JP3858997B2 - Exhaust gas purification catalyst and exhaust gas purification device - Google Patents

Exhaust gas purification catalyst and exhaust gas purification device Download PDF

Info

Publication number
JP3858997B2
JP3858997B2 JP2003072070A JP2003072070A JP3858997B2 JP 3858997 B2 JP3858997 B2 JP 3858997B2 JP 2003072070 A JP2003072070 A JP 2003072070A JP 2003072070 A JP2003072070 A JP 2003072070A JP 3858997 B2 JP3858997 B2 JP 3858997B2
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
layer
gas purification
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003072070A
Other languages
Japanese (ja)
Other versions
JP2003290661A (en
Inventor
伸司 山本
智美 江藤
真弘 高谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003072070A priority Critical patent/JP3858997B2/en
Publication of JP2003290661A publication Critical patent/JP2003290661A/en
Application granted granted Critical
Publication of JP3858997B2 publication Critical patent/JP3858997B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関のエンジン始動時の排気ガスを浄化する排気ガス浄化用触媒に関する。
本発明は又、自動車等の内燃機関からエンジン始動直後の低温時に排出される排気ガス中の炭化水素(以下、「HC」と称す)、一酸化炭素(以下、「CO」と称す)及び窒素酸化物(以下、「NOx」と称す)のうち、特に、HCを効率良く浄化することができる排気ガス浄化用触媒及びこの触媒を含む排気ガス浄化装置に関する。
【0002】
【従来の技術】
近年、内燃機関のエンジン始動時の低温域で大量に排出されるHCの浄化を目的に、ゼオライトを用いたHC吸着触媒が開発されている。
該HC吸着触媒は、三元触媒が活性化しないエンジン始動時の低温域において、大量に排出されるHCを一時的に吸着、保持し、次に排気ガス温度上昇により三元触媒が活性化した時に、HCを徐々に脱離し、しかも浄化するというものである。
【0003】
ところで、ゼオライトを用いたHC吸着触媒では、排ガス中のHC種分布とゼオライトの有する細孔径との間に相関があるため、最適な細孔径を持つゼオライトを設定する必要がある。
従来は、MFI型(ZSM5)をメインに、他の細孔径を有するゼオライト(例えばUSY等)をブレンドし、細孔分布を調整していたが、耐久後にはゼオライト種によって細孔径の歪みや吸着・脱離特性が異なるため、排ガスHC種の吸着が不十分であるという問題があった。
【0004】
一方、三元貴金属の触媒としては、従来はRh,Pt,Pd等の貴金属種を同一層に共存させた仕様や、Rh層とPd層を塗り分けた仕様等が提案されていた。例えば、特開平2−56247号公報に示される様にゼオライトを主成分とする第1層の上に、Pt,Pd,Rh等の貴金属を主成分とする第2層を設けた排気ガス浄化用触媒が提案されている。
【0005】
また、エンジン始動直後の低温時に排出される排気ガス中のHCの低減を目的に、HCを吸着材を用いて一時的に貯蔵し、三元触媒が活性化した後脱離させ、三元触媒で浄化する方法が検討されている。
【0006】
かかるHC吸着材(炭化水素吸着材)を用いた発明としては、例えば、特開平6−74019号公報、特開平7−144119号公報、特開平6−142457号公報、特開平5−59942号公報、特開平7−102957号公報等に開示されているものがある。
【0007】
特開平6−74019号公報は、排気流路にバイパス流路を設け、エンジン始動直後のコールド時に排出されるHCをバイパス流路に配置したHC吸着材に一旦吸着させ、その後流路を切り換え、下流の三元触媒が活性化した後、排気ガスの一部をHC吸着触媒に通じ、脱離したHCを徐々に後段の三元触媒で浄化するシステムを提案している。
【0008】
また、特開平7−144119号公報は、コールド時に前段の三元触媒に熱を奪わせ中段のHC吸着材の吸着効率を向上し、前段の三元触媒活性化後は、タンデム配置した中段のHC吸着材を介して後段の三元触媒に反応熱を伝熱し易くし、後段の三元触媒での浄化を促進するシステムを提案している。
また、特開平6−142457号公報は、低温域で吸着したHCが脱離する際に、脱離HCを含む排気ガスを熱交換器で予熱し三元触媒での浄化を促進するコールドHC吸着除去システムを提案している。
【0009】
一方、特開平5−59942号公報は、触媒配置とバルブによる排気ガスの流路を切り換えによって、HC吸着材の昇温を緩慢にし、コールドHCの吸着効率を向上するシステムを提案している。
特開平7−102957号公報は、後段の酸化・三元触媒の浄化性能を向上するため、前段の三元触媒と中段のHC吸着材の間に空気を供給し、後段の酸化・三元触媒の活性化を促進するシステムを提案している。
【0010】
【発明が解決しようとする課題】
上記の如きゼオライト層などのHC吸着材層の上に三元層を設けた排気ガス浄化用触媒では、内燃機関の始動直後の排気ガス低温域においてゼオライトに吸着されたHCが、排気ガス温度の上昇に伴い脱離してくる際、排気ガスがリッチになるため、理論空燃比域での浄化に有効な三元触媒が十分に働かず、HC,CO,NOxのバランスのよい浄化ができなくなるという問題がある。
また、従来では、ゼオライト層と三元層のコート層比率に関しては、特に提示していなかったが、HC吸着触媒では、ゼオライト層と三元層の構造が最適でないと、HC吸着・脱離・浄化のサイクルが有効に行なわれないという問題がある。
【0011】
一方、〔従来の技術〕の項において述べた上記公報中に記載されたHC吸着材を用いたシステムでは、HC吸着材の耐久性が不充分なため、耐久後にはHC吸着効率が低下し、しかも、後段の三元触媒が活性化する前にHCが脱離しエミッションを悪化させてしまう。そこで、HC吸着材の吸着効率の向上や脱離遅延化を図るため、高温ガスのバイパス法や三元触媒暖機のための熱交換器が使用されているが、システム構成が煩雑化し十分な効果が得られず、しかも、コストが著しく上昇する。このため、耐久性と吸着効率の高いHC吸着材が望まれている。
【0012】
特に、HC吸着材から脱離するHCの浄化を目的とした三元触媒は、初期から耐久後まで高い浄化性能を維持するため貴金属を多量に使用したり、早期活性化を図るため空気を導入している。このため、使用する貴金属量が少なくても高い性能が得られる触媒が望まれているが、貴金属量を低減した場合、耐久性が不十分で、耐久後は低温域での触媒活性や浄化性能が悪化するという問題点があった。
【0013】
【課題を解決するための手段】
本発明は、このような従来の排気ガス浄化用触媒に対して、モノリス担体を用いた一体構造型の排気ガス浄化用触媒であって、所定のモノリス担体上にゼオライトを主成分とするHC吸着材を含むHC吸着材層を設け、更に該HC吸着材層の上に所定の貴金属を触媒成分として含む触媒成分層を設けて成り、該HC吸着材層と該触媒成分層との重量比が所定範囲にある排気ガス浄化用触媒とすることなどで、上記問題点を解決することを目的としている。
【0014】
即ち、本発明の排気ガス浄化用触媒(以下、第一の発明という)は、GSA(Geometrical Surface Area:幾何学的表面積)が10cm/cm〜35cm/cmのモノリス担体上に、炭化水素吸着材を含むHC吸着材層と触媒成分を含む触媒成分層をこの順でコートして成る排気ガス浄化用触媒であって、
上記HC吸着材層の炭化水素吸着材がゼオライトを主成分とし、
上記触媒成分層がパラジウム(Pd)、白金(Pt)及びロジウム(Rh)から成る群より選ばれた少なくとも一種の貴金属を触媒成分として含むとともに、
上記触媒成分層に、Zr、Nd及びLaから成る群より選ばれた一種を金属換算で1〜40モル%、Ceを60〜98モル%含むセリウム酸化物と、Pdが含有され、
上記HC吸着材層と上記触媒成分層との重量比が9:1〜1:4であり、
上記モノリス担体のセル内の平坦部における上記HC吸着材層と上記触媒成分層の厚みの合計である、コート層厚みが30μm〜400μmである、ことを特徴とする。
【0015】
また、本発明の他の排気ガス浄化用触媒(以下、第二の発明という)は、GSAが10cm/cm〜35cm/cmのモノリス担体上に、炭化水素吸着材を含むHC吸着材層と触媒成分を含む触媒成分層をこの順でコートして成る排気ガス浄化用触媒であって、
上記HC吸着材層の炭化水素吸着材がゼオライトを主成分とするとともに、
上記HC吸着材層に、Ce、Nd及びLaから成る群より選ばれた少なくとも一種を金属換算で1〜40モル%含むジルコニウム酸化物と、Rhが含有され、
上記触媒成分層がパラジウム(Pd)、白金(Pt)及びロジウム(Rh)から成る群より選ばれた少なくとも一種の貴金属を触媒成分として含み、
上記HC吸着材層と上記触媒成分層との重量比が9:1〜1:4であり、
上記モノリス担体のセル内の平坦部における上記HC吸着材層と上記触媒成分層の厚みの合計である、コート層厚みが30μm〜400μmである、ことを特徴とする。
【0016】
更にまた、本発明の排気ガス浄化装置(以下、第三の発明という)は、上述のような排気ガス浄化用触媒の前段に、Pd、PdとPt、又はPdとRhを含みPd担持濃度が4〜20重量%であるPd担持粉末を含有し、触媒1L当たりのPd担持量が100g/cf(3.5g/L)〜1000g/cf(35.4g/L)であるPd含有触媒を配置し、
上記排気ガス浄化用触媒が吸着する炭化水素量を、この排気ガス浄化用触媒の炭化水素飽和吸着量の70%以下に設定したことを特徴とする。
【0017】
【発明の実施の形態】
まず、本発明の実施の態様について説明する。
本発明の排気ガス浄化用触媒のコート層構造は、第一の発明及び第二の発明ともに、特定のモノリス担体上にHCの吸着に有効なゼオライト、好ましくはβ−ゼオライトをHC吸着材の主成分とするHC吸着材層を設け、更に該HC吸着材層の上にPd、Pt及びRhから成る群より選ばれた少なくとも一種の貴金属を触媒成分として含む触媒成分層を設けたもので、上記[従来の技術]の項に記載した「HC吸着触媒」の一種である。
ここで、β−ゼオライトの使用量は、触媒1Lあたり、10g〜400gが好ましい。β−ゼオライトの使用量が10g未満ではHC吸着性能が十分に発現せず、逆に400gを越えてもHC吸着性能及び脱離遅延化効果は飽和し、経済的にも有効でない。
モノリス担体上にHC吸着材層、その上にいわゆる三元浄化能を有する触媒成分層(三元層又は三元触媒層)を設けることで、HC吸着材層のゼオライトから脱離してくるHCの後処理の効率化が図れる。このように、多層構造の一体型触媒として構成しているため、2ブリック型に比べ熱損失が少なく、触媒成分層の活性化が早く、しかもHC吸着材から脱離したHCが触媒成分層と十分に接触できるため、脱離HCを効率良く浄化できる。
【0018】
また、該HC吸着材層と該触媒成分層の重量比は9:1〜1:4である。当該規定値より触媒成分層の割合が多くなると、下層に配置されたHC吸着材層(ゼオライト層)へのガス拡散が悪くなり、十分な吸着性能が得られない。当該規定値より触媒成分層の割合が少なくなると、脱離してくるHCの酸化性能及び排気ガスの浄化性能が十分に得られなくなる。
更に、該HC吸着材層と該触媒成分層を設けるモノリス担体(特定のモノリス担体)は、そのGSAが10cm/cm〜35cm/cmである。当該規定値よりGSAが大きくなると、HC吸着材層のHCの脱離が速くなり、未浄化のまま排出される脱離HCが増える。また、当該規定値より小さいと、HCのHC吸着材層内への拡散が遅く吸着性能が十分に発現せず、排気ガスと触媒成分層との接触が悪くなり排気ガス成分の浄化性能が十分に得られなくなる。
【0019】
また、第一の発明、第2の発明の好適な実施態様においては、HC吸着材で吸着したHCが脱離する際の浄化効率を向上するため、HC吸着材層の上部に、Pdを含有する触媒成分層(Pd含有触媒成分層)を配置し、このPd含有触媒成分層に、Zr、Nd及びLaから成る群より選ばれた一種を金属換算で1〜40モル%、セリウムを60〜98モル%含むセリウム酸化物を含有させる。
【0020】
特に、Pdの浄化性能と耐久性を向上させるため、Pd含有触媒成分層中に、Zr、Nd及びLaから成る群より選ばれた一種を金属換算で1〜40モル%、セリウムを60〜98モル%含むセリウム酸化物を含有させることによって、酸素吸蔵能の高いセリウム酸化物が、リッチ雰囲気及びストイキ近傍で格子酸素や吸着酸素を放出し易くなるため、Pdの酸化状態を排気ガスの浄化に適したものとし、Pdの触媒能の低下を抑制できる。
かかるセリウム酸化物の使用量は、触媒1Lあたり5〜100gである。5g未満だと十分な貴金属の分散性が得られず、100gより多く使用しても改良効果は飽和し有効でない。
【0021】
更に、Pdの耐被毒性や浄化性能を向上するため、Pd含有触媒成分層の上部に、Pt、Rh、Ce、Nd及びLaから成る群より選ばれた一種を金属換算で1〜30モル%、Zrを70〜98モル%含むジルコニウム酸化物、活性アルミナを含有する触媒成分層(上方触媒成分層)を配置することができる。
上記のPtやRhが担持される基材としては、PtやRhの耐久性を向上させるため、ジルコニウム酸化物が適切である。特に、酸素吸蔵能の高いセリウム含有ジルコニウム酸化物が、リッチ雰囲気及びストイキ近傍で格子酸素や吸着酸素を放出し易くなるため、PtやRhの酸化状態を排気ガスの浄化に適したものとし、PtやRhの触媒能の低下を抑制できる。
【0022】
かかるジルコニウム酸化物のCe含有量は0.01モル%〜30モル%である。
Ce含有量が0.01モル%未満ではZrOのみの場合と変わらず、上記した元素のZrOのCeの酸素吸蔵能による改良効果が現れない。また、Ce含有量が30モル%を越えるとこの効果が飽和もしくは逆にBET比表面積や熱安定性が低下する。ジルコニウム酸化物の使用量は、触媒1Lあたり5〜100gである。5g未満だと十分な貴金属の分散性が得られず、100gより多く使用しても改良効果は飽和し有効でない。
【0023】
また、Pdの低温活性を向上するため、KやBaを含有させことができる。かかる元素の含有量は触媒1L中1〜40gである。1g未満では、HC類の貴金属に対する吸着被毒の緩和やPdのシンタリングを抑制できず、逆に、40gを越えても有為な増量効果が得られず、逆に性能を低下させる。
【0024】
また、第一及び第二の発明の他の好適な実施態様では、HC吸着・脱離能特性と脱離HCの浄化性能を有効に発現するため、特定モノリス担体上に、β−ゼオライトを含む少なくとも一種以上のゼオライトを主成分とするHC吸着材層を設け、該HC吸着材層の上に、触媒成分としてPdを含有する触媒成分層(Pd含有触媒成分層)を設け、この触媒成分層に更にRhを含有せしめるか、あるいは該Pd含有触媒成分層の上に、触媒成分としてRhを含有する触媒成分層(Rh含有上方触媒成分層)を設ける。
【0025】
このように、モノリス担体上にHC吸着材層、その上に触媒成分層を設けることで、HC吸着材層のゼオライトから脱離してくるHCの後処理の効率化が図れる。
更に、HC吸着材層の上に、HC酸化活性に優れたPdを触媒成分として配置し、同一層内にRhを共存、あるいはその上にRh含有上方触媒成分層を設けることで、三元浄化能を有する触媒成分層内が脱離HCによってリッチ雰囲気になっても、HC、CO、NOxの浄化をバランス良く行うことができる。
更に、リン(P)や鉛(Pb)等による被毒の影響を受けやすいPdにRhを共存、あるいは内側に配置することで、被毒の影響を少なくできる。
また、下層に配置されたHC吸着材層は、上層の触媒成分層に比べて暖気が遅いため、吸着したHCを少しでも長く保持でき、逆に触媒成分層は早く暖気し活性化されるため、HCの吸着・脱離・浄化のバランスが良い。
【0026】
更に、上述した第一及び第二の発明の好適実施態様では、HC吸着材層と、触媒成分層(Pd含有触媒成分層)及び上方触媒成分層(Rh含有上方触媒成分層)の総コート重量比(上方触媒成分層が存在しない場合、HC吸着材層と触媒成分層の総コート重量比)は5:1〜1:2である。
触媒成分層の割合が当該規定値より多くなると、下層に配置されたHC吸着材層へのガス拡散が悪くなり、十分な吸着性能が得られない。触媒成分層(及びRh含有上方触媒成分層)の割合が当該規定値より少なくなると、脱離してくるHCの酸化性能及び排気ガスの浄化性能が十分に得られなくなる。
【0027】
なお、上記好適実施態様に係る排気ガス浄化用触媒では、HC吸着材層と、三元浄化能を有する触媒成分層及びRh含有上方触媒成分層をGSAが10cm/cm〜35cm/cmのモノリス担体の上に設ける。
当該規定値よりGSAが大きくなると、HC吸着材層のHCの脱離が速くなり、未浄化のまま排出される脱離HCが増える。また、当該規定値より小さいと、排気ガスと触媒成分層との接触が悪くなり排気ガス成分の浄化性能が十分に得られなくなる。
【0028】
更に、上記好適実施態様に係る排気ガス浄化用触媒では、アルカリ金属及びアルカリ土類金属から成る群より選ばれた少なくとも一種を、HC吸着材層及び/又は触媒成分層、あるいはHC吸着材層、触媒成分層及びRh含有上方触媒成分層の少なくとも1層に含浸担持する。
使用できるアルカリ金属及びアルカリ土類金属としては、リチウム(Li)、ナトリウム(Na)、カリウム(K)、セシウム(Cs)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)及びバリウム(Ba)から成る群より選ばれた少なくとも一種の元素である。
【0029】
使用できるアルカリ金属及びアルカリ土類金属の化合物は、酸化物、酢酸塩及び水酸化物等の水溶性のものである。これにより、貴金属の近傍に塩基性元素であるアルカリ金属及び/又はアルカリ土類金属を分散性良く担持することが可能となる。
【0030】
即ち、アルカリ金属及び/又はアルカリ土類金属化合物から成る粉末の水溶液を、ウォッシュコート成分を担持した上記モノリス担体に含浸し、乾燥し、次いで空気中及び/又は空気流通下で200〜600℃の比較的低温で焼成するものである。
かかる焼成温度が200℃未満だとアルカリ金属及びアルカリ土類金属化合物が酸化物形態になることが十分にできず、逆に600℃を越えても焼成温度の効果は飽和し、顕著な差異は得られない。
【0031】
また、第一及び第二の発明の排気ガス浄化用触媒において、HC吸着材層のゼオライト成分としては、エンジン始動時に大量に排出されるHCを有効に吸着するために、大小2種の細孔径を有するSi/2Al比が10〜500のH型β−ゼオライトを主成分とすることが望ましい。
該β−ゼオライトは、他のゼオライトに比べて耐熱性が高く、構造安定性に優れる。また、他のゼオライトが吸着に有効なHC分子径範囲が狭いのに対し、β−ゼオライトは大小2種の細孔径を有するため、細孔が入り組み細孔構造を複雑にし、多種のHCを有効に吸着できる。
【0032】
また、該β−ゼオライトのSi/2Al比は10〜500の範囲であることが望ましい。
Si/2Al比が10未満になると、排気ガス中に共存する水分子の吸着阻害が大きく、有効にHCを吸着することができない。
逆にSi/2Al比が500を超えると、HCの吸着量が減少する。
【0033】
更に、第一及び第二の発明の排気ガス浄化用触媒において、HC吸着材層のゼオライト種については、主成分であるH型β−ゼオライトと共に、更にMFI型,Y型,USY型,モルデナイト,フェリエライト,A型ゼオライト,X型ゼオライト,AlPO4,SAPOのうち少なくとも1種を用いる。
これらゼオライトは、排気ガス中のHC種の組成比に応じて、ゼオライト種の細孔分布を変化させ、吸着能を向上させる。β−ゼオライトと共にこれらゼオライト種を混合させることにより、吸着可能なHC種の範囲が更に広くなる。逆に言えば、吸着したいHC種に対して、その吸着に可能な種々のゼオライト種を適宜組み合わせることができる。
尚、モルデナイト、Y型、USY型及びMFI型ゼオライトから成る群より選ばれた少なくとも一種を、全HC吸着材量の5重量%〜45重量%含有させることができる。5重量%未満だと十分な細孔径分布効果が得られず、逆に45重量%より多く使用すると、この効果が飽和もしくはβ−ゼオライトの性能改良効果を低下させる。
【0034】
また、第一及び第二の発明の排気ガス浄化用触媒において、HC吸着材層のゼオライトには、Pd(パラジウム),Mg(マグネシウム),Ca(カルシウム),Sr(ストロンチウム),Ba(バリウム),Ag(銀),Y(イットリウム),La(ランタン),Ce(セリウム),Nd(ネオジウム),P(リン),B(ホウ素),Zr(ジルコニウム)から選ばれた少なくとも1種を含有せしめることが好ましい。
ゼオライトは、H型でも十分な吸着能力を有するが、Pd,Mg,Ca,Sr,Ba,Ag,Y,La,Ce,Nd,P,B,Zr等をイオン交換法、含浸法、浸漬法等の通常の方法を用いて担持することにより、吸着特性、脱離抑制能やゼオライトの耐久性をさらに向上させることができる。
【0035】
更に、β−ゼオライトを主成分としたHC吸着材の高温下における構造安定性(耐熱性)、コールドHCの吸着能や温度上昇時のHC脱離抑制能を向上するため、Pt、Pd、P、B、Mg及びCaから成る群より選ばれた一種を含有することができる。
かかる元素の含有量は、HC吸着材に対して、0.1重量%〜10重量%である。0.1重量%未満だと十な改良効果が得られず、逆に10重量%より多く使用すると、ゼオライトの細孔が閉塞しHC吸着能が低下する。
【0036】
また、第一及び第二の発明の排気ガス浄化用触媒における触媒成分層、Rh含有上方触媒成分層の少なくともいずれかに、更にPtを共存させることも好ましい。何故なら、PtがPdあるいはRhと共存することにより、更に耐被毒性を向上することができるからである。
【0037】
更に、第一の発明の好適な実施態様、第二の発明の排気ガス浄化用触媒において、ゼオライトを主成分とするHC吸着材層には、Ce、Nd及びLaから成る群より選ばれた少なくとも一種を金属換算で1〜40モル%含むジルコニウム酸化物と、Rhを含有せしめる。
上記触媒成分層及びRh含有上方触媒成分層でも、十分な脱離HCの浄化性能を有すが、ゼオライトを主成分とするHC吸着材層に、Rhと、Ce、Nd及びLaから成る群より選ばれた少なくとも一種を金属換算で1〜40モル%含むジルコニウム酸化物が含まれることによって、脱離HCの浄化性能を更に向上させることができる。
【0038】
また、第一及び第二の発明の排気ガス浄化用触媒の触媒成分層(貴金属層)において、更にアルミナを含有させることが好ましい。
特に、高温耐久後のアルミナの構造安定性を高め、α−アルミナへの相転移やBET比表面積の低下を抑制するために、上記アルミナにはCe、Zr及びLaから成る群より選ばれた少なくとも一種が金属換算で1〜10モル%含有される。
1モル%未満では十分な添加効果が得られず、10モル%を超えると添加効果は飽和してしまう。
かかるアルミナの使用量は、触媒1Lあたり10〜200gである。10g未満だと充分な貴金属の分散性が得られず、200gより多く使用しても触媒性能は飽和し、顕著な改良効果は得られない。
【0039】
更に、第一及び第二の発明の排気ガス浄化用触媒の触媒成分層において、上記触媒成分(貴金属)に加え、更にセリウム酸化物を含有することもできる。
当該セリウム酸化物は、Zr、Nd及びLaから成る群より選ばれた少なくとも一種を金属換算で1〜40モル%、その残部としてCeを金属換算で60〜99モル%含むものである。セリウム酸化物を含有させることにより、酸素吸蔵能の高いセリウム酸化物がリッチ雰囲気及びストイキ近傍で格子酸素や吸着酸素を放出し、貴金属の酸化状態を排気ガスの浄化に適したものとし、触媒性能の低下を抑制できる。
1〜40モル%としたのは、セリウム酸化物(CeO)にZr、Nd及びLaから成る群より選ばれた少なくとも一種の元素を添加して、CeOの酸素放出能やBET比表面積、熱安定性を顕著に改良するためである。
1モル%未満ではCeOのみの場合と変わらず、上記した元素の添加効果が現れず、40モル%を越えるとこの効果が飽和もしくは逆に低下する。
【0040】
更に、第一及び第二の発明の排気ガス浄化用触媒の好適実施態様におけるRh含有上方触媒成分層には、更にCe、Nd及びLaから成る群より選ばれた少なくとも一種を含むジルコニウム酸化物を含有させることもできる。
当該ジルコニウム酸化物は、Ce、Nd及びLaから成る群より選ばれた少なくとも一種の元素を金属換算で1〜40モル%、その残部としてZrを金属換算で60〜99モル%含むものである。
1〜40モル%としたのは、ジルコニウム酸化物(ZrO)にCe、Nd及びLaから成る群より選ばれた一種の元素を添加して、ZrOの酸素放出能やBET比表面積、更には熱安定性を顕著に改良するためである。
1モル%未満ではZrOのみの場合と変わらず、上記した元素の添加効果が現れず、40モル%を越えるとこの効果が飽和もしくは低下する。
【0041】
該Rh含有上方触媒成分層に、Ce、Nd及びLaから成る群より選ばれた少なくとも一種を含むジルコニウム酸化物を粉末を含有させることにより、ジルコニウム酸化物がリッチ雰囲気及びストイキ近傍で格子酸素や吸着酸素を放出し、貴金属の酸化状態を排気ガスの浄化に適したものとするため、貴金属の触媒性能の低下を抑制できる。
【0042】
また、第一及び第二の発明の排気ガス浄化用触媒において、使用されるアルカリ金属及び/又はアルカリ土類金属には、Li、Na、K、Cs、Mg、Ca、Sr及びBaが含まれる。
これらを触媒成分層に含有させると、リッチ雰囲気下でのHC吸着被毒作用を緩和し、また貴金属のシンタリングを抑制するため、低温活性や還元雰囲気での活性を更に向上させることができる。その含有量は触媒1L中1〜40gで、1g未満では、HCの吸着被毒や貴金属のシンタリングを抑制できず、40gを越えても有為な増量効果が得られず逆に性能を低下させる。
【0043】
第一及び第二の発明の排気ガス浄化用触媒を製造するに当たっては、HC吸着層及び触媒成分層の性能を有効に発現させるために、HC吸着材層(ゼオライト層)を内層側に配置し、触媒成分層(パラジウム層)をその上の中層側とし、更にその上の表層側へRh含有上方触媒成分層(ロジウム層)を配置する。
【0044】
該触媒成分層、上方触媒成分層における貴金属(触媒成分)の原料化合物としては、ジニトロジアンミン酸塩、塩化物、硝酸塩等の水溶性のものであれば任意のものが使用できる。
水の除去は、例えば濾過法や蒸発乾固法等の公知の方法の中から適宜選択して行うことができる。本発明に用いる貴金属担持粉末を得るための最初の熱処理は、特に制限されないが、添加した貴金属を分散性良く担持するため、例えば400℃〜800℃の比較的低温で空気中及び/又は空気流通下で焼成を行うことが好ましい。
【0045】
更に、該HC吸着材層のゼオライトに、Pd,Mg,Ca,Sr,Ba,Ag,Y,La,Ce,Nd,P,B,Zrから選ばれた少なくとも1種以上を含浸担持させることもできる。
これら金属化合物は、酸化物、酢酸塩、硝酸塩及び水酸化物等の水溶性のものを、イオン交換法、含浸法、浸漬法等の通常の方法を用いて担持することにより、ゼオライト上に分散性を良くして担持することが可能となる。
担持後の水分除去法としては、乾燥し、次いで空気中及び/又は空気流通下で200〜600℃の比較的低温で焼成するものである。
かかる焼成温度が200℃未満だと金属化合物が酸化物形態になることが充分にできず、逆に600℃を越えても焼成温度の効果は飽和し、顕著な差異は得られない。
【0046】
更には、触媒成分層、上方触媒成分層には、Ptを含有させることもできる。原料化合物としては、ジニトロジアンミン酸塩、塩化物、硝酸塩等の水溶性のものであれば任意のものが使用できる。
【0047】
更に、好ましくは、該触媒成分層(貴金属層)に、アルミナ粉末やジルコニウム酸化物粉末に、Zr、Nd及びLaから成る群より選ばれる少なくとも一種を含有するセリウム酸化物を添加することにより、還元雰囲気下において、貴金属の酸化状態を、排気ガス浄化に適した状態に、より有効に維持することができる。
【0048】
また、好ましくは、該上方触媒成分層に、Ce、Nd及びLaから成る群より選ばれる少なくとも一種を含むジルコニウム酸化物粉末を加えることもできる。当該Ce、Nd及びLaから成る群より選ばれる少なくとも一種を含むジルコニウム酸化物粉末を添加することにより、還元雰囲気下において、貴金属の酸化状態を、排気ガス浄化に適した状態に、より有効に維持することができる。
【0049】
このようにして得られる第一及び第二の発明に係る排気ガス浄化用触媒は、無担体でも有効に使用することができるが、粉砕してスラリーとし、特定のモノリス担体にコートして、400〜900℃で焼成して用いる。
具体的には、HC吸着材層(内層側)として、β−ゼオライトを主成分としたゼオライト粉末にシリカゾルを加えて湿式にて粉砕してスラリーとし、モノリス担体に付着させ、400〜650℃の範囲の温度で空気中及び/又は空気流通下で焼成を行う。
次に、触媒成分層(中層側)として、Pd担持粉末と、アルミナ粉末と、上記セリウム酸化物粉末に、アルミナゾルを加えて湿式にて粉砕してスラリーとし、モノリス担体に付着させ、400〜650℃の範囲の温度で空気中及び/又は空気流通下で焼成を行う。
次に、上方触媒成分層(表層側)として、Rh担持粉末と、アルミナ粉末と、上記ジルコニウム酸化物粉末に、アルミナゾルを加えて湿式にて粉砕してスラリーとし、モノリス担体に付着させ、400〜650℃の範囲の温度で空気中及び/又は空気流通下で焼成を行う。
上記触媒成分層及び上方触媒成分層には、更にPtを加えてもよい。
【0050】
触媒担体であるモノリス担体としては、公知の触媒担体の中から適宜選択して使用することができ、例えば耐火性材料から成るハニカム状のモノリス担体やメタル担体等が挙げられる。
このハニカム材料としては、一般にセラミックなどのコージェライト質のものが多く用いられるが、フェライト系ステンレス等の金属材料から成るハニカム材料を用いることも可能であり、更には触媒成分粉末そのものをハニカム形状に成形しても良い。
触媒の形状をハニカム状とし、本発明では、更に該ハニカム状担体(モノリス担体)のGSAを10cm/cm〜35cm/cmとしており、HC吸着材層と排気ガスとの接触を制限し、吸着HCのHC吸着材層からの脱離を遅延化するのに極めて有効である。
【0051】
更に、モノリス担体のセル数を、1平方インチ当たり50〜600セルとすることによって、HC吸着材層と排気ガスとの接触を制限し、吸着HCのHC吸着材層からの脱離を遅延化するのに極めて有効である。
【0052】
更に、モノリス担体の水力直径を、0.75mm〜5mmとすることによって、HC吸着材層内への排気ガス拡散速度を低下し、吸着HCのHC吸着材層からの脱離を遅延化するのに極めて有効である。
【0053】
モノリス担体に付着させる触媒成分層の量は、触媒成分層全体のトータルで、触媒1Lあたり、50g〜600gが好ましい。
三元浄化能を有する触媒成分層が多い程、触媒活性や触媒寿命の面から好ましいが、該触媒成分層のコート厚が厚くなりすぎると、触媒成分層内部のHC吸着材層への排気ガスの拡散が不良となり、逆に、HCの吸着性能が低下する。また、HC吸着材層が多い程、HCの脱離遅延化の面から好ましいが、該HC吸着材層のコート厚が厚くなりすぎると、脱離HCと触媒成分層との接触が不良となり、逆に脱離HCの浄化活性が低下する。このため、HC吸着材層と触媒成分層のコート重量比率を5:1〜1:2に設定することが好ましい。
更に、モノリス担体セル内の平坦部におけるコート層厚み、即ちHC吸着材層の厚みと触媒成分層の厚みとの合計厚みは、30μm〜400μmが好ましい。
ウオッシュコート成分を担持するモノリス担体のGSA、セル数、水力直径を当該規定値内とすることにより、HCの脱離を遅延化するのに十分なHC吸着材層厚みを確保でき、脱離HCの浄化性能が向上する。
【0054】
次に、第三の発明の実施の態様について説明する。
この第三の発明は、上述した第一又は第二の発明の排気ガス浄化用触媒(HC吸着触媒)の前段、即ち排気流路の上流側に、Pd、PdとPt、又はPdとRhを含み、Pdの担持濃度が4重量〜20重量%となるようにPdを担持したPd担持粉末を含み、且つ触媒1L当たりのPd担持量が100g/cf(3.5g/L)〜1000g/cf(35.4g/L)であるPd含有触媒(三元触媒)を配置した排気ガス浄化装置に関するものである(図3等を参照)。
この排気ガス浄化装置では、上記排気ガス浄化用触媒(HC吸着触媒)が吸着するHC量が、エンジン始動直後の低温域に排出されるHC量の70%以下、好ましくは10%〜70%に設定される。
【0055】
本発明のHC吸着触媒がエンジン始動直後の低温時における排気ガス中のHCの全量を吸着した場合、触媒成分層の温度上昇に伴って脱離が開始すると、HC吸着材層の上部に配置した触媒成分層が酸素不足状態に長時間曝されるため、脱離HCに対する浄化性能が著しく低下する。そこで、上記HC吸着触媒の前段に、低温域でのHC浄化性能に優れるPd含有触媒を配置し、HC吸着触媒が吸着するHC量を、該HC吸着触媒のHC飽和吸着量の70%以下に設定することが、HC吸着材層の上部に配置した触媒成分層の脱離HCに対する浄化性能を維持、向上するために好ましい。
しかし、HC吸着触媒が吸着するHC量が、該HC吸着触媒のHC飽和吸着量の70%超になった場合、HC吸着材のコールドHC吸着効率が低下し、また、脱離も速くなるため、脱離HCの浄化性能が著しく低下する。
【0056】
また、第3の発明に係る排気ガス浄化装置の好適態様においては、上記Pd担持粉末の担持濃度が4重量%〜15重量%で、且つ上記Pd含有触媒のパラジウムの担持量が100g/cf(3.5g/L)〜500g/cf(17.7g/L)であって、更に、エンジン始動時(ファーストアイドル)の点火時期が、エンジン始動直後から40秒以下の時間、上死点から1°〜30°以下遅角される。
これにより、排気温度の上昇を速め、HC吸着触媒の前段に配置したPd含有触媒の活性化を速め、該HC吸着触媒が吸着するHC量を該HC吸着触媒のHC飽和吸着量の70%以下に設定される。
【0057】
また、他の好適実施態様では、上記Pd担持粉末の担持濃度が4重量%〜15重量%以下であり、且つ上記Pd含有触媒のパラジウム担持量が100g/cf(3.5g/L)〜500g/cf(17.7g/L)以下であって、エンジン始動直後から60秒間、空気流量10L/分以上の空気を供給し、エンジン始動直後のコールド空燃比を希薄化(A/F=12〜18)することによって、該Pd含有触媒の活性化を速め、該HC吸着触媒が吸着するHC量を該HC吸着触媒のHC飽和吸着量の70%以下に設定する。
【0058】
更に、他の好適実施態様では、該HC吸着触媒からHCの脱離が開始する直前に、空燃比を14.6以上に制御するか、又は空気ポンプ等の手段を用い該HC吸着触媒の上流若しくは該HC吸着触媒中に、酸素及び/又は空気が添加される。
吸着したHCがHC吸着材から脱離を開始する前又は脱離開始と同時に、HC吸着触媒の上流又は該HC吸着触媒中に、酸素及び/又は空気を添加し、HC吸着材層の上部の触媒成分層に酸素を供給することによって、脱離HCの浄化性能が向上する。
【0059】
更に、他の好適実施態様では、HC吸着触媒から脱離するHCの浄化効率を向上させるために、HC吸着触媒の前部(入口近傍)に設置された温度検出器の検出値が所定温度以上になった時に、HC吸着触媒の後部(出口近傍)に設置したA/F検知器が14.6以上になるように、該HC吸着触媒の上流又は該HC吸着触媒中に、酸素及び/又は空気を添加する(図3参照)。
【0060】
HC吸着触媒の入口近傍に設置された温度検出器の検出値が所定温度例えば110℃未満では、HC吸着触媒の触媒成分層の活性化が不十分であるため、酸素及び/又は空気の添加によって、逆に脱離HCの浄化性能が低下する。
更に、HC吸着触媒の上流に添加する酸素及び/又は空気は、HC吸着触媒の出口近傍に設置したA/F検知器が14.6以上になるように添加することが好ましい。A/Fが14.6未満では、HC吸着触媒の触媒成分層の浄化性能の改良効果が十分でない。
【0061】
更に、HC吸着触媒から脱離するHCの浄化効率を向上させるために、HC吸着触媒の触媒成分層中に挿入された温度検出器の検出値が所定温度以上になった時に、HC吸着触媒の出口近傍に設置したA/F検知器が14.6以上になるように、該HC吸着触媒の上流又は該HC吸着触媒中に、酸素及び/又は空気を添加する(図4参照)。
HC吸着触媒の触媒成分層中に挿入された温度検出器の検出値が所定温度未満では、HC吸着触媒の三元触媒層の活性化が不十分であるため、酸素及び/又は空気を添加によって、逆に脱離HCの浄化性能が低下する。
更に、HC吸着触媒の上流に添加する酸素及び/又は空気は、HC吸着触媒の出口近傍に設置したA/F検知器が14.6以上になるように添加することが好ましい。A/Fが14.6未満では、HC吸着触媒の触媒成分層の浄化性能の改良効果が十分でない。
【0062】
更に、HC吸着触媒から脱離するHCの浄化効率を向上させるために、入口近傍と出口近傍に設置したA/F検知器の検出値からHCの脱離が検知された時に、HC吸着触媒の出口近傍に配置したA/F検知器A/F=14.6以上になるように、該HC吸着触媒の上流又は該HC吸着触媒中に、酸素及び/又は空気を添加する(図4参照)。
【0063】
HC吸着触媒の上流に添加される酸素及び/又は空気量を最小限にし、HC吸着触媒の触媒成分層の活性化を著しく促進するには、HC吸着触媒の入口近傍と出口近傍に設置したA/F検知器の検出値の差からHCの脱離が検知された時に、HC吸着触媒の出口近傍に設置したA/F検知器が14.6以上になるように添加することが好ましい。A/Fが14.6未満では、HC吸着触媒の触媒成分層の浄化性能が改良効果が十分でない。
【0064】
また、第三の発明の好適な実施態様では、HC吸着触媒の前段に該Pd含有触媒を配置した排気ガス浄化装置において、該Pd含有触媒での未浄化成分(HC,CO,NOx)を効率良く浄化するため、該Pd含有触媒がRhを含み、このRh量を、下流側に配置した該HC吸着触媒に含まれるロジウム量より少なくすることが好ましい。
該Pd含有触媒に含まれるRh量をその下流側に配置したHC吸着触媒に含まれるRh量より少なくすることによって、ホット域での未浄化成分(HC,CO,NOx)を効率良く浄化でき、該Pd含有触媒で浄化できなかった低濃度の排気ガス成分の浄化性能が向上する。
【0065】
また、該Pd含有触媒に含まれるRh量と下流側に配置したHC吸着触媒に含まれるRh量の重量比は、等量(1/1)以下とすることが好ましい。該Rhの重量比が等量以上では低濃度排気ガス成分の浄化性能が十分に発現しない。
【0066】
更に、第三の発明の他の好適な実施態様について説明する。
本実施態様では、HC吸着触媒から脱離するHCの浄化効率を向上させるために、排気ガス上流にPd含有触媒を配置し、その下流にHC吸着触媒を二個以上(第一の発明又は第2の発明に係るHC吸着触媒と、該HC吸着触媒と同等の性質を有する他のHC吸着触媒)配置した排気ガス浄化装置である。
HC吸着触媒を二個以上配置することによって、エンジン始動直後に排出される低温域のHCを分散吸着させ、HC吸着材の上部に配置した触媒成分層が酸素不足状態に曝される時間を短縮し、脱離HCに対する浄化性能を著しく向上させる。
【0067】
また、更に他の好適実施態様では、排気ガス上流にPd含有触媒を配置し、その下流にHC吸着触媒を二個以上配置し、該複数個のHC吸着触媒が、エンジンからの距離が異なる位置に設けられ、各HC吸着触媒の昇温速度が異なる排気ガス浄化装置である。
複数個配置したHC吸着触媒の昇温速度が異なることによって、前段のHC吸着触媒の未浄化脱離HCを後段のHC吸着触媒で再吸着させ、脱離HCに対する浄化性能を著しく向上させる。
【0068】
図12に、本発明の排気ガス浄化装置の実施に当たりリーン化時間を設定するための手順を示すフローシートを示す。リーン化時間は、このフローに従って定められた。シート中、S1〜S18は以下の意味を有する。
【0069】
尚、このフローは、所定時間毎に実行される。
S1 エンジン始動時かどうか判定する。
例えば、前回このフローを実行したときのスターターSWがONであり、今回OFFのとき始動時と判断し、S2〜S5の初期設定を行う。
S2 HC吸着触媒の温度(入口温度あるいは触媒成分層温度)を検出する。
簡単には、エンジン冷却水温度で代用しても良い。
S3 S2で求めた触媒温度に基づいてHC吸着触媒の吸着容量を推定する。
S4 S2で求めた吸着容量に基づいてHC吸着触媒からHCの脱離が開始される時期(始動からの経過時間)を推定する。
S5 S2で求めた吸着容量に基づいてHCの脱離が始まってから完了するまで要する時間を推定する。
S6 エンジン始動時からの経過時間を計測する。
S7 HC吸着触媒からHCが脱離する時期になったかどうか判定する。
ここでは、S4で推定したHC脱離開始と始動からの経過時間を比較することで判定しているが、他の方法としては、エンジン始動後も触媒温度の検出あるいは推定を継続して行い、この触媒温度と脱離温度とを比較することで判定を行っても良い。
S8 始動後の経過時間が所定時間(例えば60秒)未満かどうかを判定する。
S9 S8の判定がYESの場合、空燃比をリーンに設定する。
空燃比を理論空燃比より10%程度リーンにすると、触媒の活性開始温度が低下し、触媒の早期活性を図ることができる。
S10 S8の判定がNOの場合、空燃比をストイキに設定する。
(リーン空燃比による運転は、NOxの発生量を増加させるデメリットもあるので、必要最小限とする。)
S11 始動後の経過時間が所定時間(例えば40秒)未満かどうかを判定する。
S12 S11の判定がYESの場合、点火時期を通常時の点火時期よりも遅角側の時期に設定する。
点火時期を遅角させことにより、排気ガス温度を上昇させ、かつ、未燃のHCを触媒に供給することで触媒の早期活性を図ることができる。
S13 S11の判定がNOの場合、点火時期を通常の点火時期に設定する。(点火時期の遅角は、発生トルクを低下させる(=燃費が悪化する)
デメリットもあるので、必要最小限とする。)
S14 HCの脱離が開始されてからの経過時間を計測する。
S15 HC脱離中であるかどうかを判定する。
S16 触媒下流に配設した空燃比センサの出力が、所定値未満かどうか、すなわち、所定のリーン空燃比を越えていないかどうか判定する。
S15でHC脱離中と判断された場合は、基本的には次のS17でリーン空燃比制御を実行するが、触媒下流空燃比センサが所定のリーン空燃比以上を示したら通常制御を行う。
S17 S15でYESの場合、空燃比をリーンに設定する。
HC脱離中は、触媒がリッチ雰囲気となってHCの酸化処理効率が低下するので、空燃比をリーンとして効率の低下を防止する。
HCの脱離特性に合わせて、脱離するHC量に見合う酸素を供給する程度にリーン空燃比を設定すると良い。
S18 S15でNOの場合(=HCの脱離が完了した後)は、通常制御を行う。
【0070】
【実施例】
本発明を次の実施例及び比較例により説明する。
実施例1
β−ゼオライト粉末(H型、Si/2Al=75)511g、MFI(ZSM5)粉末57g、シリカゾル(固形分20%)1215g、純水1800gを磁性ボールミルに投入し、混合粉砕してスラリー液を得た。このスラリー液をコージェライト質モノリス担体(300セル/6ミル、GSA24.1cm/cm、水力直径1.3mm)に付着させ、空気流にてセル内の余剰のスラリーを取り除いて乾燥し、400℃で1時間焼成した。この時の塗布量として、焼成後に100g/Lになるまでコーティング作業を繰り返し、触媒−aを得た。
【0071】
Ce3mol%(CeOに換算して9.5重量%)を含むアルミナ粉末に、ジニトロジアミンパラジウム水溶液を含浸或いは高速攪拌中で噴霧し、150℃で24時間乾燥した後、400℃で1時間、次いで、600℃で1時間焼成し、Pd担持アルミナ粉末(粉末a)を得た。この粉末aのPd濃度は6.23重量%であった。粉末aには、ランタン、ジルコニウム、ネオジウム等が含まれてもよい。
【0072】
La1モル%(Laに換算して1重量%)とZr32モル%(ZrOに換算して25重量%)含有セリウム酸化物粉末に、ジニトロジアミンパラジウム水溶液を含浸或いは高速攪拌中で噴霧し、150℃で24時間乾燥した後、400℃で1時間、次いで、600℃で1時間焼成し、Pd担持セリウム酸化物粉末(粉末b)を得た。この粉末bのPd濃度は2.0重量%であった。
【0073】
上記Pd担持アルミナ粉末(粉末a)562g、Pd担持セリウム酸化物粉末(粉末b)288g、硝酸酸性アルミナゾル950g(ベーマイトアルミナ10重量%に10重量%の硝酸を添加することによって得られたゾル)及び純水1000gを磁性ボールミルに投入し、混合粉砕してスラリー液を得た。このスラリー液を上記コート触媒−aに付着させ、空気流にてセル内の余剰のスラリーを取り除いて乾燥し、400℃で1時間焼成し、コート層重量60g/Lを塗布し、触媒−bを得た。
【0074】
Zr3重量%を含むアルミナ粉末に、硝酸ロジウム水溶液を含浸或いは高速攪拌中で噴霧し、150℃で24時間乾燥した後、400℃で1時間、次いで、600℃で1時間焼成し、Rh担持アルミナ粉末(粉末c)を得た。この粉末cのRh濃度は1.25重量%であった。
【0075】
上記Rh担持アルミナ粉末(粉末c)366g、La1モル%(Laに換算して1.2重量%)とCe20モル%(CeOに換算して25.8重量%)のジルコニウム酸化物粉末300g、硝酸酸性アルミナゾル1135gを磁性ボールミルに投入し、混合粉砕してスラリー液を得た。このスラリー液を上記コート触媒−bに付着させ、空気流にてセル内の余剰のスラリーを取り除いて乾燥し、400℃で1時間焼成し、コート層重量40g/Lを塗布し、触媒を得た。上記セリウム酸化物粉末、アルミナ粉末にはランタン、ネオジウム等が含まれてもよい。
次いで、上記触媒成分担持コージェライト質モノリス担体に酢酸バリウム溶液を付着させた後、400℃で1時間焼成し、BaOとして10g/Lを含有させた。これにより、本実施例の排気ガス浄化用触媒(HC吸着触媒)を得た。
【0076】
実施例2
ゼオライトとして、β−ゼオライト粉末(H型、Si/2Al=75)313g、MFI(ZSM5)粉末255g、シリカゾル(固形分20%)1215gを用いた以外は、実施例1と同様にして排気ガス浄化用触媒を得た。
【0077】
実施例3
ゼオライトとして、β−ゼオライト粉末(H型、Si/2Al=75)454g、MFI(ZSM5)粉末57g、USY粉末57g、シリカゾル(固形分20%)1215gを用いた以外は、実施例1と同様にして排気ガス浄化用触媒を得た。
【0078】
実施例4
ゼオライトとして、β−ゼオライト粉末(H型、Si/2Al=75)454g、MFI(ZSM5)粉末57g、AlPO4粉末57g、シリカゾル(固形分20%)1215gを用いた以外は、実施例1と同様にして排気ガス浄化用触媒を得た。
【0079】
実施例5
ゼオライトとして、β−ゼオライト粉末(H型、Si/2Al=75)454g、MFI(ZSM5)粉末57g、SAPO4粉末57g、シリカゾル(固形分20%)1215gを用いた以外は、実施例1と同様にして排気ガス浄化用触媒を得た。
【0080】
実施例6
ゼオライトとして、β−ゼオライト粉末(H型、Si/2Al=75)454g、MFI(ZSM5)粉末57g、モルデナイト粉末57g、シリカゾル(固形分20%)1215gを用いた以外は、実施例1と同様にして排気ガス浄化用触媒を得た。
【0081】
実施例7
ゼオライトとして、β−ゼオライト粉末(H型、Si/2Al=75)454g、MFI(ZSM5)粉末57g、フェリエライト粉末23.5g、A型ゼオライト粉末23.5g、シリカゾル(固形分20%)1215gを用いた以外は、実施例1と同様にして排気ガス浄化用触媒を得た。
【0082】
実施例8
MFI(ZSM5)粉末に、Pdを含浸担持し、150℃で24時間乾燥した後、450℃で1時間焼成し、Pd担持MFI粉末(Pd濃度2.0重量%)を得た。MFI粉末の代わりに、Pd担持MFI粉末を用い、コージェライト質モノリス担体(200セル/10ミル、GSA19.0cm/cm、水力直径1.53mm)を用いた以外は、実施例1と同様にして排気ガス浄化用触媒を得た。
【0083】
実施例9
MFI(ZSM5)粉末に、Pを含浸担持し、150℃で24時間乾燥した後、450℃で1時間焼成し、P担持MFI粉末(Pd濃度0.4重量%)を得た。MFI粉末の代わりに、P担持MFI粉末を用い、実施例8と同一のモノリス担体を用いた以外は、実施例1と同様にして排気ガス浄化用触媒を得た。
【0084】
実施例10
MFI(ZSM5)粉末に、Caを含浸担持し、150℃で24時間乾燥した後、450℃で1時間焼成し、Ca担持MFI粉末(Ca濃度0.2重量%)を得た。MFI粉末の代わりに、Ca担持MFI粉末を用い、実施例8と同一のモノリス担体を用いた以外は、実施例1と同様にして排気ガス浄化用触媒を得た。
【0085】
実施例11
MFI(ZSM5)粉末に、Mgを含浸担持し、150℃で24時間乾燥した後、450℃で1時間焼成し、Mg担持MFI粉末(Mg濃度0.4重量%)を得た。MFI粉末の代わりに、Mg担持MFI粉末を用い、実施例8と同一のモノリス担体を用いた以外は、実施例1と同様にして排気ガス浄化用触媒を得た。
【0086】
実施例12
MFI(ZSM5)粉末に、Laを含浸担持し、150℃で24時間乾燥した後、450℃で1時間焼成し、La担持MFI粉末(La濃度0.4重量%)を得た。MFI粉末の代わりに、La担持MFI粉末を用い、実施例8と同一のモノリス担体を用いた以外は、実施例1と同様にして排気ガス浄化用触媒を得た。
【0087】
実施例13
MFI(ZSM5)粉末に、B(ホウ素)を含浸担持し、150℃で24時間乾燥した後、450℃で1時間焼成し、B担持MFI粉末(B濃度0.4重量%)を得た。MFI粉末の代わりに、B担持MFI粉末を用い、実施例8と同一のモノリス担体を用いた以外は、実施例1と同様にして排気ガス浄化用触媒を得た。
【0088】
実施例14
MFI(ZSM5)粉末に、P,Ca,Zr,Laを逐次含浸、乾燥、焼成により担持したP−Ca−Zr−La担持MFI粉末(各金属濃度0.1重量%、総金属濃度0.4重量%)を得た。MFI粉末の代わりに、P−Ca−Zr−La担持MFI粉末を用い、実施例8と同一のモノリス担体を用いた以外は、実施例1と同様にして排気ガス浄化用触媒を得た。
【0089】
実施例15
MFI(ZSM5)粉末に、P,Mg,Zr,Ceを逐次含浸、乾燥、焼成により担持したP−Mg−Zr−Ce担持MFI粉末(各金属濃度0.1重量%、総金属濃度0.4重量%)を得た。MFI粉末の代わりに、P−Mg−Zr−Ce担持MFI粉末を用い、実施例8と同一のモノリス担体を用いた以外は、実施例1と同様にして排気ガス浄化用触媒を得た。
【0090】
実施例16
MFI(ZSM5)粉末に、B,Ca,La,Ndを逐次含浸、乾燥、焼成により担持したB−Ca−La−Nd担持MFI粉末(各金属濃度0.1重量%、総金属濃度0.4重量%)を得た。MFI粉末の代わりに、B−Ca−La−Nd担持MFI粉末を用い、実施例8と同一のモノリス担体を用いた以外は、実施例1と同様にして排気ガス浄化用触媒を得た。
【0091】
実施例17
Zr3重量%を含むアルミナ粉末に、硝酸ロジウム水溶液を含浸或いは高速攪拌中で噴霧し、150℃で24時間乾燥した後、400℃で1時間、次いで、600℃で1時間焼成し、Rh担持アルミナ粉末(粉末c)を得た。この粉末cのRh濃度は1.25重量%であった。
La1モル%(Laに換算して1.2重量%)とCe20モル%(CeOに換算して25.8重量%)のジルコニウム酸化物粉末に、ジニトロジアミン白金水溶液を含浸或いは高速攪拌中で噴霧し、150℃で24時間乾燥した後、400℃で1時間、次いで、600℃で1時間焼成し、Pt担持ジルコニウム酸化物粉末(粉末d)を得た。この粉末dのPt濃度は1.53重量%であった。上記Rh担持アルミナ粉末c366g、Pt担持ジルコニウム酸化物粉末(粉末d)300g、硝酸酸性アルミナゾル1135gを磁性ボールミルに投入し、混合粉砕してスラリー液を得た。このスラリー液を上記コート触媒−b(但し、モノリス担体は実施例8と同一)に塗布する以外は、実施例1と同様にして排気ガス浄化用触媒を得た。
【0092】
実施例18
La1モル%(Laに換算して1重量%)とZr32モル%(ZrOに換算して25重量%)含有セリウム酸化物粉末に、ジニトロジアミン白金水溶液を含浸或いは高速攪拌中で噴霧し、150℃で24時間乾燥した後、400℃で1時間、次いで、600℃で1時間焼成し、Pt担持セリウム酸化物粉末(粉末e)を得た。この粉末eのPt濃度は2.0重量%であった。
上記Pd担持アルミナ粉末(粉末a)562g、Pd担持セリウム酸化物粉末(粉末b)144g、Pt担持セリウム酸化物粉末(粉末e)144g、硝酸酸性アルミナゾル950g(ベーマイトアルミナ10重量%に10重量%の硝酸を添加することによって得られたゾル)及び純水1000gを磁性ボールミルに投入し、混合粉砕してスラリー液を得た。このスラリー液を上記コート触媒−a(但し、モノリス担体は実施例8と同一)に塗布する以外は、実施例1と同様にして排気ガス浄化用触媒を得た。
【0093】
実施例19
上記Pd担持アルミナ粉末(粉末a)562g、Pd担持セリウム酸化物粉末(粉末b)144g、Pt担持セリウム酸化物粉末(粉末e)144g、硝酸酸性アルミナゾル950g(ベーマイトアルミナ10重量%に10重量%の硝酸を添加することによって得られたゾル)及び純水1000gを磁性ボールミルに投入し、混合粉砕してスラリー液を得た。このスラリー液を上記コート触媒−a(但し、モノリス担体は実施例8と同一)に塗布する以外は、実施例1と同様にして触媒−cを得た。
上記Rh担持アルミナ粉末c366g、La1モル%(Laに換算して2重量%)とCe20モル%(CeOに換算して25.8重量%)のジルコニウム酸化物粉末300g、硝酸酸性アルミナゾル1135g及び純水1000gを磁性ボールミルに投入し、混合粉砕してスラリー液を得た。このスラリー液を上記コート触媒−cに塗布する以外は、実施例1と同様にして排気ガス浄化用触媒を得た。
【0094】
実施例20
酢酸バリウム溶液に代わりに酢酸カリウム溶液を用い、同様の手順でKOとして1g/Lを含有させ、実施例8と同一のモノリス担体を用いた以外は、実施例1と同様にして排気ガス浄化用触媒を得た。
【0095】
実施例21
MFI(ZSM5)粉末に、Agを含浸担持し、150℃で24時間乾燥した後、450℃で1時間焼成し、Ag担持MFI粉末(Ag濃度0.4重量%)を得た。MFI粉末の代わりに、Ag担持MFI粉末を用い、実施例8と同一のモノリス担体を用いた以外は、実施例1と同様にして排気ガス浄化用触媒を得た。
【0096】
実施例22
ゼオライトとして、β−ゼオライト粉末(H型、Si/2Al=75)568g、シリカゾル(固形分20%)1215gを用い、ゼオライト層コート触媒−d(但し、モノリス担体は実施例8と同一)を得た。
上記Pd担持アルミナ粉末(粉末a)357g、Pd担持セリウム酸化物粉末(粉末b)183g、Rh担持アルミナ粉末(粉末c)188g、La1モル%(Laに換算して1.2重量%)とCe20モル%(CeOに換算して25.8重量%)のジルコニウム酸化物粉末154g、硝酸酸性アルミナゾル1185g及び純水1000gを磁性ボールミルに投入し、混合粉砕してスラリー液を得た。このスラリー液を上記ゼオライト層コート触媒−dに塗布する以外は、実施例1と同様にして排気ガス浄化用触媒を得た。
【0097】
実施例23
上記Pd担持アルミナ粉末(粉末a)357g、Pd担持セリウム酸化物粉末(粉末b)183g、Rh担持アルミナ粉末(粉末c)188g、Pt担持ジルコニウム酸化物粉末(粉末d)154g、硝酸酸性アルミナゾル1185g及び純水を磁性ボールミルに投入し、混合粉砕してスラリー液を得た。このスラリー液を上記ゼオライト層コート触媒−d(但し、モノリス担体は実施例8と同一)に塗布する以外は、実施例1と同様にして排気ガス浄化用触媒を得た。
【0098】
参考例1
La1モル%(Laに換算して1.2重量%)とCe20モル%(CeOに換算して25.8重量%)のジルコニウム酸化物粉末に、硝酸ロジウム水溶液を含浸或いは高速攪拌中で噴霧し、150℃で24時間乾燥した後、400℃で1時間、次いで、600℃で1時間焼成し、Rh担持ジルコニウム酸化物粉末(粉末f)を得た。この粉末fのRh濃度は4.0重量%であった。
β−ゼオライト粉末(H型、Si/2Al=75)568g、Rh担持ジルコニウム酸化物粉末(粉末f)353g、シリカゾル(固形分20%)1215g、純水1800gを磁性ボールミルに投入し、混合粉砕してスラリー液を得た。このスラリー液をコージェライト質モノリス担体(300セル/6ミル、GSA24.1cm/cm、水力直径1.1mm)に付着させ、空気流にてセル内の余剰のスラリーを取り除いて乾燥し、400℃で1時間焼成した。この時の塗布量として、焼成後に143.5g/Lになるまでコーティング作業を繰り返し、触媒−eを得た。
【0099】
比較例1
コージェライト質モノリス担体(900セル/4ミル、GSA41.1cm/cm、水力直径0.74mm)を用いた以外は、実施例1と同様にして排気ガス浄化用触媒を得た。
【0100】
比較例2
第2層(触媒成分層=三元層)をRh層、第3層(上方触媒成分層=三元層)をPd層とした以外は、実施例1と同様にして排気ガス浄化用触媒を得た。
【0101】
比較例3
第1層(HC吸着剤層=ゼオライト層)と、第2及び第3層(三元層)の総コート層重量比率を、10:1とした以外は、実施例1と同様にして排気ガス浄化用触媒を得た。
【0102】
比較例4
第1層(ゼオライト層)と、第2及び第3三元層の総コート層重量比率を、1:5とした以外は、実施例1と同様にして排気ガス浄化用触媒を得た。
【0103】
比較例5
第1層のゼオライト種として、A型ゼオライトのみを用いた以外は、実施例1と同様にして排気ガス浄化用触媒を得た。
【0104】
比較例6
第1層のゼオライト種として、USYのみを用いた以外は、実施例1と同様にして排気ガス浄化用触媒を得た。
【0105】
比較例7
第1層のゼオライト種として、MFIのみを用いた以外は、実施例1と同様にして排気ガス浄化用触媒を得た。
【0106】
以上各実施例、参考例及び比較例で得られた排気ガス浄化用触媒の仕様を表1及び表2に示す。
【0107】
【表1】

Figure 0003858997
【0108】
【表2】
Figure 0003858997
【0109】
図1は、コート層構造の概略図である。
【0110】
各実施例、参考例及び比較例について、下記評価条件でHC浄化特性評価(ECモード、LA−4のA−bag)を、図2の評価システムを用いて行った。その結果を表3及び表4に示す。
【0111】
耐久条件
エンジン排気量 3000cc
燃料 ガソリン(Pb=12mg/usg,S=300ppm)
触媒入口ガス温度 650℃
耐久時間 100時間
性能評価条件
触媒容量(片バンク) 三元触媒1.3L+HC吸着触媒2.6L
評価車両 日産自動車株式会社製 V型6気筒 3.3Lエンジン
エンジン始動時に排出される(触媒入口のガス中の)炭化水素
Figure 0003858997
【0112】
【表3】
Figure 0003858997
【0113】
【表4】
Figure 0003858997
【0114】
比較例に比べ実施例は、触媒活性が高く、後述する本発明の効果を確認することができた。
【0115】
前段触媒例1
セリウム3モル%(CeOに換算して8.7重量%)、ジルコニウム3モル%(ZrOに換算して6.3重量%)とランタン2モル%(Laに換算して5.5重量%)を含有するアルミナ粉末(粉末A)に硝酸パラジウム水溶液を含浸し、150℃で12時間乾燥した後、400℃で1時間焼成して、Pd担持アルミナ粉末(粉末B)を得た。この粉末BのPd濃度は16重量%であった。
ランタン1モル%(Laに換算して2重量%)とジルコニウム32モ%(ZrOに換算して25重量%)を含むセリウム酸化物粉末(粉末C)に硝酸パラジウム水溶液を含浸し、150℃で12時間乾燥した後、400℃で1時間焼成して、Pd担持セリウム酸化物(La0.01Zr0.32CeO0.67x)粉末(粉末D)を得た。この粉末DのPd濃度は6.0重量%であった。
【0116】
上記粉末B565g、粉末D377gと活性アルミナ58.5g、硝酸水溶液2000gを磁性ボールミルに投入し、混合・粉砕してスラリーを得た。このスラリー液をコージェライト質モノリス担体(1.0L、600セル/4ミル、GSA34.5cm/cm、水力直径0.93mm)に付着させ、空気流にてセル内の余剰のスラリーを除去・乾燥し、400℃で1時間焼成した。この作業を2度行い、コート量重量100g/L−担体の触媒を得た。Pd担持量は320.0g/cf(11.3g/L)であった(触媒A)。
【0117】
次いで、上記触媒成分担持コージェライト質モノリス担体に酢酸バリウム溶液を付着させた後、400℃で1時間焼成し、BaOとして10g/Lを含有させた(触媒B)。
【0118】
前段触媒例2
上記粉末B565g、粉末D377gと活性アルミナ58.5g、硝酸水溶液2000gを磁性ボールミルに投入し、混合・粉砕してスラリーを得た。このスラリー液をコージェライト質モノリス担体に付着させ、空気流にてセル内の余剰のスラリーを除去・乾燥し、400℃で1時間焼成した。この作業を2度行い、コート量重量91.7g/L−担体の触媒を得た。パラジウム担持量は293.3g/cf(10.36g/L)であった(触媒C)。
【0119】
Zr3重量%を含むアルミナ粉末(粉末E)に硝酸ロジウム水溶液を含浸し、150℃で12時間乾燥した後、400℃で1時間焼成して、Rh担持アルミナ粉末(粉末F)を得た。この粉末FのRh濃度は4.0重量%であった。
La1モル%Ce20モル%Zr79モル%のジルコニウム酸化物粉末(粉末G)にジニトロジアンミン酸白金水溶液を含浸し、150℃で12時間乾燥した後、400℃で1時間焼成して、Pt担持ジルコニウム酸化物粉末(粉末H)を得た。この粉末HのPt濃度は4.0重量%であった。
【0120】
上記粉末F117.5g、粉末H117.5gと、活性アルミナ15g、硝酸水溶液1000gを磁性ボールミルに投入し、混合・粉砕してスラリーを得た。このスラリー液を前記Pd含有触媒成分層を担持したコージェライト質モノリス担体(触媒C)に付着させ、空気流にてセル内の余剰のスラリーを除去・乾燥し、400℃で1時間焼成した。コート量25g/L(コート量総重量116.7g/L)−担体の触媒を得た。Rhの担持量は13.3g/cf(0.48g/L)、Ptの担持量は13.3g/cf(0.48g/L)であった(触媒D)。
次いで、上記触媒成分担持コージェライト質モノリス担体(触媒D)に酢酸バリウム溶液を付着させた後、400℃で1時間焼成し、BaOとして10g/Lを含有させた(触媒E)。
【0121】
実施例24
H型β−ゼオライト800g、シリカゾル1000g(固形分20%)と純水1000gを磁性ボールミルに投入し、混合・粉砕してスラリーを得た。このスラリー液をコージェライト質モノリス担体(1.3L、200セル/10ミル、GSA19.0cm/cm、水力直径1.53mm)に付着させ、空気流にてセル内の余剰のスラリーを除去・乾燥し、400℃で1時間焼成した。コート量重量200g/L−担体の触媒を得た(触媒F)。
【0122】
La1モル%Ce20モル%Zr79モル%のジルコニウム酸化物粉末(粉末G)に硝酸ロジウム水溶液を含浸し、150℃で12時間乾燥した後、400℃で1時間焼成して、Rh担持シルコニウム酸化物粉末(粉末I)を得た。この粉末IのRh濃度は8.0重量%であった。
上記粉末B500g、粉末D80g、粉末I353g、粉末A47gと活性アルミナ20g、硝酸水溶液1000gを磁性ボールミルに投入し、混合・粉砕してスラリーを得た。このスラリー液を上記触媒Fに付着させ、空気流にてセル内の余剰のスラリーを除去・乾燥し、400℃で1時間焼成した。この作業を2度行い、コート量重量100g/L(総重量300g/L−担体)の触媒Gを得た。触媒Gのパラジウム担持量は240.0g/cf(8.48g/L)、ロジウム担持量は80.0g/cf(2.83g/L)であった。 次いで、上記触媒Gに酢酸バリウム溶液を付着させた後、400℃で1時間焼成し、BaOとして10g/Lを含有させた(触媒H)。
【0123】
実施例25
H型β−ゼオライト800gに代わり、H型β−ゼオライト500g、ZSM5を100g、USY100g、Y型50g、モルデナイト50gを用いた以外は、実施例24と同様にして触媒Iを得た。
【0124】
実施例26
H型β−ゼオライト800gに代わり、ホウ素0.5重量%、カルシウム0.1重量%を含むH型β−ゼオライト800gを用いた以外は、実施例24と同様にして触媒Jを得た。
【0125】
実施例27
H型β−ゼオライト800gに代わり、リン0.5重量%、マグネシウム0.1重量%を含むH型β−ゼオライト600gと、ホウ素0.5重量%、カルシウム0.1重量%を含むZSM5を100gと、リン0.5重量%、カルシウム0.1重量%を含むUSY100gを用いた以外は、実施例24と同様にして触媒Kを得た。
【0126】
実施例28
リン酸2水素アンモニウム20gを純水1500gに溶解した溶液に、H型β−ゼオライト1000gを加え、更に、25%アンモニア水を滴下しpHを9.0に調整した後、24時間攪拌・混合した。
この混合溶液からβ−ゼオライトを濾取し、120℃で24時間乾燥後、空気中、650℃で2時間焼成し粉末Jを得た。更に、この粉末Jに硝酸パラジウム溶液を含浸し、Pd1重量%、P0.5重量%を含む粉末Kを得た。この粉末K800g、シリカゾル1000g(固形分20%)と硝酸水溶液1000gを磁性ボールミルに投入し、混合・粉砕してスラリーを得た。このスラリー液をコージェライト質モノリス担体(1.3L、200セル/10ミル、GSA19.0cm/cm、水力直径1.53mm)に付着させ、空気流にてセル内の余剰のスラリーを除去・乾燥し、400℃で1時間焼成した。コート量重量200g/L−担体の触媒を得た(触媒L)。Pdの担持量は45.3g/cf(1.6g/L)。
上記粉末B500g、粉末D80g、粉末A30gと活性アルミナ15g、硝酸水溶液1000gを磁性ボールミルに投入し、混合・粉砕してスラリーを得た。このスラリー液を上記触媒Lに付着させ、空気流にてセル内の余剰のスラリーを除去・乾燥し、400℃で1時間焼成した。この作業を2度行い、触媒Mを得た。
更に、上記粉末I353g、粉末A17gと活性アルミナ5g、硝酸水溶液1000gを磁性ボールミルに投入し、混合・粉砕してスラリーを得た。このスラリー液を上記触媒Mに付着させ、空気流にてセル内の余剰のスラリーを除去・乾燥し、400℃で1時間焼成した。この作業を2度行い、コート量重量100g/L(総重量300g/L−担体)の触媒Nを得た。触媒Mのパラジウム担持量は285.4g/cf(10.08g/L)、ロジウム担持量は80g/cf(2.83g/L)であった。
次いで、上記触媒成分担持コージェライト質モノリス担体(触媒N)に酢酸バリウム溶液を付着させた後、400℃で1時間焼成し、BaOとして10g/Lを含有させた(触媒O)。
【0127】
実施例29
H型β−ゼオライト800gに代わり、パラジウム0.28重量%、リン0.2重量%、ホウ素0.3重量%、マグネシウム0.1重量%、カルシウム0.1重量%を含むH型β−ゼオライト500gと、Pt0.33重量%、カルシウム0.1重量%を含むZSM5を100gと、パラジウム0.28重量%、リン0.2重量%を含むUSY200g、Pt0.33重量%、ホウ素0.1重量%、マグネシウム0.1重量%を含むモルデナイト100gを用い、コージェライト質モノリス担体(200セル/10ミル、GSA19.0cm/cm、水力直径1.53mm)を用いた以外は、実施例1と同様にして触媒Pを得た。コート量200g/L、Pdの担持量は11.1g/cf(0.39g/L)、Ptの担持量は3.7g/cf(0.13g/L)であった。
【0128】
上記粉末A30g、粉末B500g、粉末D80gと活性アルミナ20g、硝酸水溶液1000gを磁性ボールミルに投入し、混合・粉砕してスラリーを得た。このスラリー液を前記触媒Pに付着させ、空気流にてセル内の余剰のスラリーを除去・乾燥し、400℃で1時間焼成し、触媒Qを得た。
上記粉末F176g、粉末H117g、粉末I177gと活性アルミナ30g、硝酸水溶液1000gを磁性ボールミルに投入し、混合・粉砕してスラリーを得た。このスラリー液を前記触媒Qに付着させ、空気流にてセル内の余剰のスラリーを除去・乾燥し、400℃で1時間焼成した。次いで、上記触媒成分担持コージェライト質モノリス担体に酢酸バリウム溶液を付着させた後、400℃で1時間焼成し、BaOとして10g/Lを含有させた(触媒R)。コート量50g/L(総重量250g/L−担体)、Pdの担持量は251.2g/cf(8.87g/L)、Pt担持量16.9g/cf(0.60g/L)、Rh担持量40.0g/cf(1.42g/L)であった(触媒R)。
【0129】
前段触媒例3
粉末B1324g、粉末F106g、粉末H27gと活性アルミナ43g、硝酸水溶液2000gを磁性ボールミルに投入し、混合・粉砕してスラリーを得た。このスラリー液をコージェライト質モノリス担体(1.0L、900セル/2ミル、GSA43.6cm/cm、水力直径0.78mm)に付着させ、空気流にてセル内の余剰のスラリーを除去・乾燥し、400℃で1時間焼成した。この作業を2度行い、コート量重量150g/L−担体の触媒を得た。次いで、上記触媒に酢酸バリウム溶液を付着させた後、400℃で1時間焼成し、BaOとして10g/Lを含有させた。
パラジウム担持量は600.0g/cf(21.2g/L)、白金担持量は3.0g/cf(0.11g/L)、ロジウム担持量は12.0g/cf(0.42g/L)であった(触媒S)。
【0130】
実施例30
H型β−ゼオライト800g、粉末I88.3g、粉末E161.5g、シリカゾル1000g(固形分20%)と純水1000gを磁性ボールミルに投入し、混合・粉砕してスラリーを得た。このスラリー液をコージェライト質モノリス担体(1.3L、200セル/10ミル、GSA19.0cm/cm、水力直径1.53mm)に付着させ、空気流にてセル内の余剰のスラリーを除去・乾燥し、400℃で1時間焼成した。コート量重量250g/L−担体の触媒を得た(触媒T)。
【0131】
上記粉末B500g、粉末D80g、粉末I176.5g、粉末E203g、粉末A40gと活性アルミナ20g、硝酸水溶液1000gを磁性ボールミルに投入し、混合・粉砕してスラリーを得た。このスラリー液を上記触媒Tに付着させ、空気流にてセル内の余剰のスラリーを除去・乾燥し、400℃で1時間焼成した。この作業を2度行い、コート量重量100g/L(総重量300g/Lー担体)、パラジウム担持量は240.0g/cf(8.48g/L)、ロジウム担持量は80.0g/cf(2.83g/L)の触媒Uを得た。
次いで、上記触媒Uに酢酸バリウム溶液を付着させた後、400℃で1時間焼成し、BaOとして10g/Lを含有させた(触媒V)。
【0132】
比較例8
コージェライト質モノリス担体(1.3L、600セル/2ミル、GSA36.2cm/cm、水力直径0.97mm)を用いた以外、実施例24と同様に触媒Wを得た。
【0133】
比較例9
コージェライト質モノリス担体(1.3L、900セル/4ミル、GSA41.1cm/cm、水力直径0.74mm)を用いた以外、実施例24と同様に触媒Xを得た。
【0134】
比較例10
H型β−ゼオライト800g、シリカゾル1000g(固形分20%)と純水1000gを磁性ボールミルに投入し、混合・粉砕してスラリーを得た。このスラリー液をコージェライト質モノリス担体(1.3L、200セル/10ミル、GSA19.0cm/cm、水力直径1.53mm)に付着させ、空気流にてセル内の余剰のスラリーを除去・乾燥し、400℃で1時間焼成した。コート量重量20g/L−担体の触媒Yを得た。
触媒Fの代わりに、触媒Yを用いた以外、実施例24と同様にして触媒Zを得た。
【0135】
比較例11
H型β−ゼオライト800g、シリカゾル1000g(固形分20%)と純水1000gを磁性ボールミルに投入し、混合・粉砕してスラリーを得た。このスラリー液をコージェライト質モノリス担体(1.3L、200セル/10ミル、GSA19.0cm/cm、水力直径1.53mm)に付着させ、空気流にてセル内の余剰のスラリーを除去・乾燥し、400℃で1時間焼成した。コート量重量300g/L−担体の触媒AAを得た。
粉末J(粉末AにPdを担持したアルミナ粉末、Pd濃度50重量%)160.0g、粉末K(粉末CにPdを担持したセリウム酸化物粉末、Pd濃度28重量%)17g、粉末Ag、粉末L(粉末GにRhを担持したジルコニウム酸化物粉末、Rh濃度25重量%)113.0g、活性アルミナ10g、硝酸水溶液500gを磁性ボールミルに投入し、混合・粉砕してスラリーを得た。このスラリー液を上記触媒AAに付着させ、空気流にてセル内の余剰のスラリーを除去・乾燥し、400℃で1時間焼成した。この作業を2度行い、コート量重量30g/L(総重量330g/L−担体)、パラジウム担持量は240.0g/cf(8.48g/L)、ロジウム担持量は80.0g/cf(2.83g/L)の触媒BBを得た。
次いで、上記触媒Uに酢酸バリウム溶液を付着させた後、400℃で1時間焼成し、BaOとして10g/Lを含有させた触媒CCを得た。
【0136】
比較例12
上記粉末B659g、粉末D80g、粉末I35.3g、粉末A206gと活性アルミナ20g、硝酸水溶液1000gを磁性ボールミルに投入し、混合・粉砕してスラリーを得た。このスラリー液を上記触媒Fに付着させ、空気流にてセル内の余剰のスラリーを除去・乾燥し、400℃で1時間焼成した。この作業を2度行い、コート量重量100g/L(総重量300g/L−担体)の触媒DDを得た。触媒DDのパラジウム担持量は312.0g/cf(11.02g/L)、ロジウム担持量は8.0g/cf(0.28g/L)であった。
次いで、上記触媒DDに酢酸バリウム溶液を付着させた後、400℃で1時間焼成し、BaOとして10g/Lを含有させた触媒EEを得た。
【0137】
比較例13
上記粉末B162g、粉末D80g、粉末I15g、粉末A723gと活性アルミナ20g、硝酸水溶液1000gを磁性ボールミルに投入し、混合・粉砕してスラリーを得た。このスラリー液をコージェライト質モノリス担体(1.0L、900セル/2ミル、GSA43.6cm/cm、水力直径0.78mm)に付着させ、空気流にてセル内の余剰のスラリーを除去・乾燥し、400℃で1時間焼成した。この作業を2度行い、コート量重量100g/Lの触媒を得た。触媒DDのパラジウム担持量は73.3g/cf(2.59g/L)、ロジウム担持量は6.7g/cf(0.24g/L)であった。
次いで、上記触媒に酢酸バリウム溶液を付着させた後、400℃で1時間焼成し、BaOとして10g/Lを含有させた触媒FFを得た。
【0138】
上記実施例24〜30、前段触媒例1〜3及び比較例8〜13で得られた排気ガス浄化用触媒の仕様を表5及び6に示す。
【0139】
【表5】
Figure 0003858997
【0140】
【表6】
Figure 0003858997
【0141】
試験例
前記実施例24〜30、前段触媒例1〜3及び比較例8〜13で得られた排気ガス浄化用触媒を、以下の耐久条件により耐久を行った。
Figure 0003858997
【0142】
上記条件で耐久した実施例24〜30、前段触媒例1〜3及び比較例8〜13の触媒を用い、実施例31〜50、比較例14〜25について、下記評価条件でHC浄化特性評価(ECモード、LA−4のA−bag)を、図3〜8のシステム(排気ガス浄化装置)を用いて行った。その結果を表7〜表10に示す。
【0143】
性能評価条件
触媒容量(片バンク) 三元触媒2.0L(1.0L+1.0L)+HC吸着触媒1.3L〜2.6L
評価車両 日産自動車株式会社製 V型6気筒 3.3Lエンジン
エンジン始動時に排出される(触媒入口のガス中の)炭化水素
Figure 0003858997
【0144】
【表7】
Figure 0003858997
【0145】
【表8】
Figure 0003858997
【0146】
【表9】
Figure 0003858997
【0147】
【表10】
Figure 0003858997
【0148】
実施例55
β−ゼオライト粉末(H型、Si/2Al=25)700g、出光製ZSM5(H型、Si/2Al=30)粉末200g、シリカゾル(固形分20%)100g、純粋1500gを磁性ボールミルに投入し、混合粉砕してスラリー液を得た。このスラリー液をコージェライト質モノリス担体(300セル/6ミル、GSA24.1cm/cm、水力直径1.3mm)に付着させ、空気流にてセル内の余剰のスラリーを取り除いて乾燥し、400℃で1時間焼成した。この時の塗布量として、焼成後に150g/Lになるまでコーティング作業を繰り返し、触媒−aを得た。
【0149】
Ce3mol%を含むアルミナ粉末に、ジニトロジアミンパラジウム水溶液を含浸或いは高速攪拌中で噴霧し、150℃で24時間乾燥した後、400℃で1時間焼成し、次いで、600℃で1時間焼成し、Pd担持アルミナ粉末(粉末a)を得た。この粉末aのPd濃度は6.23重量%であった。粉末aには、ランタン、ジルコニウム、ネオジウム等が含まれてもよい。
【0150】
La1モル%とZr32モル%含有セリウム酸化物粉末に、ジニトロジアミンパラジウム水溶液を含浸あるいは高速攪拌中で噴霧し、150℃で24時間乾燥した後、400℃で1時間焼成し、次いで、600℃で1時間焼成し、Pd担持セリウム酸化物粉末(粉末b)を得た。この粉末aのPd濃度は、2.0重量%であった。
【0151】
上記Pd担持アルミナ粉末(粉末a)562g、Pd担持セリウム酸化物粉末(粉末b)288g、硝酸酸性アルミナゾル950g(ベーマイトアルミナ10重量%に10重量%の硝酸を添加することによって得られたゾル)及び純水1000gを磁性ボールミルに投入し、混合粉砕してスラリー液を得た。このスラリー液を上記コート触媒−aに付着させ、空気流にてセル内の余剰のスラリーを取り除いて乾燥し、400℃で1時間焼成し、コート層重量60g/Lを塗布し、触媒−bを得た。
【0152】
Zr3重量%を含むアルミナ粉末に、硝酸ロジウム水溶液を含浸或いは高速攪拌中で噴霧し、150℃で24時間乾燥した後、400℃で1時間焼成し、次いで、600℃で1時間焼成し、Rh担持アルミナ粉末(粉末c)を得た。この粉末cのRh濃度は1.25重量%であった。
【0153】
上記Rh担持アルミナ粉末(粉末c)366g、La1モル%とCe20モル%を含むジルコニウム酸化物粉末300g、硝酸酸性アルミナゾル1135gを磁性ボールミルに投入し、混合粉砕してスラリー液を得た。このスラリー液を上記コート触媒−bに付着させ、空気流にてセル内の余剰のスラリーを取り除いて乾燥し、400℃で1時間焼成し、コート層重量40g/Lを塗布し、触媒を得た。
上記セリウム酸化物粉末、アルミナ粉末にはランタン、ネオジウム等が含まれてもよい。
次いで、上記触媒成分担持コージェライト質モノリス担体に酢酸バリウム溶液を付着させた後、400℃で1時間焼成し、BaOとして10g/Lを含有させた。
【0154】
実施例56
β−ゼオライト粉末(H型、Si/2Al=25)500g、出光製ZSM5(H型、Si/2Al=30)粉末400gを用いた以外は、実施例1と同様にして排気ガス浄化用触媒を得た。
【0155】
実施例57
出光製ZSM5(H型、Si/2Al=30)粉末に、Ag,Pを逐次含浸、乾燥、焼成により担持したAg−P担持ZSM5粉末(各金属濃度0.2重量%、総金属濃度0.4重量%)と、β−ゼオライト(H型、Si/2Al=25)にAg,Pを逐次含浸、乾燥、焼成により担持したAg−P担持β−ゼオライト粉末(各金属濃度0.2重量%、総金属濃度0.4重量%)を用いた以外は、実施例1と同様にして排気ガス浄化用触媒を得た。
【0156】
実施例58
出光製ZSM5(H型、Si/2Al=30)粉末に、Pd,Mg,Ca,Y,La,Nd,B,Zrを逐次含浸、乾燥、焼成により担持したPd−Mg−Ca−−La−Nd−B−Zr担持ZSM5粉末(各金属濃度0.05重量%、総金属濃度0.4重量%)と、β−ゼオライト(H型、Si/2Al=25)にSr,Ba,Ag,Ce,Nd,Pを逐次含浸、乾燥、焼成により担持したMg,Y,Nd、Zr担持β−ゼオライト粉末(各金属濃度0.05重量%、総金属濃度0.3重量%)を用いた以外は、実施例1と同様にして排気ガス浄化用触媒を得た。
【0157】
比較例27
出光製ZSM5(H型、Si/2Al=30)粉末900gとした以外は、実施例55と同様にして排気ガス浄化用触媒を得た。
【0158】
比較例28
β−ゼオライト粉末(H型、Si/2Al=25)粉末900gとした以外は、実施例59と同様にして排気ガス浄化用触媒を得た。
【0159】
【発明の効果】
以下、まず第一の発明の効果について総括的に説明する。
(1)ゼオライト種の最適化
ゼオライトを用いたHC吸着触媒では、排気ガス中のHC種分布とゼオライトの有する細孔径との間に相関があるため、最適な細孔径を持つゼオライトを選定する必要がある。 従来は、MFI(ZSM5)をメインに、他の細孔径を有すゼオライト(例えば、USY等)をブレンドし細孔分布を調整していたが、耐久後にはゼオライト種によって細孔径の歪みや吸着・脱離特性が異なるため、排気ガスHC種の吸着が不十分であるという問題点があった。
本発明では、2種類の細孔径を持った、耐久性に優れたβ−ゼオライトを主成分として採用することで、耐久による歪みも少なく、初期から耐久後まで細孔分布が広く保持できるため、従来に比べて吸着・脱離特性が向上する。更に2種以上のゼオライト種を組み合わせることにより、ゼオライト細孔径の分布を更に広げる効果が得られる。
すなわち、本発明においてはZSM5の種結晶としてモルデナイトを用いるため、通常のZSM5に比べ、細孔内部の奥行きが広い。このZSM5をHC吸着素材として用いた場合、細孔内部へのHC拡散速度が遅い(細孔の入口に分子径の大きいHCが来ると他のHCの拡散が阻害され、短時間で効率良くコールドHCを吸着することはできない)ため吸着性能は劣る。しかし一旦、細孔内部へ拡散して入ったHCは外部へ抜け難くなる(脱離が遅い)。本発明では、このZSM5とβ−ゼオライトを組合せることによって、吸着−脱離特性に優れる自動車用のHC吸着材を開発した。
【0160】
(2)三元貴金属種(触媒成分種)の最適化
従来では、Rh、Pt、Pd等の貴金属種を同一層に共存させた仕様や、Rh層とPd層を塗り分けた仕様等が提案されていた。
本発明では、ゼオライト層の上にPd及びRhの共存層か、または、ゼオライト層の上にPd層、その上にRh層を設け、どちらか一方或いは両層にPtを添加できる仕様とした。
ゼオライトの上にHC低温活性に優れるPd層を設けることで、ゼオライトから脱離してくるHCを優先的に浄化でき、Pd層にRhを共存、または、その上にRh層を設けることにより、理論空燃比より僅かにリッチ雰囲気にシフトしたガスが流れても、HC、CO、NOx がバランス良く浄化できる。更に、Ptを添加することで、耐被毒性の向上が得られる。
【0161】
(3)ゼオライト層+三元貴金属層のコート層構造の最適化
従来では、ゼオライト層(HC吸着材層)と三元層(触媒成分層)のコート層比率やコート層を担持するモノリス担体のGSAに関しては特に提示してなかったが、HC吸着触媒では、ゼオライト層と三元層の構造が最適でないと、HC吸着・脱離・浄化のサイクルが有効に行われないという問題点があった。
本発明では、ゼオライト層と三元層のコート層比率を、重量比で9:1〜1:4の割合とし、更に、コート層を設けるモノリス担体のGSAを10cm/cm〜35cm/cmの範囲に規定することによって、前記HC吸着・脱離・浄化のバランスが良い仕様にしている。すなわち、ゼオライト層に対して三元層の割合が多く成り過ぎると、下層に配置されたゼオライト層へのガス拡散が悪くなり、ゼオライト量に見合った十分な吸着性能が得られない。一方、三元層の割合が少ないと、脱離してくるHCの酸化性能及び排気ガスの浄化性能が十分に得られなくなる。また、GSAが大きく成り過ぎると、ゼオライト層のHC保持力が小さくなり、上部に配置された三元層で十分な浄化性能が得られない。また、GSAが小さいと、排気ガスの浄化性能が十分に得られなくなる。
【0162】
請求項1記載の排気ガス浄化用触媒は、HC、CO、NOxの浄化性能をバランス良く行うことができる。更に、上記効果に加えて、モノリス担体セル内を通過及びコート層内に拡散する排気ガスの拡散性(速度)を制御し、HCの浄化性能を向上できる。更に、HCの脱離を遅延化しHCの浄化性能を向上できる。
【0163】
請求項4記載の排気ガス浄化用触媒は、上記効果に加えて、更に、HCの脱離を遅延化し炭化水素の浄化性能を向上できる。
【0164】
請求項5記載の排気ガス浄化用触媒は、上記効果に加えて、更に、HCの脱離を遅延化し炭化水素の浄化性能を向上できる。
【0165】
請求項6記載の排気ガス浄化用触媒は、HC、CO、NOxの浄化性能をバランス良く行うことができる。更に、上記効果に加えて、モノリス担体セル内を通過及びコート層内に拡散する排気ガスの拡散性(速度)を制御し、HCの浄化性能を向上できる。
【0166】
請求項7記載の排気ガス浄化用触媒は、上記効果に加えて、更に、HCの浄化性能を向上できる。
【0167】
請求項8記載の排気ガス浄化用触媒は、上記効果に加えて、更にHCの浄化性能を向上できる。
更に、アルカリ金属またはアルカリ土類金属を含有せしめているので、貴金属のシンタリングを抑制するため、低温活性や浄化性能を更に向上させる効果を奏する。
【0168】
請求項9記載の排気ガス浄化用触媒は、上記効果に加えて、多種のHCを有効に吸着できる。
【0169】
請求項10記載の排気ガス浄化用触媒は、上記効果に加えて、吸着可能なHC種の範囲が広くなり、より多種のHCを有効に吸着できる。
【0170】
請求項11記載の排気ガス浄化装置は、上記効果に加えて、細孔径の異なる種々のHC吸着材を組み合わせることにより、エンジン始動直後の低温時に排出されるHC種を高い効率で吸着し、HC吸着能を向上できる。
【0171】
請求項12記載の排気ガス浄化用触媒は、上記効果に加えて、吸着特性や脱離抑制能を更に向上することができる。
【0172】
請求項13記載の排気ガス浄化用触媒は、エンジン始動直後の低温時に排出されるHC種を高い効率で吸着し、しかも、耐久後の構造変化や性能劣化が小さいため、脱離速度の遅延化を図ることができる。
【0173】
請求項14記載の排気ガス浄化用触媒は、上記効果に加えて、更に耐被毒性を向上することができる。
【0174】
請求項15記載の排気ガス浄化用触媒は、上記効果に加えて、更に、HCの浄化性能を向上できる。
【0175】
請求項16記載の排気ガス浄化用触媒は、上記効果に加えて、耐久後のロジウム化学状態変化による触媒性能の低下を抑制できる。
【0176】
請求項17記載の排気ガス浄化用触媒は、上記効果に加えて、触媒成分の還元に起因する触媒性能の低下を抑制できる。
【0177】
請求項18記載の排気ガス浄化用触媒は、上記効果に加えて、耐久後の構造安定性、及びパラジウムの化学状態変化による触媒性能の低下を抑制できる。
【0178】
請求項19記載の排気ガス浄化装置は、低温活性に優れるPd含有触媒と本発明のHC吸着触媒を組合せ、HC吸着触媒が吸着するHC量を、エンジン始動直後の低温時に排出されるHC量の10%〜70%に設定することによって、脱離HCの浄化性能を向上できる。
【0179】
請求項20記載の排気ガス浄化装置は、低温活性に優れるPd含有触媒とHC吸着触媒を組合せ、HC吸着触媒が吸着するHC量を、エンジン始動直後の低温時に排出されるHC量の30%〜70%に設定し、更に、下記排気ガス浄化触媒の早期活性化を促進する手段を組合せることによって、HC吸着触媒が吸着するHC量を更に低減し、脱離HCの浄化性能を向上できる。
【0180】
請求項21記載の排気ガス浄化装置は、請求項22記載の排気ガス浄化装置において、HC吸着触媒の前段に配置したPd含有触媒(三元触媒)の早期活性化を図ることができ、HC吸着触媒が脱離するHCの浄化性能を向上できる。
【0181】
請求項22記載の排気ガス浄化装置は、請求項22記載の排気ガス浄化装置において、HC吸着触媒の前段に配置したPd含有触媒(三元触媒)の早期活性化を図ることができ、HC吸着触媒が脱離するHCの浄化性能を向上できる。
【0182】
請求項23記載の排気ガス浄化装置は、HC吸着触媒の上流に配置したPd含有触媒(三元触媒)の早期活性化と、上記浄化性能の向上を図ることができ、脱離HCの浄化性能を向上できる。
【0183】
請求項24記載の排気ガス浄化装置は、上記効果に加えて、触媒成分層の温度低下を抑制でき、脱離HCを効率よく浄化することができる。
【0184】
請求項25記載の排気ガス浄化装置は、上記効果に加えて、触媒成分層の温度低下を抑制でき、脱離HCを効率よく浄化することができる。
【0185】
請求項26記載の排気ガス浄化装置は、上記効果に加えて、更に触媒成分層の温度低下を抑制や浄化性能を向上でき、脱離HCを効率よく浄化することができる。
【0186】
請求項27記載の排気ガス浄化装置は、上記効果に加えて、前段Pd含有触媒で未浄化の低濃度排気ガス成分(HC、CO、NOx )を効率よく浄化することができる。
【0187】
請求項28記載の排気ガス浄化装置は、上記効果に加えて、更に、HCの吸着・脱離・浄化性能を向上でき、脱離HCを効率よく浄化することができる。
【0188】
請求項29記載の排気ガス浄化装置は、上記効果に加えて、更に、脱離HCを効率よく浄化することができる。
【図面の簡単な説明】
【図1】(a)は本発明の触媒のウオッシュコート層構造を示す斜視図である。(b)は(a)の部分拡大部である。
【図2】本発明の触媒を評価するために用いたエンジンの排気系を示すシステム(評価システム1)図である。
【図3】本発明の触媒を評価するために用いたエンジンの排気系を示すシステム(評価システム2)図である。
【図4】本発明の触媒を評価するために用いたエンジンの排気系を示すシステム(評価システム3)図である。
【図5】本発明の触媒を評価するために用いたエンジンの排気系を示すシステム(評価システム4)図である。
【図6】本発明の触媒を評価するために用いたエンジンの排気系を示すシステム(評価システム5)図である。
【図7】本発明の触媒を評価するために用いたエンジンの排気系を示すシステム(評価システム6)図である。
【図8】本発明の触媒を評価するために用いたエンジンの排気系を示すシステム(評価システム7)図である。
【図9】エンジン種類毎の貴金属(PM)量とエンジンアウトミッション残存率の関係を示すグラフ(マップ)である。
【図10】三元触媒の貴金属選択マップ作成のためのフローシートである。
【図11】エンジンアウトエミッション残存率と時間の関係を示すグラフである。
【図12】リーン化時間演算フローシートである。
【符号の説明】
1 炭化水素吸着層(HC吸着材層)
2 三元触媒層(触媒成分層)
3 ガス通過部
4 三元触媒
5 HC吸着触媒[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust gas purifying catalyst that purifies exhaust gas when starting an internal combustion engine.
The present invention also provides hydrocarbons (hereinafter referred to as “HC”), carbon monoxide (hereinafter referred to as “CO”), and nitrogen in exhaust gas discharged from an internal combustion engine such as an automobile at a low temperature immediately after starting the engine. In particular, the present invention relates to an exhaust gas purifying catalyst capable of efficiently purifying HC among oxides (hereinafter referred to as “NOx”) and an exhaust gas purifying apparatus including the catalyst.
[0002]
[Prior art]
In recent years, an HC adsorption catalyst using zeolite has been developed for the purpose of purifying a large amount of HC discharged in a low temperature range when the engine of an internal combustion engine is started.
The HC adsorption catalyst temporarily adsorbs and holds a large amount of exhausted HC in a low temperature range at the time of engine start where the three-way catalyst is not activated, and then the three-way catalyst is activated due to an increase in exhaust gas temperature. Sometimes HC is gradually desorbed and purified.
[0003]
By the way, in the HC adsorption catalyst using zeolite, since there is a correlation between the HC species distribution in the exhaust gas and the pore diameter of the zeolite, it is necessary to set the zeolite having the optimum pore diameter.
In the past, MFI type (ZSM5) was used as a main component, and zeolites with other pore sizes (for example, USY) were blended to adjust the pore distribution. -Since the desorption characteristics are different, there is a problem that the adsorption of the exhaust gas HC species is insufficient.
[0004]
On the other hand, as a ternary noble metal catalyst, conventionally, a specification in which noble metal species such as Rh, Pt, and Pd coexist in the same layer, a specification in which the Rh layer and the Pd layer are separately applied, and the like have been proposed. For example, as shown in JP-A-2-56247, for exhaust gas purification, a second layer mainly composed of noble metals such as Pt, Pd and Rh is provided on a first layer mainly composed of zeolite. Catalysts have been proposed.
[0005]
In addition, for the purpose of reducing HC in exhaust gas discharged at low temperatures immediately after engine start-up, HC is temporarily stored using an adsorbent, desorbed after the three-way catalyst is activated, and three-way catalyst The method of purifying by is being studied.
[0006]
Examples of the invention using such an HC adsorbent (hydrocarbon adsorbent) include, for example, JP-A-6-74019, JP-A-7-144119, JP-A-6-142457, and JP-A-5-59942. And JP-A-7-102957.
[0007]
Japanese Patent Laid-Open No. 6-74019 discloses that a bypass passage is provided in an exhaust passage, and HC discharged at the time of cold immediately after engine start is once adsorbed by an HC adsorbent disposed in the bypass passage, and then the passage is switched. After the downstream three-way catalyst is activated, a system is proposed in which part of the exhaust gas is passed through the HC adsorption catalyst, and the desorbed HC is gradually purified by the latter three-way catalyst.
[0008]
Japanese Patent Laid-Open No. 7-144119 improves the adsorption efficiency of the HC adsorbent in the middle stage by causing the former three-way catalyst to take heat during cold, and after the activation of the three-way catalyst in the former stage, We have proposed a system that facilitates the transfer of reaction heat to the latter three-way catalyst through the HC adsorbent and promotes purification by the latter three-way catalyst.
JP-A-6-142457 discloses cold HC adsorption that preheats exhaust gas containing desorbed HC with a heat exchanger and promotes purification with a three-way catalyst when HC adsorbed in a low temperature region is desorbed. A removal system is proposed.
[0009]
On the other hand, Japanese Patent Laid-Open No. 5-59942 proposes a system that slows the temperature rise of the HC adsorbent and improves the cold HC adsorption efficiency by switching the catalyst arrangement and the exhaust gas flow path by the valve.
Japanese Patent Application Laid-Open No. 7-102957 discloses that in order to improve the purification performance of the latter-stage oxidation / three-way catalyst, air is supplied between the former-stage three-way catalyst and the middle-stage HC adsorbent, and the latter-stage oxidation / three-way catalyst. We have proposed a system that promotes the activation of
[0010]
[Problems to be solved by the invention]
In the exhaust gas purification catalyst in which the ternary layer is provided on the HC adsorbent layer such as the zeolite layer as described above, the HC adsorbed on the zeolite in the low temperature range of the exhaust gas immediately after the start of the internal combustion engine has the exhaust gas temperature. The exhaust gas becomes rich when desorbing as it rises, so the three-way catalyst effective for purification in the stoichiometric air-fuel ratio region does not work sufficiently, making it impossible to achieve a well-balanced purification of HC, CO, and NOx There's a problem.
In the past, the coating layer ratio between the zeolite layer and the ternary layer was not particularly indicated. However, in the HC adsorption catalyst, if the structure of the zeolite layer and the ternary layer is not optimal, HC adsorption / desorption / desorption There is a problem that the purification cycle is not performed effectively.
[0011]
On the other hand, in the system using the HC adsorbent described in the above-mentioned publication described in the section of [Prior Art], the durability of the HC adsorbent is insufficient. In addition, HC is desorbed before the latter three-way catalyst is activated, and the emission is deteriorated. Therefore, in order to improve the adsorption efficiency of HC adsorbent and to delay desorption, a high-temperature gas bypass method and a heat exchanger for three-way catalyst warm-up are used, but the system configuration is complicated and sufficient. The effect cannot be obtained, and the cost increases remarkably. For this reason, HC adsorbents with high durability and high adsorption efficiency are desired.
[0012]
In particular, three-way catalysts aimed at purifying HC desorbed from HC adsorbents use a large amount of precious metals to maintain high purification performance from the beginning to the end of the life, or introduce air for early activation. is doing. For this reason, a catalyst capable of obtaining high performance even if the amount of noble metal used is small is desired, but when the amount of noble metal is reduced, durability is insufficient, and after durability, catalytic activity and purification performance in a low temperature range There was a problem of getting worse.
[0013]
[Means for Solving the Problems]
The present invention is an integral structure type exhaust gas purification catalyst that uses a monolith carrier in comparison with such a conventional exhaust gas purification catalyst, and has an HC adsorption mainly comprising zeolite on a predetermined monolith carrier. An HC adsorbent layer containing a material is provided, and a catalyst component layer containing a predetermined noble metal as a catalyst component is further provided on the HC adsorbent layer, and the weight ratio between the HC adsorbent layer and the catalyst component layer is An object of the present invention is to solve the above problems by using an exhaust gas purifying catalyst within a predetermined range.
[0014]
  That is, the exhaust gas purifying catalyst of the present invention (hereinafter referred to as the first invention) has a GSA (Geometrical Surface Area) of 10 cm.2/ Cm3~ 35cm2/ Cm3An exhaust gas purifying catalyst comprising a monolithic carrier coated with an HC adsorbent layer containing a hydrocarbon adsorbent and a catalyst component layer containing a catalyst component in this order,
  The hydrocarbon adsorbent of the HC adsorbent layer is mainly composed of zeolite,
  The catalyst component layer contains at least one noble metal selected from the group consisting of palladium (Pd), platinum (Pt) and rhodium (Rh) as a catalyst component.And
  In the catalyst component layer, a cerium oxide containing 1 to 40 mol% in terms of metal and 60 to 98 mol% of Ce selected from the group consisting of Zr, Nd and La, and Pd are contained,
  The weight ratio of the HC adsorbent layer to the catalyst component layer is 9: 1 to 1: 4;
  The coat layer thickness is 30 μm to 400 μm, which is the sum of the thicknesses of the HC adsorbent layer and the catalyst component layer in the flat portion in the cell of the monolith carrier.
[0015]
  Further, another exhaust gas purifying catalyst of the present invention (hereinafter referred to as the second invention) has a GSA of 10 cm.2/ Cm3~ 35cm2/ Cm3An exhaust gas purifying catalyst comprising a monolithic carrier coated with an HC adsorbent layer containing a hydrocarbon adsorbent and a catalyst component layer containing a catalyst component in this order,
  The hydrocarbon adsorbent of the HC adsorbent layer is mainly composed of zeolite.And
  In the HC adsorbent layer, zirconium oxide containing 1 to 40 mol% in terms of metal of at least one selected from the group consisting of Ce, Nd and La, and Rh are contained,
  The catalyst component layer includes at least one noble metal selected from the group consisting of palladium (Pd), platinum (Pt) and rhodium (Rh) as a catalyst component;
    The weight ratio of the HC adsorbent layer to the catalyst component layer is 9: 1 to 1: 4;
  The coat layer thickness is 30 μm to 400 μm, which is the sum of the thicknesses of the HC adsorbent layer and the catalyst component layer in the flat portion in the cell of the monolith carrier.
[0016]
Furthermore, the exhaust gas purification apparatus of the present invention (hereinafter referred to as the third invention) includes Pd, Pd and Pt, or Pd and Rh in the front stage of the exhaust gas purification catalyst as described above, and has a Pd carrying concentration. A Pd-containing catalyst containing 4 to 20% by weight of Pd-supported powder and having a Pd-supporting amount per liter of catalyst of 100 g / cf (3.5 g / L) to 1000 g / cf (35.4 g / L) is disposed. And
The amount of hydrocarbon adsorbed by the exhaust gas purification catalyst is set to 70% or less of the saturated hydrocarbon adsorption amount of the exhaust gas purification catalyst.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
First, an embodiment of the present invention will be described.
The coating layer structure of the exhaust gas purifying catalyst of the present invention is the same as that of the first invention and the second invention in that a zeolite effective for HC adsorption, preferably β-zeolite, is mainly used for the HC adsorbent on a specific monolith support. An HC adsorbent layer as a component is provided, and a catalyst component layer containing at least one noble metal selected from the group consisting of Pd, Pt and Rh as a catalyst component is further provided on the HC adsorbent layer. It is a kind of “HC adsorption catalyst” described in the section of “Prior art”.
Here, the amount of β-zeolite used is preferably 10 g to 400 g per liter of the catalyst. If the amount of β-zeolite used is less than 10 g, the HC adsorption performance is not sufficiently exhibited. Conversely, if it exceeds 400 g, the HC adsorption performance and the effect of delaying desorption are saturated, which is not economically effective.
By providing a HC adsorbent layer on the monolith support and a catalyst component layer (ternary layer or three-way catalyst layer) having a so-called ternary purification ability on the monolith support, the HC adsorbed from the zeolite in the HC adsorbent layer Post-processing efficiency can be improved. Thus, since it is configured as an integrated catalyst having a multilayer structure, heat loss is less than that of the 2-brick type, the activation of the catalyst component layer is fast, and HC desorbed from the HC adsorbent is separated from the catalyst component layer. Since it can contact sufficiently, desorption HC can be purified efficiently.
[0018]
The weight ratio of the HC adsorbent layer to the catalyst component layer is 9: 1 to 1: 4. When the ratio of the catalyst component layer is larger than the specified value, gas diffusion to the HC adsorbent layer (zeolite layer) disposed in the lower layer is deteriorated, and sufficient adsorption performance cannot be obtained. If the ratio of the catalyst component layer is smaller than the specified value, the oxidization performance of the desorbed HC and the exhaust gas purification performance cannot be sufficiently obtained.
Furthermore, the monolithic carrier (specific monolithic carrier) provided with the HC adsorbent layer and the catalyst component layer has a GSA of 10 cm.2/ Cm3~ 35cm2/ Cm3It is. When GSA becomes larger than the specified value, HC desorption from the HC adsorbent layer is accelerated, and desorbed HC discharged without purification is increased. On the other hand, if it is smaller than the specified value, the diffusion of HC into the HC adsorbent layer is slow and the adsorption performance is not sufficiently developed, and the contact between the exhaust gas and the catalyst component layer is deteriorated, and the exhaust gas component purification performance is sufficient. Can not be obtained.
[0019]
  Also,1st inventionIn a preferred embodiment of the second invention, in order to improve the purification efficiency when HC adsorbed by the HC adsorbent is desorbed, a catalyst component layer (Pd containing Pd) is formed on the HC adsorbent layer. Containing catalyst component layer), and in this Pd-containing catalyst component layer, cerium oxide containing 1 to 40 mol% of metal selected from the group consisting of Zr, Nd and La and 60 to 98 mol% of cerium Contain thingsThe
[0020]
In particular, in order to improve the purification performance and durability of Pd, 1 to 40 mol% in terms of metal and 60 to 98 cerium are selected from the group consisting of Zr, Nd and La in the Pd-containing catalyst component layer. By containing cerium oxide containing mol%, the cerium oxide having a high oxygen storage capacity easily releases lattice oxygen and adsorbed oxygen in a rich atmosphere and in the vicinity of stoichiometry, so that the oxidation state of Pd can be used for purification of exhaust gas. It can be made suitable, and the fall of the catalytic ability of Pd can be suppressed.
The amount of such cerium oxide used is 5 to 100 g per liter of catalyst. If it is less than 5 g, sufficient dispersibility of the noble metal cannot be obtained, and even if it is used more than 100 g, the improvement effect is saturated and not effective.
[0021]
Furthermore, in order to improve the poisoning resistance and purification performance of Pd, one kind selected from the group consisting of Pt, Rh, Ce, Nd and La is formed on the upper part of the Pd-containing catalyst component layer in an amount of 1 to 30 mol% in terms of metal. A catalyst component layer (upper catalyst component layer) containing zirconium oxide containing 70 to 98 mol% of Zr and activated alumina can be disposed.
Zirconium oxide is suitable as the substrate on which Pt and Rh are supported in order to improve the durability of Pt and Rh. In particular, since cerium-containing zirconium oxide having a high oxygen storage capacity easily releases lattice oxygen and adsorbed oxygen in a rich atmosphere and in the vicinity of stoichiometry, the oxidation state of Pt and Rh is made suitable for purification of exhaust gas. And the decrease in the catalytic ability of Rh can be suppressed.
[0022]
The Ce content of such zirconium oxide is 0.01 mol% to 30 mol%.
If the Ce content is less than 0.01 mol%, ZrO2ZrO of the above elements2The improvement effect due to the oxygen storage capacity of Ce does not appear. On the other hand, when the Ce content exceeds 30 mol%, this effect is saturated or, conversely, the BET specific surface area and thermal stability are lowered. The amount of zirconium oxide used is 5 to 100 g per liter of catalyst. If it is less than 5 g, sufficient dispersibility of the noble metal cannot be obtained, and even if it is used more than 100 g, the improvement effect is saturated and not effective.
[0023]
Moreover, in order to improve the low-temperature activity of Pd, K and Ba can be contained. The content of such elements is 1 to 40 g in 1 L of the catalyst. If it is less than 1 g, it is not possible to suppress the adsorption poisoning of HCs to noble metals and sintering of Pd, and conversely, if it exceeds 40 g, no significant increase effect can be obtained, and conversely the performance is lowered.
[0024]
In another preferred embodiment of the first and second inventions, β-zeolite is included on the specific monolith support in order to effectively express the HC adsorption / desorption capability characteristics and the desorption HC purification performance. An HC adsorbent layer containing at least one zeolite as a main component is provided, and a catalyst component layer (Pd-containing catalyst component layer) containing Pd as a catalyst component is provided on the HC adsorbent layer, and this catalyst component layer Further, Rh is further contained, or a catalyst component layer (Rh-containing upper catalyst component layer) containing Rh as a catalyst component is provided on the Pd-containing catalyst component layer.
[0025]
Thus, by providing the HC adsorbent layer on the monolith support and the catalyst component layer thereon, the post-treatment efficiency of HC desorbed from the zeolite in the HC adsorbent layer can be improved.
Furthermore, Pd with excellent HC oxidation activity is arranged as a catalyst component on the HC adsorbent layer, and Rh coexists in the same layer, or an Rh-containing upper catalyst component layer is provided on the same, thereby three-way purification. Even if the inside of the catalyst component layer having a function becomes rich due to desorbed HC, the purification of HC, CO, and NOx can be performed in a well-balanced manner.
Furthermore, the influence of poisoning can be reduced by coexisting with Rh in Pd which is easily affected by poisoning due to phosphorus (P), lead (Pb) or the like, or by placing Rh inside.
In addition, since the HC adsorbent layer disposed in the lower layer has a slower warming than the upper catalyst component layer, the adsorbed HC can be held for a long time, and conversely, the catalyst component layer is warmed and activated quickly. HC has a good balance of adsorption, desorption and purification.
[0026]
Furthermore, in the preferred embodiments of the first and second inventions described above, the total coat weight of the HC adsorbent layer, the catalyst component layer (Pd-containing catalyst component layer) and the upper catalyst component layer (Rh-containing upper catalyst component layer). The ratio (the total coat weight ratio of the HC adsorbent layer and the catalyst component layer when no upper catalyst component layer is present) is 5: 1 to 1: 2.
When the ratio of the catalyst component layer exceeds the specified value, gas diffusion to the HC adsorbent layer disposed in the lower layer is deteriorated, and sufficient adsorption performance cannot be obtained. If the ratio of the catalyst component layer (and the Rh-containing upper catalyst component layer) is less than the specified value, the oxidation performance of the desorbed HC and the purification performance of the exhaust gas cannot be sufficiently obtained.
[0027]
In the exhaust gas purification catalyst according to the preferred embodiment, the HC adsorbent layer, the catalyst component layer having the three-way purification ability, and the Rh-containing upper catalyst component layer have a GSA of 10 cm.2/ Cm3~ 35cm2/ Cm3On a monolithic carrier.
When GSA becomes larger than the specified value, HC desorption from the HC adsorbent layer is accelerated, and desorbed HC discharged without purification is increased. On the other hand, if it is smaller than the specified value, the contact between the exhaust gas and the catalyst component layer is deteriorated, and the exhaust gas component purification performance cannot be sufficiently obtained.
[0028]
Furthermore, in the exhaust gas purifying catalyst according to the preferred embodiment, at least one selected from the group consisting of alkali metals and alkaline earth metals is used as an HC adsorbent layer and / or a catalyst component layer, or an HC adsorbent layer, At least one of the catalyst component layer and the Rh-containing upper catalyst component layer is impregnated and supported.
Usable alkali metals and alkaline earth metals include lithium (Li), sodium (Na), potassium (K), cesium (Cs), magnesium (Mg), calcium (Ca), strontium (Sr) and barium (Ba ) At least one element selected from the group consisting of:
[0029]
Alkali metal and alkaline earth metal compounds that can be used are water-soluble compounds such as oxides, acetates and hydroxides. Thereby, it becomes possible to carry | support the alkali metal and / or alkaline-earth metal which are basic elements with sufficient dispersibility in the vicinity of a noble metal.
[0030]
That is, an aqueous solution of a powder composed of an alkali metal and / or alkaline earth metal compound is impregnated into the monolith carrier carrying a washcoat component, dried, and then 200 to 600 ° C. in air and / or under air flow. It is fired at a relatively low temperature.
If the calcination temperature is less than 200 ° C., the alkali metal and alkaline earth metal compound cannot be sufficiently in the form of oxides. Conversely, if the calcination temperature exceeds 600 ° C., the effect of the calcination temperature is saturated. I can't get it.
[0031]
In the exhaust gas purifying catalysts of the first and second inventions, the zeolite component of the HC adsorbent layer has two kinds of large and small pore diameters in order to effectively adsorb HC discharged in large quantities at the time of engine start. The main component is H-type β-zeolite having a Si / 2Al ratio of 10 to 500.
The β-zeolite has higher heat resistance than other zeolites and is excellent in structural stability. In addition, while other zeolites have a narrow HC molecular diameter range effective for adsorption, β-zeolite has two types of pore sizes, large and small. Can be adsorbed effectively.
[0032]
Further, the Si / 2Al ratio of the β-zeolite is desirably in the range of 10 to 500.
When the Si / 2Al ratio is less than 10, the inhibition of adsorption of water molecules coexisting in the exhaust gas is large, and HC cannot be effectively adsorbed.
Conversely, when the Si / 2Al ratio exceeds 500, the amount of HC adsorbed decreases.
[0033]
Furthermore, in the exhaust gas purifying catalysts of the first and second inventions, the zeolite species of the HC adsorbent layer are further combined with H-type β-zeolite as a main component, MFI type, Y type, USY type, mordenite, At least one of ferrierite, A-type zeolite, X-type zeolite, AlPO4, and SAPO is used.
These zeolites change the pore distribution of the zeolite species according to the composition ratio of the HC species in the exhaust gas and improve the adsorption ability. By mixing these zeolite species together with β-zeolite, the range of adsorbable HC species is further expanded. In other words, various zeolite species that can be adsorbed can be appropriately combined with the HC species to be adsorbed.
In addition, at least one selected from the group consisting of mordenite, Y-type, USY-type, and MFI-type zeolite can be contained in an amount of 5% to 45% by weight of the total amount of HC adsorbent. When the amount is less than 5% by weight, a sufficient pore size distribution effect cannot be obtained. Conversely, when the amount is more than 45% by weight, this effect decreases the saturation or β-zeolite performance improving effect.
[0034]
In the exhaust gas purifying catalysts of the first and second inventions, the zeolite of the HC adsorbent layer includes Pd (palladium), Mg (magnesium), Ca (calcium), Sr (strontium), Ba (barium). , Ag (silver), Y (yttrium), La (lanthanum), Ce (cerium), Nd (neodymium), P (phosphorus), B (boron), and Zr (zirconium) are contained. It is preferable.
Zeolite has a sufficient adsorption capacity even in H type, but Pd, Mg, Ca, Sr, Ba, Ag, Y, La, Ce, Nd, P, B, Zr, etc. are ion exchange, impregnation, and immersion methods. By using a usual method such as the above, it is possible to further improve the adsorption characteristics, desorption suppression ability and durability of the zeolite.
[0035]
Furthermore, in order to improve the structural stability (heat resistance) of HC adsorbents mainly composed of β-zeolite at high temperatures, the ability to adsorb cold HC and the ability to suppress HC desorption when the temperature rises, Pt, Pd, P , B, Mg, and Ca can be included.
The content of such elements is 0.1 wt% to 10 wt% with respect to the HC adsorbent. If it is less than 0.1% by weight, a sufficient improvement effect cannot be obtained. Conversely, if it is used more than 10% by weight, the pores of the zeolite are blocked and the HC adsorption ability is lowered.
[0036]
Further, it is also preferable that Pt is further allowed to coexist in at least one of the catalyst component layer and the Rh-containing upper catalyst component layer in the exhaust gas purifying catalyst of the first and second inventions. This is because Pt can coexist with Pd or Rh to further improve toxicity resistance.
[0037]
  Furthermore,Preferred embodiment of the first inventionIn the exhaust gas purifying catalyst of the second invention, the HC adsorbent layer containing zeolite as a main component contains 1 to 40 mol% in terms of metal of at least one selected from the group consisting of Ce, Nd and La. Zirconium oxide and RhThe
  The catalyst component layer and the Rh-containing upper catalyst component layer also have sufficient desorbed HC purification performance, but the HC adsorbent layer mainly composed of zeolite is composed of Rh, Ce, Nd, and La. By including a zirconium oxide containing 1 to 40 mol% of at least one selected in terms of metal, the desorption HC purification performance can be further improved.
[0038]
Moreover, it is preferable to further contain alumina in the catalyst component layer (noble metal layer) of the exhaust gas purifying catalyst of the first and second inventions.
In particular, in order to improve the structural stability of alumina after high-temperature durability and to suppress the phase transition to α-alumina and the decrease in BET specific surface area, the alumina is at least selected from the group consisting of Ce, Zr and La. 1 type contains 1-10 mol% in conversion of a metal.
If it is less than 1 mol%, a sufficient addition effect cannot be obtained, and if it exceeds 10 mol%, the addition effect is saturated.
The amount of alumina used is 10 to 200 g per liter of catalyst. If it is less than 10 g, sufficient dispersibility of the noble metal cannot be obtained, and even if it is used in excess of 200 g, the catalyst performance is saturated and a remarkable improvement effect cannot be obtained.
[0039]
Furthermore, the catalyst component layer of the exhaust gas purifying catalyst according to the first and second inventions may further contain cerium oxide in addition to the catalyst component (noble metal).
The cerium oxide contains at least one selected from the group consisting of Zr, Nd, and La in terms of metal in an amount of 1 to 40 mol%, and the balance of Ce in a metal equivalent of 60 to 99 mol%. By containing cerium oxide, cerium oxide with high oxygen storage capacity releases lattice oxygen and adsorbed oxygen in a rich atmosphere and near the stoichiometry, making the oxidation state of noble metals suitable for purification of exhaust gas and catalytic performance Can be suppressed.
1 to 40 mol% is cerium oxide (CeO2And at least one element selected from the group consisting of Zr, Nd and La,2This is because the oxygen releasing ability, the BET specific surface area, and the thermal stability are significantly improved.
Less than 1 mol% CeO2The effect of adding the above-mentioned elements does not appear as in the case of only the above, and when it exceeds 40 mol%, this effect is saturated or conversely reduced.
[0040]
Further, in the preferred embodiment of the exhaust gas purifying catalyst of the first and second inventions, the Rh-containing upper catalyst component layer further contains a zirconium oxide containing at least one selected from the group consisting of Ce, Nd and La. It can also be contained.
The zirconium oxide contains 1 to 40 mol% in terms of metal of at least one element selected from the group consisting of Ce, Nd and La, and 60 to 99 mol% in terms of metal of Zr as the balance.
The content of 1 to 40 mol% is zirconium oxide (ZrO2) Is added with a kind of element selected from the group consisting of Ce, Nd and La.2This is because the oxygen releasing ability, the BET specific surface area, and the thermal stability are remarkably improved.
If it is less than 1 mol%, ZrO2The effect of adding the above-described element does not appear as in the case of only the above, and when 40 mol% is exceeded, this effect is saturated or lowered.
[0041]
By adding a powder of zirconium oxide containing at least one selected from the group consisting of Ce, Nd, and La to the Rh-containing upper catalyst component layer, the zirconium oxide is rich in the atmosphere and near the stoichiometric atmosphere. Since oxygen is released and the oxidation state of the noble metal is suitable for purification of exhaust gas, it is possible to suppress a decrease in the catalyst performance of the noble metal.
[0042]
In the exhaust gas purifying catalyst of the first and second inventions, the alkali metal and / or alkaline earth metal used includes Li, Na, K, Cs, Mg, Ca, Sr and Ba. .
When these components are contained in the catalyst component layer, the HC adsorption poisoning action in a rich atmosphere is alleviated and the sintering of noble metals is suppressed, so that the activity in a low temperature activity or a reducing atmosphere can be further improved. Its content is 1 to 40 g in 1 L of catalyst. If it is less than 1 g, HC adsorption poisoning and precious metal sintering cannot be suppressed, and if it exceeds 40 g, a significant increase effect cannot be obtained and conversely the performance deteriorates. Let
[0043]
In producing the exhaust gas purifying catalyst of the first and second inventions, an HC adsorbent layer (zeolite layer) is disposed on the inner layer side in order to effectively develop the performance of the HC adsorption layer and the catalyst component layer. The catalyst component layer (palladium layer) is the middle layer on the catalyst layer, and the Rh-containing upper catalyst component layer (rhodium layer) is further arranged on the surface layer side.
[0044]
As the noble metal (catalyst component) raw material compound in the catalyst component layer and the upper catalyst component layer, any compound can be used as long as it is water-soluble such as dinitrodiamminate, chloride and nitrate.
The removal of water can be performed by appropriately selecting from known methods such as filtration and evaporation to dryness. The initial heat treatment for obtaining the noble metal-supported powder used in the present invention is not particularly limited, but in order to support the added noble metal with good dispersibility, for example, in air and / or air circulation at a relatively low temperature of 400 ° C. to 800 ° C. It is preferred to carry out the firing under.
[0045]
Furthermore, the zeolite of the HC adsorbent layer may be impregnated with at least one selected from Pd, Mg, Ca, Sr, Ba, Ag, Y, La, Ce, Nd, P, B, and Zr. it can.
These metal compounds are dispersed on zeolite by supporting water-soluble compounds such as oxides, acetates, nitrates, and hydroxides using ordinary methods such as ion exchange, impregnation, and immersion. It becomes possible to carry with improved properties.
As a method for removing moisture after loading, drying is performed, followed by firing at a relatively low temperature of 200 to 600 ° C. in the air and / or under air flow.
If the calcination temperature is less than 200 ° C., the metal compound cannot be sufficiently in the form of an oxide. Conversely, if the calcination temperature exceeds 600 ° C., the effect of the calcination temperature is saturated and no significant difference is obtained.
[0046]
Furthermore, Pt can be contained in the catalyst component layer and the upper catalyst component layer. As the raw material compound, any water-soluble compounds such as dinitrodiamminates, chlorides and nitrates can be used.
[0047]
More preferably, the catalyst component layer (noble metal layer) is reduced by adding cerium oxide containing at least one selected from the group consisting of Zr, Nd and La to alumina powder or zirconium oxide powder. Under the atmosphere, the oxidation state of the noble metal can be more effectively maintained in a state suitable for exhaust gas purification.
[0048]
Preferably, a zirconium oxide powder containing at least one selected from the group consisting of Ce, Nd, and La can be added to the upper catalyst component layer. By adding zirconium oxide powder containing at least one selected from the group consisting of Ce, Nd, and La, the oxidation state of the noble metal is more effectively maintained in a state suitable for exhaust gas purification in a reducing atmosphere. can do.
[0049]
The exhaust gas purifying catalyst according to the first and second inventions thus obtained can be used effectively without a carrier, but is pulverized into a slurry, coated on a specific monolith carrier, and 400 Used after baking at ~ 900 ° C.
Specifically, as an HC adsorbent layer (inner layer side), a silica sol is added to zeolite powder containing β-zeolite as a main component, and wet pulverized to form a slurry, which is attached to a monolith support, and has a temperature of 400 to 650 ° C. Firing is performed in air and / or under air flow at a temperature in the range.
Next, as a catalyst component layer (middle layer side), Pd-supported powder, alumina powder, and the cerium oxide powder are added to an alumina sol and pulverized in a wet form to form a slurry, which is attached to a monolith support, 400 to 650 Firing is performed in air and / or under air flow at a temperature in the range of ° C.
Next, as an upper catalyst component layer (surface layer side), Rh-supported powder, alumina powder, and the above-mentioned zirconium oxide powder are added to an alumina sol and pulverized wet to form a slurry, which is attached to a monolith support, Firing is performed at a temperature in the range of 650 ° C. in air and / or under air flow.
Pt may be further added to the catalyst component layer and the upper catalyst component layer.
[0050]
The monolith carrier that is a catalyst carrier can be appropriately selected from known catalyst carriers, and examples thereof include a honeycomb monolith carrier made of a refractory material and a metal carrier.
As this honeycomb material, a cordierite material such as ceramic is generally used, but a honeycomb material made of a metal material such as ferritic stainless steel can also be used, and further, the catalyst component powder itself is formed into a honeycomb shape. It may be molded.
The catalyst has a honeycomb shape, and in the present invention, the honeycomb carrier (monolith carrier) has a GSA of 10 cm.2/ Cm3~ 35cm2/ Cm3It is extremely effective for limiting the contact between the HC adsorbent layer and the exhaust gas and delaying the desorption of the adsorbed HC from the HC adsorbent layer.
[0051]
Furthermore, by setting the number of cells of the monolith carrier to 50 to 600 cells per square inch, the contact between the HC adsorbent layer and the exhaust gas is limited, and the desorption of adsorbed HC from the HC adsorbent layer is delayed. It is extremely effective to do.
[0052]
Furthermore, by setting the hydraulic diameter of the monolith carrier to 0.75 mm to 5 mm, the exhaust gas diffusion rate into the HC adsorbent layer is reduced, and the desorption of adsorbed HC from the HC adsorbent layer is delayed. Is extremely effective.
[0053]
The amount of the catalyst component layer attached to the monolith support is preferably 50 g to 600 g per liter of the catalyst in total for the entire catalyst component layer.
The more catalyst component layers having the three-way purification capacity, the better from the viewpoint of catalyst activity and catalyst life, but if the coat thickness of the catalyst component layer becomes too thick, the exhaust gas to the HC adsorbent layer inside the catalyst component layer The diffusion of HC becomes poor, and conversely, the adsorption performance of HC decreases. Further, the larger the HC adsorbent layer, the better from the standpoint of delaying HC desorption, but if the coat thickness of the HC adsorbent layer becomes too thick, the contact between the desorbed HC and the catalyst component layer becomes poor, Conversely, the desorption HC purification activity decreases. For this reason, it is preferable to set the coat weight ratio of the HC adsorbent layer and the catalyst component layer to 5: 1 to 1: 2.
Furthermore, the coat layer thickness in the flat part in the monolith carrier cell, that is, the total thickness of the HC adsorbent layer and the catalyst component layer is preferably 30 μm to 400 μm.
By setting the GSA, the number of cells, and the hydraulic diameter of the monolith carrier carrying the washcoat component within the specified values, a sufficient HC adsorbent layer thickness can be secured to delay the HC desorption, and the desorbed HC The purification performance is improved.
[0054]
Next, an embodiment of the third invention will be described.
In the third aspect of the present invention, Pd, Pd and Pt, or Pd and Rh are provided upstream of the exhaust gas purification catalyst (HC adsorption catalyst) of the first or second aspect described above, that is, upstream of the exhaust passage. And a Pd-supported powder supporting Pd so that the concentration of Pd supported is 4 to 20% by weight, and the amount of Pd supported per liter of catalyst is 100 g / cf (3.5 g / L) to 1000 g / cf. The present invention relates to an exhaust gas purification device in which a Pd-containing catalyst (three-way catalyst) of 35.4 g / L is disposed (see FIG. 3 and the like).
In this exhaust gas purification device, the amount of HC adsorbed by the exhaust gas purification catalyst (HC adsorption catalyst) is 70% or less, preferably 10% to 70% of the amount of HC discharged to a low temperature region immediately after engine start. Is set.
[0055]
When the HC adsorption catalyst of the present invention adsorbs the entire amount of HC in the exhaust gas at a low temperature immediately after the engine is started, when the desorption starts as the temperature of the catalyst component layer rises, the HC adsorption catalyst is disposed above the HC adsorbent layer. Since the catalyst component layer is exposed to an oxygen-deficient state for a long time, the purification performance against desorbed HC is significantly reduced. Therefore, a Pd-containing catalyst that is excellent in HC purification performance in a low temperature region is disposed in front of the HC adsorption catalyst, and the amount of HC adsorbed by the HC adsorption catalyst is reduced to 70% or less of the HC saturated adsorption amount of the HC adsorption catalyst. Setting is preferable in order to maintain and improve the purification performance against desorbed HC of the catalyst component layer disposed on the HC adsorbent layer.
However, if the amount of HC adsorbed by the HC adsorption catalyst exceeds 70% of the HC saturation adsorption amount of the HC adsorption catalyst, the cold HC adsorption efficiency of the HC adsorbent is reduced and desorption is also accelerated. The purification performance of desorbed HC is significantly reduced.
[0056]
In a preferred embodiment of the exhaust gas purifying apparatus according to the third invention, the supported concentration of the Pd-supported powder is 4 to 15% by weight, and the supported amount of palladium of the Pd-containing catalyst is 100 g / cf ( 3.5 g / L) to 500 g / cf (17.7 g / L), and the ignition timing at the time of engine start (first idle) is 40 seconds or less immediately after engine start and 1 from top dead center. The angle is retarded by 30 ° or less.
As a result, the rise in the exhaust temperature is accelerated, the activation of the Pd-containing catalyst arranged in the preceding stage of the HC adsorption catalyst is accelerated, and the HC amount adsorbed by the HC adsorption catalyst is 70% or less of the HC saturated adsorption amount of the HC adsorption catalyst. Set to
[0057]
In another preferred embodiment, the supported concentration of the Pd-supported powder is 4% by weight to 15% by weight and the palladium supported amount of the Pd-containing catalyst is 100 g / cf (3.5 g / L) to 500 g. / Cf (17.7 g / L) or less, air is supplied at an air flow rate of 10 L / min or more for 60 seconds immediately after engine start, and the cold air-fuel ratio immediately after engine start is diluted (A / F = 12-2) 18), the activation of the Pd-containing catalyst is accelerated, and the amount of HC adsorbed by the HC adsorption catalyst is set to 70% or less of the HC saturated adsorption amount of the HC adsorption catalyst.
[0058]
Furthermore, in another preferred embodiment, immediately before the start of HC desorption from the HC adsorption catalyst, the air-fuel ratio is controlled to 14.6 or more, or upstream of the HC adsorption catalyst using means such as an air pump. Alternatively, oxygen and / or air is added to the HC adsorption catalyst.
Before the adsorbed HC starts to desorb from the HC adsorbent or simultaneously with the start of desorption, oxygen and / or air is added upstream of the HC adsorbent catalyst or into the HC adsorbent catalyst, By supplying oxygen to the catalyst component layer, the purification performance of desorbed HC is improved.
[0059]
Furthermore, in another preferred embodiment, in order to improve the purification efficiency of HC desorbed from the HC adsorption catalyst, the detected value of the temperature detector installed in the front part (near the inlet) of the HC adsorption catalyst is equal to or higher than a predetermined temperature. At the rear of the HC adsorption catalyst (near the outlet), so that the A / F detector is 14.6 or more upstream of the HC adsorption catalyst or in the HC adsorption catalyst. Add air (see Figure 3).
[0060]
If the detected value of the temperature detector installed in the vicinity of the inlet of the HC adsorption catalyst is less than a predetermined temperature, for example, 110 ° C., the activation of the catalyst component layer of the HC adsorption catalyst is insufficient, so that oxygen and / or air is added. Conversely, the purification performance of desorbed HC is reduced.
Furthermore, it is preferable to add oxygen and / or air added upstream of the HC adsorption catalyst so that the A / F detector installed near the outlet of the HC adsorption catalyst has a value of 14.6 or more. When A / F is less than 14.6, the effect of improving the purification performance of the catalyst component layer of the HC adsorption catalyst is not sufficient.
[0061]
Furthermore, in order to improve the purification efficiency of HC desorbed from the HC adsorption catalyst, when the detection value of the temperature detector inserted in the catalyst component layer of the HC adsorption catalyst becomes a predetermined temperature or higher, Oxygen and / or air is added upstream of the HC adsorption catalyst or into the HC adsorption catalyst so that the A / F detector installed near the outlet becomes 14.6 or more (see FIG. 4).
If the detected value of the temperature detector inserted in the catalyst component layer of the HC adsorption catalyst is less than the predetermined temperature, the activation of the three-way catalyst layer of the HC adsorption catalyst is insufficient, so oxygen and / or air are added. Conversely, the purification performance of desorbed HC is reduced.
Furthermore, it is preferable to add oxygen and / or air added upstream of the HC adsorption catalyst so that the A / F detector installed near the outlet of the HC adsorption catalyst has a value of 14.6 or more. When A / F is less than 14.6, the effect of improving the purification performance of the catalyst component layer of the HC adsorption catalyst is not sufficient.
[0062]
Furthermore, in order to improve the purification efficiency of HC desorbed from the HC adsorption catalyst, when HC desorption is detected from the detection values of the A / F detectors installed near the inlet and the outlet, Add oxygen and / or air upstream of the HC adsorption catalyst or into the HC adsorption catalyst so that the A / F detector A / F arranged near the outlet is 14.6 or more (see FIG. 4). .
[0063]
In order to minimize the amount of oxygen and / or air added upstream of the HC adsorption catalyst and significantly promote the activation of the catalyst component layer of the HC adsorption catalyst, A installed in the vicinity of the inlet and the outlet of the HC adsorption catalyst When the HC desorption is detected from the difference in the detection value of the / F detector, it is preferable to add so that the A / F detector installed near the outlet of the HC adsorption catalyst becomes 14.6 or more. If A / F is less than 14.6, the purification performance of the catalyst component layer of the HC adsorption catalyst is not sufficiently improved.
[0064]
Further, in a preferred embodiment of the third invention, in the exhaust gas purification apparatus in which the Pd-containing catalyst is arranged in the preceding stage of the HC adsorption catalyst, the unpurified components (HC, CO, NOx) in the Pd-containing catalyst are efficiently used. In order to purify well, it is preferable that the Pd-containing catalyst contains Rh, and the amount of Rh is made smaller than the amount of rhodium contained in the HC adsorption catalyst arranged on the downstream side.
By making the amount of Rh contained in the Pd-containing catalyst smaller than the amount of Rh contained in the HC adsorption catalyst arranged on the downstream side, unpurified components (HC, CO, NOx) in the hot region can be efficiently purified, The purification performance of low-concentration exhaust gas components that could not be purified by the Pd-containing catalyst is improved.
[0065]
The weight ratio of the Rh amount contained in the Pd-containing catalyst and the Rh amount contained in the HC adsorption catalyst disposed on the downstream side is preferably equal (1/1) or less. When the weight ratio of Rh is equal to or greater than that, the purification performance of the low-concentration exhaust gas component is not sufficiently exhibited.
[0066]
Furthermore, another preferred embodiment of the third invention will be described.
In this embodiment, in order to improve the purification efficiency of HC desorbed from the HC adsorption catalyst, a Pd-containing catalyst is disposed upstream of the exhaust gas, and two or more HC adsorption catalysts are disposed downstream thereof (the first invention or the first invention). And an HC adsorption catalyst according to the second aspect of the invention and another HC adsorption catalyst having properties equivalent to those of the HC adsorption catalyst.
By arranging two or more HC adsorption catalysts, low-temperature HC discharged immediately after engine startup is dispersed and adsorbed, reducing the time that the catalyst component layer placed on the HC adsorbent is exposed to an oxygen-deficient state. And the purification performance against desorbed HC is remarkably improved.
[0067]
In still another preferred embodiment, a Pd-containing catalyst is arranged upstream of the exhaust gas, and two or more HC adsorption catalysts are arranged downstream thereof, and the plurality of HC adsorption catalysts are located at positions at different distances from the engine. Is an exhaust gas purification device provided with a different temperature rising rate of each HC adsorption catalyst.
Since the temperature increase rate of the plurality of HC adsorption catalysts is different, the unpurified desorbed HC of the preceding HC adsorption catalyst is re-adsorbed by the subsequent HC adsorption catalyst, and the purification performance for the desorbed HC is remarkably improved.
[0068]
FIG. 12 shows a flow sheet showing a procedure for setting the lean time in the implementation of the exhaust gas purifying apparatus of the present invention. The leaning time was determined according to this flow. In the sheet, S1 to S18 have the following meanings.
[0069]
This flow is executed every predetermined time.
S1 It is determined whether the engine is starting.
For example, when this flow is executed last time, the starter SW is ON, and when it is OFF this time, it is determined that the engine is starting, and initial settings of S2 to S5 are performed.
S2 The temperature of the HC adsorption catalyst (inlet temperature or catalyst component layer temperature) is detected.
For simplicity, the engine coolant temperature may be substituted.
S3 The adsorption capacity of the HC adsorption catalyst is estimated based on the catalyst temperature obtained in S2.
S4 Estimate the time (delay time from the start) when HC desorption starts from the HC adsorption catalyst based on the adsorption capacity obtained in S2.
S5 Estimate the time required from the start of desorption of HC to the completion based on the adsorption capacity obtained in S2.
S6 Measure the elapsed time from the start of the engine.
S7: It is determined whether it is time to desorb HC from the HC adsorption catalyst.
Here, the determination is made by comparing the HC desorption start estimated in S4 with the elapsed time from the start. However, as another method, the detection or estimation of the catalyst temperature is continued even after the engine is started. The determination may be made by comparing the catalyst temperature with the desorption temperature.
S8: It is determined whether the elapsed time after the start is less than a predetermined time (for example, 60 seconds).
S9 If the determination in S8 is YES, the air-fuel ratio is set to lean.
When the air-fuel ratio is made lean about 10% from the stoichiometric air-fuel ratio, the catalyst activation start temperature is lowered, and the catalyst can be activated early.
S10 If the determination in S8 is NO, the air-fuel ratio is set to stoichiometric.
(The lean air-fuel ratio operation has the demerit of increasing the amount of NOx generated, so it is minimized.)
S11: It is determined whether the elapsed time after the start is less than a predetermined time (for example, 40 seconds).
S12 If the determination in S11 is YES, the ignition timing is set to a timing retarded from the normal ignition timing.
By retarding the ignition timing, the exhaust gas temperature can be raised, and unburned HC can be supplied to the catalyst to achieve early activation of the catalyst.
S13 If the determination in S11 is NO, the ignition timing is set to a normal ignition timing. (The ignition timing delay decreases the generated torque (= fuel consumption worsens).
There are also disadvantages, so the minimum is necessary. )
S14 The elapsed time from the start of HC desorption is measured.
S15: Determine whether the HC is being desorbed.
S16: It is determined whether the output of the air-fuel ratio sensor disposed downstream of the catalyst is less than a predetermined value, that is, whether the output exceeds a predetermined lean air-fuel ratio.
If it is determined in S15 that HC is being desorbed, basically the lean air-fuel ratio control is executed in the next S17, but if the catalyst downstream air-fuel ratio sensor indicates a predetermined lean air-fuel ratio or higher, normal control is performed.
S17 If YES in S15, the air-fuel ratio is set to lean.
During HC desorption, the catalyst becomes rich and the HC oxidation efficiency decreases, so the air-fuel ratio is made lean to prevent a decrease in efficiency.
In accordance with the HC desorption characteristics, the lean air-fuel ratio may be set to such an extent that oxygen corresponding to the amount of HC desorbed is supplied.
S18 If NO in S15 (= after HC desorption is completed), normal control is performed.
[0070]
【Example】
The invention is illustrated by the following examples and comparative examples.
Example 1
511 g of β-zeolite powder (H type, Si / 2Al = 75), 57 g of MFI (ZSM5) powder, 1215 g of silica sol (solid content 20%), and 1800 g of pure water are put into a magnetic ball mill, mixed and ground to obtain a slurry liquid. It was. This slurry solution was used as a cordierite monolith carrier (300 cell / 6 mil, GSA 24.1 cm).2/ Cm3The slurry was attached to a hydraulic diameter of 1.3 mm), excess slurry in the cell was removed with an air stream, dried, and fired at 400 ° C. for 1 hour. The coating operation was repeated until the coating amount at this time was 100 g / L after firing to obtain catalyst-a.
[0071]
Ce3 mol% (CeO2The alumina powder containing 9.5% by weight in terms of) is impregnated with a dinitrodiamine palladium aqueous solution or sprayed with high-speed stirring, dried at 150 ° C. for 24 hours, then at 400 ° C. for 1 hour, and then at 600 ° C. Calcination was performed for 1 hour to obtain Pd-supported alumina powder (powder a). This powder a had a Pd concentration of 6.23% by weight. The powder a may contain lanthanum, zirconium, neodymium and the like.
[0072]
La1 mol% (La2O3In terms of 1 wt%) and Zr32 mol% (ZrO)2The cerium oxide powder containing 25 wt% in terms of) is impregnated with a dinitrodiamine palladium aqueous solution or sprayed with high-speed stirring, dried at 150 ° C. for 24 hours, then at 400 ° C. for 1 hour, then at 600 ° C. Calcination for a period of time gave Pd-supported cerium oxide powder (powder b). The Pd concentration of this powder b was 2.0% by weight.
[0073]
562 g of the above Pd-supported alumina powder (powder a), 288 g of Pd-supported cerium oxide powder (powder b), 950 g of nitric acid acidic alumina sol (a sol obtained by adding 10 wt% nitric acid to 10 wt% boehmite alumina) and 1000 g of pure water was put into a magnetic ball mill, mixed and ground to obtain a slurry liquid. The slurry liquid was adhered to the coat catalyst-a, excess slurry in the cell was removed with an air stream, dried, fired at 400 ° C. for 1 hour, a coat layer weight of 60 g / L was applied, and catalyst-b Got.
[0074]
An alumina powder containing 3% by weight of Zr is impregnated with an aqueous rhodium nitrate solution or sprayed with high-speed stirring, dried at 150 ° C. for 24 hours, then calcined at 400 ° C. for 1 hour, then at 600 ° C. for 1 hour, and Rh supported alumina A powder (powder c) was obtained. The Rh concentration of this powder c was 1.25% by weight.
[0075]
366 g of Rh-supported alumina powder (powder c), La 1 mol% (La2O31.2% by weight) and Ce20 mol% (CeO)225.8 wt%) zirconium oxide powder 300 g and nitric acid acidic alumina sol 1135 g were put into a magnetic ball mill, mixed and pulverized to obtain a slurry liquid. The slurry was adhered to the coated catalyst-b, the excess slurry in the cell was removed by air flow, dried, calcined at 400 ° C. for 1 hour, coated with a coat layer weight of 40 g / L to obtain a catalyst. It was. The cerium oxide powder and alumina powder may contain lanthanum, neodymium and the like.
Next, a barium acetate solution was attached to the catalyst component-supported cordierite monolith support, and then calcined at 400 ° C. for 1 hour to contain 10 g / L as BaO. Thereby, an exhaust gas purifying catalyst (HC adsorption catalyst) of this example was obtained.
[0076]
Example 2
Exhaust gas purification in the same manner as in Example 1 except that 313 g of β-zeolite powder (H type, Si / 2Al = 75), 255 g of MFI (ZSM5) powder, and 1215 g of silica sol (solid content 20%) were used as zeolite. A catalyst was obtained.
[0077]
Example 3
Except for using 454 g of β-zeolite powder (H type, Si / 2Al = 75), 57 g of MFI (ZSM5) powder, 57 g of USY powder, and 1215 g of silica sol (solid content 20%) as zeolite, the same as in Example 1. Thus, an exhaust gas purification catalyst was obtained.
[0078]
Example 4
Except for using 454 g of β-zeolite powder (H type, Si / 2Al = 75), 57 g of MFI (ZSM5) powder, 57 g of AlPO4 powder, and 1215 g of silica sol (solid content 20%) as zeolite, the same as in Example 1. Thus, an exhaust gas purification catalyst was obtained.
[0079]
Example 5
Except for using 454 g of β-zeolite powder (H type, Si / 2Al = 75), 57 g of MFI (ZSM5) powder, 57 g of SAPO4 powder, and 1215 g of silica sol (solid content 20%) as zeolite, the same as in Example 1. Thus, an exhaust gas purification catalyst was obtained.
[0080]
Example 6
Except for using 454 g of β-zeolite powder (H type, Si / 2Al = 75), 57 g of MFI (ZSM5) powder, 57 g of mordenite powder and 1215 g of silica sol (solid content 20%) as zeolite, the same as in Example 1. Thus, an exhaust gas purification catalyst was obtained.
[0081]
Example 7
As zeolite, β-zeolite powder (H type, Si / 2Al = 75) 454 g, MFI (ZSM5) powder 57 g, ferrierite powder 23.5 g, A type zeolite powder 23.5 g, silica sol (solid content 20%) 1215 g Exhaust gas purification catalyst was obtained in the same manner as in Example 1 except that it was used.
[0082]
Example 8
The MFI (ZSM5) powder was impregnated and supported with Pd, dried at 150 ° C. for 24 hours, and then calcined at 450 ° C. for 1 hour to obtain a Pd-supported MFI powder (Pd concentration 2.0 wt%). Instead of MFI powder, Pd-supported MFI powder was used and a cordierite monolith carrier (200 cell / 10 mil, GSA 19.0 cm)2/ Cm3Exhaust gas purification catalyst was obtained in the same manner as in Example 1 except that the hydraulic diameter was 1.53 mm.
[0083]
Example 9
MFI (ZSM5) powder was impregnated with P, dried at 150 ° C. for 24 hours, and then calcined at 450 ° C. for 1 hour to obtain a P-supported MFI powder (Pd concentration 0.4 wt%). Exhaust gas purifying catalyst was obtained in the same manner as in Example 1 except that P-supported MFI powder was used instead of MFI powder and the same monolith support as in Example 8 was used.
[0084]
Example 10
The MFI (ZSM5) powder was impregnated with Ca, dried at 150 ° C. for 24 hours, and then calcined at 450 ° C. for 1 hour to obtain a Ca-supported MFI powder (Ca concentration of 0.2% by weight). An exhaust gas purifying catalyst was obtained in the same manner as in Example 1 except that Ca-supported MFI powder was used instead of MFI powder, and the same monolith support as in Example 8 was used.
[0085]
Example 11
The MFI (ZSM5) powder was impregnated with Mg and supported, dried at 150 ° C. for 24 hours, and then fired at 450 ° C. for 1 hour to obtain an Mg-supported MFI powder (Mg concentration 0.4 wt%). Exhaust gas purifying catalyst was obtained in the same manner as in Example 1 except that Mg-supported MFI powder was used instead of MFI powder and the same monolith support as in Example 8 was used.
[0086]
Example 12
The MFI (ZSM5) powder was impregnated with La, dried at 150 ° C. for 24 hours, and then fired at 450 ° C. for 1 hour to obtain an La-supported MFI powder (La concentration 0.4 wt%). An exhaust gas purifying catalyst was obtained in the same manner as in Example 1 except that La-supported MFI powder was used instead of MFI powder and the same monolith carrier as in Example 8 was used.
[0087]
Example 13
MFI (ZSM5) powder was impregnated with B (boron), dried at 150 ° C. for 24 hours, and then calcined at 450 ° C. for 1 hour to obtain a B-supported MFI powder (B concentration: 0.4 wt%). An exhaust gas purifying catalyst was obtained in the same manner as in Example 1 except that B-supported MFI powder was used instead of MFI powder, and the same monolith support as in Example 8 was used.
[0088]
Example 14
P-Ca-Zr-La-supported MFI powder in which MFI (ZSM5) powder is successively impregnated with P, Ca, Zr, and La, dried, and fired (each metal concentration 0.1 wt%, total metal concentration 0.4 % By weight). Exhaust gas purifying catalyst was obtained in the same manner as in Example 1 except that P-Ca-Zr-La-supported MFI powder was used instead of MFI powder, and the same monolith support as in Example 8 was used.
[0089]
Example 15
P-Mg-Zr-Ce-supported MFI powder in which P, Mg, Zr, and Ce are successively impregnated into MFI (ZSM5) powder, dried, and fired (each metal concentration 0.1 wt%, total metal concentration 0.4 % By weight). An exhaust gas purifying catalyst was obtained in the same manner as in Example 1 except that PFI—Mg—Zr—Ce-supported MFI powder was used instead of MFI powder, and the same monolith support as in Example 8 was used.
[0090]
Example 16
B-Ca-La-Nd-supported MFI powder in which MFI (ZSM5) powder is successively impregnated with B, Ca, La, and Nd, dried, and fired (each metal concentration 0.1 wt%, total metal concentration 0.4 % By weight). An exhaust gas purifying catalyst was obtained in the same manner as in Example 1, except that B-Ca-La-Nd-supported MFI powder was used instead of the MFI powder, and the same monolith support as in Example 8 was used.
[0091]
Example 17
An alumina powder containing 3% by weight of Zr is impregnated with an aqueous rhodium nitrate solution or sprayed with high-speed stirring, dried at 150 ° C. for 24 hours, then calcined at 400 ° C. for 1 hour, then at 600 ° C. for 1 hour, and Rh supported alumina A powder (powder c) was obtained. The Rh concentration of this powder c was 1.25% by weight.
La1 mol% (La2O3In terms of 1.2% by weight) and Ce20 mol% (CeO)225.8% by weight in terms of zirconium oxide powder was impregnated with a dinitrodiamine platinum aqueous solution or sprayed with high-speed stirring, dried at 150 ° C. for 24 hours, then at 400 ° C. for 1 hour, and then at 600 ° C. Was fired for 1 hour to obtain a Pt-supported zirconium oxide powder (powder d). The Pt concentration of this powder d was 1.53% by weight. The above Rh-carrying alumina powder c366g, Pt-carrying zirconium oxide powder (powder d) 300g, and nitric acid acidic alumina sol 1135g were put into a magnetic ball mill, mixed and ground to obtain a slurry liquid. Exhaust gas purifying catalyst was obtained in the same manner as in Example 1 except that this slurry was applied to the above coated catalyst-b (however, the monolith carrier was the same as in Example 8).
[0092]
Example 18
La1 mol% (La2O3In terms of 1 wt%) and Zr32 mol% (ZrO)2The cerium oxide powder containing 25 wt% in terms of) is impregnated with a dinitrodiamine platinum aqueous solution or sprayed with high-speed stirring, dried at 150 ° C. for 24 hours, then at 400 ° C. for 1 hour, and then at 600 ° C. for 1 hour. Calcination was performed for a time to obtain Pt-supported cerium oxide powder (powder e). The Pt concentration of this powder e was 2.0% by weight.
562 g of the above Pd-supported alumina powder (powder a), 144 g of Pd-supported cerium oxide powder (powder b), 144 g of Pt-supported cerium oxide powder (powder e), 950 g of nitric acid acidic alumina sol (10% by weight to 10% by weight of boehmite alumina) A sol obtained by adding nitric acid) and 1000 g of pure water were put into a magnetic ball mill, mixed and pulverized to obtain a slurry liquid. Exhaust gas purification catalyst was obtained in the same manner as in Example 1 except that this slurry was applied to the above-mentioned coated catalyst-a (however, the monolith carrier was the same as in Example 8).
[0093]
Example 19
562 g of the above Pd-supported alumina powder (powder a), 144 g of Pd-supported cerium oxide powder (powder b), 144 g of Pt-supported cerium oxide powder (powder e), 950 g of nitric acid acidic alumina sol (10% by weight to 10% by weight of boehmite alumina) A sol obtained by adding nitric acid) and 1000 g of pure water were put into a magnetic ball mill, mixed and pulverized to obtain a slurry liquid. Catalyst-c was obtained in the same manner as in Example 1 except that this slurry was applied to the above-mentioned coated catalyst-a (provided that the monolith carrier was the same as in Example 8).
366 g of the above Rh-supported alumina powder, La 1 mol% (La2O32% by weight) and Ce20 mol% (CeO)225.8 wt%) zirconium oxide powder 300 g, nitric acid acidic alumina sol 1135 g and pure water 1000 g were charged into a magnetic ball mill, mixed and ground to obtain a slurry liquid. Exhaust gas purification catalyst was obtained in the same manner as in Example 1 except that this slurry solution was applied to the coat catalyst-c.
[0094]
Example 20
Use potassium acetate solution instead of barium acetate solution and follow the same procedure.2Exhaust gas purifying catalyst was obtained in the same manner as in Example 1 except that 1 g / L was added as O and the same monolith carrier as in Example 8 was used.
[0095]
Example 21
The MFI (ZSM5) powder was impregnated with Ag, dried at 150 ° C. for 24 hours, and then fired at 450 ° C. for 1 hour to obtain an Ag-supported MFI powder (Ag concentration 0.4 wt%). An exhaust gas purifying catalyst was obtained in the same manner as in Example 1 except that Ag-supported MFI powder was used instead of MFI powder, and the same monolith support as in Example 8 was used.
[0096]
Example 22
As zeolite, 568 g of β-zeolite powder (H type, Si / 2Al = 75) and 1215 g of silica sol (solid content 20%) were used to obtain a zeolite layer coated catalyst-d (however, the monolith support was the same as in Example 8). It was.
357 g of the above Pd-supported alumina powder (powder a), 183 g of Pd-supported cerium oxide powder (powder b), 188 g of Rh-supported alumina powder (powder c), La1 mol% (La2O31.2% by weight) and Ce20 mol% (CeO)2(25.8 wt% in terms of 1) of zirconium oxide powder, 1185 g of nitric acid acidic alumina sol, and 1000 g of pure water were charged into a magnetic ball mill, and mixed and ground to obtain a slurry liquid. Exhaust gas purification catalyst was obtained in the same manner as in Example 1 except that this slurry was applied to the zeolite layer-coated catalyst-d.
[0097]
Example 23
357 g of the above Pd-supported alumina powder (powder a), 183 g of Pd-supported cerium oxide powder (powder b), 188 g of Rh-supported alumina powder (powder c), 154 g of Pt-supported zirconium oxide powder (powder d), 1185 g of acidic alumina sol Pure water was put into a magnetic ball mill, mixed and pulverized to obtain a slurry liquid. An exhaust gas purifying catalyst was obtained in the same manner as in Example 1 except that this slurry was applied to the zeolite layer-coated catalyst-d (where the monolith support was the same as in Example 8).
[0098]
Reference example 1
La1 mol% (La2O3In terms of 1.2% by weight) and Ce20 mol% (CeO)225.8% by weight in terms of zirconium oxide powder was impregnated with an aqueous rhodium nitrate solution or sprayed with high-speed stirring, dried at 150 ° C. for 24 hours, then at 400 ° C. for 1 hour, and then at 600 ° C. Calcination was performed for 1 hour to obtain Rh-supported zirconium oxide powder (powder f). The Rh concentration of this powder f was 4.0% by weight.
568 g of β-zeolite powder (H type, Si / 2Al = 75), 353 g of Rh-supported zirconium oxide powder (powder f), 1215 g of silica sol (solid content 20%), and 1800 g of pure water are put into a magnetic ball mill and mixed and pulverized. Thus, a slurry liquid was obtained. This slurry solution was used as a cordierite monolith carrier (300 cell / 6 mil, GSA 24.1 cm).2/ Cm3The slurry was attached to a hydraulic diameter of 1.1 mm), excess slurry in the cell was removed with an air stream, dried, and fired at 400 ° C. for 1 hour. The coating operation was repeated until the coating amount at this time was 143.5 g / L after firing to obtain catalyst-e.
[0099]
Comparative Example 1
Cordierite monolith support (900 cells / 4 mil, GSA 41.1 cm2/ Cm3Exhaust gas purification catalyst was obtained in the same manner as in Example 1 except that the hydraulic diameter was 0.74 mm.
[0100]
Comparative Example 2
Exhaust gas purification catalyst was prepared in the same manner as in Example 1 except that the second layer (catalyst component layer = ternary layer) was the Rh layer and the third layer (upper catalyst component layer = ternary layer) was the Pd layer. Obtained.
[0101]
Comparative Example 3
Exhaust gas as in Example 1 except that the total coating layer weight ratio of the first layer (HC adsorbent layer = zeolite layer) and the second and third layers (ternary layer) was 10: 1. A purification catalyst was obtained.
[0102]
Comparative Example 4
Exhaust gas purification catalyst was obtained in the same manner as in Example 1 except that the total coating layer weight ratio of the first layer (zeolite layer) and the second and third ternary layers was 1: 5.
[0103]
Comparative Example 5
Exhaust gas purification catalyst was obtained in the same manner as in Example 1 except that only A-type zeolite was used as the zeolite species of the first layer.
[0104]
Comparative Example 6
Exhaust gas purification catalyst was obtained in the same manner as in Example 1 except that only USY was used as the zeolite species of the first layer.
[0105]
Comparative Example 7
Exhaust gas purification catalyst was obtained in the same manner as in Example 1 except that only MFI was used as the zeolite species of the first layer.
[0106]
Tables 1 and 2 show the specifications of the exhaust gas purifying catalysts obtained in the above Examples, Reference Examples and Comparative Examples.
[0107]
[Table 1]
Figure 0003858997
[0108]
[Table 2]
Figure 0003858997
[0109]
FIG. 1 is a schematic view of a coat layer structure.
[0110]
About each Example, the reference example, and the comparative example, HC purification characteristic evaluation (EC mode, A-bag of LA-4) was performed on the following evaluation conditions using the evaluation system of FIG. The results are shown in Tables 3 and 4.
[0111]
Endurance conditions
Engine displacement 3000cc
Fuel Gasoline (Pb = 12mg / usg, S = 300ppm)
Catalyst inlet gas temperature 650 ° C
Endurance time 100 hours
Performance evaluation conditions
Catalyst capacity (single bank) Three-way catalyst 1.3L + HC adsorption catalyst 2.6L
Evaluation vehicle Nissan Motor Co., Ltd. V type 6 cylinder 3.3L engine
Hydrocarbons (in the gas at the catalyst inlet) that are discharged when the engine is started
Figure 0003858997
[0112]
[Table 3]
Figure 0003858997
[0113]
[Table 4]
Figure 0003858997
[0114]
Compared with the comparative example, the example had higher catalytic activity, and the effects of the present invention described later could be confirmed.
[0115]
Previous catalyst example 1
Cerium 3 mol% (CeO28.7% by weight), zirconium 3 mol% (ZrO2In terms of 6.3 wt%) and lanthanum 2 mol% (La2O3Alumina powder (powder A) containing 5.5 wt% in terms of the amount of palladium was impregnated with an aqueous solution of palladium nitrate, dried at 150 ° C. for 12 hours, and then calcined at 400 ° C. for 1 hour. Powder B) was obtained. The Pd concentration of this powder B was 16% by weight.
Lanthanum 1 mol% (La2O3In terms of 2% by weight) and 32% by weight of zirconium (ZrO)2A cerium oxide powder (powder C) containing 25 wt% in terms of the amount of palladium was impregnated with an aqueous palladium nitrate solution, dried at 150 ° C. for 12 hours, and then calcined at 400 ° C. for 1 hour to obtain Pd-supported cerium oxide ( La0.01Zr0.32CeO0.67x) A powder (powder D) was obtained. The Pd concentration of this powder D was 6.0% by weight.
[0116]
The above powder B565g, powder D377g, activated alumina 58.5g, and nitric acid aqueous solution 2000g were put into a magnetic ball mill, mixed and pulverized to obtain a slurry. This slurry liquid was used as a cordierite monolith carrier (1.0 L, 600 cell / 4 mil, GSA 34.5 cm).2/ Cm3The slurry was attached to a hydrodynamic diameter of 0.93 mm), excess slurry in the cell was removed by air flow, dried, and fired at 400 ° C. for 1 hour. This operation was performed twice to obtain a catalyst having a coat weight of 100 g / L-support. The amount of Pd supported was 320.0 g / cf (11.3 g / L) (Catalyst A).
[0117]
Next, a barium acetate solution was attached to the catalyst component-supported cordierite monolith support, and then calcined at 400 ° C. for 1 hour to contain 10 g / L as BaO (catalyst B).
[0118]
Previous catalyst example 2
The above powder B565g, powder D377g, activated alumina 58.5g, and nitric acid aqueous solution 2000g were put into a magnetic ball mill, mixed and pulverized to obtain a slurry. This slurry was adhered to a cordierite monolith support, excess slurry in the cell was removed by air flow, dried, and fired at 400 ° C. for 1 hour. This operation was performed twice to obtain a catalyst having a coating weight of 91.7 g / L-support. The amount of palladium supported was 293.3 g / cf (10.36 g / L) (Catalyst C).
[0119]
An alumina powder (powder E) containing 3% by weight of Zr was impregnated with an aqueous rhodium nitrate solution, dried at 150 ° C. for 12 hours, and then fired at 400 ° C. for 1 hour to obtain an Rh-supported alumina powder (powder F). The Rh concentration of this powder F was 4.0% by weight.
La 1 mol% Ce 20 mol% Zr 79 mol% zirconium oxide powder (powder G) was impregnated with an aqueous platinum dinitrodiamminate solution, dried at 150 ° C. for 12 hours and then calcined at 400 ° C. for 1 hour to oxidize Pt-supported zirconium A product powder (powder H) was obtained. The Pt concentration of this powder H was 4.0% by weight.
[0120]
The powder F117.5g, powder H117.5g, activated alumina 15g, and nitric acid aqueous solution 1000g were put into a magnetic ball mill, mixed and pulverized to obtain a slurry. This slurry was adhered to a cordierite monolith support (catalyst C) carrying the Pd-containing catalyst component layer, excess slurry in the cell was removed and dried with an air stream, and calcined at 400 ° C. for 1 hour. Coat amount 25 g / L (total coat weight 116.7 g / L) -supported catalyst was obtained. The supported amount of Rh was 13.3 g / cf (0.48 g / L), and the supported amount of Pt was 13.3 g / cf (0.48 g / L) (Catalyst D).
Next, a barium acetate solution was attached to the catalyst component-supported cordierite monolith support (catalyst D), and then calcined at 400 ° C. for 1 hour to contain 10 g / L as BaO (catalyst E).
[0121]
Example 24
800 g of H-type β-zeolite, 1000 g of silica sol (solid content 20%) and 1000 g of pure water were put into a magnetic ball mill, mixed and pulverized to obtain a slurry. This slurry liquid was used as a cordierite monolith carrier (1.3 L, 200 cells / 10 mil, GSA 19.0 cm).2/ Cm3The slurry was attached to a hydraulic diameter of 1.53 mm), excess slurry in the cell was removed by air flow, dried, and fired at 400 ° C. for 1 hour. A catalyst having a coating weight of 200 g / L-carrier was obtained (Catalyst F).
[0122]
La1 mol% Ce20 mol% Zr 79 mol% zirconium oxide powder (powder G) was impregnated with rhodium nitrate aqueous solution, dried at 150 ° C. for 12 hours, and then calcined at 400 ° C. for 1 hour to obtain Rh-supported silconium oxide powder. (Powder I) was obtained. The Rh concentration of this powder I was 8.0% by weight.
500 g of powder B, 80 g of powder D, 353 g of powder I, 47 g of powder A, 20 g of activated alumina and 1000 g of nitric acid aqueous solution were put into a magnetic ball mill, mixed and pulverized to obtain a slurry. This slurry was adhered to the catalyst F, excess slurry in the cell was removed by air flow, dried, and calcined at 400 ° C. for 1 hour. This operation was performed twice to obtain catalyst G having a coating weight of 100 g / L (total weight 300 g / L-support). Catalyst G had a palladium loading of 240.0 g / cf (8.48 g / L) and a rhodium loading of 80.0 g / cf (2.83 g / L). Next, after the barium acetate solution was attached to the catalyst G, it was calcined at 400 ° C. for 1 hour to contain 10 g / L as BaO (catalyst H).
[0123]
Example 25
Catalyst I was obtained in the same manner as in Example 24 except that instead of 800 g of H-type β-zeolite, 500 g of H-type β-zeolite, 100 g of ZSM5, 100 g of USY, 50 g of Y-type, and 50 g of mordenite were used.
[0124]
Example 26
Catalyst J was obtained in the same manner as in Example 24 except that 800 g of H-type β-zeolite containing 0.5% by weight of boron and 0.1% by weight of calcium was used instead of 800 g of H-type β-zeolite.
[0125]
Example 27
Instead of 800 g of H-type β-zeolite, 600 g of H-type β-zeolite containing 0.5 wt% phosphorus and 0.1 wt% magnesium, and 100 g of ZSM5 containing 0.5 wt% boron and 0.1 wt% calcium A catalyst K was obtained in the same manner as in Example 24 except that 100 g of USY containing 0.5 wt% phosphorus and 0.1 wt% calcium was used.
[0126]
Example 28
To a solution obtained by dissolving 20 g of ammonium dihydrogen phosphate in 1500 g of pure water, 1000 g of H-type β-zeolite was added, and 25% ammonia water was added dropwise to adjust the pH to 9.0, followed by stirring and mixing for 24 hours. .
Β-Zeolite was collected from this mixed solution by filtration, dried at 120 ° C. for 24 hours, and then calcined in air at 650 ° C. for 2 hours to obtain Powder J. Further, this powder J was impregnated with a palladium nitrate solution to obtain a powder K containing 1 wt% Pd and 0.5 wt% Pd. 800 g of this powder K, 1000 g of silica sol (solid content 20%) and 1000 g of nitric acid aqueous solution were put into a magnetic ball mill, mixed and pulverized to obtain a slurry. This slurry liquid was used as a cordierite monolith carrier (1.3 L, 200 cells / 10 mil, GSA 19.0 cm).2/ Cm3The slurry was attached to a hydraulic diameter of 1.53 mm), excess slurry in the cell was removed by air flow, dried, and fired at 400 ° C. for 1 hour. A catalyst having a coat weight of 200 g / L-carrier was obtained (catalyst L). The amount of Pd supported was 45.3 g / cf (1.6 g / L).
The above-mentioned powder B500g, powder D80g, powder A30g, activated alumina 15g, and nitric acid aqueous solution 1000g were put into a magnetic ball mill, mixed and pulverized to obtain a slurry. This slurry was adhered to the catalyst L, excess slurry in the cell was removed by air flow, dried, and calcined at 400 ° C. for 1 hour. This operation was performed twice to obtain catalyst M.
Further, 353 g of the above powder I, 17 g of powder A, 5 g of activated alumina, and 1000 g of nitric acid aqueous solution were put into a magnetic ball mill, mixed and pulverized to obtain a slurry. This slurry liquid was adhered to the catalyst M, and excess slurry in the cell was removed and dried with an air stream, and calcined at 400 ° C. for 1 hour. This operation was performed twice to obtain a catalyst N having a coat weight of 100 g / L (total weight 300 g / L-support). Catalyst M had a palladium loading of 285.4 g / cf (10.08 g / L) and a rhodium loading of 80 g / cf (2.83 g / L).
Next, a barium acetate solution was attached to the catalyst component-supported cordierite monolith support (catalyst N) and then calcined at 400 ° C. for 1 hour to contain 10 g / L as BaO (catalyst O).
[0127]
Example 29
H-type β-zeolite containing 0.28% by weight of palladium, 0.2% by weight of phosphorus, 0.3% by weight of boron, 0.1% by weight of magnesium and 0.1% by weight of calcium instead of 800 g of H-type β-zeolite 500 g, 100 g of ZSM5 containing 0.33 wt% Pt and 0.1 wt% calcium, 200 g USY containing 0.28 wt% palladium and 0.2 wt% phosphorus, 0.33 wt% Pt, 0.1 wt% boron 100 g of mordenite containing 0.1% by weight of magnesium and cordierite monolith carrier (200 cell / 10 mil, GSA 19.0 cm)2/ Cm3The catalyst P was obtained in the same manner as in Example 1 except that the hydraulic diameter was 1.53 mm. The coating amount was 200 g / L, the loading amount of Pd was 11.1 g / cf (0.39 g / L), and the loading amount of Pt was 3.7 g / cf (0.13 g / L).
[0128]
30 g of the above powder A, 500 g of powder B, 80 g of powder D, 20 g of activated alumina and 1000 g of nitric acid aqueous solution were put into a magnetic ball mill, mixed and pulverized to obtain a slurry. The slurry was adhered to the catalyst P, excess slurry in the cell was removed by air flow, dried, and calcined at 400 ° C. for 1 hour to obtain catalyst Q.
The powder F176g, powder H117g, powder I177g, activated alumina 30g, and nitric acid aqueous solution 1000g were put into a magnetic ball mill, mixed and pulverized to obtain a slurry. This slurry was adhered to the catalyst Q, excess slurry in the cell was removed and dried with an air stream, and calcined at 400 ° C. for 1 hour. Next, a barium acetate solution was attached to the catalyst component-supported cordierite monolith support, and then calcined at 400 ° C. for 1 hour to contain 10 g / L as BaO (catalyst R). Coat amount 50 g / L (total weight 250 g / L-carrier), Pd loading amount 251.2 g / cf (8.87 g / L), Pt loading amount 16.9 g / cf (0.60 g / L), Rh The supported amount was 40.0 g / cf (1.42 g / L) (catalyst R).
[0129]
Previous stage catalyst example 3
Powder B1324g, powder F106g, powder H27g, activated alumina 43g, and nitric acid aqueous solution 2000g were put into a magnetic ball mill, mixed and pulverized to obtain a slurry. This slurry solution was used as a cordierite monolith carrier (1.0 L, 900 cell / 2 mil, GSA 43.6 cm).2/ Cm3The excess slurry in the cell was removed with an air stream, dried, and fired at 400 ° C. for 1 hour. This operation was performed twice to obtain a catalyst having a coat weight of 150 g / L-support. Next, after the barium acetate solution was attached to the catalyst, it was calcined at 400 ° C. for 1 hour to contain 10 g / L as BaO.
The palladium loading is 600.0 g / cf (21.2 g / L), the platinum loading is 3.0 g / cf (0.11 g / L), and the rhodium loading is 12.0 g / cf (0.42 g / L). (Catalyst S).
[0130]
Example 30
H-type β-zeolite 800 g, powder I 88.3 g, powder E 161.5 g, silica sol 1000 g (solid content 20%) and pure water 1000 g were charged into a magnetic ball mill, mixed and pulverized to obtain a slurry. This slurry liquid was used as a cordierite monolith carrier (1.3 L, 200 cells / 10 mil, GSA 19.0 cm).2/ Cm3The slurry was attached to a hydraulic diameter of 1.53 mm), excess slurry in the cell was removed by air flow, dried, and fired at 400 ° C. for 1 hour. A catalyst having a coat weight of 250 g / L-support was obtained (Catalyst T).
[0131]
The powder B500g, the powder D80g, the powder I176.5g, the powder E203g, the powder A40g, the activated alumina 20g, and the nitric acid aqueous solution 1000g were put into a magnetic ball mill, mixed and pulverized to obtain a slurry. The slurry was adhered to the catalyst T, excess slurry in the cell was removed and dried with an air stream, and calcined at 400 ° C. for 1 hour. This operation was performed twice, the coating weight was 100 g / L (total weight 300 g / L-carrier), the palladium loading was 240.0 g / cf (8.48 g / L), and the rhodium loading was 80.0 g / cf ( 2.83 g / L) of catalyst U was obtained.
Next, after a barium acetate solution was attached to the catalyst U, it was calcined at 400 ° C. for 1 hour to contain 10 g / L as BaO (catalyst V).
[0132]
Comparative Example 8
Cordierite monolith support (1.3 L, 600 cells / 2 mil, GSA 36.2 cm2/ Cm3The catalyst W was obtained in the same manner as in Example 24 except that the hydraulic diameter was 0.97 mm.
[0133]
Comparative Example 9
Cordierite monolith carrier (1.3 L, 900 cell / 4 mil, GSA 41.1 cm2/ Cm3Catalyst X was obtained in the same manner as in Example 24 except that the hydraulic diameter was 0.74 mm.
[0134]
Comparative Example 10
800 g of H-type β-zeolite, 1000 g of silica sol (solid content 20%) and 1000 g of pure water were put into a magnetic ball mill, mixed and pulverized to obtain a slurry. This slurry liquid was used as a cordierite monolith carrier (1.3 L, 200 cells / 10 mil, GSA 19.0 cm).2/ Cm3The slurry was attached to a hydraulic diameter of 1.53 mm), excess slurry in the cell was removed by air flow, dried, and fired at 400 ° C. for 1 hour. Catalyst Y with a coating weight of 20 g / L-carrier was obtained.
A catalyst Z was obtained in the same manner as in Example 24 except that the catalyst Y was used instead of the catalyst F.
[0135]
Comparative Example 11
800 g of H-type β-zeolite, 1000 g of silica sol (solid content 20%) and 1000 g of pure water were put into a magnetic ball mill, mixed and pulverized to obtain a slurry. This slurry liquid was used as a cordierite monolith carrier (1.3 L, 200 cells / 10 mil, GSA 19.0 cm).2/ Cm3The slurry was attached to a hydraulic diameter of 1.53 mm), excess slurry in the cell was removed by air flow, dried, and fired at 400 ° C. for 1 hour. A catalyst AA having a coat weight of 300 g / L-support was obtained.
160.0 g of powder J (alumina powder carrying Pd on powder A, Pd concentration 50 wt%), 17 g of powder K (cerium oxide powder carrying Pd on powder C, 28 wt% Pd concentration), powder Ag, powder L (zirconium oxide powder carrying Rh on powder G, Rh concentration 25 wt%) 113.0 g, activated alumina 10 g, and nitric acid aqueous solution 500 g were put into a magnetic ball mill, mixed and pulverized to obtain a slurry. This slurry liquid was adhered to the catalyst AA, excess slurry in the cell was removed by air flow, dried, and calcined at 400 ° C. for 1 hour. This operation was performed twice. The coating weight was 30 g / L (total weight 330 g / L-carrier), the palladium loading was 240.0 g / cf (8.48 g / L), and the rhodium loading was 80.0 g / cf ( 2.83 g / L) of catalyst BB was obtained.
Next, after a barium acetate solution was attached to the catalyst U, it was calcined at 400 ° C. for 1 hour to obtain a catalyst CC containing 10 g / L as BaO.
[0136]
Comparative Example 12
The above powder B659g, powder D80g, powder I35.3g, powder A206g, activated alumina 20g, and nitric acid aqueous solution 1000g were put into a magnetic ball mill, mixed and pulverized to obtain a slurry. This slurry was adhered to the catalyst F, excess slurry in the cell was removed by air flow, dried, and calcined at 400 ° C. for 1 hour. This operation was performed twice to obtain a catalyst DD having a coat weight of 100 g / L (total weight 300 g / L-support). The catalyst DD had a palladium loading of 312.0 g / cf (11.02 g / L) and a rhodium loading of 8.0 g / cf (0.28 g / L).
Next, after a barium acetate solution was attached to the catalyst DD, it was calcined at 400 ° C. for 1 hour to obtain a catalyst EE containing 10 g / L as BaO.
[0137]
Comparative Example 13
The above-mentioned powder B162g, powder D80g, powder I15g, powder A723g, activated alumina 20g and nitric acid aqueous solution 1000g were put into a magnetic ball mill, mixed and pulverized to obtain a slurry. This slurry solution was used as a cordierite monolith carrier (1.0 L, 900 cell / 2 mil, GSA 43.6 cm).2/ Cm3The excess slurry in the cell was removed with an air stream, dried, and fired at 400 ° C. for 1 hour. This operation was performed twice to obtain a catalyst having a coat weight of 100 g / L. The catalyst DD had a palladium loading of 73.3 g / cf (2.59 g / L) and a rhodium loading of 6.7 g / cf (0.24 g / L).
Next, after a barium acetate solution was attached to the catalyst, it was calcined at 400 ° C. for 1 hour to obtain a catalyst FF containing 10 g / L as BaO.
[0138]
Tables 5 and 6 show the specifications of the exhaust gas purifying catalysts obtained in Examples 24 to 30, the first catalyst examples 1 to 3 and the comparative examples 8 to 13.
[0139]
[Table 5]
Figure 0003858997
[0140]
[Table 6]
Figure 0003858997
[0141]
Test example
The exhaust gas purifying catalysts obtained in Examples 24 to 30, Pre-catalyst Examples 1 to 3 and Comparative Examples 8 to 13 were subjected to durability under the following durability conditions.
Figure 0003858997
[0142]
Using the catalysts of Examples 24 to 30, Durability Catalyst Examples 1 to 3 and Comparative Examples 8 to 13 that were durable under the above conditions, HC purification characteristics evaluation was performed under the following evaluation conditions for Examples 31 to 50 and Comparative Examples 14 to 25 ( EC mode, LA-4 A-bag) was performed using the system (exhaust gas purifier) of FIGS. The results are shown in Tables 7-10.
[0143]
Performance evaluation conditions
Catalyst capacity (single bank) Three-way catalyst 2.0L (1.0L + 1.0L) + HC adsorption catalyst 1.3L-2.6L
Evaluation vehicle Nissan Motor Co., Ltd. V type 6 cylinder 3.3L engine
Hydrocarbons (in the gas at the catalyst inlet) that are discharged when the engine is started
Figure 0003858997
[0144]
[Table 7]
Figure 0003858997
[0145]
[Table 8]
Figure 0003858997
[0146]
[Table 9]
Figure 0003858997
[0147]
[Table 10]
Figure 0003858997
[0148]
Example 55
β-zeolite powder (H type, Si / 2Al = 25) 700 g, Idemitsu ZSM5 (H type, Si / 2Al = 30) powder 200 g, silica sol (solid content 20%) 100 g, pure 1500 g were put into a magnetic ball mill, The mixture was pulverized to obtain a slurry liquid. This slurry solution was used as a cordierite monolith carrier (300 cell / 6 mil, GSA 24.1 cm).2/ Cm3The slurry was attached to a hydraulic diameter of 1.3 mm), excess slurry in the cell was removed with an air stream, dried, and fired at 400 ° C. for 1 hour. The coating operation was repeated until the coating amount at this time was 150 g / L after firing to obtain catalyst-a.
[0149]
Alumina powder containing 3 mol% of Ce was impregnated with a dinitrodiamine palladium aqueous solution or sprayed with high-speed stirring, dried at 150 ° C. for 24 hours, calcined at 400 ° C. for 1 hour, then calcined at 600 ° C. for 1 hour, Pd A supported alumina powder (powder a) was obtained. This powder a had a Pd concentration of 6.23% by weight. The powder a may contain lanthanum, zirconium, neodymium and the like.
[0150]
A cerium oxide powder containing 1 mol% La and 32 mol% Zr is impregnated with a dinitrodiamine palladium aqueous solution or sprayed at high speed with stirring, dried at 150 ° C. for 24 hours, calcined at 400 ° C. for 1 hour, and then at 600 ° C. Calcination was performed for 1 hour to obtain Pd-supported cerium oxide powder (powder b). The Pd concentration of this powder a was 2.0% by weight.
[0151]
562 g of the above Pd-supported alumina powder (powder a), 288 g of Pd-supported cerium oxide powder (powder b), 950 g of nitric acid acidic alumina sol (a sol obtained by adding 10 wt% nitric acid to 10 wt% boehmite alumina) and 1000 g of pure water was put into a magnetic ball mill, mixed and ground to obtain a slurry liquid. The slurry liquid was adhered to the coat catalyst-a, excess slurry in the cell was removed with an air stream, dried, fired at 400 ° C. for 1 hour, a coat layer weight of 60 g / L was applied, and catalyst-b Got.
[0152]
An alumina powder containing 3% by weight of Zr is impregnated with an aqueous rhodium nitrate solution or sprayed with high-speed stirring, dried at 150 ° C. for 24 hours, calcined at 400 ° C. for 1 hour, and then calcined at 600 ° C. for 1 hour. A supported alumina powder (powder c) was obtained. The Rh concentration of this powder c was 1.25% by weight.
[0153]
366 g of the above Rh-supported alumina powder (powder c), 300 g of zirconium oxide powder containing 1 mol% of La and 20 mol% of Ce, and 1135 g of nitric acid acidic alumina sol were charged into a magnetic ball mill and mixed and pulverized to obtain a slurry liquid. The slurry was adhered to the coated catalyst-b, the excess slurry in the cell was removed by air flow, dried, calcined at 400 ° C. for 1 hour, coated with a coat layer weight of 40 g / L to obtain a catalyst. It was.
The cerium oxide powder and alumina powder may contain lanthanum, neodymium and the like.
Next, a barium acetate solution was attached to the catalyst component-supported cordierite monolith support, and then calcined at 400 ° C. for 1 hour to contain 10 g / L as BaO.
[0154]
Example 56
Exhaust gas purification catalyst was prepared in the same manner as in Example 1 except that 500 g of β-zeolite powder (H type, Si / 2Al = 25) and Idemitsu ZSM5 (H type, Si / 2Al = 30) powder 400 g were used. Obtained.
[0155]
Example 57
Idemitsu-made ZSM5 (H-type, Si / 2Al = 30) powder is sequentially impregnated with Ag, P, dried and fired to support Ag-P-supported ZSM5 powder (each metal concentration 0.2 wt%, total metal concentration 0. 4 wt.%) And β-zeolite powder (supported by Ag-P) impregnated with β-zeolite (H type, Si / 2Al = 25) by successive impregnation, drying and firing (each metal concentration 0.2 wt.%) Exhaust gas purification catalyst was obtained in the same manner as in Example 1 except that the total metal concentration was 0.4 wt%.
[0156]
Example 58
Pd-Mg-Ca-La-supported by successive impregnation, drying, and firing of Pd, Mg, Ca, Y, La, Nd, B, and Zr into Idemitsu ZSM5 (H type, Si / 2Al = 30) powder Nd-B-Zr-supported ZSM5 powder (each metal concentration 0.05 wt%, total metal concentration 0.4 wt%), β-zeolite (H type, Si / 2Al = 25), Sr, Ba, Ag, Ce , Nd and P were sequentially impregnated, dried, and fired, except that Mg, Y, Nd and Zr-supported β-zeolite powder (each metal concentration 0.05% by weight, total metal concentration 0.3% by weight) was used. In the same manner as in Example 1, an exhaust gas purification catalyst was obtained.
[0157]
Comparative Example 27
An exhaust gas purification catalyst was obtained in the same manner as in Example 55 except that 900 g of Idemitsu ZSM5 (H type, Si / 2Al = 30) powder was used.
[0158]
Comparative Example 28
Exhaust gas purification catalyst was obtained in the same manner as in Example 59, except that 900 g of β-zeolite powder (H type, Si / 2Al = 25) powder was used.
[0159]
【The invention's effect】
Hereinafter, the effects of the first invention will be described generally.
(1) Optimization of zeolite species
In the HC adsorption catalyst using zeolite, since there is a correlation between the HC species distribution in the exhaust gas and the pore diameter of the zeolite, it is necessary to select a zeolite having an optimum pore diameter. Previously, MFI (ZSM5) was used as the main component and zeolites with other pore sizes (for example, USY) were blended to adjust the pore distribution. -Since the desorption characteristics are different, there is a problem that the adsorption of the exhaust gas HC species is insufficient.
In the present invention, by adopting β-zeolite having two kinds of pore diameters and excellent durability as a main component, there is little distortion due to durability, and the pore distribution can be widely maintained from the initial stage to after the end, Adsorption / desorption characteristics are improved compared to conventional methods. Further, by combining two or more kinds of zeolites, an effect of further widening the distribution of zeolite pore diameters can be obtained.
That is, in the present invention, since mordenite is used as a seed crystal of ZSM5, the depth inside the pore is wider than that of normal ZSM5. When this ZSM5 is used as an HC adsorbing material, the diffusion rate of HC into the pores is slow (if HC with a large molecular diameter comes to the entrance of the pores, the diffusion of other HCs is inhibited, and cold is efficiently performed in a short time. Adsorption performance is inferior because HC cannot be adsorbed). However, once HC diffuses into the pores, it becomes difficult to escape to the outside (desorption is slow). In the present invention, by combining ZSM5 and β-zeolite, an HC adsorbent for automobiles having excellent adsorption / desorption characteristics has been developed.
[0160]
(2) Optimization of ternary precious metal species (catalyst component species)
Conventionally, specifications in which noble metal species such as Rh, Pt, and Pd coexist in the same layer, specifications in which the Rh layer and the Pd layer are separately applied, and the like have been proposed.
In the present invention, a coexistence layer of Pd and Rh is provided on the zeolite layer, or a Pd layer is provided on the zeolite layer, and an Rh layer is provided thereon, and Pt can be added to one or both layers.
By providing a Pd layer with excellent HC low-temperature activity on the zeolite, HC desorbed from the zeolite can be preferentially purified. Rh coexists in the Pd layer, or an Rh layer is provided on the Pd layer. Even if a gas slightly shifted to a rich atmosphere from the air-fuel ratio flows, HC, CO, and NOx can be purified in a well-balanced manner. Furthermore, the addition of Pt can improve the poisoning resistance.
[0161]
(3) Optimization of coat layer structure of zeolite layer + ternary precious metal layer
Conventionally, the ratio of the coating layer between the zeolite layer (HC adsorbing material layer) and the ternary layer (catalyst component layer) and the GSA of the monolith support carrying the coating layer have not been particularly presented. If the structure of the layer and the ternary layer is not optimal, there is a problem that the cycle of HC adsorption / desorption / purification cannot be performed effectively.
In the present invention, the coating layer ratio of the zeolite layer and the ternary layer is set to a ratio of 9: 1 to 1: 4 by weight, and further, the monolithic carrier GSA provided with the coating layer is 10 cm.2/ Cm3~ 35cm2/ Cm3By defining in this range, the HC adsorption / desorption / purification has a good balance. That is, if the proportion of the ternary layer is too large with respect to the zeolite layer, gas diffusion to the zeolite layer disposed in the lower layer is deteriorated, and sufficient adsorption performance commensurate with the amount of zeolite cannot be obtained. On the other hand, when the proportion of the ternary layer is small, the oxidation performance of the desorbed HC and the exhaust gas purification performance cannot be sufficiently obtained. Moreover, if GSA becomes too large, the HC holding power of the zeolite layer becomes small, and sufficient purification performance cannot be obtained with the ternary layer disposed on the upper part. Also, if GSA is small, exhaust gas purification performance cannot be obtained sufficiently.
[0162]
The exhaust gas purifying catalyst according to claim 1 can perform the purification performance of HC, CO, and NOx in a well-balanced manner. Furthermore, in addition to the above effects, the HC purifying performance can be improved by controlling the diffusivity (speed) of the exhaust gas that passes through the monolith carrier cell and diffuses into the coat layer. Furthermore, HC desorption can be delayed to improve the HC purification performance.
[0163]
In addition to the above effects, the exhaust gas purification catalyst according to claim 4 can further delay the desorption of HC and improve the hydrocarbon purification performance.
[0164]
In addition to the above effects, the exhaust gas purifying catalyst according to claim 5 can further delay the desorption of HC and improve the hydrocarbon purification performance.
[0165]
The exhaust gas purifying catalyst according to claim 6 can perform the purification performance of HC, CO, and NOx in a well-balanced manner. Furthermore, in addition to the above effects, the HC purifying performance can be improved by controlling the diffusivity (speed) of the exhaust gas that passes through the monolith carrier cell and diffuses into the coat layer.
[0166]
In addition to the above effects, the exhaust gas purifying catalyst according to claim 7 can further improve the HC purification performance.
[0167]
The exhaust gas purifying catalyst according to claim 8 can further improve the HC purification performance in addition to the above effects.
Furthermore, since an alkali metal or alkaline earth metal is contained, the effect of further improving the low-temperature activity and the purification performance is exhibited in order to suppress sintering of the noble metal.
[0168]
The exhaust gas purifying catalyst according to claim 9 can effectively adsorb various types of HC in addition to the above effects.
[0169]
In addition to the above effects, the exhaust gas purifying catalyst according to claim 10 has a wide range of HC species that can be adsorbed, and can effectively adsorb more types of HC.
[0170]
In addition to the above effects, the exhaust gas purifying device according to claim 11 combines various HC adsorbents having different pore diameters to adsorb HC species discharged at a low temperature immediately after starting the engine with high efficiency. Adsorption ability can be improved.
[0171]
In addition to the above effects, the exhaust gas purifying catalyst according to claim 12 can further improve the adsorption characteristics and desorption suppression ability.
[0172]
The exhaust gas purifying catalyst according to claim 13 adsorbs HC species discharged at a low temperature immediately after engine startup with high efficiency, and further, since the structural change and performance deterioration after durability are small, the desorption rate is delayed. Can be achieved.
[0173]
The exhaust gas purifying catalyst according to claim 14 can further improve the poisoning resistance in addition to the above effects.
[0174]
In addition to the above effects, the exhaust gas purification catalyst according to claim 15 can further improve the HC purification performance.
[0175]
In addition to the above effects, the exhaust gas purifying catalyst according to claim 16 can suppress a decrease in catalyst performance due to a change in chemical state of rhodium after durability.
[0176]
In addition to the above effects, the exhaust gas purifying catalyst according to claim 17 can suppress a decrease in catalyst performance due to reduction of the catalyst component.
[0177]
In addition to the above effects, the exhaust gas purifying catalyst according to claim 18 can suppress the structural stability after durability and the deterioration of the catalyst performance due to the change in the chemical state of palladium.
[0178]
The exhaust gas purifying device according to claim 19 is a combination of a Pd-containing catalyst having excellent low-temperature activity and the HC adsorption catalyst of the present invention, and the amount of HC adsorbed by the HC adsorption catalyst By setting it to 10% to 70%, the purification performance of desorbed HC can be improved.
[0179]
The exhaust gas purifying device according to claim 20 is a combination of a Pd-containing catalyst excellent in low-temperature activity and an HC adsorption catalyst, and the amount of HC adsorbed by the HC adsorption catalyst is 30% to the amount of HC discharged at a low temperature immediately after engine start By setting it to 70% and further combining means for promoting early activation of the following exhaust gas purification catalyst, the amount of HC adsorbed by the HC adsorption catalyst can be further reduced, and the desorption HC purification performance can be improved.
[0180]
The exhaust gas purifying apparatus according to claim 21 is the exhaust gas purifying apparatus according to claim 22, wherein the Pd-containing catalyst (three-way catalyst) disposed in front of the HC adsorption catalyst can be activated at an early stage. The purification performance of HC from which the catalyst is desorbed can be improved.
[0181]
The exhaust gas purifying device according to claim 22 is the exhaust gas purifying device according to claim 22, wherein the Pd-containing catalyst (three-way catalyst) arranged in the preceding stage of the HC adsorption catalyst can be activated early, and the HC adsorption The purification performance of HC from which the catalyst is desorbed can be improved.
[0182]
The exhaust gas purifying apparatus according to claim 23 can achieve early activation of the Pd-containing catalyst (three-way catalyst) disposed upstream of the HC adsorption catalyst and improvement of the purification performance. Can be improved.
[0183]
In addition to the above effects, the exhaust gas purifying apparatus according to the twenty-fourth aspect can suppress the temperature drop of the catalyst component layer and can efficiently purify the desorbed HC.
[0184]
In addition to the above effects, the exhaust gas purifying device according to claim 25 can suppress the temperature drop of the catalyst component layer and can efficiently purify the desorbed HC.
[0185]
In addition to the above effects, the exhaust gas purification device according to the twenty-sixth aspect can further suppress the temperature drop of the catalyst component layer and improve the purification performance, and can efficiently desorb the desorbed HC.
[0186]
In addition to the above effects, the exhaust gas purifying device according to claim 27 can efficiently purify unpurified low-concentration exhaust gas components (HC, CO, NOx) with the pre-stage Pd-containing catalyst.
[0187]
In addition to the above effects, the exhaust gas purifying device according to the twenty-eighth aspect can further improve the adsorption / desorption / purification performance of HC, and can efficiently desorb the desorbed HC.
[0188]
In addition to the above effects, the exhaust gas purifying device according to the twenty-ninth aspect can further efficiently purify the desorbed HC.
[Brief description of the drawings]
FIG. 1A is a perspective view showing a washcoat layer structure of a catalyst of the present invention. (B) is the partial expansion part of (a).
FIG. 2 is a system (evaluation system 1) diagram showing an exhaust system of an engine used for evaluating a catalyst of the present invention.
FIG. 3 is a system (evaluation system 2) diagram showing an exhaust system of an engine used for evaluating the catalyst of the present invention.
FIG. 4 is a system (evaluation system 3) diagram showing an exhaust system of an engine used for evaluating the catalyst of the present invention.
FIG. 5 is a system (evaluation system 4) diagram showing an exhaust system of an engine used for evaluating the catalyst of the present invention.
FIG. 6 is a system (evaluation system 5) diagram showing an exhaust system of an engine used for evaluating a catalyst of the present invention.
FIG. 7 is a system (evaluation system 6) diagram showing an exhaust system of an engine used for evaluating the catalyst of the present invention.
FIG. 8 is a system (evaluation system 7) diagram showing an exhaust system of an engine used for evaluating a catalyst of the present invention.
FIG. 9 is a graph (map) showing the relationship between the amount of precious metal (PM) for each engine type and the remaining rate of engine outmission.
FIG. 10 is a flow sheet for creating a noble metal selection map for a three-way catalyst.
FIG. 11 is a graph showing the relationship between engine out-emission remaining rate and time.
FIG. 12 is a flowchart for calculating a lean time.
[Explanation of symbols]
1 Hydrocarbon adsorption layer (HC adsorbent layer)
2 Three-way catalyst layer (catalyst component layer)
3 Gas passage
4 Three-way catalyst
5 HC adsorption catalyst

Claims (27)

GSAが10cm/cm〜35cm/cmのモノリス担体上に、炭化水素吸着材を含むHC吸着材層と触媒成分を含む触媒成分層をこの順でコートして成る排気ガス浄化用触媒であって、
上記HC吸着材層の炭化水素吸着材がゼオライトを主成分とし、
上記触媒成分層がパラジウム(Pd)、白金(Pt)及びロジウム(Rh)から成る群より選ばれた少なくとも一種の貴金属を触媒成分として含むとともに、
上記触媒成分層に、Zr、Nd及びLaから成る群より選ばれた一種を金属換算で1〜40モル%、Ceを60〜98モル%含むセリウム酸化物と、Pdが含有され、
上記HC吸着材層と上記触媒成分層との重量比が9:1〜1:4であり、
上記モノリス担体のセル内の平坦部における上記HC吸着材層と上記触媒成分層の厚みの合計である、コート層厚みが30μm〜400μmである、ことを特徴とする排気ガス浄化用触媒。
GSA is on the monolithic support of 10cm 2 / cm 3 ~35cm 2 / cm 3, HC adsorbent layer and the exhaust gas purifying catalyst of the catalyst component layer formed by coating in this order containing a catalyst component comprising a hydrocarbon adsorbent Because
The hydrocarbon adsorbent of the HC adsorbent layer is mainly composed of zeolite,
Containing Mutotomoni of the catalyst component layer of palladium (Pd), platinum (Pt) and at least one noble metal selected from the group consisting of rhodium (Rh) as catalyst components,
In the catalyst component layer, a cerium oxide containing 1 to 40 mol% in terms of metal and 60 to 98 mol% of Ce selected from the group consisting of Zr, Nd and La, and Pd are contained,
The weight ratio of the HC adsorbent layer to the catalyst component layer is 9: 1 to 1: 4;
An exhaust gas purifying catalyst, wherein the coating layer thickness is 30 μm to 400 μm, which is the sum of the thicknesses of the HC adsorbent layer and the catalyst component layer in the flat portion in the cell of the monolith carrier.
GSAが10cm/cm〜35cm/cmのモノリス担体上に、炭化水素吸着材を含むHC吸着材層と触媒成分を含む触媒成分層をこの順でコートして成る排気ガス浄化用触媒であって、
上記HC吸着材層の炭化水素吸着材がゼオライトを主成分とするとともに、
上記HC吸着材層に、Ce、Nd及びLaから成る群より選ばれた少なくとも一種を金属換算で1〜40モル%含むジルコニウム酸化物と、Rhが含有され、
上記触媒成分層がパラジウム(Pd)、白金(Pt)及びロジウム(Rh)から成る群より選ばれた少なくとも一種の貴金属を触媒成分として含み、
上記HC吸着材層と上記触媒成分層との重量比が9:1〜1:4であり、
上記モノリス担体のセル内の平坦部における上記HC吸着材層と上記触媒成分層の厚みの合計である、コート層厚みが30μm〜400μmである、ことを特徴とする排気ガス浄化用触媒。
GSA is on the monolithic support of 10cm 2 / cm 3 ~35cm 2 / cm 3, HC adsorbent layer and the exhaust gas purifying catalyst of the catalyst component layer formed by coating in this order containing a catalyst component comprising a hydrocarbon adsorbent Because
The hydrocarbon adsorbent of the HC adsorbent layer is mainly composed of zeolite ,
In the HC adsorbent layer, zirconium oxide containing 1 to 40 mol% in terms of metal of at least one selected from the group consisting of Ce, Nd and La, and Rh are contained,
The catalyst component layer includes at least one noble metal selected from the group consisting of palladium (Pd), platinum (Pt) and rhodium (Rh) as a catalyst component;
The weight ratio of the HC adsorbent layer to the catalyst component layer is 9: 1 to 1: 4;
An exhaust gas purifying catalyst, wherein the coating layer thickness is 30 μm to 400 μm, which is the sum of the thicknesses of the HC adsorbent layer and the catalyst component layer in the flat portion in the cell of the monolith carrier.
上記モノリス担体のセル内の平坦部における上記HC吸着材層と上記触媒成分層の厚みの合計である、コート層厚みが30μm〜400μmである、ことを特徴とする請求項1又は2に記載の排気ガス浄化用触媒。The coating layer thickness of 30 μm to 400 μm, which is the sum of the thicknesses of the HC adsorbent layer and the catalyst component layer in the flat portion in the cell of the monolithic carrier, is according to claim 1 or 2 . Exhaust gas purification catalyst. 上記モノリス担体の1平方インチ当たりのセル数が50〜600個であることを特徴とする請求項1〜3のいずれか1つの項に記載の排気ガス浄化用触媒。  The exhaust gas purification catalyst according to any one of claims 1 to 3, wherein the number of cells per square inch of the monolith support is 50 to 600. 上記モノリス担体の水力直径が0.75mm〜5mmであることを特徴とする請求項1〜4のいずれか1つの項に記載の排気ガス浄化用触媒。  The exhaust gas purification catalyst according to any one of claims 1 to 4, wherein the monolithic carrier has a hydraulic diameter of 0.75 mm to 5 mm. 上記ゼオライトがβ−ゼオライトであることを特徴とする請求項1〜5のいずれか1つの項に記載の排気ガス浄化用触媒。The exhaust gas purifying catalyst according to any one of claims 1 to 5 , wherein the zeolite is β-zeolite. 上記HC吸着材層と上記触媒成分層との重量比が5:1〜1:2であることを特徴とする請求項に記載の排気ガス浄化用触媒。The exhaust gas purification catalyst according to claim 6 , wherein a weight ratio of the HC adsorbent layer and the catalyst component layer is 5: 1 to 1: 2. 上記ゼオライトがβ−ゼオライトであり、上記触媒成分層がPdとRhを含有し、上記HC吸着材層と上記触媒成分層との重量比が5:1〜1:2であり、更にアルカリ金属及び/又はアルカリ土類金属を上記HC吸着材層及び/又は上記触媒成分層に含有させて成ることを特徴とする請求項1〜5のいずれか1つの項に記載の排気ガス浄化用触媒。  The zeolite is β-zeolite, the catalyst component layer contains Pd and Rh, the weight ratio of the HC adsorbent layer and the catalyst component layer is 5: 1 to 1: 2, The exhaust gas purifying catalyst according to any one of claims 1 to 5, wherein / or alkaline earth metal is contained in the HC adsorbent layer and / or the catalyst component layer. 上記β−ゼオライトは、Si/2Al比が10〜500のH型β−ゼオライトであることを特徴とする請求項6〜8のいずれか1つの項に記載の排気ガス浄化用触媒。  The exhaust gas purification catalyst according to any one of claims 6 to 8, wherein the β-zeolite is H-type β-zeolite having a Si / 2Al ratio of 10 to 500. 上記HC吸着材層が、更にMFIゼオライト、Y型ゼオライト、USYゼオライト、A型ゼオライト、X型ゼオライト、モルデナイト、フェリエライト、AlPO及びSAPOから成る群より選ばれた少なくとも一種を含有することを特徴とする請求項9に記載の排気ガス浄化用触媒。The HC adsorbent layer further contains at least one selected from the group consisting of MFI zeolite, Y-type zeolite, USY zeolite, A-type zeolite, X-type zeolite, mordenite, ferrierite, AlPO 4 and SAPO. The exhaust gas purifying catalyst according to claim 9. 上記HC吸着材層が、MFIゼオライト、Y型ゼオライト、USYゼオライト及びモルデナイトから成る群より選ばれた少なくとも一種を5〜45重量%含有することを特徴とする請求項10に記載の排気ガス浄化用触媒。  11. The exhaust gas purifying apparatus according to claim 10, wherein the HC adsorbent layer contains 5 to 45% by weight of at least one selected from the group consisting of MFI zeolite, Y-type zeolite, USY zeolite, and mordenite. catalyst. 上記HC吸着材層のゼオライトに、Pd,Mg,Ca,Sr,Ba,Ag,Y,La,Ce,Nd,P,B及びZrから成る群より選ばれた少なくとも一種が含有されることを特徴とする請求項1〜11のいずれか1つの項に記載の排気ガス浄化用触媒。  The zeolite of the HC adsorbent layer contains at least one selected from the group consisting of Pd, Mg, Ca, Sr, Ba, Ag, Y, La, Ce, Nd, P, B, and Zr. The exhaust gas purifying catalyst according to any one of claims 1 to 11. 上記炭化水素吸着材が、Pt、Pd、P、B、Mg及びCaから成る群より選ばれた少なくとも一種を含有することを特徴とする請求項1〜12のいずれか1つの項に記載の排気ガス用触媒。  The exhaust according to any one of claims 1 to 12, wherein the hydrocarbon adsorbent contains at least one selected from the group consisting of Pt, Pd, P, B, Mg, and Ca. Gas catalyst. 上記触媒成分層に、更にPtを共存させたことを特徴とする請求項8に記載の排気ガス浄化用触媒。  9. The exhaust gas purifying catalyst according to claim 8, wherein Pt further coexists in the catalyst component layer. 上記触媒成分層に、更に、Ce、Zr及びLaから成る群より選ばれた少なくとも一種を金属換算で1〜40モル%含むジルコニウム酸化物が含有されることを特徴とする請求項1〜14のいずれか1つの項に記載の排気ガス浄化用触媒。In the catalyst component layer, further, Ce, of claims 1 to 14 in which at least one selected from the group consisting of Zr and La, characterized in that zirconium oxide containing 1 to 40 mol% in terms of metal is contained The exhaust gas purifying catalyst according to any one of the items. 上記触媒成分層に、Ce、Zr及びLaから成る群より選ばれた少なくとも一種を金属換算で1〜10モル%含むアルミナと、
Zr、Nd及びLaから成る群より選ばれた一種を金属換算で1〜40モル%含むセリウム酸化物が、更に含有されることを特徴とする1〜15のいずれか1つの項に記載の排気ガス浄化用触媒。
In the catalyst component layer, alumina containing at least one selected from the group consisting of Ce, Zr and La in terms of metal in an amount of 1 to 10 mol%,
The exhaust according to any one of 1 to 15 , further comprising a cerium oxide containing 1 to 40 mol% of a metal selected from the group consisting of Zr, Nd and La in terms of metal. Gas purification catalyst.
請求項1〜16のいずれか1つの項に記載の排気ガス浄化用触媒の前段に、Pd、PdとPt、又はPdとRhを含みPd担持濃度が4〜20重量%であるPd担持粉末を含有し、触媒1L当たりのPd担持量が100g/cf(3.5g/L)〜1000g/cf(35.4g/L)であるPd含有触媒を配置し、
上記排気ガス浄化用触媒が吸着する炭化水素量を、この排気ガス浄化用触媒の炭化水素飽和吸着量の70%以下に設定したことを特徴とする排気ガス浄化装置。
A Pd-supported powder containing Pd, Pd and Pt, or Pd and Rh and having a Pd-supporting concentration of 4 to 20% by weight before the exhaust gas purifying catalyst according to any one of claims 1 to 16. Containing a Pd-containing catalyst having a Pd loading per liter of catalyst of 100 g / cf (3.5 g / L) to 1000 g / cf (35.4 g / L),
An exhaust gas purification apparatus, wherein the amount of hydrocarbon adsorbed by the exhaust gas purification catalyst is set to 70% or less of the saturated hydrocarbon adsorption amount of the exhaust gas purification catalyst.
上記Pd担持粉末のPd担持濃度が4〜15重量%、上記Pd含有触媒のPd担持量が100g/cf(3.5g/L)〜500g/cf(17.7g/L)であることを特徴とする請求項17に記載の排気ガス浄化装置。The Pd-supported powder has a Pd-supporting concentration of 4 to 15% by weight, and the Pd-containing catalyst has a Pd-supporting amount of 100 g / cf (3.5 g / L) to 500 g / cf (17.7 g / L). The exhaust gas purification device according to claim 17 . 自動車エンジンに装着され、このエンジン始動時(ファーストアイドル)の点火時期を、エンジン始動直後から40秒以下の時間、上死点から1°〜30°遅角することにより、排気温度の上昇を速め、
上記Pd含有触媒の活性化を速めることを特徴とする請求項17又は18に記載の排気ガス浄化装置。
Installed in an automobile engine, the ignition timing at the time of engine start (first idle) is retarded by 1 ° to 30 ° from top dead center for a period of 40 seconds or less immediately after engine start, thereby speeding up the exhaust temperature rise. ,
The exhaust gas purification device according to claim 17 or 18 , wherein the activation of the Pd-containing catalyst is accelerated.
自動車エンジンに装着され、このエンジン始動直後から60秒間、空気流量10L/分以上の空気を供給し、エンジン始動直後のコールド空燃比をA/F=12〜18に希薄化することによって、上記Pd含有触媒の活性化を速めることを特徴とする請求項17又は18に記載の排気ガス浄化装置。It is mounted on an automobile engine, and air is supplied at an air flow rate of 10 L / min or more for 60 seconds immediately after the engine is started, and the cold air-fuel ratio immediately after the engine is started is diluted to A / F = 12 to 18, thereby reducing the Pd The exhaust gas purification device according to claim 17 or 18 , wherein the activation of the contained catalyst is accelerated. 上記排気ガス浄化用触媒からの炭化水素の脱離が開始する直前に、この排気ガス浄化用触媒の上流又はこの排気ガス浄化用触媒中に、酸素及び/又は空気を添加することを特徴とする請求項17〜20のいずれか1つの項に記載の排気ガス浄化装置。Immediately before the start of desorption of hydrocarbons from the exhaust gas purification catalyst, oxygen and / or air is added upstream of the exhaust gas purification catalyst or into the exhaust gas purification catalyst. The exhaust gas purification device according to any one of claims 17 to 20 . 上記排気ガス浄化用触媒の入口近傍に温度検出器、出口近傍にA/F検知器を付加し、この温度検出器の検出値が110℃以上になった時に上記A/F検知器が14.6以上になるように、上記排気ガス浄化用触媒の上流又はこの排気ガス浄化用触媒中に、酸素及び/又は空気を添加することを特徴とする請求項21に記載の排気ガス浄化装置。A temperature detector is added in the vicinity of the inlet of the exhaust gas purification catalyst, and an A / F detector is added in the vicinity of the outlet. When the detected value of the temperature detector becomes 110 ° C. or higher, the A / F detector is 14. The exhaust gas purification apparatus according to claim 21 , wherein oxygen and / or air is added upstream of the exhaust gas purification catalyst or in the exhaust gas purification catalyst so as to be 6 or more. 上記排気ガス浄化用触媒の触媒成分層中に温度検出器、出口近傍にA/F検知器を付加し、この温度検出器の検出値が110℃以上になった時に、上記A/F検知器が14.6以上になるように、上記排気ガス浄化用触媒の上流又はこの排気ガス浄化用触媒中に、酸素及び/又は空気を添加することを特徴とする請求項21に記載の排気ガス浄化装置。A temperature detector is added to the catalyst component layer of the exhaust gas purification catalyst, and an A / F detector is added in the vicinity of the outlet. When the detected value of the temperature detector reaches 110 ° C. or higher, the A / F detector The exhaust gas purification according to claim 21 , wherein oxygen and / or air is added upstream of the exhaust gas purification catalyst or in the exhaust gas purification catalyst so that the gas becomes 14.6 or more. apparatus. 上記排気ガス浄化用触媒の入口近傍と出口近傍にA/F検出器を付加し、この入口近傍と出口近傍に設置したA/F検知器の検出値から炭化水素の脱離が検知された時に、上記出口近傍に配置したA/F検知器がA/F=14.6以上になるように、上記排気ガス浄化用触媒の上流又はこの排気ガス浄化用触媒中に、酸素及び/又は空気を添加することを特徴とする請求項21に記載の排気ガス浄化装置。When an A / F detector is added in the vicinity of the inlet and the outlet of the exhaust gas purifying catalyst, and hydrocarbon desorption is detected from the detection values of the A / F detectors installed in the vicinity of the inlet and the outlet. Then, oxygen and / or air are introduced upstream of the exhaust gas purification catalyst or into the exhaust gas purification catalyst so that the A / F detector disposed in the vicinity of the outlet becomes A / F = 14.6 or more. The exhaust gas purification device according to claim 21 , wherein the exhaust gas purification device is added. 上記Pd含有触媒及び上記排気ガス浄化用触媒がRhを含み、このPd含有触媒のRh含有量がこの排気ガス浄化用触媒のRh含有量以下であることを特徴とする請求項17〜24のいずれか1つの項に記載の排気ガス浄化装置。Wherein the Pd-containing catalyst and the catalyst for the exhaust gas purification is Rh, any claim 17 to 24 in which Rh content of the Pd-containing catalyst is equal to or less than Rh content of the exhaust gas purifying catalyst The exhaust gas purifying device according to any one of the items. 上記排気ガス浄化用触媒の下流に、この排気ガス浄化用触媒と同一の他の排気ガス浄化用触媒を1個以上付加して成ることを特徴とする請求項19〜25のいずれか1つの項に記載の排気ガス浄化装置。26. One or more of the claims 19 to 25 , wherein one or more other exhaust gas purification catalysts identical to the exhaust gas purification catalyst are added downstream of the exhaust gas purification catalyst. The exhaust gas purifying device according to 1. 上記排気ガス浄化用触媒、1個以上の上記他の排気ガス浄化用触媒は、これらが装着されるエンジンからの距離が異なる位置に設けられることを特徴とする請求項26に記載の排気ガス浄化装置。27. The exhaust gas purification catalyst according to claim 26 , wherein the exhaust gas purification catalyst and the one or more other exhaust gas purification catalysts are provided at different positions from the engine to which they are mounted. apparatus.
JP2003072070A 1997-08-20 2003-03-17 Exhaust gas purification catalyst and exhaust gas purification device Expired - Lifetime JP3858997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003072070A JP3858997B2 (en) 1997-08-20 2003-03-17 Exhaust gas purification catalyst and exhaust gas purification device

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP9-223919 1997-08-20
JP22391997 1997-08-20
JP15119398 1998-06-01
JP10-151193 1998-06-01
JP2003072070A JP3858997B2 (en) 1997-08-20 2003-03-17 Exhaust gas purification catalyst and exhaust gas purification device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP23468098A Division JP3506316B2 (en) 1997-08-20 1998-08-20 Exhaust gas purification catalyst and exhaust gas purification device

Publications (2)

Publication Number Publication Date
JP2003290661A JP2003290661A (en) 2003-10-14
JP3858997B2 true JP3858997B2 (en) 2006-12-20

Family

ID=29254965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003072070A Expired - Lifetime JP3858997B2 (en) 1997-08-20 2003-03-17 Exhaust gas purification catalyst and exhaust gas purification device

Country Status (1)

Country Link
JP (1) JP3858997B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103459017A (en) * 2011-03-24 2013-12-18 优美科触媒日本有限公司 Catalyst for exhaust gas purification, method for producing same, and exhaust gas purification method using same
JP6077367B2 (en) * 2013-04-02 2017-02-08 株式会社キャタラー Exhaust gas purification catalyst

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH086582B2 (en) * 1986-10-31 1996-01-24 マツダ株式会社 Engine exhaust gas purification catalytic device
JPH0634923B2 (en) * 1987-03-14 1994-05-11 日本碍子株式会社 Ceramic honeycomb structure
JPH06327978A (en) * 1993-05-26 1994-11-29 Honda Motor Co Ltd Catalyst for purifying waste gas
JPH078755A (en) * 1993-06-25 1995-01-13 Toyota Central Res & Dev Lab Inc Exhaust gas purification device
JPH0797918A (en) * 1993-09-28 1995-04-11 Honda Motor Co Ltd Exhaust gas purifier of internal combustion engine
JP3052710B2 (en) * 1993-12-20 2000-06-19 日産自動車株式会社 Exhaust gas purification device
JP3190780B2 (en) * 1994-03-17 2001-07-23 出光興産株式会社 Hydrocarbon adsorption catalyst for exhaust gas purification
JP3842862B2 (en) * 1997-03-26 2006-11-08 日本碍子株式会社 Exhaust gas purification system
JP3506316B2 (en) * 1997-08-20 2004-03-15 日産自動車株式会社 Exhaust gas purification catalyst and exhaust gas purification device

Also Published As

Publication number Publication date
JP2003290661A (en) 2003-10-14

Similar Documents

Publication Publication Date Title
JP3489048B2 (en) Exhaust gas purification catalyst
JP3859940B2 (en) Exhaust gas purification catalyst and method for producing the same
US6047544A (en) Engine exhaust gas purification catalyst and exhaust gas purifier
JP4590733B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the catalyst
JP5590640B2 (en) Exhaust gas purification system
JP3724708B2 (en) Exhaust gas purification catalyst
JP3855266B2 (en) Exhaust gas purification catalyst
JP3904802B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3489049B2 (en) Exhaust gas purification catalyst
JP3506316B2 (en) Exhaust gas purification catalyst and exhaust gas purification device
EP0935055A2 (en) Device for purifying oxygen rich exhaust gas
US20030039597A1 (en) Close coupled catalyst with a SOx trap and methods of making and using the same
JP2003326170A (en) Exhaust gas purification catalyst, manufacturing method therefor, and exhaust gas purification method
WO2019219802A1 (en) Hydrocarbon trap catalyst
JP3965676B2 (en) Exhaust gas purification catalyst and exhaust gas purification system
KR20040090454A (en) Exhaust gas purifying catalyst and process for purifying exhaust gas
EP2145679A1 (en) Multifunctional Catalyst for Diesel Exhaust Gas Cleaning Applications and Method of its Preparation
JP3704701B2 (en) Exhaust gas purification catalyst
JP3842862B2 (en) Exhaust gas purification system
JP2001149787A (en) Exhaust gas purifying catalyst and manufacturing method therefor
JPH1113462A (en) Exhaust gas emission control device
JP3858997B2 (en) Exhaust gas purification catalyst and exhaust gas purification device
JPH1147596A (en) Catalyst for purifying exhaust gas
JP4222064B2 (en) Exhaust gas purification catalyst
JP3659028B2 (en) Exhaust gas purification device and method of using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060912

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 7

EXPY Cancellation because of completion of term