JP3501145B2 - 音響センサ - Google Patents

音響センサ

Info

Publication number
JP3501145B2
JP3501145B2 JP2001244871A JP2001244871A JP3501145B2 JP 3501145 B2 JP3501145 B2 JP 3501145B2 JP 2001244871 A JP2001244871 A JP 2001244871A JP 2001244871 A JP2001244871 A JP 2001244871A JP 3501145 B2 JP3501145 B2 JP 3501145B2
Authority
JP
Japan
Prior art keywords
acoustic sensor
frequency
resonators
sensor according
resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001244871A
Other languages
English (en)
Other versions
JP2002116083A (ja
Inventor
繁 安藤
尚哉 宮野
松本  俊行
宗生 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2001244871A priority Critical patent/JP3501145B2/ja
Publication of JP2002116083A publication Critical patent/JP2002116083A/ja
Application granted granted Critical
Publication of JP3501145B2 publication Critical patent/JP3501145B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、音声認識処理,音
響信号処理等において音信号の特徴を抽出するための音
響センサに関し、特に、各周波数帯域における音信号の
強度を検出するための音響センサに関する。
【0002】
【従来の技術】音声認識を実行するシステムにおいて、
従来は、音声信号を受信したマイクロフォンの振動を、
アンプにて電気信号に変換・増幅した後、A/D変換器
でアナログ信号をディジタル化して音声ディジタル信号
を得、この音声ディジタル信号にコンピュータ上でソフ
トウェアにより高速フーリエ変換を施し、音声の特徴を
抽出する。このような音声認識のシステムについては、
IEEE Signal ProcessingMagazine, Vol.13, No.5, pp.4
5-57(1996) に開示されている。
【0003】音声信号の特徴を効率良く抽出するために
は、音声信号が定常であると見做せる時間内の音響スペ
クトルを計算する必要がある。音声信号の場合には、通
常10〜20msecの時間内で定常と見做せると考えられてい
る。従って、10〜20msecを周期としてその時間内に含ま
れる音声ディジタル信号に対して、コンピュータ上のソ
フトウェアにより、高速フーリエ変換等の信号処理を実
行する。
【0004】以上のように、従来の音声認識方式では、
瞬時の全帯域を含んだ音声信号をマイクロフォンによっ
て電気信号に変換し、その電気信号のスペクトルを分析
するために、A/D変換を施して各周波数をディジタル
化し、その音声ディジタル信号データを特定の音声波形
のデータと比較して、音声の特徴を抽出している。
【0005】ところで、聴覚機構及び音の心理物理的性
質について、甘利俊一監修、中川聖一・鹿野清宏・東倉
洋一著「ニューロサイエンス&テクノロジーシリーズ
音声・聴覚と神経回路網モデル」(オーム社,1992年)
に詳細な説明がなされている。この文献には、人間が聴
く音の高さ(ピッチ)の尺度が、物理量としての周波数
と線形に対応するものではなく、メルスケールという尺
度に線形に対応することが示されている。このメルスケ
ールとは、音階に表されるような音の高さを表す心理的
属性(心理尺度)を示すものであり、人間に等間隔に聞
こえるピッチと呼ばれる周波数の間隔を直接数量化した
スケールであって、1000Hz,40フォンの音のピ
ッチを1000melと定義する。そして、500me
lの音響信号は0.5倍ピッチの音に聞こえ、2000
melの音響信号は2倍ピッチの音に聞こえる。このメ
ルスケールは物理量としての周波数f〔Hz〕を用いて
次の(1)式のように近似できる。また、この近似式に
おける音の高さ〔mels〕と周波数〔Hz〕との関係
を図7に示す。 mel=(1000/log2)log(f/1000+1) …(1)
【0006】そして、音声の特徴を効率良く抽出するた
めに、音響スペクトルの周波数帯をこのようなメルスケ
ールに変換することが良く行われている。この音響スペ
クトルのメルスケールへの変換は、スペクトルの分析と
同様に、通常コンピュータ上でソフトウェアにより実行
される。
【0007】また、音声の特徴を効率良く抽出する手法
として、音響スペクトルの周波数帯をバークスケールに
変換することも良く行われている。このバークスケール
は、人間の心理的な音の大きさ(ラウドネス)に対応す
る尺度であり、ある程度以上の大きな音において、人間
が聴き分けられる周波数帯域幅(これを臨界帯域幅とい
う)を示したものであり、この臨界帯域幅内の音は周波
数が異なっていても同じように聞こえる。例えば、その
臨界帯域幅内に大きなノイズが発生すると、信号音がそ
のノイズと周波数が異なっているにも拘らず、ノイズと
信号音とを人間の聴覚では判別できないような周波数帯
域を示すスケールがバークスケールである。
【0008】音声信号処理の分野ではコンピュータ上で
取り扱いが容易な臨界帯域幅が要求され、音響スペクト
ルの周波数軸は1つの臨界帯域を1バーク〔Bark〕
と定義するバークスケールで示される。図8に、臨界帯
域幅とバークスケールとの数値関係を示す。また、これ
らの臨界帯域幅及びバークスケールは、物理量としての
周波数f〔kHz〕を用いて次の(2)及び(3)式の
ように近似できる。 臨界帯域幅:CB〔Hz〕=25+75(1+1.4f2 0.69 …(2) バークスケール:B〔Bark〕 =13tan-1(0.76f)+3.5tan-1(f/7.5) …(3)
【0009】 ところで、音声認識の分野で聴覚末梢系
の工学的機能モデルを用いることが知られており、前記
文献「ニューロサイエンス&テクノロジーシリーズ 音
声・聴覚と神経回路網モデル」に詳細な説明がなされて
いる。工学的機能モデルでは、帯域フィルタ群による周
波数スペクトル分析を前処理としており、例えば代表的
な工学的機能モデルの1つであるSeneffのモデルにおけ
る前処理では130〜6400Hzの周波数領域に40
個の独立したチャネルを持つ臨界帯域幅フィルタ群によ
り周波数スペクトル分析がなされる。このとき、音響ス
ペクトルの周波数帯はバークススケールに変換される。
このモデルではコンピュータシミュレーションによっ
入力音刺激に対するモデルの出力が求められ、生理デー
タと良く一致することが示されている。よって、このよ
うな工学的機能モデルを使用することにより、音声自動
認識において雑音中の音声認識率の向上を図ることがで
きる。
【0010】このような臨界帯域幅フィルタ群により周
波数スペクトル分析及び音響スペクトルのメルスケール
への変換は、スペクトルの分析と同様に、通常コンピュ
ータ上でソフトウェアにより実行される。
【0011】
【発明が解決しようとする課題】コンピュータ上のソフ
トウェアにより、ディジタル音響信号に高速フーリエ変
換処理を施して、その音響信号のスペクトルを分析する
従来の手法では、計算量が莫大となって計算負荷が大き
いという問題がある。また、音響信号のスペクトルを高
速フーリエ変換し、かつ、メルスケールに変換する一連
の処理を、コンピュータ上のソフトウェアで行う場合
も、計算量が莫大となって計算負荷が大きい。更に、音
響信号のスペクトルを臨界帯域幅フィルタ群により周波
数スペクトル分析し、かつ、バークスケールに変換する
一連の処理をコンピュータ上のソフトウェアで行う場合
も、計算量が莫大となって計算負荷が大きい。
【0012】また、従来の方法では、母音のように、時
間の変化と共に音響スペクトルが変化しないような音声
については問題が生じないが、子音と母音との組合せの
音、例えば、「か,き,く,け,こ,さ,た」等のよう
に初めに子音が出てきて時間の経過と共に母音の強度が
大きくなるような音、または、英語のように複雑な子音
と母音との組合せの音では、以下のような問題が生じ
る。従来では、瞬時に音声を記録し、一定時間毎に区切
って全帯域の音響スペクトルを積算して、音声を分析し
ているので、どの時点で子音から母音に変わったのかを
判定することは困難であり、そのために音声認識の判別
率の低下が引き起こされていた。この問題を解消するた
めに、より多くの音声パターンを予めコンピュータに記
憶させておき、これらの音声パターンの何れかにあては
めるようにしているが、このことが計算負荷をますます
増大させる原因となっている。
【0013】本発明は斯かる事情に鑑みてなされたもの
であり、音響信号の検出及び周波数スペクトル分析を1
つのハードウェア上にて高速かつ正確に行うことができ
る音響センサを提供することを目的とする。
【0014】
【0015】
【課題を解決するための手段】請求項1に係る音響セン
サは、媒質中を伝搬する音波を受ける受波部分と、夫々
が異なる特定の周波数に共振するような長さを持つ複数
の棒状の共振子を有する共振部分と、該共振部分を保持
する保持部分と、前記各共振子の振動強度を検出する振
動強度検出部分とを有しており、媒質中を伝搬して前記
受波部分にて受けられた前記音波が、前記各共振子を特
定の周波数で順次共振させながら前記保持部分を伝搬
し、前記振動強度検出部分により異なる周波数成分の強
度を検出する音響センサであって、検出された前記特定
の周波数毎の振動強度を示す信号を電気信号に変換する
変換手段と、変換された電気信号を任意に設定された時
間にわたって積算する積算手段と、該任意に設定された
時間が経過した後、前記積算手段により積算された結果
を前記特定の周波数毎に出力する出力手段とを備えるこ
とを特徴とする。
【0016】請求項2に係る音響センサは、請求項1に
おいて、隣合う二つの前記共振子間の距離が異なってい
ることを特徴とする。
【0017】請求項3に係る音響センサは、請求項1に
おいて、隣合う二つの前記共振子間の距離を異ならせ
て、各共振子における共振周波数の帯域幅を所定値に設
定していることを特徴とする。
【0018】
【0019】
【0020】 請求項に係る音響センサは、請求項1
乃至3の何れかにおいて、前記複数の共振子における共
振周波数を、メルスケールで分布するように設定してい
ることを特徴とする。
【0021】 請求項に係る音響センサは、請求項1
乃至3の何れかにおいて、前記複数の共振子における共
振周波数を、バークスケールで分布するように設定して
いることを特徴とする。
【0022】 請求項に係る音響センサは、請求項1
乃至3の何れかにおいて、前記複数の共振子における共
振周波数を、バークスケールで分布するように設定して
おり、各共振周波数に対応する帯域幅が臨界帯域幅であ
ることを特徴とする。
【0023】 請求項に係る音響センサは、請求項
において、音楽曲を認識するための音楽曲入力用マイク
ロフォンであることを特徴とする。
【0024】 請求項に係る音響センサは、請求項1
乃至6の何れかにおいて、音声を認識するための音声入
力用マイクロフォンであることを特徴とする。
【0025】 請求項に係る音響センサは、請求項1
乃至8の何れかにおいて、前記出力手段は、任意に選択
した少なくとも1つの特定の周波数における積算結果を
出力するフィルタ機能を有することを特徴とする。
【0026】 請求項10に係る音響センサは、請求項
において、特定の周波数の異常音を検出するための異
常音入力用マイクロフォンであることを特徴とする。
【0027】 請求項11に係る音響センサは、請求項
乃至10の何れかにおいて、音響センサが半導体基板
上に構成してあることを特徴とする。
【0028】本発明の第1音響センサは、夫々が特定の
周波数に共振するように長さが異なる複数の共振子を有
し、媒質中を伝搬した音波をこれらの共振子に伝え、各
共振子での振動を検出する。そして、検出した振動振幅
を電気信号に変換し、その電気信号を積算手段に入力し
て任意周期の期間で入力電気信号を積算する。そして、
その積算結果を任意周期毎に特定の周波数毎に出力す
る。
【0029】また、本発明の第2音響センサは、第1音
響センサと同様の構成であるが、各共振子における共振
周波数を、数学的に線形なスケールで分布させるのでは
なく、メルスケールにて線形に分布させるようにする。
実際の振動周波数とメルスケールとの対応は、前記
(1)式及び図6に基づいて決められるので、各共振子
の設計仕様は容易に決定できる。そして、メルスケール
仕様に合わせた各共振子での振動を検出し、その後、上
述した第1音響センサと同様の処理を行うことにより、
音響信号のスペクトルに相当する物理量をメルスケール
で検出できる。
【0030】また、本発明の第3音響センサは、第1音
響センサと同様の構成であるが、各共振子における共振
周波数を、数学的に線形なスケールで分布させるのでは
なく、バークスケールにて線形に分布させるようにする
と共に、各共振周波数の帯域幅が臨界帯域幅になるよう
にする。実際の振動周波数とバークスケールとの対応、
及び、臨界帯域幅を決める遮断周波数は、前記(2),
(3)式及び図7に基づいて決められるので、各共振子
の設計仕様は容易に決定できる。そして、バークスケー
ル仕様に合わせた各共振子での振動を検出し、その後、
上述した第1音響センサと同様の処理を行うことによ
り、音響信号のスペクトルに相当する物理量を臨界帯域
幅を持ってバークスケールで検出できる。
【0031】本発明の音響センサでは、所望の周波数毎
に音の強さを検知できるので、分析処理を行うことな
く、音響スペクトルをリアルタイムで得ることができ
る。よって、全帯域の音響信号を入力して各周波数帯域
に電気的にフィルタリングする従来の方式に比べて、こ
のように音響信号を機械的に周波数毎に分解する本発明
では、電気的なフィルタリングが不要となって処理速度
が速くなる。また、一定時間毎に区切ったとしてもどこ
にも音響データの欠落がない。また、一定時間毎に各周
波数毎の音響データが得られるので、時間の経過に合わ
せて各周波数の強度の推移を確認でき、例えば母音と子
音との時間的変化の判別をより正確に行えて、音声認識
の判別率を高めることができる。
【0032】
【発明の実施の形態】以下、本発明をその実施の形態を
示す図面に基づいて具体的に説明する。
【0033】(第1の実施の形態)図1は、本発明の音
響センサの実施の形態を示す図である。本発明の音響セ
ンサは、半導体シリコン基板1に形成されるセンサ本体
2と電極3と周辺回路である検出回路4とから構成され
ている。センサ本体2は、すべての部分が半導体シリコ
ンで形成されており、長さが異なる複数(図1の例では
6個)の棒状の部分を有する共振部分21と、この共振部
分21を共振の固定端側で保持する板状の保持部分22と、
保持部分22の一方の端部に立設された短寸棒状の伝搬部
分23と、伝搬部分23に連なり空気中を伝搬した音波を受
ける板状の受波部分24とから構成されている。
【0034】共振部分21は片持ち梁となっており、それ
ぞれの棒状の部分は特定の周波数に共振するように長さ
が調整された共振子25となっている。これらの複数の共
振子25は、下記(4)式で表される共振周波数fにて選
択的に応答振動するようになっている。
【0035】 f=(CHE1/2 )/(L2 ρ1/2 ) …(4) 但し、C:実験的に決定される定数H:各共振子の厚さ
L:各共振子の長さE:材料物質(半導体シリコン)の
ヤング率ρ:材料物質(半導体シリコン)の密度
【0036】上記(4)式から分かるように、共振子25
の厚さHまたは長さLを変えることにより、その共振周
波数fを所望の値に設定することができる。図1に示す
例では、すべての共振子25の厚さHは一定とし、その長
さLを左側から右側に向かうにつれて順次長くなるよう
に設定しており、各共振子25が固有の共振周波数を持つ
ようにしている。具体的には、左側から右側に向かって
可聴帯域の15〜/20kHz程度の範囲内で高周波数
から低周波数まで対応できるようになっている。
【0037】以上のような構成をなすセンサ本体2は、
半導体集積回路製造技術またはマイクロマシン加工技術
を用いて半導体シリコン基板1上に作製される。そし
て、このような構成において、音波が受波部分24に伝わ
るとその板状の受波部分24が振動し、音波を示すその振
動は伝搬部分23を経て保持部分22に伝搬し、これに保持
された共振部分21の棒状の各共振子25をそれぞれの特定
の周波数にて順次共振させながら図1の左方から右方へ
伝わっていくようになっている。
【0038】センサ本体2には適当なバイアス電圧V
biasが印加されており、共振部分21の各共振子25の先端
部と、該先端部に対向する位置の半導体シリコン基板1
に形成された電極3とにてキャパシタが構成されてい
る。共振子25の先端部は共振子25の振動に伴って位置が
上下する可動電極であって、一方、半導体シリコン基板
1に形成された電極3はその位置が移動しない固定電極
となっている。そして、共振子25がそれぞれの特定の周
波数にて振動すると、両電極間の距離が変動するので、
キャパシタの容量が変化するようになっている。
【0039】各電極3には、このような容量変化を電圧
信号に変換し、変換した電圧信号を所定時間内で積算し
て出力する検出回路4が接続されている。図2は、検出
回路4の構成を示す図であり、検出回路4は、前記キャ
パシタの容量Cs と基準容量Cf とのインピーダンス比
に応じた増幅比にて増幅する演算増幅器41,42と、基準
電圧Vref より高い演算増幅器42の出力信号を所定時間
だけ積算する積算回路43と、積算回路43から出力信号を
取り出して一時的に保持して出力するサンプルホールド
回路44とを備える。このような構成の検出回路4は、例
えばシリコンCMOSプロセスによって形成されてい
る。
【0040】演算増幅器41,積算回路43及びサンプルホ
ールド回路44には、それぞれクロックパルスφ0 ,φ1
及びφ2 が供給され、演算増幅器41,積算回路43及びサ
ンプルホールド回路44はそれぞれこれらのクロックパル
スに同期して動作する。なお、これらのクロックパルス
は、外部から供給するようにしても良いし、同一の半導
体シリコン基板上にカウンタ回路を形成してそこから供
給するようにしても良い。
【0041】次に、動作について説明する。空気中を伝
搬した音波がセンサ本体2の受波部分24に伝わると、板
状の受波部分24が振動してその振動がセンサ本体2内を
伝搬する。この際、図1の左方から右方へ音波が、順次
長さが長くなっていく片持ち梁の各共振子25を共振させ
ながら伝わっていく。各共振子25は固有の共振周波数を
有しており、各共振子25はその固有の周波数の音波が伝
搬すると共振し、その先端部が上下に振動する。この振
動によって、その先端部と電極3との間で構成されるキ
ャパシタの容量が変化する。なお、音波が伝搬していく
につれて音波のエネルギは共振子25の振動エネルギに順
次変換されていくので、このような共振により音波のエ
ネルギは除々に減衰し、最も長い共振子25(図1の右
端)に音波が到達する頃には、音波としてのエネルギは
殆ど無くなっており、反射波は生じない。よって、反射
波が容量変化に影響を及ぼす虞はなく、伝搬した音波の
スペクトルに合致した正確な容量変化を検出できる。
【0042】 得られた容量変化が検出回路4内に送ら
れる。図3は、検出回路4内におけるタイミングチャー
トを示す図であり、演算増幅器41,積算回路43及びサン
プルホールド回路44にそれぞれ供給するクロックパルス
φ0 ,φ1 及びφ2 を示す。なお、本例でのクロック
ルス制御は、ローレベルでオン状態とする。
【0043】まず、検出回路4内では、演算増幅器41で
得られたキャパシタの容量Cs と基準容量Cf とのイン
ピーダンス比に応じて増幅比が決まる。例えば、1/ω
f(ω=2πf,f:周波数)に対する1/ωCs
値が1/2である場合には、得られる電圧信号が2倍に
なる。但し、演算増幅器41は、その+入力端子が接地さ
れている反転増幅器であるので、次段の演算増幅器42で
電圧位相を1倍で反転させる。得られた増幅電圧信号が
積算回路43へ入力される。積算回路43では、クロックパ
ルスφ1 に応じた所定の時間内において基準電圧Vref
より高い増幅電圧信号が積算され、その積算信号がサン
プルホールド回路44へ入力される。サンプルホールド回
路44では、クロックパルスφ2 に応じて積算信号のサン
プリングとホールドとを繰り返して外部へ積算信号を出
力する。
【0044】以上のような処理は、長さが異なる共振子
25にそれぞれ対応する検出回路4毎に並列的に行われ
る。なお、図3に示すクロックパルスφ0 ,φ1 及びφ
2 の周期は一例であり、これらの各クロックパルスの周
期は任意に設定しても良いことは勿論である。
【0045】以上のようにして、本発明では、特定の周
波数に共振する共振子25に対応する検出回路4の出力信
号を調べることにより、任意の時間を周期とした、その
特定の周波数の音の強さの経時変化を知ることができ
る。また、複数の共振子25に対応する検出回路4の出力
信号を調べることにより、任意の時間を周期とした、複
数の周波数帯域毎の音の強さの経時変化を知ることがで
きる。
【0046】図4は、特定の周波数に対応する各検出回
路4の関係を示す図である。例えば、n種類の共振周波
数f1 ,f2 ,f3 ,f4 ,…,fn にそれぞれ選択的
に応答振動するようにn本の共振子を設ける場合には、
各共振周波数毎にその共振強度に応じた検出回路の出力
信号V1 ,V2 ,V3 ,V4 ,…,Vn を得ることがで
きる。例えば、音声認識のための音声入力用マイクロフ
ォンとして本発明の音響センサを使用する場合には、可
聴帯域における各共振周波数毎の共振強度に応じてその
周波数の強度を求め、求めた分析パターンに基づいて音
声を認識する。
【0047】なお、音波の任意に選択した周波数のみの
強度を求めたい場合には、必要な共振周波数に対応する
検出回路の出力信号のみを得るようにすれば良い。例え
ば、図4において周波数f1 ,f3 の強度を求める場合
には、対応しない他の検出回路4-2,4-4,…,4-nの
出力を遮断するか、予めこれらの検出回路4-2,4-4,
…,4-nは設けないようにするかして、必要な出力信号
1 ,V3 が得られて、不要な出力信号V2 ,V4
…,Vn が得られないようにすれば良い。このような音
響センサの使用例としては、特定の1または複数の周波
数の異常音を検出するための異常音入力用マイクロフォ
ンが好適である。
【0048】(第2の実施の形態)次に、各共振子にお
ける共振周波数を、音階に表されるような音の高さを表
す心理的属性であるメルスケールにて線形に分布させる
ようにした第2の実施の形態について説明する。なお、
この第2の実施の形態の音響センサの構成は、前述した
第1の実施の形態の構成と同様であるが、第2の実施の
形態では、各共振子25における共振周波数を、数学的に
線形なスケールで分布させるのではなく、メルスケール
にて線形に分布させるようにしている。つまり、n本の
共振子25における共振周波数をf1 ,f2 ,f3 ,…,
n とした場合に、 f1 〔Hz〕=αf2 〔Hz〕=…………=αn-1 n 〔Hz〕 のように設定するのではなく、 f1 〔mel〕=αf2 〔mel〕=…………=αn-1 n 〔mel〕 のように設定する。なお、αは任意に設定可能な係数で
ある。
【0049】各共振子25の共振周波数は、前記(4)式
にて決められ、また、実際の振動周波数とメルスケール
との対応は、前述したように、前記(1)式及び図7に
基づいて決められるので、メルスケールでの任意の共振
周波数を各共振子25に容易に割り当てることができる。
本例では、すべての共振子25の厚さHは一定とし、その
長さLを異ならせて、メルスケール上で等間隔になるよ
うな周波数に対応した共振周波数を得ている。
【0050】なお、他の構成及び動作は、前述した第1
の実施の形態の場合と同じであるので、それらの説明は
省略する。
【0051】第2の実施の形態では、各共振子25の共振
周波数をメルスケールにて分布するようにしたので、人
間の耳に聞こえるオクターブ音,半音等を選択的にリア
ルタイムで認識でき、人間の聴覚に合わせた周波数特性
を持つマイクロフォンの製作が可能となる。オクターブ
音,半音等のピッチ音の時間的変化をより正確に判別で
きるので、音声認識,異常音検出に効果を奏することは
勿論、朗読,和歌等の抑揚がある音声、楽曲等の音階が
ある音に対する識別性に優れた音声入力用マイクロフォ
ンを構成できる。
【0052】(第3の実施の形態)次に、各共振子にお
ける共振周波数を、音の大きさを表す心理的属性である
バークスケールにて線形に分布させるようにした第3の
実施の形態について説明する。なお、この第3の実施の
形態の音響センサの構成は、前述した第1の実施の形態
の構成と同様であるが、第3の実施の形態では、各共振
子25における共振周波数を、数学的に線形なスケールで
分布させるのではなく、バークスケールにて分布させる
ようにしていると共に、各共振子25における共振周波数
の帯域幅を臨界帯域幅になるようにしている。
【0053】図8で示されるバークスケールと実周波数
との対応関係に基づいて、各各共振子25の共振周波数が
決定される。そして、各共振子25の共振周波数は前記
(4)式にて決められるが、本例では、すべての共振子
25の厚さHは一定とし、その長さLを異ならせることに
より、バークスケールでの任意の共振周波数を各共振子
25に割り当てている。
【0054】各共振子25の共振周波数の帯域幅は、共振
部分21を振動エネルギが伝送していく過程において、隣
合う共振子25との相互作用に依存する。即ち、隣合う共
振子25の共振周波数の変化率,隣合う共振子25までの距
離のような構造上の設計値、及び、隣合う共振子25間の
気体の粘性等により、その帯域幅は決定されるが、本例
では、隣合う共振子25間の距離を変えることにより、各
共振子25の共振周波数の帯域幅を制御している。
【0055】図5は、共振周波数が3kHzである単結
晶シリコン製の共振子25について、隣合う共振子25まで
の距離D(横軸)を変化させた場合の帯域幅(縦軸)の
変化を示すグラフである。図6は、共振子25における長
さL,厚さH,幅W及び距離Dの関係を表す図であり、
この共振子25の設計値は長さL=1706μm、厚さH
=10μm、幅W=80μmであって、隣合う共振子25
間の気体は空気である。隣合う共振子25までの距離Dを
調整することにより、所望の帯域幅を設定できること
が、図5から理解される。よって、このことを考慮し
て、本例では、各共振子25の帯域幅が図8に示す臨界帯
域幅になるように、隣合う共振子25間の距離Dを決定し
ている。
【0056】第3の実施の形態では、各共振子25の共振
周波数をバークスケールにて分布するようにしたので、
人間の聴力に合った周波数特性と帯域幅を持たせること
ができ、雑音中に隠れている音響信号を選別することが
容易になり、雑音が多い状況の中での音声認識の判別率
を向上させることが可能となる。また、人間の聴覚によ
り近いセンサを提供できる。
【0057】
【発明の効果】以上のように、本発明の音響センサで
は、電気信号に変換する前に、音波が各周波数帯域毎に
機械的に分解されるので、従来のようなソフトウェアを
用いた電気的なフィルタリング処理は不要になり、処理
速度が速くなる。また、半導体基板上に容易に作製可能
であって、従来のシステムに比べて占有面積を縮小で
き、低コスト化も図ることがきる。更に、所望の周波数
毎に音の強さを検知できるので、分析処理を行うことな
く、音響スペクトルをリアルタイムで得ることができ、
また、一定時間毎に各周波数毎の音響データが得られる
ので、時間の経過に合わせて各周波数の強度の推移を確
認でき、音声の時間的変化の判別をより正確に行えて、
音声認識の判別率を高めることに寄与できる。
【0058】また、本発明の音響センサは、メルスケー
ルで分布する共振周波数を持つ複数の共振子の集合体、
または、共振周波数がバークスケールで分布し、臨界帯
域幅を持つ複数の共振子の集合体を有するので、人間の
聴覚により近似させた状態で音声を認識でき、音声認識
時に音声の特徴を効率良く抽出することが可能である。
【図面の簡単な説明】
【図1】本発明の音響センサの実施の形態を示す図であ
る。
【図2】本発明の音響センサにおける検出回路の構成を
示す図である。
【図3】本発明の音響センサにおける検出回路のタイミ
ングチャートを示す図である。
【図4】特定の周波数に対応する各検出回路の関係を示
す図である。
【図5】共振子間距離と帯域幅との関係を示すグラフで
ある。
【図6】本発明の音響センサにおける共振子の長さ,厚
さ,幅及び距離の関係を表す図である。
【図7】実際の周波数とメルスケール値との関係を示す
グラフである。
【図8】臨界帯域幅とバークスケールとの数値関係を示
す図表である。
【符号の説明】
1 半導体シリコン基板 2 センサ本体 3 電極 4 検出回路 21 共振部分 22 保持部分 23 伝搬部分 24 受波部分 25 共振子 41,42 演算増幅器 43 積算回路 44 サンプルホールド回路
───────────────────────────────────────────────────── フロントページの続き (72)発明者 原田 宗生 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 (56)参考文献 特開 昭59−135328(JP,A) 実開 昭58−2640(JP,U) 実開 昭57−182134(JP,U) 実開 昭58−109069(JP,U) (58)調査した分野(Int.Cl.7,DB名) G01H 3/08 G01H 11/06

Claims (11)

    (57)【特許請求の範囲】
  1. 【請求項1】 媒質中を伝搬する音波を受ける受波部分
    と、夫々が異なる特定の周波数に共振するような長さを
    持つ複数の棒状の共振子を有する共振部分と、該共振部
    分を保持する保持部分と、前記各共振子の振動強度を検
    出する振動強度検出部分とを有しており、媒質中を伝搬
    して前記受波部分にて受けられた前記音波が、前記各共
    振子を特定の周波数で順次共振させながら前記保持部分
    を伝搬し、前記振動強度検出部分により異なる周波数成
    分の強度を検出する音響センサであって、検出された前
    記特定の周波数毎の振動強度を示す信号を電気信号に変
    換する変換手段と、変換された電気信号を任意に設定さ
    れた時間にわたって積算する積算手段と、該任意に設定
    された時間が経過した後、前記積算手段により積算され
    た結果を前記特定の周波数毎に出力する出力手段とを備
    えることを特徴とする音響センサ。
  2. 【請求項2】 隣合う二つの前記共振子間の距離が異な
    っていることを特徴とする請求項1に記載の音響セン
    サ。
  3. 【請求項3】 隣合う二つの前記共振子間の距離を異な
    らせて、各共振子における共振周波数の帯域幅を所定値
    に設定していることを特徴とする請求項1に記載の音響
    センサ。
  4. 【請求項4】 前記複数の共振子における共振周波数
    を、メルスケールで分布するように設定していることを
    特徴とする請求項1乃至3の何れかに記載の音響セン
    サ。
  5. 【請求項5】 前記複数の共振子における共振周波数
    を、バークスケールで分布するように設定していること
    を特徴とする請求項1乃至3の何れかに記載の音響セン
    サ。
  6. 【請求項6】 前記複数の共振子における共振周波数
    を、バークスケールで分布するように設定しており、各
    共振周波数に対応する帯域幅が臨界帯域幅であることを
    特徴とする請求項1乃至3の何れかに記載の音響セン
    サ。
  7. 【請求項7】 音楽曲を認識するための音楽曲入力用マ
    イクロフォンであることを特徴とする請求項に記載の
    音響センサ。
  8. 【請求項8】 音声を認識するための音声入力用マイク
    ロフォンであることを特徴とする請求項1乃至6の何れ
    かに記載の音響センサ。
  9. 【請求項9】 前記出力手段は、任意に選択した少なく
    とも1つの特定の周波数における積算結果を出力するフ
    ィルタ機能を有することを特徴とする請求項1乃至8の
    何れかに記載の音響センサ。
  10. 【請求項10】 特定の周波数の異常音を検出するため
    の異常音入力用マイクロフォンであることを特徴とする
    請求項に記載の音響センサ。
  11. 【請求項11】 音響センサが半導体基板上に構成して
    あることを特徴とする請求項1乃至10の何れかに記載
    の音響センサ。
JP2001244871A 2001-08-10 2001-08-10 音響センサ Expired - Fee Related JP3501145B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001244871A JP3501145B2 (ja) 2001-08-10 2001-08-10 音響センサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001244871A JP3501145B2 (ja) 2001-08-10 2001-08-10 音響センサ

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP13556497A Division JP3248452B2 (ja) 1997-05-26 1997-05-26 音響センサ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003354292A Division JP3886483B2 (ja) 2003-10-14 2003-10-14 音響センサ

Publications (2)

Publication Number Publication Date
JP2002116083A JP2002116083A (ja) 2002-04-19
JP3501145B2 true JP3501145B2 (ja) 2004-03-02

Family

ID=19074731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001244871A Expired - Fee Related JP3501145B2 (ja) 2001-08-10 2001-08-10 音響センサ

Country Status (1)

Country Link
JP (1) JP3501145B2 (ja)

Also Published As

Publication number Publication date
JP2002116083A (ja) 2002-04-19

Similar Documents

Publication Publication Date Title
JP3248452B2 (ja) 音響センサ
JP3141830B2 (ja) 音響センサ
Rasch et al. The perception of musical tones
US20080082323A1 (en) Intelligent classification system of sound signals and method thereof
Chi et al. Subglottal coupling and its influence on vowel formants
Banerjee et al. A novel study on perception–cognition scenario in music using deterministic and non-deterministic approach
JP3886483B2 (ja) 音響センサ
JP3501145B2 (ja) 音響センサ
Cabrera et al. PsySound3: a program for the analysis of sound recordings
JP3344336B2 (ja) 共振子アレイ、音響センサ及び振動センサ
Marolt Transcription of polyphonic piano music with neural networks
JP3344335B2 (ja) 音響センサ
JP3284968B2 (ja) 話速変換機能を有する補聴器
JP3584287B2 (ja) 音響評価方法およびそのシステム
Dubey et al. Hypernasality detection using zero time windowing
Jyotishi et al. A novel feature for nasalised vowels and characteristic analysis of nasal filter
JPS63278100A (ja) 音声認識装置
McLachlan et al. Calculated pitch sensations for new musical bell designs
JP2870421B2 (ja) 話速変換機能を有する補聴器
Donati et al. Classification of Speaking and Singing Voices Using Bioimpedance Measurements and Deep Learning
Hamdan et al. The Frequency Spectrum and Time Frequency Analysis of Different Violins Classification as Tools for Selecting a Good-Sounding Violin.
Onder et al. Pitch detection for monophonic musical notes
Ozsahin et al. A speech recognition system using technologies of audio signal processing
Eggen The strike note of bells
JPH0675596A (ja) スピーチおよび音響学的現象分析装置

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031124

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees