquid was adhered to the cordierite monolithic carrier (catalyst C) supporting the Pd-containing catalyst component layer, the excess slurry in the cell was removed and dried by an air flow, and the mixture was calcined at 400 ° C. for 1 hour. Coat amount 25g / L
(Total coat weight 116.7 g / L) -A catalyst of a carrier was obtained. The loading amount of Rh is 13.3 g / cf (0.48 g /
L) and the amount of Pt carried are 13.3 g / cf (0.48 g /
L) (catalyst D). Then, a barium acetate solution was attached to the above-mentioned catalyst component-supporting cordierite monolithic carrier (catalyst D), followed by firing at 400 ° C. for 1 hour to obtain BaO.
Was added as 10 g / L (catalyst E).

【0116】参考例2 H型β−ゼオライト800g、シリカゾル1000g
(固形分20%)と純水1000gを磁性ボールミルに
投入し、混合・粉砕してスラリーを得た。このスラリー
液をコージェライト質モノリス担体(1.3L、200
セル/10ミル、GSA19.0cm/cm、水力
直径1.53mm)に付着させ、空気流にてセル内の余
剰のスラリーを除去・乾燥し、400℃で1時間焼成し
た。コート量重量200g/L−担体の触媒を得た(触
媒F)。
Reference Example 2 H-type β-zeolite 800 g, silica sol 1000 g
(Solid content 20%) and 1000 g of pure water were put into a magnetic ball mill, mixed and pulverized to obtain a slurry. This slurry liquid was used as a cordierite monolith carrier (1.3 L, 200 L).
(Cell / 10 mil, GSA 19.0 cm 2 / cm 3 , hydraulic diameter 1.53 mm), the excess slurry in the cell was removed and dried by air flow, and the mixture was calcined at 400 ° C. for 1 hour. A catalyst having a coat weight of 200 g / L-support was obtained (Catalyst F).

【0117】 La1モル%Ce20モル%Zr79モ
ル%のジルコニウム酸化物粉末(粉末G)に硝酸ロジウ
ム水溶液を含浸し、150℃で12時間乾燥した後、4
00℃で1時間焼成して、Rh担持ルコニウム酸化物
粉末(粉末I)を得た。この粉末IのRh濃度は8.0
重量%であった。上記粉末B500g、粉末D80g、
粉末I353g、粉末A47gと活性アルミナ20g、
硝酸水溶液1000gを磁性ボールミルに投入し、混合
・粉砕してスラリーを得た。このスラリー液を上記触媒
Fに付着させ、空気流にてセル内の余剰のスラリーを除
去・乾燥し、400℃で1時間焼成した。この作業を2
度行い、コート量重量100g/L(総重量300g/
L−担体)の触媒Gを得た。触媒Gのパラジウム担持量
は240.0g/cf(8.48g/L)、ロジウム担
持量は80.0g/cf(2.83g/L)であった。
次いで、上記触媒Gに酢酸バリウム溶液を付着させた
後、400℃で1時間焼成し、BaOとして10g/L
を含有させた(触媒H)。
Zirconium oxide powder (powder G) containing 1 mol% of La, 20 mol% of Ce, and 79 mol% of Zr was impregnated with an aqueous rhodium nitrate solution, and dried at 150 ° C. for 12 hours.
00 was calcined 1 hour at ° C., to obtain a Rh-supporting di Rukoniumu oxide powder (powder I). The Rh concentration of this powder I is 8.0.
% By weight. Powder B 500 g, powder D 80 g,
Powder I353g, powder A47g and activated alumina 20g,
A magnetic ball mill was charged with 1000 g of a nitric acid aqueous solution, and the mixture was mixed and ground to obtain a slurry. This slurry liquid was attached to the catalyst F, the excess slurry in the cell was removed by an air flow, dried, and calcined at 400 ° C. for 1 hour. Do this work 2
The coat weight 100g / L (total weight 300g /
A catalyst G (L-support) was obtained. The amount of palladium loaded on the catalyst G was 240.0 g / cf (8.48 g / L), and the amount of rhodium loaded was 80.0 g / cf (2.83 g / L).
Then, a barium acetate solution was attached to the catalyst G, followed by firing at 400 ° C. for 1 hour to obtain BaO of 10 g / L.
Was included (catalyst H).

【0118】参考例3 H型β−ゼオライト800gに代わり、H型β−ゼオラ
イト500g、ZSM5を100g、USY100g、
Y型50g、モルデナイト50gを用いた以外は、参考
例2と同様にして触媒Iを得た。
Reference Example 3 Instead of 800 g of H-type β-zeolite, 500 g of H-type β-zeolite, 100 g of ZSM5, 100 g of USY,
A catalyst I was obtained in the same manner as in Reference Example 2 except that 50 g of Y type and 50 g of mordenite were used.

【0119】参考例4 H型β−ゼオライト800gに代わり、ホウ素0.5重
量%、カルシウム0.1重量%を含むH型β−ゼオライ
ト800gを用いた以外は、参考例2と同様にして触媒
Jを得た。
Reference Example 4 A catalyst was prepared in the same manner as in Reference Example 2 except that 800 g of H-type β-zeolite containing 0.5% by weight of boron and 0.1% by weight of calcium was used instead of 800 g of H-type β-zeolite. I got J.

【0120】参考例5 H型β−ゼオライト800gに代わり、リン0.5重量
%、マグネシウム0.1重量%を含むH型β−ゼオライ
ト600gと、ホウ素0.5重量%、カルシウム0.1
重量%を含むZSM5を100gと、リン0.5重量
%、カルシウム0.1重量%を含むUSY100gを用
いた以外は、参考例2と同様にして触媒Kを得た。
Reference Example 5 Instead of 800 g of H-type β-zeolite, 600 g of H-type β-zeolite containing 0.5% by weight of phosphorus and 0.1% by weight of magnesium, 0.5% by weight of boron and 0.1% of calcium.
A catalyst K was obtained in the same manner as in Reference Example 2 except that 100 g of ZSM5 containing 0.5 wt% of phosphorus and 100 g of USY containing 0.5 wt% of phosphorus and 0.1 wt% of calcium were used.

【0121】実施例21 リン酸2水素アンモニウム20gを純水1500gに溶
解した溶液に、H型β−ゼオライト1000gを加え、
更に、25%アンモニア水を滴下しpHを9.0に調整
した後、24時間攪拌・混合した。この混合溶液からβ
−ゼオライトを濾取し、120℃で24時間乾燥後、空
気中、650℃で2時間焼成し粉末Jを得た。更に、こ
の粉末Jに硝酸パラジウム溶液を含浸し、Pd1重量
%、P0.5重量%を含む粉末Kを得た。この粉末K8
00g、シリカゾル1000g(固形分20%)と硝酸
水溶液1000gを磁性ボールミルに投入し、混合・粉
砕してスラリーを得た。このスラリー液をコージェライ
ト質モノリス担体(1.3L、200セル/10ミル、
GSA19.0cm/cm、水力直径1.53m
m)に付着させ、空気流にてセル内の余剰のスラリーを
除去・乾燥し、400℃で1時間焼成した。コート量重
量200g/L−担体の触媒を得た(触媒L)。Pdの
担持量は45.3g/cf(1.6g/L)。上記粉末
B500g、粉末D80g、粉末A30gと活性アルミ
ナ15g、硝酸水溶液1000gを磁性ボールミルに投
入し、混合・粉砕してスラリーを得た。このスラリー液
を上記触媒Lに付着させ、空気流にてセル内の余剰のス
ラリーを除去・乾燥し、400℃で1時間焼成した。こ
の作業を2度行い、触媒Mを得た。更に、上記粉末I3
53g、粉末A17gと活性アルミナ5g、硝酸水溶液
1000gを磁性ボールミルに投入し、混合・粉砕して
スラリーを得た。このスラリー液を上記触媒Mに付着さ
せ、空気流にてセル内の余剰のスラリーを除去・乾燥
し、400℃で1時間焼成した。この作業を2度行い、
コート量重量100g/L(総重量300g/L−担
体)の触媒Nを得た。触媒Mのパラジウム担持量は28
5.4g/cf(10.08g/L)、ロジウム担持量
は80g/cf(2.83g/L)であった。次いで、
上記触媒成分担持コージェライト質モノリス担体(触媒
N)に酢酸バリウム溶液を付着させた後、400℃で1
時間焼成し、BaOとして10g/Lを含有させた(触
媒O)。
Example 21 To a solution of 20 g of ammonium dihydrogen phosphate dissolved in 1500 g of pure water was added 1000 g of H-type β-zeolite,
Further, 25% aqueous ammonia was added dropwise to adjust the pH to 9.0, and then the mixture was stirred and mixed for 24 hours. Β from this mixed solution
-Zeolite was collected by filtration, dried at 120 ° C for 24 hours, and then calcined in air at 650 ° C for 2 hours to obtain powder J. Further, this powder J was impregnated with a palladium nitrate solution to obtain a powder K containing 1% by weight of Pd and 0.5% by weight of Pd. This powder K8
00 g, 1000 g of silica sol (solid content 20%) and 1000 g of nitric acid aqueous solution were put into a magnetic ball mill, mixed and pulverized to obtain a slurry. This slurry liquid was used as a cordierite monolith carrier (1.3 L, 200 cells / 10 mil,
GSA19.0cm 2 / cm 3, the hydraulic diameter 1.53m
m), and the excess slurry in the cell was removed by an air flow, dried, and calcined at 400 ° C. for 1 hour. A catalyst having a coat weight of 200 g / L-support was obtained (Catalyst L). The amount of Pd supported was 45.3 g / cf (1.6 g / L). The above-mentioned powder B (500 g), powder D (80 g), powder A (30 g), activated alumina (15 g) and nitric acid aqueous solution (1000 g) were put into a magnetic ball mill, and mixed and pulverized to obtain a slurry. This slurry liquid was adhered to the catalyst L, the excess slurry in the cell was removed by an air flow, dried, and calcined at 400 ° C. for 1 hour. This operation was performed twice to obtain a catalyst M. Further, the above powder I3
A magnetic ball mill was charged with 53 g, 17 g of powder A, 5 g of activated alumina, and 1000 g of nitric acid aqueous solution, and mixed and pulverized to obtain a slurry. This slurry liquid was adhered to the catalyst M, the excess slurry in the cell was removed by an air flow, dried, and calcined at 400 ° C. for 1 hour. Do this work twice,
A catalyst N having a coat weight of 100 g / L (total weight of 300 g / L-support) was obtained. The amount of palladium supported on the catalyst M is 28
The amount of rhodium supported was 5.4 g / cf (10.08 g / L) and 80 g / cf (2.83 g / L). Then
After the barium acetate solution was attached to the above-mentioned catalyst component-supporting cordierite monolithic carrier (catalyst N), the temperature was adjusted to 1 at 400 ° C.
It was calcined for an hour to contain 10 g / L as BaO (catalyst O).

【0122】実施例22 H型β−ゼオライト800gに代わり、パラジウム0.
28重量%、リン0.2重量%、ホウ素0.3重量%、
マグネシウム0.1重量%、カルシウム0.1重量%を
含むH型β−ゼオライト500gと、Pt0.33重量
%、カルシウム0.1重量%を含むZSM5を100g
と、パラジウム0.28重量%、リン0.2重量%を含
むUSY200g、Pt0.33重量%、ホウ素0.1
重量%、マグネシウム0.1重量%を含むモルデナイト
100gを用い、コージェライト質モノリス担体(20
0セル/10ミル、GSA19.0cm/cm、水
力直径1.53mm)を用いた以外は、実施例1と同様
にして触媒Pを得た。コート量200g/L、Pdの担
持量は11.1g/cf(0.39g/L)、Ptの担
持量は3.7g/cf(0.13g/L)であった。
Example 22 Instead of 800 g of H-type β-zeolite, palladium 0.
28 wt%, phosphorus 0.2 wt%, boron 0.3 wt%,
500 g of H-type β-zeolite containing 0.1% by weight of magnesium and 0.1% by weight of calcium and 100 g of ZSM5 containing 0.33% by weight of Pt and 0.1% by weight of calcium.
200 g of USY containing 0.28% by weight of palladium and 0.2% by weight of phosphorus, 0.33% by weight of Pt, 0.1 of boron
Using 100 g of mordenite containing 20% by weight and 0.1% by weight of magnesium, a cordierite-based monolith carrier (20
A catalyst P was obtained in the same manner as in Example 1 except that 0 cell / 10 mil, GSA 19.0 cm 2 / cm 3 , hydraulic diameter 1.53 mm) were used. The coating amount was 200 g / L, the Pd loading amount was 11.1 g / cf (0.39 g / L), and the Pt loading amount was 3.7 g / cf (0.13 g / L).

【0123】上記粉末A30g、粉末B500g、粉末
D80gと活性アルミナ20g、硝酸水溶液1000g
を磁性ボールミルに投入し、混合・粉砕してスラリーを
得た。このスラリー液を前記触媒Pに付着させ、空気流
にてセル内の余剰のスラリーを除去・乾燥し、400℃
で1時間焼成し、触媒Qを得た。上記粉末F176g、
粉末H117g、粉末I177gと活性アルミナ30
g、硝酸水溶液1000gを磁性ボールミルに投入し、
混合・粉砕してスラリーを得た。このスラリー液を前記
触媒Qに付着させ、空気流にてセル内の余剰のスラリー
を除去・乾燥し、400℃で1時間焼成した。次いで、
上記触媒成分担持コージェライト質モノリス担体に酢酸
バリウム溶液を付着させた後、400℃で1時間焼成
し、BaOとして10g/Lを含有させた(触媒R)。
コート量50g/L(総重量250g/L−担体)、P
dの担持量は251.2g/cf(8.87g/L)、
Pt担持量16.9g/cf(0.60g/L)、Rh
担持量40.0g/cf(1.42g/L)であった
(触媒R)。
Powder A 30 g, powder B 500 g, powder D 80 g, activated alumina 20 g, nitric acid aqueous solution 1000 g
Was charged into a magnetic ball mill, mixed and pulverized to obtain a slurry. This slurry liquid is attached to the catalyst P, and the excess slurry in the cell is removed by an air flow and dried to 400 ° C.
It was calcined for 1 hour to obtain a catalyst Q. The above powder F176g,
Powder H117g, Powder I177g and activated alumina 30
g, and 1000 g of nitric acid aqueous solution are put into a magnetic ball mill,
A slurry was obtained by mixing and pulverizing. This slurry liquid was attached to the catalyst Q, the excess slurry in the cell was removed by an air flow, dried, and calcined at 400 ° C. for 1 hour. Then
After the barium acetate solution was attached to the above-mentioned catalyst component-supporting cordierite monolithic carrier, it was baked at 400 ° C. for 1 hour to contain 10 g / L as BaO (catalyst R).
Coat amount 50 g / L (total weight 250 g / L-carrier), P
The carried amount of d is 251.2 g / cf (8.87 g / L),
Pt carrying amount 16.9 g / cf (0.60 g / L), Rh
The supported amount was 40.0 g / cf (1.42 g / L) (catalyst R).

【0124】前段触媒例3 粉末B1324g、粉末F106g、粉末H27gと活
性アルミナ43g、硝酸水溶液2000gを磁性ボール
ミルに投入し、混合・粉砕してスラリーを得た。このス
ラリー液をコージェライト質モノリス担体(1.0L、
900セル/2ミル、GSA43.6cm/cm
水力直径0.78mm)に付着させ、空気流にてセル内
の余剰のスラリーを除去・乾燥し、400℃で1時間焼
成した。この作業を2度行い、コート量重量150g/
L−担体の触媒を得た。次いで、上記触媒に酢酸バリウ
ム溶液を付着させた後、400℃で1時間焼成し、Ba
Oとして10g/Lを含有させた。パラジウム担持量は
600.0g/cf(21.2g/L)、白金担持量は
3.0g/cf(0.11g/L)、ロジウム担持量は
12.0g/cf(0.42g/L)であった(触媒
S)。
Pre-catalyst Example 3 1324 g of powder B, 106 g of powder F, 27 g of powder H, 43 g of activated alumina, and 2000 g of nitric acid aqueous solution were put into a magnetic ball mill, and mixed and pulverized to obtain a slurry. This slurry liquid was used as a cordierite monolith carrier (1.0 L,
900 cells / 2 mil, GSA 43.6 cm 2 / cm 3 ,
It was attached to a hydraulic diameter of 0.78 mm), excess slurry in the cell was removed by an air flow, dried, and calcined at 400 ° C. for 1 hour. Do this work twice, coat weight 150g /
An L-supported catalyst was obtained. Then, after a barium acetate solution was attached to the above catalyst, it was calcined at 400 ° C. for 1 hour, and Ba was used.
As O, 10 g / L was contained. The amount of palladium carried is 600.0 g / cf (21.2 g / L), the amount of platinum carried is 3.0 g / cf (0.11 g / L), and the amount of rhodium carried is 12.0 g / cf (0.42 g / L). (Catalyst S).

【0125】参考例6 H型β−ゼオライト800g、粉末I88.3g、粉末
E161.5g、シリカゾル1000g(固形分20
%)と純水1000gを磁性ボールミルに投入し、混合
・粉砕してスラリーを得た。このスラリー液をコージェ
ライト質モノリス担体(1.3L、200セル/10ミ
ル、GSA19.0cm/cm、水力直径1.53
mm)に付着させ、空気流にてセル内の余剰のスラリー
を除去・乾燥し、400℃で1時間焼成した。コート量
重量250g/L−担体の触媒を得た(触媒T)。
Reference Example 6 H-type β-zeolite 800 g, powder I 88.3 g, powder E 161.5 g, silica sol 1000 g (solid content 20)
%) And 1000 g of pure water were charged into a magnetic ball mill and mixed and pulverized to obtain a slurry. This slurry liquid was used as a cordierite monolith carrier (1.3 L, 200 cells / 10 mil, GSA 19.0 cm 2 / cm 3 , hydraulic diameter 1.53).
mm), excess slurry in the cell was removed by an air flow, dried, and fired at 400 ° C. for 1 hour. A catalyst having a coat weight of 250 g / L-support was obtained (catalyst T).

【0126】上記粉末B500g、粉末D80g、粉末
I176.5g、粉末E203g、粉末A40gと活性
アルミナ20g、硝酸水溶液1000gを磁性ボールミ
ルに投入し、混合・粉砕してスラリーを得た。このスラ
リー液を上記触媒Tに付着させ、空気流にてセル内の余
剰のスラリーを除去・乾燥し、400℃で1時間焼成し
た。この作業を2度行い、コート量重量100g/L
(総重量300g/Lー担体)、パラジウム担持量は2
40.0g/cf(8.48g/L)、ロジウム担持量
は80.0g/cf(2.83g/L)の触媒Uを得
た。次いで、上記触媒Uに酢酸バリウム溶液を付着させ
た後、400℃で1時間焼成し、BaOとして10g/
Lを含有させた(触媒V)。
The above-mentioned powder B 500 g, powder D 80 g, powder I 176.5 g, powder E 203 g, powder A 40 g, activated alumina 20 g and nitric acid aqueous solution 1000 g were put into a magnetic ball mill and mixed and pulverized to obtain a slurry. This slurry liquid was attached to the catalyst T, the excess slurry in the cell was removed by an air flow, dried, and calcined at 400 ° C. for 1 hour. Do this work twice, coat weight 100g / L
(Total weight 300 g / L-carrier), palladium loading is 2
40.0 g / cf (8.48 g / L) and the rhodium carrying amount obtained the catalyst U of 80.0 g / cf (2.83 g / L). Next, a barium acetate solution was attached to the catalyst U, followed by firing at 400 ° C. for 1 hour to obtain BaO of 10 g /
L was included (Catalyst V).

【0127】比較例7 コージェライト質モノリス担体(1.3L、600セル
/2ミル、GSA36.2cm/cm、水力直径
0.97mm)を用いた以外、参考例2と同様に触媒W
を得た。
Comparative Example 7 Catalyst W was used in the same manner as in Reference Example 2 except that a cordierite monolithic carrier (1.3 L, 600 cells / 2 mil, GSA36.2 cm 2 / cm 3 , hydraulic diameter 0.97 mm) was used.
Got

【0128】比較例8 コージェライト質モノリス担体(1.3L、900セル
/4ミル、GSA41.1cm/cm、水力直径
0.74mm)を用いた以外、参考例2と同様に触媒X
を得た。
Comparative Example 8 Catalyst X was used in the same manner as in Reference Example 2 except that a cordierite monolith carrier (1.3 L, 900 cells / 4 mil, GSA41.1 cm 2 / cm 3 , hydraulic diameter 0.74 mm) was used.
Got

【0129】比較例9 H型β−ゼオライト800g、シリカゾル1000g
(固形分20%)と純水1000gを磁性ボールミルに
投入し、混合・粉砕してスラリーを得た。このスラリー
液をコージェライト質モノリス担体(1.3L、200
セル/10ミル、GSA19.0cm/cm、水力
直径1.53mm)に付着させ、空気流にてセル内の余
剰のスラリーを除去・乾燥し、400℃で1時間焼成し
た。コート量重量20g/L−担体の触媒Yを得た。触
媒Fの代わりに、触媒Yを用いた以外、参考例2と同様
にして触媒Zを得た。
Comparative Example 9 H-type β-zeolite 800 g, silica sol 1000 g
(Solid content 20%) and 1000 g of pure water were put into a magnetic ball mill, mixed and pulverized to obtain a slurry. This slurry liquid was used as a cordierite monolith carrier (1.3 L, 200 L).
(Cell / 10 mil, GSA 19.0 cm 2 / cm 3 , hydraulic diameter 1.53 mm), the excess slurry in the cell was removed and dried by air flow, and the mixture was calcined at 400 ° C. for 1 hour. A catalyst Y having a coat weight of 20 g / L-support was obtained. A catalyst Z was obtained in the same manner as in Reference Example 2 except that the catalyst Y was used instead of the catalyst F.

【0130】比較例10 H型β−ゼオライト800g、シリカゾル1000g
(固形分20%)と純水1000gを磁性ボールミルに
投入し、混合・粉砕してスラリーを得た。このスラリー
液をコージェライト質モノリス担体(1.3L、200
セル/10ミル、GSA19.0cm/cm、水力
直径1.53mm)に付着させ、空気流にてセル内の余
剰のスラリーを除去・乾燥し、400℃で1時間焼成し
た。コート量重量300g/L−担体の触媒AAを得
た。粉末J(粉末AにPdを担持したアルミナ粉末、P
d濃度50重量%)160.0g、粉末K(粉末CにP
dを担持したセリウム酸化物粉末、Pd濃度28重量
%)17g、粉末L(粉末GにRhを担持したジルコニ
ウム酸化物粉末、Rh濃度25重量%)113.0g、
活性アルミナ10g、硝酸水溶液500gを磁性ボール
ミルに投入し、混合・粉砕してスラリーを得た。このス
ラリー液を上記触媒AAに付着させ、空気流にてセル内
の余剰のスラリーを除去・乾燥し、400℃で1時間焼
成した。この作業を2度行い、コート量重量30g/L
(総重量330g/L−担体)、パラジウム担持量は2
40.0g/cf(8.48g/L)、ロジウム担持量
は80.0g/cf(2.83g/L)の触媒BBを得
た。次いで、上記触媒Uに酢酸バリウム溶液を付着させ
た後、400℃で1時間焼成し、BaOとして10g/
Lを含有させた触媒CCを得た。
Comparative Example 10 H-type β-zeolite 800 g, silica sol 1000 g
(Solid content 20%) and 1000 g of pure water were put into a magnetic ball mill, mixed and pulverized to obtain a slurry. This slurry liquid was used as a cordierite monolith carrier (1.3 L, 200 L).
(Cell / 10 mil, GSA 19.0 cm 2 / cm 3 , hydraulic diameter 1.53 mm), the excess slurry in the cell was removed and dried by air flow, and the mixture was calcined at 400 ° C. for 1 hour. A catalyst AA having a coat weight of 300 g / L-support was obtained. Powder J (Alumina powder in which Pd is supported on Powder A, P
d concentration 50% by weight) 160.0 g, powder K (powder C to P
Cerium oxide powder carrying the d, Pd concentration of 28 wt%) 17 g, flour powder L (zirconium oxide powder supporting Rh in the powder G, Rh concentration of 25 wt%) 113.0 g,
10 g of activated alumina and 500 g of nitric acid aqueous solution were put into a magnetic ball mill, mixed and pulverized to obtain a slurry. This slurry liquid was attached to the catalyst AA, excess slurry in the cell was removed by an air flow, dried, and calcined at 400 ° C. for 1 hour. Do this work twice, coat weight 30g / L
(Total weight 330 g / L-carrier), palladium loading is 2
40.0 g / cf (8.48 g / L) and a rhodium carrying amount of the catalyst BB of 80.0 g / cf (2.83 g / L) were obtained. Next, a barium acetate solution was attached to the catalyst U, followed by firing at 400 ° C. for 1 hour to obtain BaO of 10 g /
A catalyst CC containing L was obtained.

【0131】比較例11 上記粉末B659g、粉末D80g、粉末I35.3
g、粉末A206gと活性アルミナ20g、硝酸水溶液
1000gを磁性ボールミルに投入し、混合・粉砕して
スラリーを得た。このスラリー液を上記触媒Fに付着さ
せ、空気流にてセル内の余剰のスラリーを除去・乾燥
し、400℃で1時間焼成した。この作業を2度行い、
コート量重量100g/L(総重量300g/L−担
体)の触媒DDを得た。触媒DDのパラジウム担持量は
312.0g/cf(11.02g/L)、ロジウム担
持量は8.0g/cf(0.28g/L)であった。次
いで、上記触媒DDに酢酸バリウム溶液を付着させた
後、400℃で1時間焼成し、BaOとして10g/L
を含有させた触媒EEを得た。
Comparative Example 11 Powder B 659 g, Powder D 80 g, Powder I35.3
g, 206 g of powder A, 20 g of activated alumina, and 1000 g of aqueous nitric acid solution were put into a magnetic ball mill, and mixed and pulverized to obtain a slurry. This slurry liquid was attached to the catalyst F, the excess slurry in the cell was removed by an air flow, dried, and calcined at 400 ° C. for 1 hour. Do this work twice,
A catalyst DD having a coat weight of 100 g / L (total weight of 300 g / L-support) was obtained. The amount of palladium carried on the catalyst DD was 312.0 g / cf (11.02 g / L), and the amount of rhodium carried was 8.0 g / cf (0.28 g / L). Next, a barium acetate solution was attached to the catalyst DD, followed by firing at 400 ° C. for 1 hour to obtain BaO of 10 g / L.
As a result, the catalyst EE containing

【0132】比較例12 上記粉末B162g、粉末D80g、粉末I15g、粉
末A723gと活性アルミナ20g、硝酸水溶液100
0gを磁性ボールミルに投入し、混合・粉砕してスラリ
ーを得た。このスラリー液をコージェライト質モノリス
担体(1.0L、900セル/2ミル、GSA43.6
cm/cm、水力直径0.78mm)に付着させ、
空気流にてセル内の余剰のスラリーを除去・乾燥し、4
00℃で1時間焼成した。この作業を2度行い、コート
量重量100g/Lの触媒を得た。触媒DDのパラジウ
ム担持量は73.3g/cf(2.59g/L)、ロジ
ウム担持量は6.7g/cf(0.24g/L)であっ
た。次いで、上記触媒に酢酸バリウム溶液を付着させた
後、400℃で1時間焼成し、BaOとして10g/L
を含有させた触媒FFを得た。
Comparative Example 12 Powder B 162 g, powder D 80 g, powder I 15 g, powder A 723 g and activated alumina 20 g, nitric acid aqueous solution 100
0 g was put into a magnetic ball mill, mixed and pulverized to obtain a slurry. This slurry liquid was used as a cordierite monolith carrier (1.0 L, 900 cells / 2 mil, GSA43.6).
cm 2 / cm 3 , hydraulic diameter 0.78 mm),
Excessive slurry in the cell is removed by air flow and dried.
It was baked at 00 ° C. for 1 hour. This operation was performed twice to obtain a catalyst having a coat weight of 100 g / L. The amount of palladium carried on the catalyst DD was 73.3 g / cf (2.59 g / L), and the amount of rhodium carried was 6.7 g / cf (0.24 g / L). Then, a barium acetate solution was attached to the above catalyst and then calcined at 400 ° C. for 1 hour to obtain BaO of 10 g / L.
As a result, the catalyst FF containing

【0133】上記実施例21と22、参考例2〜6、前
段触媒例1〜3及び比較例7〜12で得られた排気ガス
浄化用触媒の仕様を表5及び6に示す。
Tables 5 and 6 show the specifications of the exhaust gas purifying catalysts obtained in Examples 21 and 22, Reference Examples 2 to 6, Precatalyst Examples 1 to 3 and Comparative Examples 7 to 12.

【0134】[0134]

【表5】 [Table 5]

【0135】[0135]

【表6】 [Table 6]

【0136】試験例 前記実施例21と22、参考例2〜6、前段触媒例1〜
3及び比較例7〜12得られた排気ガス浄化用触媒を、
以下の耐久条件により耐久を行った。 耐久条件 エンジン排気量 3000cc 燃料 無鉛ガソリン 触媒入口ガス温度 700℃ 耐久時間 100時間 入口ガス組成 CO 0.5±0.1% O2 0.5±0.1% HC 約1100ppm NO 1300ppm CO2 15% A/F変動 5500回(周期65秒/回) 周期:A/F=14.6 55秒 燃料カット 5秒 リッチ スパイク 5秒(CO=2%)
Test Examples Examples 21 and 22, Reference Examples 2 to 6, Pre-stage Catalyst Examples 1 to 1
3 and Comparative Examples 7 to 12 obtained exhaust gas purification catalyst,
Durability was performed under the following durability conditions. Endurance conditions Engine displacement 3000 cc Fuel unleaded gasoline Catalyst inlet gas temperature 700 ° C Endurance time 100 hours Inlet gas composition CO 0.5 ± 0.1% O2 0.5 ± 0.1% HC Approx. 1100 ppm NO 1300 ppm CO2 15% A / F fluctuation 5500 times (cycle 65 seconds / cycle) cycle: A / F = 14.65 55 seconds Fuel cut 5 seconds Rich spike 5 seconds (CO = 2%)

【0137】上記条件で耐久した実施例21と22、参
考例2〜6、前段触媒例1〜3及び比較例7〜12の触
媒を用い、実施例23〜29、参考例7〜19、比較例
13〜24について、下記評価条件でHC浄化特性評価
(ECモード、LA−4のA−bag)を、図3〜8の
システム(排気ガス浄化装置)を用いて行った。その結
果を表7〜表10に示す。
Using the catalysts of Examples 21 and 22, Reference Examples 2 to 6, pre-catalyst Examples 1 to 3 and Comparative Examples 7 to 12 which were durable under the above conditions, Examples 23 to 29, Reference Examples 7 to 19 and Comparative Examples For Examples 13 to 24, HC purification characteristic evaluation (EC mode, LA-4 A-bag) was performed using the system (exhaust gas purification device) of FIGS. The results are shown in Tables 7 to 10.

【0138】性能評価条件 触媒容量(片バンク) 三元触媒2.0L(1.0L+
1.0L)+HC吸着触媒1.3L〜2.6L 評価車両 日産自動車株式会社製 V型6
気筒 3.3Lエンジン エンジン始動時に排出される(触媒入口のガス中の)炭
化水素
Performance evaluation conditions Catalyst capacity (one-sided bank) Three-way catalyst 2.0 L (1.0 L +
1.0L) + HC adsorption catalyst 1.3L to 2.6L Evaluation vehicle Nissan Motor Co., Ltd. V type 6
Cylinder 3.3L engine Hydrocarbons (in gas at catalyst inlet) exhausted at engine startup

【0139】[0139]

【表7】 [Table 7]

【0140】[0140]

【表8】 [Table 8]

【0141】[0141]

【表9】 [Table 9]

【0142】[0142]

【表10】 [Table 10]

【0143】[0143]

【発明の効果】以下、まず本発明の効果について総括的
に説明する。 (1)ゼオライト種の最適化 ゼオライトを用いたHC吸着触媒では、排気ガス中のH
C種分布とゼオライトの有する細孔径との間に相関があ
るため、最適な細孔径を持つゼオライトを選定する必要
がある。 従来は、MFI(ZSM5)をメインに、他
の細孔径を有すゼオライト(例えば、USY等)をブレ
ンドし細孔分布を調整していたが、耐久後にはゼオライ
ト種によって細孔径の歪みや吸着・脱離特性が異なるた
め、排気ガスHC種の吸着が不十分であるという問題点
があった。本発明では、2種類の細孔径を持った、耐久
性に優れたβ−ゼオライトを主成分として採用すること
で、耐久による歪みも少なく、初期から耐久後まで細孔
分布が広く保持できるため、従来に比べて吸着・脱離特
性が向上する。更に2種以上のゼオライト種を組み合わ
せることにより、ゼオライト細孔径の分布を更に広げる
効果が得られる。すなわち、本発明においてはZSM5
の種結晶としてモルデナイトを用いるため、通常のZS
M5に比べ、細孔内部の奥行きが広い。このZSM5を
HC吸着素材として用いた場合、細孔内部へのHC拡散
速度が遅い(細孔の入口に分子径の大きいHCが来ると
他のHCの拡散が阻害され、短時間で効率良くコールド
HCを吸着することはできない)ため吸着性能は劣る。
しかし一旦、細孔内部へ拡散して入ったHCは外部へ抜
け難くなる(脱離が遅い)。本発明では、このZSM5
とβ−ゼオライトを組合せることによって、吸着−脱離
特性に優れる自動車用のHC吸着材を開発した。
[Effects of the Invention] First, the effects of the present invention will be generally described. (1) Optimization of zeolite type In the HC adsorption catalyst using zeolite, H in the exhaust gas is
Since there is a correlation between the C type distribution and the pore size of the zeolite, it is necessary to select the zeolite having the optimum pore size. Conventionally, MFI (ZSM5) was mainly blended with a zeolite having another pore size (for example, USY, etc.) to adjust the pore size distribution. -Since the desorption characteristics are different, there is a problem that the adsorption of exhaust gas HC species is insufficient. In the present invention, by adopting β-zeolite having two types of pore diameters and having excellent durability as a main component, there is little distortion due to durability, and since the pore distribution can be widely maintained from the initial stage to the end stage, Adsorption / desorption characteristics are improved compared to the conventional one. Further, by combining two or more kinds of zeolite, an effect of further widening the distribution of the zeolite pore size can be obtained. That is, in the present invention, ZSM5
Since mordenite is used as the seed crystal of
The depth inside the pores is wider than that of M5. When this ZSM5 is used as an HC adsorbing material, the HC diffusion rate inside the pores is slow (when HC with a large molecular diameter arrives at the entrance of the pores, the diffusion of other HCs is hindered and the cold is efficiently and quickly obtained. Since HC cannot be adsorbed), the adsorption performance is poor.
However, the HC once diffused into the pores is difficult to escape to the outside (desorption is slow). In the present invention, this ZSM5
By combining and β-zeolite, we have developed an HC adsorbent for automobiles that has excellent adsorption-desorption characteristics.

【0144】(2)三元貴金属種(触媒成分種)の最適
化 従来では、Rh、Pt、Pd等の貴金属種を同一層に共
存させた仕様や、Rh層とPd層を塗り分けた仕様等が
提案されていた。本発明では、ゼオライト層の上にPd
層、その上にRh層を設け、どちらか一方或いは両層に
Ptを添加できる仕様とした。ゼオライトの上にHC低
温活性に優れるPd層を設けることで、ゼオライトから
脱離してくるHCを優先的に浄化でき、その上にRh層
を設けることにより、理論空燃比より僅かにリッチ雰囲
気にシフトしたガスが流れても、HC、CO、NOx
がバランス良く浄化できる。更に、Ptを添加すること
で、耐被毒性の向上が得られる。
(2) Optimization of ternary noble metal species (catalyst component species) Conventionally, specifications in which noble metal species such as Rh, Pt, and Pd coexist in the same layer, or specifications in which the Rh layer and the Pd layer are separately coated Etc. were proposed. In the present invention, Pd is formed on the zeolite layer.
A layer and an Rh layer are provided on the layer, and Pt can be added to either or both layers. By providing a Pd layer with excellent low temperature HC activity on the zeolite, the HC desorbed from the zeolite can be preferentially purified, and by providing the Rh layer on it, the atmosphere slightly shifts from the stoichiometric air-fuel ratio. Even if the generated gas flows, HC, CO, NOx
Can be purified in a good balance. Furthermore, by adding Pt, the poisoning resistance can be improved.

【0145】(3)ゼオライト層+三元貴金属層のコー
ト層構造の最適化 従来では、ゼオライト層(HC吸着材層)と三元層(触
媒成分層)のコート層比率やコート層を担持するモノリ
ス担体のGSAに関しては特に提示してなかったが、H
C吸着触媒では、ゼオライト層と三元層の構造が最適で
ないと、HC吸着・脱離・浄化のサイクルが有効に行わ
れないという問題点があった。本発明では、ゼオライト
層と三元層のコート層比率を、重量比で9:1〜1:4
の割合とし、更に、コート層を設けるモノリス担体のG
SAを10cm/cm〜35cm/cmの範囲
に規定することによって、前記HC吸着・脱離・浄化の
バランスが良い仕様にしている。すなわち、ゼオライト
層に対して三元層の割合が多く成り過ぎると、下層に配
置されたゼオライト層へのガス拡散が悪くなり、ゼオラ
イト量に見合った十分な吸着性能が得られない。一方、
三元層の割合が少ないと、脱離してくるHCの酸化性能
及び排気ガスの浄化性能が十分に得られなくなる。ま
た、GSAが大きく成り過ぎると、ゼオライト層のHC
保持力が小さくなり、上部に配置された三元層で十分な
浄化性能が得られない。また、GSAが小さいと、排気
ガスの浄化性能が十分に得られなくなる。
(3) Optimization of coat layer structure of zeolite layer + ternary precious metal layer Conventionally, the coat layer ratio of the zeolite layer (HC adsorbent layer) and the ternary layer (catalyst component layer) and the coat layer are carried. Although no particular mention was made of GSA as a monolith carrier,
The C adsorption catalyst has a problem that the cycle of HC adsorption / desorption / purification cannot be effectively performed unless the structures of the zeolite layer and the ternary layer are optimal. In the present invention, the weight ratio of the coat layers of the zeolite layer and the ternary layer is 9: 1 to 1: 4.
Of the monolithic carrier with a coating layer
By defining the SA in the range of 10cm 2 / cm 3 ~35cm 2 / cm 3, the balance of the HC adsorption and desorption and purification is a good design. That is, if the ratio of the ternary layer to the zeolite layer is too large, the gas diffusion to the zeolite layer arranged in the lower layer becomes poor, and sufficient adsorption performance corresponding to the amount of zeolite cannot be obtained. on the other hand,
When the proportion of the ternary layer is small, the oxidizing performance of desorbed HC and the exhaust gas purification performance cannot be sufficiently obtained. Also, if GSA becomes too large, HC in the zeolite layer
The holding power becomes small, and sufficient purification performance cannot be obtained with the ternary layer placed above. Further, if the GSA is small, the exhaust gas purification performance cannot be sufficiently obtained.

【0146】請求項1記載の排気ガス浄化用触媒は、H
C、CO、NOxの浄化性能をバランス良く行うことが
できる。更に、上記効果に加えて、モノリス担体セル内
を通過及びコート層内に拡散する排気ガスの拡散性(速
度)を制御し、HCの浄化性能を向上できる。更に、H
Cの脱離を遅延化しHCの浄化性能を向上できる。ま
た、上記効果に加えて、更に浄化性能を向上し、触媒成
分の被毒に起因する触媒性能の低下を抑制できる。
The exhaust gas purifying catalyst according to claim 1 is H
The C, CO, and NOx purification performance can be performed with good balance. Further, in addition to the above effects, the diffusivity (speed) of the exhaust gas passing through the monolith carrier cell and diffusing into the coat layer can be controlled to improve the HC purification performance. Furthermore, H
The desorption of C can be delayed and the purification performance of HC can be improved. In addition to the above effects, the purification performance can be further improved and the deterioration of the catalyst performance due to the poisoning of the catalyst component can be suppressed.

【0147】請求項2記載の排気ガス浄化用触媒は、上
記効果に加えて、更に、HCの脱離を遅延化し炭化水素
の浄化性能を向上できる。
In addition to the above effects, the exhaust gas purifying catalyst according to claim 2 can further delay the desorption of HC and improve the hydrocarbon purifying performance.

【0148】請求項3記載の排気ガス浄化用触媒は、上
記効果に加えて、更に、HCの脱離を遅延化し炭化水素
の浄化性能を向上できる。
In addition to the above effects, the exhaust gas purifying catalyst according to claim 3 can further delay the desorption of HC and improve the hydrocarbon purifying performance.

【0149】請求項4記載の排気ガス浄化用触媒は、H
C、CO、NOxの浄化性能をバランス良く行うことが
できる。更に、上記効果に加えて、モノリス担体セル内
を通過及びコート層内に拡散する排気ガスの拡散性(速
度)を制御し、HCの浄化性能を向上できる。
The exhaust gas purifying catalyst according to claim 4 is H
The C, CO, and NOx purification performance can be performed with good balance. Further, in addition to the above effects, the diffusivity (speed) of the exhaust gas passing through the monolith carrier cell and diffusing into the coat layer can be controlled to improve the HC purification performance.

【0150】請求項5記載の排気ガス浄化用触媒は、上
記効果に加えて、更に、HCの浄化性能を向上できる。
In addition to the above effects, the exhaust gas purifying catalyst according to claim 5 can further improve the HC purifying performance.

【0151】請求項6記載の排気ガス浄化用触媒は、上
記効果に加えて、更にHCの浄化性能を向上できる。更
に、アルカリ金属またはアルカリ土類金属を含有せしめ
ているので、貴金属のシンタリングを抑制するため、低
温活性や浄化性能を更に向上させる効果を奏する。
In addition to the above effects, the exhaust gas purifying catalyst according to claim 6 can further improve the HC purifying performance. Furthermore, since an alkali metal or an alkaline earth metal is contained, sintering of the noble metal is suppressed, so that low temperature activity and purification performance are further improved.

【0152】請求項7記載の排気ガス浄化用触媒は、上
記効果に加えて、多種のHCを有効に吸着できる。
In addition to the above effects, the exhaust gas purifying catalyst according to claim 7 can effectively adsorb various kinds of HC.

【0153】請求項8記載の排気ガス浄化用触媒は、上
記効果に加えて、吸着可能なHC種の範囲が広くなり、
より多種のHCを有効に吸着できる。
In addition to the above effects, the exhaust gas purifying catalyst according to claim 8 has a wide range of adsorbable HC species,
More types of HC can be effectively adsorbed.

【0154】請求項9記載の排気ガス浄化装置は、上記
効果に加えて、細孔径の異なる種々のHC吸着材を組み
合わせることにより、エンジン始動直後の低温時に排出
されるHC種を高い効率で吸着し、HC吸着能を向上で
きる。
In addition to the above effects, the exhaust gas purifying apparatus according to claim 9 adsorbs HC species exhausted at a low temperature immediately after engine start with high efficiency by combining various HC adsorbents having different pore sizes. In addition, the HC adsorption capacity can be improved.

【0155】請求項10記載の排気ガス浄化用触媒は、
上記効果に加えて、吸着特性や脱離抑制能を更に向上す
ることができる。
The exhaust gas purifying catalyst according to claim 10 is:
In addition to the above effects, the adsorption characteristics and the desorption suppressing ability can be further improved.

【0156】請求項11記載の排気ガス浄化用触媒は、
エンジン始動直後の低温時に排出されるHC種を高い効
率で吸着し、しかも、耐久後の構造変化や性能劣化が小
さいため、脱離速度の遅延化を図ることができる。
The exhaust gas purifying catalyst according to claim 11 is
Since the HC species discharged at low temperature immediately after the engine is started are adsorbed with high efficiency, and the structural change and performance deterioration after endurance are small, the desorption rate can be delayed.

【0157】請求項12記載の排気ガス浄化用触媒は、
上記効果に加えて、更に耐被毒性を向上することができ
る。
The exhaust gas purifying catalyst according to claim 12 is
In addition to the above effects, the poisoning resistance can be further improved.

【0158】請求項13記載の排気ガス浄化用触媒は、
上記効果に加えて、更に、HCの浄化性能を向上でき
る。
The exhaust gas purifying catalyst according to claim 13 is
In addition to the above effects, the purification performance of HC can be further improved.

【0159】請求項14記載の排気ガス浄化用触媒は、
上記効果に加えて、耐久後のロジウム化学状態変化によ
る触媒性能の低下を抑制できる。
The exhaust gas purifying catalyst according to claim 14 is
In addition to the above effects, it is possible to suppress deterioration of the catalyst performance due to a change in the chemical state of rhodium after endurance.

【0160】請求項15記載の排気ガス浄化用触媒は、
上記効果に加えて、触媒成分の還元に起因する触媒性能
の低下を抑制できる。
The exhaust gas purifying catalyst according to claim 15 is
In addition to the above effects, it is possible to suppress the deterioration of the catalyst performance due to the reduction of the catalyst component.

【0161】請求項16記載の排気ガス浄化用触媒は、
上記効果に加えて、耐久後の構造安定性、及びパラジウ
ムの化学状態変化による触媒性能の低下を抑制できる。
The exhaust gas purifying catalyst according to claim 16 is
In addition to the above effects, it is possible to suppress structural stability after endurance and deterioration of catalytic performance due to change in chemical state of palladium.

【0162】請求項17記載の排気ガス浄化装置は、低
温活性に優れるPd含有触媒と本発明のHC吸着触媒を
組合せ、HC吸着触媒が吸着するHC量を、エンジン始
動直後の低温時に排出されるHC量の10%〜70%に
設定することによって、脱離HCの浄化性能を向上でき
る。
The exhaust gas purifying apparatus according to claim 17 is a combination of a Pd-containing catalyst excellent in low-temperature activity and the HC adsorbing catalyst of the present invention, and the amount of HC adsorbed by the HC adsorbing catalyst is exhausted at a low temperature immediately after engine startup. By setting the amount of HC to 10% to 70%, the purification performance of desorbed HC can be improved.

【0163】請求項18記載の排気ガス浄化装置は、低
温活性に優れるPd含有触媒とHC吸着触媒を組合せ、
HC吸着触媒が吸着するHC量を、エンジン始動直後の
低温時に排出されるHC量の30%〜70%に設定し、
更に、下記排気ガス浄化触媒の早期活性化を促進する手
段を組合せることによって、HC吸着触媒が吸着するH
C量を更に低減し、脱離HCの浄化性能を向上できる。
The exhaust gas purifying apparatus according to claim 18 is a combination of a Pd-containing catalyst excellent in low temperature activity and an HC adsorption catalyst,
The amount of HC adsorbed by the HC adsorbing catalyst is set to 30% to 70% of the amount of HC discharged at low temperature immediately after engine start,
Furthermore, by combining the following means for promoting early activation of the exhaust gas purification catalyst, H
It is possible to further reduce the amount of C and improve the purification performance of desorbed HC.

【0164】請求項19記載の排気ガス浄化装置は、請
求項22記載の排気ガス浄化装置において、HC吸着触
媒の前段に配置したPd含有触媒(三元触媒)の早期活
性化を図ることができ、HC吸着触媒が脱離するHCの
浄化性能を向上できる。
The exhaust gas purifying apparatus according to claim 19 is the exhaust gas purifying apparatus according to claim 22, wherein the Pd-containing catalyst (three-way catalyst) arranged before the HC adsorption catalyst can be activated early. , The purification performance of HC desorbing the HC adsorption catalyst can be improved.

【0165】請求項20記載の排気ガス浄化装置は、請
求項22記載の排気ガス浄化装置において、HC吸着触
媒の前段に配置したPd含有触媒(三元触媒)の早期活
性化を図ることができ、HC吸着触媒が脱離するHCの
浄化性能を向上できる。
The exhaust gas purifying apparatus according to claim 20 is the exhaust gas purifying apparatus according to claim 22, which is capable of activating the Pd-containing catalyst (three-way catalyst) arranged upstream of the HC adsorption catalyst in an early stage. , The purification performance of HC desorbing the HC adsorption catalyst can be improved.

【0166】請求項21記載の排気ガス浄化装置は、H
C吸着触媒の上流に配置したPd含有触媒(三元触媒)
の早期活性化と、上記浄化性能の向上を図ることがで
き、脱離HCの浄化性能を向上できる。
The exhaust gas purifying apparatus according to claim 21 is H
Pd-containing catalyst (three-way catalyst) arranged upstream of the C adsorption catalyst
It is possible to improve the purification performance of the desorbed HC by promoting early activation and purification performance of the above.

【0167】請求項22記載の排気ガス浄化装置は、上
記効果に加えて、触媒成分層の温度低下を抑制でき、脱
離HCを効率よく浄化することができる。
In addition to the above effects, the exhaust gas purifying apparatus according to the twenty-second aspect can suppress the temperature drop of the catalyst component layer and efficiently purify the desorbed HC.

【0168】請求項23記載の排気ガス浄化装置は、上
記効果に加えて、触媒成分層の温度低下を抑制でき、脱
離HCを効率よく浄化することができる。
In addition to the above effects, the exhaust gas purifying apparatus according to the twenty-third aspect can suppress the temperature decrease of the catalyst component layer and efficiently purify desorbed HC.

【0169】請求項24記載の排気ガス浄化装置は、上
記効果に加えて、更に触媒成分層の温度低下を抑制や浄
化性能を向上でき、脱離HCを効率よく浄化することが
できる。
In addition to the above effects, the exhaust gas purifying apparatus according to the twenty-fourth aspect can further suppress the temperature decrease of the catalyst component layer and improve the purifying performance, and can efficiently purify the desorbed HC.

【0170】請求項25記載の排気ガス浄化装置は、上
記効果に加えて、前段Pd含有触媒で未浄化の低濃度排
気ガス成分(HC、CO、NOx )を効率よく浄化す
ることができる。
In addition to the above effects, the exhaust gas purifying apparatus according to claim 25 can efficiently purify low-concentration exhaust gas components (HC, CO, NOx) that have not been purified by the Pd-containing catalyst in the preceding stage.

【0171】請求項26記載の排気ガス浄化装置は、上
記効果に加えて、更に、HCの吸着・脱離・浄化性能を
向上でき、脱離HCを効率よく浄化することができる。
In addition to the above effects, the exhaust gas purifying apparatus according to the twenty-sixth aspect can further improve the adsorption / desorption / purification performance of HC and can efficiently purify desorbed HC.

【0172】請求項27記載の排気ガス浄化装置は、上
記効果に加えて、更に、脱離HCを効率よく浄化するこ
とができる。
In addition to the above effects, the exhaust gas purifying apparatus according to claim 27 can purify desorbed HC efficiently.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明の触媒のウオッシュコート層構
造を示す斜視図である。(b)は(a)の部分拡大部で
ある。
FIG. 1A is a perspective view showing a washcoat layer structure of a catalyst of the present invention. (B) is a partially enlarged portion of (a).

【図2】本発明の触媒を評価するために用いたエンジン
の排気系を示すシステム(評価システム1)図である。
FIG. 2 is a system (evaluation system 1) diagram showing an exhaust system of an engine used for evaluating the catalyst of the present invention.

【図3】本発明の触媒を評価するために用いたエンジン
の排気系を示すシステム(評価システム2)図である。
FIG. 3 is a system (evaluation system 2) diagram showing an exhaust system of an engine used for evaluating the catalyst of the present invention.

【図4】本発明の触媒を評価するために用いたエンジン
の排気系を示すシステム(評価システム3)図である。
FIG. 4 is a system (evaluation system 3) diagram showing an exhaust system of an engine used for evaluating the catalyst of the present invention.

【図5】本発明の触媒を評価するために用いたエンジン
の排気系を示すシステム(評価システム4)図である。
FIG. 5 is a system (evaluation system 4) diagram showing an exhaust system of an engine used for evaluating the catalyst of the present invention.

【図6】本発明の触媒を評価するために用いたエンジン
の排気系を示すシステム(評価システム5)図である。
FIG. 6 is a system (evaluation system 5) diagram showing an exhaust system of an engine used for evaluating the catalyst of the present invention.

【図7】本発明の触媒を評価するために用いたエンジン
の排気系を示すシステム(評価システム6)図である。
FIG. 7 is a system (evaluation system 6) diagram showing an exhaust system of an engine used for evaluating the catalyst of the present invention.

【図8】本発明の触媒を評価するために用いたエンジン
の排気系を示すシステム(評価システム7)図である。
FIG. 8 is a system (evaluation system 7) diagram showing an exhaust system of an engine used for evaluating the catalyst of the present invention.

【図9】エンジン種類毎の貴金属(PM)量とエンジン
アウトミッション残存率の関係を示すグラフ(マップ)
である。
FIG. 9 is a graph (map) showing the relationship between the amount of precious metal (PM) and the engine out mission remaining rate for each engine type.
Is.

【図10】三元触媒の貴金属選択マップ作成のためのフ
ローシートである。
FIG. 10 is a flow sheet for creating a noble metal selection map for a three-way catalyst.

【図11】エンジンアウトエミッション残存率と時間の
関係を示すグラフである。
FIG. 11 is a graph showing the relationship between the engine out emission remaining rate and time.

【図12】リーン化時間演算フローシートである。FIG. 12 is a lean time calculation flow sheet.

【符号の説明】[Explanation of symbols]

1 炭化水素吸着層(HC吸着材層) 2 三元触媒層(触媒成分層) 3 ガス通過部 4 三元触媒 5 HC吸着触媒 1 Hydrocarbon adsorption layer (HC adsorbent layer) 2 Three-way catalyst layer (catalyst component layer) 3 gas passage 4 three-way catalyst 5 HC adsorption catalyst

フロントページの続き (51)Int.Cl.7 識別記号 FI F01N 3/24 F01N 3/28 301J 3/28 301 B01D 53/36 104A (56)参考文献 特開 平7−174017(JP,A) 特開 昭63−224740(JP,A) 特開 昭63−113112(JP,A) 特開 平7−256114(JP,A) 特開 平7−8755(JP,A) 特開 平7−97918(JP,A) 特開 平10−263364(JP,A) 特開 平11−104462(JP,A) 特開 平6−327978(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 38/74 B01D 53/94 Continuation of front page (51) Int.Cl. 7 Identification symbol FI F01N 3/24 F01N 3/28 301J 3/28 301 B01D 53/36 104A (56) Reference JP-A-7-174017 (JP, A) Kai 63-224740 (JP, A) JP 63-113112 (JP, A) JP 7-256114 (JP, A) JP 78755 (JP, A) JP 7-97918 ( JP, A) JP 10-263364 (JP, A) JP 11-104462 (JP, A) JP 6-327978 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) B01J 21/00-38/74 B01D 53/94

Claims (27)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 GSAが10cm/cm〜35cm
/cmのモノリス担体上に、炭化水素吸着材を含む
HC吸着材層、触媒成分を含む触媒成分層及び上方触媒
成分層をこの順でコートして成る排気ガス浄化用触媒で
あって、 上記HC吸着材層の炭化水素吸着材がゼオライトを主成
分とし、 上記触媒成分層が、パラジウム(Pd)、白金(Pt)
及びロジウム(Rh)から成る群より選ばれた少なくと
も一種の貴金属を触媒成分とするとともに、そのうちの
少なくともPdを含有し、 上記上方触媒成分層がジルコニウム酸化物と活性アルミ
ナを含有し、このジルコニウム酸化物が、Pt、Rh、
Ce、Nd及びLaから成る群より選ばれた一種を金属
換算で1〜30モル%、Zrを70〜98モル%含み、 上記HC吸着材層と上記触媒成分層との重量比が9:1
〜1:4であり、 上記モノリス担体のセル内の平坦部における上記HC吸
着材層と上記触媒成分層の厚みの合計である、コート層
厚みが30μm〜400μmである、ことを特徴とする
排気ガス浄化用触媒。
1. GSA is 10 cm 2 / cm 3 to 35 cm
An exhaust gas purifying catalyst, comprising a hydrocarbon adsorbent layer containing a hydrocarbon adsorbent, a catalyst component layer containing a catalyst component, and an upper catalyst component layer, which are coated in this order on a monolithic carrier of 2 / cm 3 . The hydrocarbon adsorbent of the HC adsorbent layer contains zeolite as a main component, and the catalyst component layer includes palladium (Pd) and platinum (Pt)
And at least one noble metal selected from the group consisting of rhodium (Rh) as a catalyst component and at least Pd among them, and the upper catalyst component layer contains zirconium oxide and activated alumina. Things are Pt, Rh,
1 to 30 mol% of metal selected from the group consisting of Ce, Nd and La and 70 to 98 mol% of Zr are included in terms of metal, and the weight ratio of the HC adsorbent layer to the catalyst component layer is 9: 1.
˜1: 4, and the coat layer thickness is 30 μm to 400 μm, which is the total thickness of the HC adsorbent layer and the catalyst component layer in the flat portion in the cell of the monolith carrier, Gas purification catalyst.
【請求項2】 上記モノリス担体の1平方インチ当たり
のセル数が50〜600個であることを特徴とする請求
項1に記載の排気ガス浄化用触媒。
2. The exhaust gas purifying catalyst according to claim 1, wherein the number of cells per square inch of the monolith carrier is 50 to 600.
【請求項3】 上記モノリス担体の水力直径が0.75
mm〜5mmであることを特徴とする請求項1又は2に
記載の排気ガス浄化用触媒。
3. The monolith carrier has a hydraulic diameter of 0.75.
The exhaust gas purifying catalyst according to claim 1 or 2, wherein the catalyst has a diameter of 5 mm to 5 mm.
【請求項4】 上記ゼオライトがβ−ゼオライトである
ことを特徴とする請求項1〜3のいずれか1つの項に記
載の排気ガス浄化用触媒。
4. The exhaust gas purification catalyst according to claim 1, wherein the zeolite is β-zeolite.
【請求項5】 上記HC吸着材層と上記触媒成分層との
重量比が5:1〜1:2であることを特徴とする請求項
4に記載の排気ガス浄化用触媒。
5. The exhaust gas purifying catalyst according to claim 4, wherein the weight ratio of the HC adsorbent layer to the catalyst component layer is 5: 1 to 1: 2.
【請求項6】 上記上方触媒成分層がRhを含有し、
(HC吸着材層)と(触媒成分層+上方触媒成分層)と
の重量比が5:1〜1:2であり、更にアルカリ金属及
び/又はアルカリ土類金属を上記HC吸着材層、触媒成
分層及び上方触媒成分層の少なくとも1層に含有させて
成ることを特徴とする請求項4又は5に記載の排気ガス
浄化用触媒。
6. The upper catalyst component layer contains Rh,
The weight ratio of (HC adsorbent layer) to (catalyst component layer + upper catalyst component layer) is 5: 1 to 1: 2, and an alkali metal and / or an alkaline earth metal is further added to the HC adsorbent layer and the catalyst. The exhaust gas purifying catalyst according to claim 4 or 5, wherein the catalyst is contained in at least one of the component layer and the upper catalyst component layer.
【請求項7】 上記β−ゼオライトは、Si/2Al比
が10〜500のH型β−ゼオライトであることを特徴
とする請求項4〜6のいずれか1つの項に記載の排気ガ
ス浄化用触媒。
7. The exhaust gas purifying apparatus according to claim 4, wherein the β-zeolite is an H-type β-zeolite having a Si / 2Al ratio of 10 to 500. catalyst.
【請求項8】 上記HC吸着材層が、更にMFIゼオラ
イト、Y型ゼオライト、USYゼオライト、A型ゼオラ
イト、X型ゼオライト、モルデナイト、フェリエライ
ト、AlPO及びSAPOから成る群より選ばれた少
なくとも一種を含有することを特徴とする請求項7に記
載の排気ガス浄化用触媒。
8. The HC adsorbent layer further comprises at least one selected from the group consisting of MFI zeolite, Y-type zeolite, USY zeolite, A-type zeolite, X-type zeolite, mordenite, ferrierite, AlPO 4 and SAPO. The exhaust gas purifying catalyst according to claim 7, wherein the exhaust gas purifying catalyst is contained.
【請求項9】 上記HC吸着材層が、MFIゼオライ
ト、Y型ゼオライト、USYゼオライト及びモルデナイ
トから成る群より選ばれた少なくとも一種を5〜45重
量%含有することを特徴とする請求項8に記載の排気ガ
ス浄化用触媒。
9. The HC adsorbent layer contains 5 to 45% by weight of at least one selected from the group consisting of MFI zeolite, Y-type zeolite, USY zeolite, and mordenite. Exhaust gas purification catalyst.
【請求項10】 上記HC吸着材層のゼオライトに、P
d,Mg,Ca,Sr,Ba,Ag,Y,La,Ce,
Nd,P,B及びZrから成る群より選ばれた少なくと
も一種が含有されることを特徴とする請求項1〜9のい
ずれか1つの項に記載の排気ガス浄化用触媒。
10. The zeolite of the HC adsorbent layer comprises P
d, Mg, Ca, Sr, Ba, Ag, Y, La, Ce,
The exhaust gas purifying catalyst according to claim 1, wherein at least one selected from the group consisting of Nd, P, B and Zr is contained.
【請求項11】 上記炭化水素吸着材が、Pt、Pd、
P、B、Mg及びCaから成る群より選ばれた少なくと
も一種を含有することを特徴とする請求項1〜10のい
ずれか1つの項に記載の排気ガス用触媒。
11. The hydrocarbon adsorbent comprises Pt, Pd,
The exhaust gas catalyst according to any one of claims 1 to 10, which contains at least one selected from the group consisting of P, B, Mg, and Ca.
【請求項12】 上記触媒成分層及び上方触媒成分層の
少なくともいずれかに、更にPtを共存させたことを特
徴とする請求項6に記載の排気ガス浄化用触媒。
12. The exhaust gas purifying catalyst according to claim 6, wherein Pt is further allowed to coexist in at least one of the catalyst component layer and the upper catalyst component layer.
【請求項13】 上記HC吸着材層に、Ce、Nd及び
Laから成る群より選ばれた少なくとも一種を金属換算
で1〜40モル%含むジルコニウム酸化物と、Rhが含
有されることを特徴とする請求項1〜12のいずれか1
つの項に記載の排気ガス浄化用触媒。
13. The HC adsorbent layer contains Rh and zirconium oxide containing at least 1 to 40 mol% in terms of metal of at least one selected from the group consisting of Ce, Nd and La. Any one of claims 1 to 12
An exhaust gas purifying catalyst according to one of the items.
【請求項14】 上方触媒成分層に、更に、Ce及び/
又はLaを金属換算で1〜40モル%含むジルコニウム
酸化物が含有されることを特徴とする請求項1〜13の
いずれか1つの項に記載の排気ガス浄化用触媒。
14. The upper catalyst component layer further comprises Ce and / or
Alternatively, the exhaust gas purifying catalyst according to any one of claims 1 to 13, further comprising a zirconium oxide containing 1 to 40 mol% of La in terms of metal.
【請求項15】 上記触媒成分層に、Zr、Nd及びL
aから成る群より選ばれた一種を金属換算で1〜40モ
ル%、Ceを60〜98モル%含むセリウム酸化物が含
有されることを特徴とする請求項1〜14のいずれか1
つの項に記載の排気ガス浄化用触媒。
15. The catalyst component layer comprises Zr, Nd and L.
The cerium oxide containing 1 to 40 mol% and 60 to 98 mol% of Ce in terms of metal of one selected from the group consisting of a is contained.
An exhaust gas purifying catalyst according to one of the items.
【請求項16】 上記触媒成分層に、Ce、Zr及びL
aから成る群より選ばれた少なくとも一種を金属換算で
1〜10モル%含むアルミナと、 Zr、Nd及びLaから成る群より選ばれた一種を金属
換算で1〜40モル%含むセリウム酸化物が、更に含有
されることを特徴とする1〜15のいずれか1つの項に
記載の排気ガス浄化用触媒。
16. The catalyst component layer comprises Ce, Zr and L.
Alumina containing at least one selected from the group consisting of a in the range of 1 to 10 mol% in terms of metal, and cerium oxide containing 1 to 40 mol% in the range of metal selected from the group consisting of Zr, Nd and La. The exhaust gas purifying catalyst according to any one of 1 to 15 is further contained.
【請求項17】 請求項1〜16のいずれか1つの項に
記載の排気ガス浄化用触媒の前段に、Pd、PdとP
t、又はPdとRhを含みPd担持濃度が4〜20重量
%であるPd担持粉末を含有し、触媒1L当たりのPd
担持量が100g/cf(3.5g/L)〜1000g
/cf(35.4g/L)であるPd含有触媒を配置
し、 上記排気ガス浄化用触媒が吸着する炭化水素量を、この
排気ガス浄化用触媒の炭化水素飽和吸着量の70%以下
に設定したことを特徴とする排気ガス浄化装置。
17. An exhaust gas purifying catalyst according to any one of claims 1 to 16, wherein Pd, Pd and P
t or Pd-supporting powder containing Pd and Rh and having a Pd-supporting concentration of 4 to 20% by weight, and containing Pd per 1 L of catalyst.
Carrying amount is 100 g / cf (3.5 g / L) to 1000 g
/ Cf (35.4 g / L) of the Pd-containing catalyst is arranged, and the amount of hydrocarbons adsorbed by the exhaust gas purification catalyst is set to 70% or less of the saturated hydrocarbon adsorption amount of the exhaust gas purification catalyst. An exhaust gas purification device characterized in that
【請求項18】 上記Pd担持粉末のPd担持濃度が4
〜15重量%、上記Pd含有触媒のPd担持量が100
g/cf(3.5g/L)〜500g/cf(17.7
g/L)であることを特徴とする請求項17に記載の排
気ガス浄化装置。
18. The Pd-supporting concentration of the Pd-supporting powder is 4
˜15% by weight, the Pd supported amount of the Pd-containing catalyst is 100
g / cf (3.5 g / L) to 500 g / cf (17.7)
The exhaust gas purifying apparatus according to claim 17, wherein the exhaust gas purifying apparatus is g / L).
【請求項19】 自動車エンジンに装着され、このエン
ジン始動時(ファーストアイドル)の点火時期を、エン
ジン始動直後から40秒以下の時間、上死点から1°〜
30°遅角することにより、排気温度の上昇を速め、 上記Pd含有触媒の活性化を速めることを特徴とする請
求項17又は18に記載の排気ガス浄化装置。
19. The ignition timing at the time of engine starting (first idle) mounted on an automobile engine is 40 seconds or less immediately after the engine is started, and 1 ° to the top dead center.
The exhaust gas purifying apparatus according to claim 17 or 18, wherein the retardation of 30 ° accelerates the rise in exhaust temperature and accelerates the activation of the Pd-containing catalyst.
【請求項20】 自動車エンジン装着され、このエンジ
ン始動直後から60秒間、空気流量10L/分以上の空
気を供給し、エンジン始動直後のコールド空燃比をA/
F=12〜18に希薄化することによって、上記Pd含
有触媒の活性化を速めることを特徴とする請求項17又
は18に記載の排気ガス浄化装置。
20. An automobile engine is mounted, and air having an air flow rate of 10 L / min or more is supplied for 60 seconds immediately after starting the engine, and the cold air-fuel ratio immediately after starting the engine is A /
19. The exhaust gas purifying apparatus according to claim 17, wherein the activation of the Pd-containing catalyst is accelerated by diluting it to F = 12 to 18.
【請求項21】 上記排気ガス浄化用触媒からの炭化水
素の脱離が開始する直前に、この排気ガス浄化用触媒の
上流又はこの排気ガス浄化用触媒中に、酸素及び/又は
空気を添加することを特徴とする請求項17〜20のい
ずれか1つの項に記載の排気ガス浄化装置。
21. Oxygen and / or air is added immediately upstream of the exhaust gas purifying catalyst or into the exhaust gas purifying catalyst immediately before the desorption of hydrocarbons from the exhaust gas purifying catalyst is started. The exhaust gas purification device according to any one of claims 17 to 20, characterized in that.
【請求項22】 上記排気ガス浄化用触媒の入口近傍に
温度検出器、出口近傍にA/F検知器を付加し、この温
度検出器の検出値が110℃以上になった時に上記A/
F検知器が14.6以上になるように、上記排気ガス浄
化用触媒の上流又はこの排気ガス浄化用触媒中に、酸素
及び/又は空気を添加することを特徴とする請求項21
に記載の排気ガス浄化装置。
22. A temperature detector is added near the inlet of the exhaust gas purifying catalyst, and an A / F detector is added near the outlet, and the A / F detector is used when the detected value of the temperature detector reaches 110 ° C. or higher.
22. Oxygen and / or air is added upstream of the exhaust gas purifying catalyst or in the exhaust gas purifying catalyst so that the F detector is 14.6 or more.
Exhaust gas purifier according to.
【請求項23】 上記排気ガス浄化用触媒の触媒成分層
中に温度検出器、出口近傍にA/F検知器を付加し、こ
の温度検出器の検出値が110℃以上になった時に、上
記A/F検知器が14.6以上になるように、上記排気
ガス浄化用触媒の上流又はこの排気ガス浄化用触媒中
に、酸素及び/又は空気を添加することを特徴とする請
求項21に記載の排気ガス浄化装置。
23. A temperature detector is added to the catalyst component layer of the exhaust gas purifying catalyst, and an A / F detector is added near the outlet, and when the detected value of the temperature detector reaches 110 ° C. or above, 22. Oxygen and / or air is added upstream of the exhaust gas purifying catalyst or in the exhaust gas purifying catalyst so that the A / F detector is 14.6 or more. Exhaust gas purification device described.
【請求項24】 上記排気ガス浄化用触媒の入口近傍と
出口近傍にA/F検出器を付加し、この入口近傍と出口
近傍に設置したA/F検知器の検出値から炭化水素の脱
離が検知された時に、上記出口近傍に配置したA/F検
知器がA/F=14.6以上になるように、上記排気ガ
ス浄化用触媒の上流又はこの排気ガス浄化用触媒中に、
酸素及び/又は空気を添加することを特徴とする請求項
21に記載の排気ガス浄化装置。
24. An A / F detector is added near the inlet and the outlet of the exhaust gas purifying catalyst, and hydrocarbons are desorbed from the detected values of the A / F detectors installed near the inlet and the outlet. Is detected, so that the A / F detector disposed near the outlet has A / F = 14.6 or more, upstream of the exhaust gas purifying catalyst or in the exhaust gas purifying catalyst,
The exhaust gas purification device according to claim 21, wherein oxygen and / or air is added.
【請求項25】 上記Pd含有触媒及び上記排気ガス浄
化用触媒がRhを含み、このPd含有触媒のRh含有量
がこの排気ガス浄化用触媒のRh含有量以下であること
を特徴とする請求項17〜24のいずれか1つの項に記
載の排気ガス浄化装置。
25. The Pd-containing catalyst and the exhaust gas purifying catalyst contain Rh, and the Rh content of the Pd-containing catalyst is less than or equal to the Rh content of the exhaust gas purifying catalyst. The exhaust gas purifying apparatus according to any one of 17 to 24.
【請求項26】 上記排気ガス浄化用触媒の下流に、
求項1〜16のいずれか1つの項に記載の排気ガス浄化
用触媒を1個以上付加して成ることを特徴とする請求項
17〜25のいずれか1つの項に記載の排気ガス浄化装
置。
26. A contract is provided downstream of the exhaust gas purifying catalyst.
Exhaust gas purification according to any one of claims 1 to 16
The exhaust gas purifying apparatus according to any one of claims 17 to 25, characterized in that at least one catalyst for use is added.
【請求項27】 上記排気ガス浄化用触媒、1個以上の
上記他の排気ガス浄化用触媒は、これらが装着されるエ
ンジンからの距離が異なる位置に設けられることを特徴
とする請求項26に記載の排気ガス浄化装置。
27. The exhaust gas purifying catalyst, and the one or more other exhaust gas purifying catalysts are provided at positions different in distance from the engine in which they are mounted. Exhaust gas purification device described.
JP23468098A 1997-08-20 1998-08-20 Exhaust gas purification catalyst and exhaust gas purification device Expired - Lifetime JP3506316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23468098A JP3506316B2 (en) 1997-08-20 1998-08-20 Exhaust gas purification catalyst and exhaust gas purification device

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP22391997 1997-08-20
JP15119398 1998-06-01
JP10-151193 1998-06-01
JP9-223919 1998-06-01
JP23468098A JP3506316B2 (en) 1997-08-20 1998-08-20 Exhaust gas purification catalyst and exhaust gas purification device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003072070A Division JP3858997B2 (en) 1997-08-20 2003-03-17 Exhaust gas purification catalyst and exhaust gas purification device

Publications (2)

Publication Number Publication Date
JP2000051707A JP2000051707A (en) 2000-02-22
JP3506316B2 true JP3506316B2 (en) 2004-03-15

Family

ID=27320065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23468098A Expired - Lifetime JP3506316B2 (en) 1997-08-20 1998-08-20 Exhaust gas purification catalyst and exhaust gas purification device

Country Status (1)

Country Link
JP (1) JP3506316B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3858997B2 (en) * 1997-08-20 2006-12-20 日産自動車株式会社 Exhaust gas purification catalyst and exhaust gas purification device
JP2002066327A (en) * 2000-08-29 2002-03-05 Cataler Corp Exhaust gas cleaning catalyst
MXPA03004640A (en) * 2000-11-27 2003-09-05 Uop Llc Layered catalyst composition and processes for preparing and using the composition.
JP4863596B2 (en) 2001-06-18 2012-01-25 日産自動車株式会社 Exhaust gas purification system
JP4576762B2 (en) * 2001-06-29 2010-11-10 日産自動車株式会社 Engine exhaust purification system
AU2003211678A1 (en) * 2003-02-25 2004-09-17 Ngk Insulators, Ltd. Catalyst and catalyst support
JP2006022729A (en) * 2004-07-08 2006-01-26 Hino Motors Ltd Control method of exhaust emission control device
JP2007007609A (en) * 2005-07-01 2007-01-18 Nissan Motor Co Ltd Catalyst for purifying exhaust gas and its production method
JP6077367B2 (en) * 2013-04-02 2017-02-08 株式会社キャタラー Exhaust gas purification catalyst
KR101704142B1 (en) * 2014-12-29 2017-02-09 현대자동차주식회사 An oxidation-reduction catalyst desorbing hydrocarbon at high temperature and a device for eliminating exhast gas comprising the catalyst
JP2017101609A (en) * 2015-12-02 2017-06-08 本田技研工業株式会社 Internal combustion engine exhaust purification device
WO2018199248A1 (en) * 2017-04-28 2018-11-01 ユミコア日本触媒株式会社 Exhaust gas purification catalyst and exhaust gas purification method using same
JP7157041B2 (en) 2019-12-26 2022-10-19 トヨタ自動車株式会社 Exhaust gas purification catalyst
JP7184743B2 (en) 2019-12-26 2022-12-06 トヨタ自動車株式会社 Exhaust gas purification catalyst
JP7173708B2 (en) 2019-12-26 2022-11-16 トヨタ自動車株式会社 Exhaust gas purification catalyst
JP7248616B2 (en) 2020-03-25 2023-03-29 トヨタ自動車株式会社 Exhaust gas purification catalyst

Also Published As

Publication number Publication date
JP2000051707A (en) 2000-02-22

Similar Documents

Publication Publication Date Title
JP3489048B2 (en) Exhaust gas purification catalyst
US6047544A (en) Engine exhaust gas purification catalyst and exhaust gas purifier
JP3859940B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3489049B2 (en) Exhaust gas purification catalyst
JP4590733B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the catalyst
JP3506316B2 (en) Exhaust gas purification catalyst and exhaust gas purification device
JP2003200049A (en) Catalyst for exhaust gas purification
JPH0910594A (en) Catalyst for purifying exhaust gas
WO2019219815A1 (en) Hydrocarbon trap catalyst
EP0935055A2 (en) Device for purifying oxygen rich exhaust gas
US10850264B2 (en) Hydrocarbon trap catalyst
JP2003326170A (en) Exhaust gas purification catalyst, manufacturing method therefor, and exhaust gas purification method
US20030039597A1 (en) Close coupled catalyst with a SOx trap and methods of making and using the same
KR20040090454A (en) Exhaust gas purifying catalyst and process for purifying exhaust gas
US5950421A (en) Tungsten-modified platinum NOx traps for automotive emission reduction
EP0864353A1 (en) Sulfur-resistant nox traps containing tungstophosphoric acid and precious metal
JP3842862B2 (en) Exhaust gas purification system
JP2001149787A (en) Exhaust gas purifying catalyst and manufacturing method therefor
JPH1113462A (en) Exhaust gas emission control device
JPH1147596A (en) Catalyst for purifying exhaust gas
JP3858997B2 (en) Exhaust gas purification catalyst and exhaust gas purification device
JP4214744B2 (en) Engine exhaust gas purification device
JP2002168117A (en) Exhaust emission control system
JP2003135970A (en) Exhaust gas cleaning catalyst
JPH11343837A (en) Exhaust emission control device

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081226

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081226

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091226

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101226

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 10

EXPY Cancellation because of completion of term