JP4576762B2 - Engine exhaust purification system - Google Patents

Engine exhaust purification system Download PDF

Info

Publication number
JP4576762B2
JP4576762B2 JP2001197561A JP2001197561A JP4576762B2 JP 4576762 B2 JP4576762 B2 JP 4576762B2 JP 2001197561 A JP2001197561 A JP 2001197561A JP 2001197561 A JP2001197561 A JP 2001197561A JP 4576762 B2 JP4576762 B2 JP 4576762B2
Authority
JP
Japan
Prior art keywords
temperature
way catalyst
exhaust
engine
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001197561A
Other languages
Japanese (ja)
Other versions
JP2003013830A (en
Inventor
元 小熊
健 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001197561A priority Critical patent/JP4576762B2/en
Publication of JP2003013830A publication Critical patent/JP2003013830A/en
Application granted granted Critical
Publication of JP4576762B2 publication Critical patent/JP4576762B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrical Control Of Ignition Timing (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はエンジンの排気浄化装置に関し、特に触媒担体に三元触媒層とHC吸着層とを形成した触媒コンバータを備えた排気浄化装置に関する。
【0002】
【従来の技術と解決すべき課題】
エンジンの冷間運転時の排気エミッション性能を改善するものとして、触媒担体上にHC吸着材と酸化触媒または三元触媒とを積層した多層構造の触媒コンバータが知られている。触媒の活性が不十分な冷間運転時にエンジンから排出された未燃燃料分はHC吸着層に一時的に吸着され、ある程度触媒コンバータの温度が上昇するとHCは吸着層から脱離して表層側の三元触媒層により酸化処理される。ただし、一般にHC吸着層からのHCの脱離温度は三元触媒層の活性開始温度よりも低いので、触媒が活性化する過程では脱離した一部のHCが酸化されることなく排出されてしまう。
【0003】
これに対して、特開平11-82003号公報には、HC吸着層からHCの脱離が開始されてから三元触媒が活性温度に達するまでの間に点火時期リタードや回転上昇制御を行うことにより排気温度を上昇させて三元触媒の活性化を促進するようにしたものが提案されている。しかしながら、このような排気温度制御によっても、三元触媒が活性化するまでの間のHC吸着層からのHCの脱離は抑えられないので、HCエミッション性能という観点からは改善の余地があった。
【0004】
本発明はこのような問題点に着目してなされたもので、エンジン始動時にHC吸着層からのHCの脱離を確実に抑止することのできる排気浄化装置を提供することを目的としている。
【0005】
【課題を解決するための手段】
第1の発明は、触媒担体と該担体を被覆する三元触媒層との間にHC吸着層を形成した触媒コンバータをエンジン排気通路に介装した排気浄化装置において、前記触媒コンバータに三元触媒層からHC吸着層への伝熱を抑制する熱伝達抑制手段を設ける。また、エンジンの冷間始動時など三元触媒層が活性温度に満たないときには、前記HC吸着層がHC脱離開始温度に達する以前に前記三元触媒層が活性温度に達するように排気温度を制御する排気温度制御手段とを備える。
【0006】
第2の発明は、前記第1の発明の熱伝達抑制手段として、三元触媒層とHC吸着層との間に断熱材からなる中間層を形成する。
【0007】
第3の発明は、前記第1の発明の熱伝達抑制手段として、三元触媒層に比較してHC吸着層の厚さを大とした構成を適用する。
【0009】
の発明は、前記第1から第3の発明における熱伝達抑制手段として、三元触媒層に対する層間接触面積を小とした構成を適用する。
【0010】
の発明は、前記第1の発明の排気温度制御手段を、火花点火式エンジンの点火時期を遅らせる点火時期リタード制御または回転数を上昇させる回転数上昇制御の少なくとも何れか一方によりエンジン始動後の排気温度を上昇させるように構成する。
【0011】
の発明は、前記第1または第の発明の排気温度制御手段を、活性温度付近に達して以降は三元触媒層が該活性温度付近の温度に維持されるように排気温度を制御するように構成する。
【0012】
の発明は、前記第1または第の発明の排気温度制御手段を、活性温度付近に達して以降はHC吸着層が脱離開始温度に達することを遅延させられるように排気温度を制御するように構成する。
【0013】
【作用・効果】
前記第1の発明以下の各発明によれば、例えば第2〜第5の発明に示したような熱伝達抑制手段により三元触媒層からHC吸着層への熱伝達を抑制したことから、エンジン始動後の暖機運転時などに排気温度を上昇させることでHC吸着層がHC脱離温度に達する以前に三元触媒層を活性温度にまで昇温させることが可能である。これにより、低温条件下でのHC排出を確実に抑制して排気エミッション性能を改善することができる。
【0014】
熱伝達抑制手段としては、第2の発明として示したように三元触媒層とHC吸着層との間に断熱材からなる中間層を形成して三元触媒層からの熱が直接的にHC吸着層に伝わらないようにする。あるいは、第3の発明として示したようにHC吸着層の厚さを三元触媒層に比較して大とする。これによりHC吸着層の熱容量が増大して三元触媒層からの熱伝達により昇温しにくくなると共に三元触媒層は昇温しやすくなるので、HC吸着層がHC脱離温度に達する前に三元触媒層を速やかに活性温度にまで高めることができる。また、熱伝達抑制手段として、第4の発明として示したように三元触媒層に対する層間接触面積を小さくすることによっても、三元触媒層からHC吸着層への熱伝達を抑制することができる。
【0015】
三元触媒層の活性化のために排気温度を上昇させる制御としては、第の発明として示したように点火時期リタードまたは回転数上昇の何れか一方または双方の制御を実行する。点火時期を遅らせると排気熱損失の増大に伴い排気温度が上昇する。また回転数を高めれば単位時間当たりの燃焼ガス量ないしは排気流量が増えることから排気温度が上昇する。
【0016】
または第の発明として示したように、活性温度に達して以降は三元触媒の温度が当該活性温度付近に維持されるように、あるいはHC吸着層の温度が脱離開始温度に達するのを遅延させるように、点火時期リタードや回転数上昇の制御を抑制することにより、余剰な加熱によるHC吸着層の温度上昇を抑えてHCの脱離速度を低減できるので、脱離HCと三元触媒層の触媒貴金属とが酸化反応を起こす頻度が増えてHC浄化率をより向上させることができる。
【0017】
【実施形態】
以下、本発明の実施形態を図面に基づいて説明する。図1または図2は、本実施形態に係るガソリンエンジンの概略構成を示している。図において、1はコントローラであり、エンジン2の燃料噴射量、点火時期、排気温度を制御する機能を有する。エンジン2の吸気通路3には吸入空気量を検出するエアフローメータ4およびスロットルバルブ5が設けられ、吸気通路3には燃料噴射弁6が設けられている。燃料噴射弁6には図示しない燃料供給系統により一定圧力で燃料が供給され、その開弁時間に応じた量の燃料を噴射するように構成されている。コントローラ1により演算される燃料噴射量は、前記燃料噴射弁6の開弁時間に相当する噴射パルス幅として算出される。
【0018】
7はエンジンクランクシャフトの回転角度およびエンジン回転数を検出するためのクランク角センサ、8はエンジン冷却水温を検出する水温センサ、9は排気通路10にて排気中の酸素濃度を検出する空燃比センサである。11は排気通路10に介装された触媒コンバータであり、これは触媒担体上にHC吸着層と三元触媒層とを積層した構成のHC吸着触媒を備えている。12は前記三元触媒部分の温度を検出する触媒温度センサである。図2に示したように前記HC吸着触媒11の上流側に三元触媒からなる他の触媒コンバータ13を介装した構成を適用することもできる。14は点火プラグであり、コントローラ1からの信号に基づき設定された点火時期に燃料への点火を行う。
【0019】
前記触媒コンバータ11の触媒層の構成例を図3以下に示す。図3に示した触媒の実施形態は、ハニカム触媒担体21の表面にゼオライトなどからなるHC吸着層22が被覆され、さらにその上に三元触媒層23が被覆されている。前記HC吸着層22は図示したように三元触媒層23に比較して厚さが大になっており、これによりHC吸着層22の熱容量を大きくして温度が上昇しにくくなるようにしている。図4は他の実施形態であり、これはハニカム触媒担体21の表面に被覆するHC吸着層22と三元触媒層23との間に断熱材からなる中間層24を形成し、中間層24により三元触媒層23からHC吸着層22への直接の熱伝達が行われないようにすることでHC吸着層の温度上昇を抑制するようにしている。前記中間層24を構成する断熱材としては例えば触媒貴金属を含まないアルミナやセリアを適用することで熱伝達が行われにくい構成とすることができる。
【0020】
前記三元触媒層23からHC吸着層22への熱伝達をさらに抑制するためには、HC吸着層22をより比熱の大きい材料で形成し、あるいは多孔質構造による気孔や空隙により三元触媒層23との層間接触面積を少なくしてやることが有効である。
【0021】
次に、前記構成下でコントローラ1により実行されるエンジン制御につき説明する。前記コントローラ1はマイクロコンピュータおよびその周辺装置から構成され、運転状態信号として前記エアフローメータ4からの吸入空気量信号、クランク角センサ9からの回転数信号、水温センサ10からの水温信号、空燃比センサ11からの酸素濃度信号等が入力し、これらに基づき燃料噴射量および点火制御量の演算を行うと共に、前記水温信号および触媒温度センサ14からの触媒温度信号を用いて排気温度を制御する。
【0022】
図5と図6は前記排気温度制御の第1の実施形態を示し、図5は排気温度制御の処理内容を表す流れ図、図6は前記処理によるタイミング図である。図5中の符号Sは処理ステップを表す。この処理はコントローラ1内のマイクロコンピュータにより周期的に実行される。
【0023】
この排気制御では、まずステップ11にてエンジン始動時の冷却水温を水温センサ8からの信号により検出し、次いでステップ12にて前記検出水温をあらかじめ設定された基準値と比較することで排気昇温すなわち触媒の加熱を行うべき温度条件であるか否かを判定する。水温が基準値よりも高いときは以降の処理を行わずに今回の制御ルーチンを終了する。水温が基準値よりも低いときには、次にステップ13にて点火時期を安定限界付近にまで遅角させる点火時期リタードを行う。このときの点火時期は、例えばエンジン回転数と水温とからリタード量を与えるようにあらかじめ設定されたテーブルを検索して求められる。
【0024】
前記点火時期リタードの後、ステップ14にて触媒温度センサ12からの信号に基づき、触媒コンバータ11の三元触媒温度を検出し、次いでステップ15にてこの三元触媒温度をあらかじめ設定された活性判定温度と比較し、活性判定温度に達していないときにはステップ13に戻って点火時期リタードを継続し、達していればステップ16にて点火時期リタードを中止し、通常の点火時期制御へと移行する。
【0025】
前記制御に基づき、図6に示したように冷間始動後の排気温度が上昇すると共に触媒は速やかに活性温度に達する。図においてTcとThは前記本発明の構成による三元触媒層温度とHC吸着層温度、Thaは断熱を行わない従来構成の触媒によるHC吸着層温度である。前述したようにHC吸着触媒は三元触媒層からHC吸着層への熱伝達が抑制されるように構成されていることから、特性線Thに見られるように三元触媒温度が速やかに上昇してもHC吸着層は比較的低温に保たれ、HC脱離温度t1に達するまでに三元触媒温度が活性温度t2にまで昇温する。このため未燃HC成分の排出量は図の特性線Hで示されるように抑制される。これに対して、従来はt2に達するまでにHC吸着層温度がt1になってしまうため、特性線Haで示したようにHCが排出されてしまっていた。
【0026】
また、図中のTc’とTh’はそれぞれ三元触媒温度がt2に達したのちも点火時期リタードを継続したとした場合の三元触媒層とHC吸着層の温度変化特性を表しており、この場合はThがt1に達した時点でHCの脱離が開始されるが(Ho)、この時点ではすでに三元触媒層が活性化して脱離HCを酸化処理するためHCの排出は抑制される。ただし、本発明のように三元触媒の活性温度に達した時点で点火時期リタードを終了させれば、以後の排気温度低下によりHC吸着層の温度上昇も緩やかになり、それだけt1以後のHC脱離速度が低下するので、三元触媒層による転換効率が向上してHCの排出量をより低減することができる。三元触媒層は活性温度に到達したのちは点火時期リタードを終了させても運転を続ける限りは温度低下することはないので、HCの処理は問題なく行うことができる。
【0027】
図7、図9に本発明の排気温度制御に関する他の実施形態を示す。図7は第2の実施形態の処理内容を表す流れ図、図9は第3の実施形態の処理内容を表す流れ図である。
【0028】
前記第1の実施形態と異なる部分について説明すると、図7では三元触媒層温度が活性判定温度に達するまではステップ13〜ステップ16の処理としてエンジン回転数を上昇させる制御を行い、活性温度に達した後は回転数を元に戻すようにしている。回転数を上昇させるための制御としては、例えばアイドル空気量の増量制御を行う。また、図9は、ステップ13〜ステップ16の処理として、点火時期リタードとエンジン回転上昇の双方の制御を行うようにしたものである。
【0029】
図8と図10にそれぞれ前記図7の制御によるタイミング図と、図9の制御によるタイミング図を示す。図中の符号の意味は図6と同一である。図示したようにこれらの制御によってもHC吸着層がHC脱離温度に達する以前に三元触媒層を活性温度にまで昇温させてHCの排出を効果的に抑制することができる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る排気浄化装置の全体構成図。
【図2】本発明の実施形態に係る排気浄化装置の他の構成例を示す全体構成図。
【図3】本発明に係る触媒の第1の実施形態の積層構造を示す断面図。
【図4】本発明に係る触媒の第2の実施形態の積層構造を示す断面図。
【図5】本発明に係る排気温度制御の第1の実施形態を示す流れ図。
【図6】排気温度制御の第1の実施形態によるタイミング図。
【図7】本発明に係る排気温度制御の第2の実施形態を示す流れ図。
【図8】排気温度制御の第2の実施形態によるタイミング図。
【図9】本発明に係る排気温度制御の第3の実施形態を示す流れ図。
【図10】排気温度制御の第3の実施形態によるタイミング図。
【符号の説明】
1 コントローラ
2 エンジン
3 吸気通路
4 エアフローメータ
5 スロットルバルブ
6 燃料噴射弁
7 クランク角センサ
8 水温センサ
9 空燃比センサ
10 排気通路
11 触媒コンバータ(HC吸着触媒)
12 触媒温度センサ
13 触媒コンバータ(三元触媒)
14 点火プラグ
21 触媒担体
22 HC吸着層
23 三元触媒層
24 中間層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust emission control device for an engine, and more particularly to an exhaust emission purification device including a catalytic converter in which a three-way catalyst layer and an HC adsorption layer are formed on a catalyst carrier.
[0002]
[Prior art and problems to be solved]
A catalyst converter having a multilayer structure in which an HC adsorbent and an oxidation catalyst or a three-way catalyst are stacked on a catalyst carrier is known as an improvement in exhaust emission performance during cold engine operation. Unburnt fuel discharged from the engine during cold operation with insufficient catalyst activity is temporarily adsorbed to the HC adsorption layer, and when the temperature of the catalytic converter rises to some extent, HC is desorbed from the adsorption layer and becomes the surface layer side. Oxidized by the three-way catalyst layer. However, since the desorption temperature of HC from the HC adsorption layer is generally lower than the activation start temperature of the three-way catalyst layer, part of the desorbed HC is discharged without being oxidized in the process of activating the catalyst. End up.
[0003]
On the other hand, Japanese Patent Laid-Open No. 11-82003 discloses that ignition timing retard and rotation increase control are performed after the start of HC desorption from the HC adsorption layer until the three-way catalyst reaches the activation temperature. Has been proposed in which the exhaust temperature is raised to promote activation of the three-way catalyst. However, even with such exhaust temperature control, desorption of HC from the HC adsorption layer until the three-way catalyst is activated cannot be suppressed, so there is room for improvement from the viewpoint of HC emission performance. .
[0004]
The present invention has been made paying attention to such a problem, and an object of the present invention is to provide an exhaust emission control device that can reliably desorb HC from the HC adsorption layer when the engine is started.
[0005]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided an exhaust purification apparatus in which a catalytic converter having an HC adsorption layer formed between a catalyst carrier and a three-way catalyst layer covering the carrier is interposed in an engine exhaust passage. Heat transfer suppression means for suppressing heat transfer from the layer to the HC adsorption layer is provided. Also, when the three-way catalyst layer does not reach the activation temperature, such as when the engine is cold started, the exhaust temperature is set so that the three-way catalyst layer reaches the activation temperature before the HC adsorption layer reaches the HC desorption start temperature. And an exhaust temperature control means for controlling.
[0006]
In the second invention, an intermediate layer made of a heat insulating material is formed between the three-way catalyst layer and the HC adsorption layer as the heat transfer suppressing means of the first invention.
[0007]
The third invention applies a configuration in which the thickness of the HC adsorption layer is larger than that of the three-way catalyst layer as the heat transfer suppressing means of the first invention.
[0009]
According to a fourth aspect of the present invention, a configuration in which an interlayer contact area with respect to the three-way catalyst layer is reduced as the heat transfer suppressing means in the first to third aspects of the invention.
[0010]
According to a fifth aspect of the present invention, after the engine is started, the exhaust temperature control means according to the first aspect of the present invention is controlled by at least one of ignition timing retard control for delaying the ignition timing of the spark ignition engine and speed increase control for increasing the speed The exhaust temperature is increased.
[0011]
In a sixth aspect of the invention, the exhaust temperature control means of the first or fifth aspect of the invention controls the exhaust temperature so that the three-way catalyst layer is maintained at a temperature near the activation temperature after reaching the activation temperature. To be configured.
[0012]
In a seventh aspect of the invention, the exhaust temperature control means of the first or fifth aspect of the invention controls the exhaust temperature so as to delay the HC adsorption layer from reaching the desorption start temperature after reaching the activation temperature. To be configured.
[0013]
[Action / Effect]
According to each invention below the first invention, the heat transfer from the three-way catalyst layer to the HC adsorption layer is suppressed by the heat transfer suppressing means as shown in the second to fifth inventions, for example. It is possible to raise the temperature of the three-way catalyst layer to the activation temperature before the HC adsorption layer reaches the HC desorption temperature by raising the exhaust gas temperature during warm-up operation after starting. Thereby, exhaust emission performance can be improved by reliably suppressing HC emission under low temperature conditions.
[0014]
As the heat transfer suppressing means, as shown in the second invention, an intermediate layer made of a heat insulating material is formed between the three-way catalyst layer and the HC adsorption layer, so that the heat from the three-way catalyst layer is directly HC. Do not transmit to the adsorption layer. Alternatively, as shown in the third invention, the thickness of the HC adsorption layer is made larger than that of the three-way catalyst layer. This increases the heat capacity of the HC adsorption layer, making it difficult for the temperature to rise due to heat transfer from the three-way catalyst layer and making it easier for the three-way catalyst layer to rise in temperature. The three-way catalyst layer can be quickly raised to the activation temperature. In addition, as shown in the fourth aspect of the invention as a heat transfer suppressing means, the heat transfer from the three-way catalyst layer to the HC adsorption layer can also be suppressed by reducing the interlayer contact area with the three-way catalyst layer. .
[0015]
As control for increasing the exhaust temperature for activation of the three-way catalyst layer, control of either or both of ignition timing retard and rotation speed increase is executed as shown in the fifth aspect of the invention. If the ignition timing is delayed, the exhaust gas temperature increases with an increase in exhaust heat loss. Further, if the number of revolutions is increased, the amount of combustion gas per unit time or the exhaust gas flow rate increases, so that the exhaust temperature rises.
[0016]
As shown in the sixth or seventh invention, after reaching the activation temperature, the temperature of the three-way catalyst is maintained near the activation temperature, or the temperature of the HC adsorption layer reaches the desorption start temperature. By suppressing the ignition timing retard and control of the increase in the rotational speed so as to delay the HC, the HC desorption rate can be reduced by suppressing the temperature increase of the HC adsorption layer due to excessive heating. The frequency with which the catalytic noble metal of the original catalyst layer undergoes an oxidation reaction increases, and the HC purification rate can be further improved.
[0017]
Embodiment
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 or FIG. 2 shows a schematic configuration of the gasoline engine according to the present embodiment. In the figure, reference numeral 1 denotes a controller having a function of controlling the fuel injection amount, ignition timing, and exhaust temperature of the engine 2. An air flow meter 4 and a throttle valve 5 for detecting the intake air amount are provided in the intake passage 3 of the engine 2, and a fuel injection valve 6 is provided in the intake passage 3. Fuel is supplied to the fuel injection valve 6 at a constant pressure from a fuel supply system (not shown), and an amount of fuel corresponding to the valve opening time is injected. The fuel injection amount calculated by the controller 1 is calculated as an injection pulse width corresponding to the valve opening time of the fuel injection valve 6.
[0018]
7 is a crank angle sensor for detecting the rotation angle of the engine crankshaft and the engine speed, 8 is a water temperature sensor for detecting the engine cooling water temperature, and 9 is an air-fuel ratio sensor for detecting the oxygen concentration in the exhaust gas in the exhaust passage 10. It is. Reference numeral 11 denotes a catalytic converter interposed in the exhaust passage 10, which includes an HC adsorption catalyst having a structure in which an HC adsorption layer and a three-way catalyst layer are stacked on a catalyst carrier. A catalyst temperature sensor 12 detects the temperature of the three-way catalyst portion. As shown in FIG. 2, a configuration in which another catalytic converter 13 made of a three-way catalyst is interposed on the upstream side of the HC adsorption catalyst 11 can also be applied. An ignition plug 14 ignites the fuel at an ignition timing set based on a signal from the controller 1.
[0019]
A configuration example of the catalyst layer of the catalytic converter 11 is shown in FIG. In the embodiment of the catalyst shown in FIG. 3, the surface of the honeycomb catalyst carrier 21 is coated with an HC adsorption layer 22 made of zeolite or the like, and further a three-way catalyst layer 23 is coated thereon. As shown in the figure, the HC adsorption layer 22 is thicker than the three-way catalyst layer 23, thereby increasing the heat capacity of the HC adsorption layer 22 so that the temperature does not easily rise. . FIG. 4 shows another embodiment, in which an intermediate layer 24 made of a heat insulating material is formed between the HC adsorption layer 22 and the three-way catalyst layer 23 covering the surface of the honeycomb catalyst carrier 21. By preventing direct heat transfer from the three-way catalyst layer 23 to the HC adsorption layer 22, an increase in the temperature of the HC adsorption layer is suppressed. As the heat insulating material constituting the intermediate layer 24, for example, alumina or ceria that does not contain a catalyst noble metal can be applied to make it difficult to transfer heat.
[0020]
In order to further suppress heat transfer from the three-way catalyst layer 23 to the HC adsorption layer 22, the HC adsorption layer 22 is formed of a material having a larger specific heat, or the three-way catalyst layer is formed by pores or voids having a porous structure. It is effective to reduce the area of contact with the interlayer.
[0021]
Next, engine control executed by the controller 1 under the above configuration will be described. The controller 1 is composed of a microcomputer and its peripheral devices. As an operation state signal, an intake air amount signal from the air flow meter 4, a rotation speed signal from a crank angle sensor 9, a water temperature signal from a water temperature sensor 10, an air-fuel ratio sensor. 11 inputs an oxygen concentration signal and the like, calculates the fuel injection amount and the ignition control amount based on these signals, and controls the exhaust gas temperature using the water temperature signal and the catalyst temperature signal from the catalyst temperature sensor 14.
[0022]
5 and 6 show a first embodiment of the exhaust gas temperature control, FIG. 5 is a flowchart showing the processing contents of the exhaust gas temperature control, and FIG. 6 is a timing chart according to the processing. A symbol S in FIG. 5 represents a processing step. This process is periodically executed by the microcomputer in the controller 1.
[0023]
In this exhaust control, first, at step 11, the coolant temperature at the time of starting the engine is detected by a signal from the water temperature sensor 8, and then at step 12, the detected water temperature is compared with a preset reference value, thereby increasing the temperature of the exhaust gas. That is, it is determined whether or not the temperature condition is to heat the catalyst. When the water temperature is higher than the reference value, the current control routine is terminated without performing the subsequent processing. When the water temperature is lower than the reference value, an ignition timing retard is performed in step 13 to retard the ignition timing to near the stability limit. The ignition timing at this time is obtained, for example, by searching a table set in advance so as to give the retard amount from the engine speed and the water temperature.
[0024]
After the ignition timing retard, in step 14, based on the signal from the catalyst temperature sensor 12, the three-way catalyst temperature of the catalytic converter 11 is detected, and then in step 15, the three-way catalyst temperature is determined in advance as an activity determination. If the temperature does not reach the activation determination temperature, the process returns to step 13 to continue the ignition timing retard.
[0025]
Based on the control, as shown in FIG. 6, the exhaust temperature after the cold start increases and the catalyst quickly reaches the activation temperature. In the figure, Tc and Th are the three-way catalyst layer temperature and the HC adsorption layer temperature according to the structure of the present invention, and Tha is the HC adsorption layer temperature by the catalyst of the conventional structure without heat insulation. As described above, since the HC adsorption catalyst is configured to suppress heat transfer from the three-way catalyst layer to the HC adsorption layer, the three-way catalyst temperature rapidly increases as seen in the characteristic line Th. Even so, the HC adsorption layer is kept at a relatively low temperature, and the three-way catalyst temperature rises to the activation temperature t2 before reaching the HC desorption temperature t1. For this reason, the discharge amount of the unburned HC component is suppressed as shown by the characteristic line H in the figure. On the other hand, conventionally, the HC adsorption layer temperature has reached t1 before reaching t2, so that HC has been discharged as indicated by the characteristic line Ha.
[0026]
In addition, Tc ′ and Th ′ in the figure respectively represent the temperature change characteristics of the three-way catalyst layer and the HC adsorption layer when the ignition timing retard is continued after the three-way catalyst temperature reaches t2. In this case, HC desorption starts when Th reaches t1 (Ho), but at this point, the three-way catalyst layer is already activated to oxidize the desorbed HC, so that HC emission is suppressed. The However, if the ignition timing retard is terminated when the activation temperature of the three-way catalyst is reached as in the present invention, the temperature rise of the HC adsorbing layer becomes moderate due to the subsequent decrease in the exhaust gas temperature, and the HC desorption after t1 is correspondingly increased. Since the separation speed is reduced, the conversion efficiency by the three-way catalyst layer is improved, and the HC emission amount can be further reduced. After reaching the activation temperature, the three-way catalyst layer does not decrease in temperature as long as the operation is continued even if the ignition timing retard is terminated, so that the HC treatment can be performed without any problem.
[0027]
7 and 9 show another embodiment relating to the exhaust gas temperature control of the present invention. FIG. 7 is a flowchart showing the processing contents of the second embodiment, and FIG. 9 is a flowchart showing the processing contents of the third embodiment.
[0028]
The difference from the first embodiment will be described. In FIG. 7, until the three-way catalyst layer temperature reaches the activation determination temperature, control is performed to increase the engine speed as the processing of Step 13 to Step 16, and the activation temperature is set. After reaching, the rotation speed is restored. As control for increasing the number of revolutions, for example, control for increasing the amount of idle air is performed. FIG. 9 shows the control of both the ignition timing retard and the engine speed increase as the processing of step 13 to step 16.
[0029]
FIGS. 8 and 10 show a timing chart based on the control shown in FIG. 7 and a timing chart based on the control shown in FIG. The meaning of the reference numerals in the figure is the same as in FIG. As shown in the figure, these controls can also effectively suppress the discharge of HC by raising the temperature of the three-way catalyst layer to the activation temperature before the HC adsorption layer reaches the HC desorption temperature.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of an exhaust purification apparatus according to an embodiment of the present invention.
FIG. 2 is an overall configuration diagram showing another configuration example of the exhaust emission control apparatus according to the embodiment of the present invention.
FIG. 3 is a cross-sectional view showing a laminated structure of the first embodiment of the catalyst according to the present invention.
FIG. 4 is a cross-sectional view showing a laminated structure of a second embodiment of the catalyst according to the present invention.
FIG. 5 is a flowchart showing a first embodiment of exhaust gas temperature control according to the present invention.
FIG. 6 is a timing chart according to the first embodiment of exhaust gas temperature control.
FIG. 7 is a flowchart showing a second embodiment of exhaust gas temperature control according to the present invention.
FIG. 8 is a timing chart according to a second embodiment of exhaust gas temperature control.
FIG. 9 is a flowchart showing a third embodiment of exhaust gas temperature control according to the present invention.
FIG. 10 is a timing chart according to a third embodiment of exhaust gas temperature control.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Controller 2 Engine 3 Intake passage 4 Air flow meter 5 Throttle valve 6 Fuel injection valve 7 Crank angle sensor 8 Water temperature sensor 9 Air-fuel ratio sensor 10 Exhaust passage 11 Catalytic converter (HC adsorption catalyst)
12 Catalyst temperature sensor 13 Catalytic converter (three-way catalyst)
14 Spark plug 21 Catalyst carrier 22 HC adsorption layer 23 Three-way catalyst layer 24 Intermediate layer

Claims (7)

触媒担体と該担体を被覆する三元触媒層との間にHC吸着層を形成した触媒コンバータをエンジン排気通路に介装した排気浄化装置において、
前記触媒コンバータに三元触媒層からHC吸着層への伝熱を抑制する熱伝達抑制手段を設けると共に、
前記三元触媒層がその活性温度に満たないときに、前記HC吸着層がHC脱離開始温度に達する以前に前記三元触媒層が活性温度に達するように排気温度を制御する排気温度制御手段とを備えたことを特徴とするエンジンの排気浄化装置。
In an exhaust purification device in which a catalytic converter in which an HC adsorption layer is formed between a catalyst carrier and a three-way catalyst layer covering the carrier is interposed in an engine exhaust passage,
The catalyst converter is provided with heat transfer suppression means for suppressing heat transfer from the three-way catalyst layer to the HC adsorption layer,
Exhaust temperature control means for controlling the exhaust temperature so that the three-way catalyst layer reaches the activation temperature before the HC adsorption layer reaches the HC desorption start temperature when the three-way catalyst layer does not reach its activation temperature An exhaust emission control device for an engine characterized by comprising:
前記熱伝達抑制手段は、三元触媒層とHC吸着層との間に設けた断熱材からなる中間層である請求項1に記載のエンジンの排気浄化装置。  The engine exhaust gas purification apparatus according to claim 1, wherein the heat transfer suppression means is an intermediate layer made of a heat insulating material provided between the three-way catalyst layer and the HC adsorption layer. 前記熱伝達抑制手段は、三元触媒層に比較してHC吸着層の厚さを大とした構成である請求項1に記載のエンジンの排気浄化装置。  The engine exhaust gas purification apparatus according to claim 1, wherein the heat transfer suppression means has a configuration in which the thickness of the HC adsorption layer is larger than that of the three-way catalyst layer. 前記熱伝達抑制手段は、三元触媒層に対する層間接触面積を小とした請求項1から請求項3の何れかに記載のエンジンの排気浄化装置。  The engine exhaust purification device according to any one of claims 1 to 3, wherein the heat transfer suppression means has a small interlayer contact area with the three-way catalyst layer. 前記排気温度制御手段は、火花点火式エンジンの点火時期を遅らせる点火時期リタード制御または回転数を上昇させる回転数上昇制御の少なくとも何れか一方により排気温度を上昇させるように構成されている請求項1に記載のエンジンの排気浄化装置。  The exhaust gas temperature control means is configured to increase the exhaust gas temperature by at least one of ignition timing retard control for delaying the ignition timing of the spark ignition engine and rotation speed increase control for increasing the rotation speed. An exhaust emission control device for an engine according to 1. 前記排気温度制御手段は、活性温度付近に達して以降は三元触媒層が該活性温度付近の温度に維持されるように排気温度を制御するように構成されている請求項1または請求項5の何れかに記載のエンジンの排気浄化装置。The exhaust gas temperature control means according to claim 1 or claim later reached the vicinity of the active temperature three-way catalyst layer is configured to control the exhaust gas temperature so as to maintain the temperature near the active temperature 5 An exhaust purification device for an engine according to any one of the above. 前記排気温度制御手段は、活性温度付近に達して以降はHC吸着層が脱離開始温度に達することを遅延させられるように排気温度を制御するように構成されている請求項1または請求項5の何れかに記載のエンジンの排気浄化装置。The exhaust gas temperature control means according to claim 1 or claim since reached the vicinity of the active temperature and is configured to control the exhaust gas temperature to be delayed that HC adsorbing layer reaches the desorption start temperature 5 An exhaust purification device for an engine according to any one of the above.
JP2001197561A 2001-06-29 2001-06-29 Engine exhaust purification system Expired - Fee Related JP4576762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001197561A JP4576762B2 (en) 2001-06-29 2001-06-29 Engine exhaust purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001197561A JP4576762B2 (en) 2001-06-29 2001-06-29 Engine exhaust purification system

Publications (2)

Publication Number Publication Date
JP2003013830A JP2003013830A (en) 2003-01-15
JP4576762B2 true JP4576762B2 (en) 2010-11-10

Family

ID=19035142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001197561A Expired - Fee Related JP4576762B2 (en) 2001-06-29 2001-06-29 Engine exhaust purification system

Country Status (1)

Country Link
JP (1) JP4576762B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103912343A (en) * 2012-12-28 2014-07-09 现代自动车株式会社 Catalytic converter of internal combustion engine and apparatus for purifying exhaust gas provided with the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5428774B2 (en) * 2009-11-10 2014-02-26 マツダ株式会社 Exhaust gas purification catalyst

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582256B2 (en) * 1985-09-24 1993-11-18 Mazda Motor
JPH06262088A (en) * 1993-03-11 1994-09-20 Nissan Motor Co Ltd Catalyst for exhaust gas purification
JPH0796183A (en) * 1993-09-27 1995-04-11 Honda Motor Co Ltd Hc eliminating member
JPH0797918A (en) * 1993-09-28 1995-04-11 Honda Motor Co Ltd Exhaust gas purifier of internal combustion engine
JPH07328448A (en) * 1994-06-02 1995-12-19 Hitachi Ltd Exhaust gas purification catalyst and device for purifying exhaust gas
JPH0810566A (en) * 1994-07-05 1996-01-16 Ngk Insulators Ltd Catalyst-adsorbent for purifying exhaust gas and exhaust gas purifying method
JPH11104462A (en) * 1997-09-30 1999-04-20 Ngk Insulators Ltd Catalyst-adsorber for purification of exhaust gas and purification of exhaust gas
JPH11270328A (en) * 1998-03-23 1999-10-05 Toyota Motor Corp Exhaust emission control device for multi-cylinder internal combustion engine
JPH11311120A (en) * 1998-04-28 1999-11-09 Nissan Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2000054827A (en) * 1998-08-12 2000-02-22 Nissan Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2000051707A (en) * 1997-08-20 2000-02-22 Nissan Motor Co Ltd Catalyst for purification of exhaust gas and device for purifying exhaust gas
JP2000248979A (en) * 1999-02-24 2000-09-12 Honda Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2001182527A (en) * 1999-12-27 2001-07-06 Nissan Motor Co Ltd Catalytic converter
JP2002079105A (en) * 2000-06-22 2002-03-19 Mitsubishi Motors Corp Catalyst for cleaning exhaust gas

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582256B2 (en) * 1985-09-24 1993-11-18 Mazda Motor
JPH06262088A (en) * 1993-03-11 1994-09-20 Nissan Motor Co Ltd Catalyst for exhaust gas purification
JPH0796183A (en) * 1993-09-27 1995-04-11 Honda Motor Co Ltd Hc eliminating member
JPH0797918A (en) * 1993-09-28 1995-04-11 Honda Motor Co Ltd Exhaust gas purifier of internal combustion engine
JPH07328448A (en) * 1994-06-02 1995-12-19 Hitachi Ltd Exhaust gas purification catalyst and device for purifying exhaust gas
JPH0810566A (en) * 1994-07-05 1996-01-16 Ngk Insulators Ltd Catalyst-adsorbent for purifying exhaust gas and exhaust gas purifying method
JP2000051707A (en) * 1997-08-20 2000-02-22 Nissan Motor Co Ltd Catalyst for purification of exhaust gas and device for purifying exhaust gas
JPH11104462A (en) * 1997-09-30 1999-04-20 Ngk Insulators Ltd Catalyst-adsorber for purification of exhaust gas and purification of exhaust gas
JPH11270328A (en) * 1998-03-23 1999-10-05 Toyota Motor Corp Exhaust emission control device for multi-cylinder internal combustion engine
JPH11311120A (en) * 1998-04-28 1999-11-09 Nissan Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2000054827A (en) * 1998-08-12 2000-02-22 Nissan Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2000248979A (en) * 1999-02-24 2000-09-12 Honda Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2001182527A (en) * 1999-12-27 2001-07-06 Nissan Motor Co Ltd Catalytic converter
JP2002079105A (en) * 2000-06-22 2002-03-19 Mitsubishi Motors Corp Catalyst for cleaning exhaust gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103912343A (en) * 2012-12-28 2014-07-09 现代自动车株式会社 Catalytic converter of internal combustion engine and apparatus for purifying exhaust gas provided with the same
CN103912343B (en) * 2012-12-28 2018-01-23 现代自动车株式会社 I. C. engine catalytic converter and the waste gas purification apparatus with the converter

Also Published As

Publication number Publication date
JP2003013830A (en) 2003-01-15

Similar Documents

Publication Publication Date Title
JP4766238B2 (en) HC adsorbent deterioration judgment device
JP4525938B2 (en) Exhaust gas purification device for vehicle internal combustion engine
JP2008240704A (en) Control device for internal combustion engine
JP3402200B2 (en) Exhaust gas purification device for internal combustion engine
JP4576762B2 (en) Engine exhaust purification system
JP3632614B2 (en) Exhaust gas purification device for internal combustion engine
JP3409696B2 (en) Exhaust gas purification device for internal combustion engine
JP3446812B2 (en) Internal combustion engine
JP4055475B2 (en) Exhaust purification device
JP6248974B2 (en) Control device for internal combustion engine
JP3794179B2 (en) Exhaust gas purification device for internal combustion engine
JP4743431B2 (en) Exhaust gas purification device for internal combustion engine
JP2010063969A (en) Exhaust gas cleaning catalyst and control device for engine
JP3489441B2 (en) Air-fuel ratio control device for internal combustion engine
JP3900011B2 (en) Exhaust purification device
JP2006057493A (en) Exhaust emission control device
JP2001115829A (en) Exhaust emission control device for internal combustion engine
JP2004360569A (en) Exhaust gas purification control system of internal combustion engine
JP3900010B2 (en) Exhaust purification device
JP4051537B2 (en) Exhaust gas purification device for internal combustion engine
JP3900012B2 (en) Exhaust purification device
JP4239470B2 (en) Exhaust purification equipment
JP3823896B2 (en) Exhaust purification device
JP3835071B2 (en) Exhaust gas purification device for internal combustion engine
JP2003083049A (en) Exhaust emission control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100809

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees