JP3501133B2 - High frequency heating power supply - Google Patents

High frequency heating power supply

Info

Publication number
JP3501133B2
JP3501133B2 JP2001069964A JP2001069964A JP3501133B2 JP 3501133 B2 JP3501133 B2 JP 3501133B2 JP 2001069964 A JP2001069964 A JP 2001069964A JP 2001069964 A JP2001069964 A JP 2001069964A JP 3501133 B2 JP3501133 B2 JP 3501133B2
Authority
JP
Japan
Prior art keywords
voltage
power supply
semiconductor switch
commercial power
diodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001069964A
Other languages
Japanese (ja)
Other versions
JP2002272118A (en
Inventor
英明 守屋
健治 安井
嘉朗 石尾
武 北泉
治雄 末永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001069964A priority Critical patent/JP3501133B2/en
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to DE60104981T priority patent/DE60104981T2/en
Priority to PCT/JP2001/008392 priority patent/WO2002028149A2/en
Priority to CNB018029264A priority patent/CN1171505C/en
Priority to US10/130,222 priority patent/US6624579B2/en
Priority to KR1020027006673A priority patent/KR100766534B1/en
Priority to EP01972509A priority patent/EP1254590B8/en
Priority to CN01269659U priority patent/CN2562101Y/en
Publication of JP2002272118A publication Critical patent/JP2002272118A/en
Application granted granted Critical
Publication of JP3501133B2 publication Critical patent/JP3501133B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Landscapes

  • Control Of High-Frequency Heating Circuits (AREA)
  • Rectifiers (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は電子レンジのように
マグネトロンを用いて誘電加熱を行う高周波加熱装置の
分野で、特にマグネトロンを駆動する電源装置の入力電
流の歪を少なくし、安定させる制御に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a field of a high-frequency heating device for performing dielectric heating using a magnetron such as a microwave oven, and more particularly to a control for reducing and stabilizing distortion of an input current of a power supply device for driving the magnetron. It is a thing.

【0002】[0002]

【従来の技術】従来この種のマグネトロンを駆動するた
めの高周波加熱電源装置は図14に示すような回路構成
で、動作を説明すると、交流である商用電源1を一旦ダ
イオードブリッジ2で直流電圧に変換し、この直流電圧
を半導体スイッチ素子3、4のオンオフによってインバ
ータ回路5を動作させ、高圧トランス6の一次巻線に高
周波電圧を発生し、高圧トランス6は二次巻線に高周波
高電圧を励起する。この高周波高電圧は高圧整流回路7
によって直流高電圧に整流され、マグネトロン8に印加
される。マグネトロン8はこの直流高電圧で駆動され、
2.45GHzの電波を発生する。ここでインダクタ9
とコンデンサ10は平滑回路を構成しているが、コンデ
ンサ10の容量はインバータ回路5の小型化が進む現状
として、動作周波数(20KHz〜50KHz)に対し
て直流電圧を保持できる程度の容量としており、商用電
源1の周波数に対しては平滑する能力を有していない。
このため図15に示す通りコンデンサ10の電圧V10
は商用電源1を単に全波整流した波形を示し、ほぼ0電
圧から商用電源1の最大電圧まで変動する脈動波形を示
す。インバータ回路5はこの脈動するコンデンサ10の
電圧V10によって動作するので、高圧トランス6の一
次巻線に発生する高周波電圧の包絡線波形はV6(L
p)に示すような波形となりコンデンサ10の電圧V1
0が低い期間では同様に低い電圧しか発生し得ない。す
なわち、非線形な特性を持つマグネトロン8において発
振する閾値VAK(TH)に達しなくなる期間が発生す
る。この期間はマグネトロン8が発振を停止しているた
め負荷であるマグネトロン8で電力消費されないため商
用電源1の電流I1は流れなくなり、電流が0となる期
間を有する非常に歪を持った波形となり、力率の低下と
入力電流に高調波電流を発生する結果となっていた。
2. Description of the Related Art A conventional high-frequency heating power supply device for driving a magnetron of this type has a circuit configuration as shown in FIG. 14, and its operation will be described. A commercial power supply 1 which is an alternating current is once converted into a direct current voltage by a diode bridge 2. This DC voltage is converted, and the inverter circuit 5 is operated by turning on / off the semiconductor switching elements 3 and 4 to generate a high frequency voltage in the primary winding of the high voltage transformer 6, and the high voltage transformer 6 generates a high frequency high voltage in the secondary winding. To excite. This high frequency high voltage is applied to the high voltage rectifier circuit 7
It is rectified into a DC high voltage by and is applied to the magnetron 8. The magnetron 8 is driven by this DC high voltage,
Generates 2.45 GHz radio waves. Inductor 9 here
And the capacitor 10 form a smoothing circuit, the capacity of the capacitor 10 is such that it can hold a DC voltage with respect to the operating frequency (20 KHz to 50 KHz) under the current circumstances where the inverter circuit 5 is becoming smaller. It does not have the ability to smooth the frequency of the commercial power source 1.
Therefore, as shown in FIG.
Shows a waveform obtained by simply full-wave rectifying the commercial power supply 1, and shows a pulsating waveform that varies from almost 0 voltage to the maximum voltage of the commercial power supply 1. Since the inverter circuit 5 operates by the pulsating voltage V10 of the capacitor 10, the envelope waveform of the high frequency voltage generated in the primary winding of the high voltage transformer 6 is V6 (L
The waveform becomes as shown in p) and the voltage V1 of the capacitor 10
Similarly, a low voltage can be generated in the period when 0 is low. That is, there occurs a period in which the threshold VAK (TH) at which the magnetron 8 having the nonlinear characteristic oscillates is not reached. During this period, since the magnetron 8 has stopped oscillating, no power is consumed by the magnetron 8 which is a load, so that the current I1 of the commercial power supply 1 stops flowing, and the waveform has a very distorted waveform having a period in which the current becomes 0, This resulted in a decrease in power factor and generation of harmonic current in the input current.

【0003】このため、商用電源からの脈動波形の谷間
付近で電圧を補完するための回路構成として昇圧チョパ
回路を利用した方法で部品点数の減数や小型化という面
から構成部品、回路構成の共用化を図り、この昇圧機能
と先のインバータ機能の動作を一度に行う方法が多数提
案されており、代表的なものが特開平10−27184
6にて公開されている。図16はこの発明の回路構成を
示した回路図である。しかしながらこの特許における負
荷回路11は放電灯のような消費電力の小さなものであ
り、電子レンジのように大きな電力を扱う電源装置にお
いては昇圧動作とインバータ動作を司る半導体スイッチ
素子Q1,Q2のオンオフのドライブ信号は昇圧用のコ
ンデンサの充放電をするための期間、いわゆるデッドダ
イムが必要ない。さらにまた、電子レンジのように加熱
設定における強・中・弱といった加熱電力(消費電力)
の調整が必要ないため、商用電源1の極性が変わる瞬間
や商用電源1の0電圧部と最大電圧部での半導体スイッ
チ素子Q1,Q2のドライブ信号の制御も特に注意する
必要がなかった。
Therefore, in order to complement the voltage in the vicinity of the valley of the pulsating waveform from the commercial power source, a method using a boosting chopper circuit is used to reduce the number of parts and reduce the size of the component and circuit configuration. A number of methods have been proposed in which the operation of this boosting function and the operation of the previous inverter function are performed at the same time, and a typical one is disclosed in Japanese Patent Laid-Open No. 10-27184.
It is published in 6. FIG. 16 is a circuit diagram showing the circuit configuration of the present invention. However, the load circuit 11 in this patent has a small power consumption such as a discharge lamp, and in a power supply device that handles a large amount of power such as a microwave oven, the semiconductor switch elements Q1 and Q2 that control the boosting operation and the inverter operation are turned on and off. The drive signal does not require a so-called dead dime, which is a period for charging and discharging the boosting capacitor. Furthermore, heating power (power consumption) such as high / medium / weak in the heating setting like a microwave oven.
Therefore, it is not necessary to pay particular attention to the control of the drive signals of the semiconductor switch elements Q1 and Q2 at the moment when the polarity of the commercial power source 1 changes or at the 0 voltage portion and the maximum voltage portion of the commercial power source 1.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
ような構成では下記の課題があった。すなわち、実際に
電子レンジのような大電力を扱う機器の制御においては
電源電圧の極性により半導体スイッチ素子のオンオフの
タイミングを切り替える必要のある回路構成を使用した
場合、その極性が変わる変極点でのドライブ信号の制御
は非常に重要となる。なぜならば昇圧チャージアップ機
能とインバータ機能とを司る一方の半導体スイッチ素子
とインバータ機能のみを司るもう一方の半導体スイッチ
素子が変極点で入れ替わる際のデューティ比や入れ替え
タイミングによりチャージアップコンデンサの充放電が
うまく切り替わらなければ入力電流には変極点付近で針
状の歪が発生してしまう。従来この手の回路構成は負荷
回路が放電灯のような消費電力が少なく電流値が微小な
ため、またチャージアップ用コンデンサの容量も小さい
ため入力電流歪はほとんど確認されなかったが、電子レ
ンジのような消費電力の大きな負荷回路の場合、入力電
流波形が大きく歪み、力率低下と高調波成分の拡大が懸
念される。
However, the above-mentioned configuration has the following problems. That is, in the case of actually controlling a device that handles a large amount of power such as a microwave oven, when a circuit configuration that requires switching the on / off timing of the semiconductor switch element depending on the polarity of the power supply voltage is used, the polarity changes at the inflection point. Control of drive signals is very important. This is because charging and discharging of the charge-up capacitor is successful due to the duty ratio and the switching timing when one semiconductor switch element that controls the boost charge-up function and the inverter function and the other semiconductor switch element that controls only the inverter function are switched at the inflection point. If not switched, needle-like distortion will occur in the input current near the inflection point. Conventionally, with this kind of circuit configuration, input current distortion was hardly confirmed because the load circuit consumes less power like a discharge lamp and the current value is minute, and the capacity of the charge-up capacitor is also small. In the case of such a load circuit with large power consumption, the input current waveform is greatly distorted, and there is a concern that the power factor will decrease and the harmonic components will expand.

【0005】さらに、特開平10−271846号公報
で開示されている従来例で示した構成は照明機器を対象
としたものであり、これらの機器の変換電力は最大でも
100Wから200W程度である。したがって回路を流
れる電流もおのずと数A程度の微小な電流しか流れない
のでダイオードをスイッチングスピード重視の設計とし
て順方向オン電圧VFが高くなるようにしてもダイオー
ドの損失はそれほど増加することなく設計することが可
能である。
Furthermore, the configuration shown in the conventional example disclosed in Japanese Patent Laid-Open No. 10-271846 is intended for lighting equipment, and the converted power of these equipments is about 100 W to 200 W at the maximum. Therefore, the current flowing through the circuit naturally flows only a minute current of about several amperes. Therefore, the diode loss should not be so much increased even if the forward ON-state voltage VF is increased in the design with emphasis on the switching speed. Is possible.

【0006】一方、電子レンジ等に用いられるマグネト
ロン駆動用電源は変換電力が1000Wから1500W
程度の大電力を扱うので、回路を流れる電流は最大で4
0Aから50Aの大電流が流れる。このためスイッチン
グスピードを重視してダイオードを設計すると順方向オ
ン電圧VFが高くなるのでダイオードが導通していると
きの損失(導通損失)が大きくなり、スイッチングスピ
ードを速くする事によって損失を低減しようとする効果
が薄れてしまう。また家庭用電子レンジの冷却能力は電
子レンジのサイズやコストの関係からおのずと限られた
ものとなるのでスイッチングスピードを速め、順方向オ
ン電圧VFの上昇を抑えるためにはダイオードの大型化
あるいは限られた冷却条件下で放熱するための大型の放
熱フィンなどが必要となってくる。このためマグネトロ
ン駆動用電源においては変換効率を高め、回路の各部品
での発生損失低減が必須条件となる。したがって従来例
で示した構成をマグネトロン駆動用電源に適用すること
は損失低減の観点からすると非常に困難を伴ってしま
う。そのためマグネトロン駆動用電源に適用する場合に
はダイオードのスイッチング損失もオン損失も増加させ
ないような回路構成とすることが必要となる。また、変
換電力の大きさゆえマグネトロン駆動用電源に電解コン
デンサを用いると電解コンデンサの脈動電流を押さえる
ために高容量でかつ耐電圧の高いスペックの電解コンデ
ンサを必要としてしまう。その結果、電源自体の大型化
を招くことからマグネトロン駆動用電源を搭載する電子
レンジのサイズアップを誘発し、高周波スイッチング動
作によってマグネトロン駆動用電源を小型軽量化する効
果が損なわれてしまうという課題も有している。
On the other hand, a magnetron driving power source used in a microwave oven or the like has a conversion power of 1000 W to 1500 W.
Since it handles a large amount of power, the maximum current that flows in the circuit is 4
A large current of 0 A to 50 A flows. For this reason, if the diode is designed with emphasis on the switching speed, the forward ON voltage VF becomes high, so that the loss (conduction loss) when the diode is conducting becomes large, and the loss is reduced by increasing the switching speed. The effect of doing is diminished. Further, the cooling capacity of the household microwave oven is naturally limited due to the size and cost of the microwave oven, so that the diode must be enlarged or limited in order to increase the switching speed and suppress the rise of the forward ON voltage VF. Large radiating fins for radiating heat under cooling conditions are needed. Therefore, in the magnetron driving power source, it is essential to improve the conversion efficiency and reduce the loss generated in each component of the circuit. Therefore, it is very difficult to apply the configuration shown in the conventional example to a magnetron driving power source from the viewpoint of loss reduction. Therefore, when applied to a magnetron driving power supply, it is necessary to have a circuit configuration that neither increases the switching loss nor the on loss of the diode. Further, if an electrolytic capacitor is used as a power source for driving the magnetron due to the large amount of converted power, an electrolytic capacitor having a high capacity and a high withstand voltage is required to suppress the pulsating current of the electrolytic capacitor. As a result, the size of the power supply itself is increased, which causes an increase in the size of the microwave oven equipped with the power supply for driving the magnetron, and the high frequency switching operation impairs the effect of reducing the size and weight of the power supply for driving the magnetron. Have

【0007】[0007]

【課題を解決するための手段】本発明は上記課題を解決
するために、まず大電力を扱えるような電源装置として
第1および第2の逆導通可能な半導体スイッチ素子の直
列接続体と、第1および第2のダイオードの直列接続体
を並列接続し、前記第1および第2のダイオードにそれ
ぞれ第1と第2のコンデンサを並列接続し、前記第1お
よび第2のダイオードの接続点と前記第1および第2の
逆導通可能な半導体スイッチ素子の接続点との間に商用
電源と高圧トランスの直列回路を接続するとともに、前
記高圧トランスの高圧出力は高圧整流回路を介してマグ
ネトロンに電力を供給する構成としている。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a power supply device capable of handling a large amount of electric power, in which a first and a second series-conducting semiconductor switch element are connected in series, and A series connection body of first and second diodes is connected in parallel, first and second capacitors are respectively connected in parallel to the first and second diodes, and a connection point of the first and second diodes and the above A series circuit of a commercial power supply and a high-voltage transformer is connected between the connection point of the first and second semiconductor switches capable of reverse conduction, and the high-voltage output of the high-voltage transformer supplies power to the magnetron through a high-voltage rectifier circuit. It is configured to supply.

【0008】これにより、前記第1および第2の半導体
スイッチ素子が相補的にオンオフすることによって前期
商用電源の電圧極性が正の場合は前記第2のコンデンサ
に商用電源の電圧を昇圧した電圧が加えられ、これとは
逆の電圧極性(負極性)の場合は前記第1のコンデンサ
に前記商用電源を昇圧した電圧が加えられる。前記高圧
トランスの1次巻線に印加する電圧はこの昇圧電圧に依
存するので前記商用電源の電圧が低い期間であってもマ
グネトロンが発振するために必要な電圧以上を常に前記
高圧トランスの1次巻線に印加することができ前記商用
電源のほぼ全域に渡り入力電流を流すことができ、歪の
少ない入力電流とすることができる。また、前記第1お
よび第2の半導体スイッチ素子は前記高圧トランスの1
次巻線に高周波電流を流すインバータ動作と前記第1お
よび第2のコンデンサに昇圧電圧を印加する動作を一度
に行うことができるのでインバータ構成部品を最小で構
成することができインバータ回路を小型化できる。ま
た、回路動作において前記第1および第2のダイオード
のターンオフは半導体スイッチ素子が行って回路モード
が切り替わるのでこれらのダイオードはスイッチングス
ピードに対する制約を受けることなく順方向オン電圧V
Fを重視した設計とすることができ、このダイオードの
損失をきわめて少なくしてインバータ回路を高効率化す
ることができる。
As a result, when the voltage polarity of the commercial power source is positive in the previous period due to the complementary turning on and off of the first and second semiconductor switching elements, the voltage obtained by boosting the voltage of the commercial power source is applied to the second capacitor. When the voltage polarity is opposite (negative polarity), the voltage obtained by boosting the commercial power supply is applied to the first capacitor. Since the voltage applied to the primary winding of the high-voltage transformer depends on this boosted voltage, even if the voltage of the commercial power source is low, the voltage higher than that required for the magnetron to oscillate is always higher than the primary voltage of the high-voltage transformer. The input current can be applied to the winding, and the input current can be made to flow over almost the entire area of the commercial power source, so that the input current with less distortion can be obtained. Further, the first and second semiconductor switching elements are one of the high voltage transformers.
Since the operation of applying a high-frequency current to the secondary winding and the operation of applying a boosted voltage to the first and second capacitors can be performed at the same time, the number of inverter components can be minimized and the inverter circuit can be miniaturized. it can. In the circuit operation, the semiconductor switch element turns off the first and second diodes to switch the circuit mode. Therefore, these diodes are not restricted by the switching speed and the forward on-voltage V
It is possible to make the design with emphasis on F, and it is possible to make the loss of this diode extremely small and to improve the efficiency of the inverter circuit.

【0009】上記のような構成において本発明は、極性
の変わる変極点付近において第1および第2の半導体ス
イッチ素子のオンオフデューティー比を各々50%と
し、変極点付近で昇圧チャージアップ機能とインバータ
機能を司る一方の半導体スイッチ素子とインバータ機能
のみを司るもう一方の半導体スイッチ素子を切り替え
る。このような手段により、極性の変わる変極点付近に
おいて昇圧チャージアップ機能とインバータ機能とを司
る一方のスイッチング素子をチャージアップコンデンサ
の充放電が完了するタイミングで切り替えることができ
るので、安定した高力率で高調波成分のカットされた入
力電流が得られる。
According to the present invention having the above-described structure, the ON / OFF duty ratios of the first and second semiconductor switching elements are set to 50% near the inflection point where the polarity changes, and the boost charge-up function and the inverter function near the inflection point. One of the semiconductor switching elements that controls the other and the other semiconductor switching element that controls only the inverter function are switched. By such means, one switching element that controls the boosting charge-up function and the inverter function near the inflection point where the polarity changes can be switched at the timing when charging / discharging of the charge-up capacitor is completed, so that a stable high power factor can be obtained. At, the input current with the harmonic components cut off is obtained.

【0010】[0010]

【発明の実施の形態】請求項1記載の発明は、第1およ
び第2の逆導通可能な半導体スイッチ素子の直列接続体
と、第1および第2のダイオードの直列接続体を並列接
続し、前記第1および第2のダイオードに各々並列に第
1と第2のコンデンサを接続し、前記第1および第2の
逆導通可能な半導体スイッチ素子の接続点と、前記第1
および第2のダイオードの接続点間に商用電源と高圧ト
ランスの1次巻線の直列回路とを接続して前記高圧トラ
ンスの2次巻線の出力は高圧整流回路を介してマグネト
ロンを駆動する構成としたもののうち、前記第1および
第2の逆導通可能な半導体スイッチ素子のオンオフデュ
ーティ比を前記商用電源の極性が変わる変極点付近では
各々50%となるように構成した。
The invention according to claim 1 is characterized in that the series connection body of the first and second semiconductor switch elements capable of reverse conduction and the series connection body of the first and second diodes are connected in parallel. First and second capacitors are respectively connected in parallel to the first and second diodes, and a connection point of the first and second semiconductor switch elements capable of reverse conduction;
A commercial power source and a series circuit of the primary winding of the high-voltage transformer are connected between the connection points of the second diode and the second diode, and the output of the secondary winding of the high-voltage transformer drives the magnetron through the high-voltage rectifier circuit. Of the above, the ON / OFF duty ratios of the first and second semiconductor switch elements capable of reverse conduction are each set to 50% near the inflection point where the polarity of the commercial power source changes.

【0011】請求項2に記載の発明は、第1および第2
の逆導通可能な半導体スイッチ素子の直列接続体と、第
1および第2のダイオードの直列接続体を並列接続し、
前記第1および第2のダイオードに各々並列に第1と第
2のコンデンサを接続し、前記第1および第2の逆導通
可能な半導体スイッチ素子の接続点と、前記第1および
第2のダイオードの接続点間に商用電源と高圧トランス
の1次巻線の直列回路とを接続して前記高圧トランスの
2次巻線の出力は高圧整流回路を介してマグネトロンを
駆動する駆動回路を備えた構成としたもののうち、前記
商用電源の変極点付近での制御において極性判別手段を
備えつつその変極点を検知することにより昇圧チャージ
アッブ機能とインバータ機能の両方とインバータ機能の
みの役割を相補的に同時に行う前記第1および第2の逆
導通可能な半導体スイッチ素子の役割を入れ替える構成
とし、前記駆動回路は、商用電源の極性の変極点となる
ZVPを検知した後インバータ動作における前記第1お
よび第2の逆導通可能な半導体スイッチ素子の直列接続
体の同時オフの休止期間を設けてコンデンサの放電を十
分行うようにした。
The invention according to claim 2 is the first and second aspects.
And a series connection body of semiconductor switch elements capable of reverse conduction and a series connection body of first and second diodes are connected in parallel,
First and second capacitors are connected in parallel to the first and second diodes, respectively, and a connection point of the first and second semiconductor switch elements capable of reverse conduction, and the first and second diodes. A configuration in which a commercial power source and a series circuit of the primary winding of the high-voltage transformer are connected between the connection points of the two, and the output of the secondary winding of the high-voltage transformer includes a drive circuit for driving the magnetron through a high-voltage rectifier circuit. Among them, the control of the commercial power source in the vicinity of the inflection point is provided with polarity determining means and the inflection point is detected to detect both the boosting charge-up function and the inverter function and the role of only the inverter function at the same time complementarily. The configuration is such that the roles of the first and second semiconductor switch elements capable of performing reverse conduction are switched, and the drive circuit serves as an inflection point of the polarity of the commercial power supply.
After detecting ZVP, the first
And second semiconductor switch element capable of reverse conduction in series connection
Allow the body to turn off at the same time to allow sufficient time to discharge the capacitor.
I tried to do it for a minute .

【0012】上記構成により、電子レンジのような消費
電力の大きな負荷回路においても商用電源の極性が変わ
る変極点における針状の入力電流波形歪みを抑え、さら
に力率低下と高調波成分の拡大も抑えることを可能とし
た。
With the above structure, even in a load circuit with large power consumption such as a microwave oven, the needle-like input current waveform distortion at the inflection point where the polarity of the commercial power source changes can be suppressed, and the power factor can be reduced and the harmonic components can be expanded. It was possible to suppress.

【0013】[0013]

【実施例】以下、本発明の実施例について図面を用いて
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0014】(実施例1) 本発明の第1の実施例に用いる回路構成を図1に示す。
第1および第2の半導体スイッチ素子12、13の直列
接続体と第1および第2のダイオード14、15の直列
接続体を並列接続し、第1および第2のダイオード1
4、15に各々並列に第1および第2のコンデンサ1
6、17を接続するとともに半導体スイッチ素子12、
13の接続点とダイオード14、15の接続点間に商用
電源1と高圧トランス18の直列回路を接続する構成と
なっている。高圧トランス18の2次巻線出力は高圧整
流回路7に接続されマグネトロン8に直流高電圧を印加
する。マグネトロン8はこの直流高電圧によって駆動さ
れ、2.45GHzの電波を発生する。なお本実施例で
は第1、第2の半導体スイッチ素子は順方向に導通する
IGBT(絶縁ゲートバイポーラトランジスタ)とこれ
と逆並列に接続したダイオードにて記載しているが、M
OSFETのように素子内部にダイオードを構成したよ
うな素子を用いても適用可能であることは言うまでもな
い。
(Embodiment 1) FIG. 1 shows a circuit configuration used in a first embodiment of the present invention.
A series connection body of the first and second semiconductor switching elements 12 and 13 and a series connection body of the first and second diodes 14 and 15 are connected in parallel, and the first and second diodes 1 and 2 are connected.
First and second capacitors 1 in parallel with 4 and 15 respectively
6, 17 are connected to each other and the semiconductor switch element 12,
A series circuit of the commercial power supply 1 and the high-voltage transformer 18 is connected between the connection point of 13 and the connection points of the diodes 14 and 15. The secondary winding output of the high voltage transformer 18 is connected to the high voltage rectifier circuit 7 and applies a high DC voltage to the magnetron 8. The magnetron 8 is driven by this DC high voltage and generates a radio wave of 2.45 GHz. In the present embodiment, the first and second semiconductor switch elements are described as an IGBT (insulated gate bipolar transistor) that conducts in the forward direction and a diode that is connected in anti-parallel to the IGBT.
It is needless to say that the present invention can be applied even when an element such as an OSFET having a diode inside is used.

【0015】図2はインバータ回路の各期間における電
流が流れる経路を示した図であり、図3はそれに対応し
た動作波形図である。商用電源1の極性が図示の状態で
半導体スイッチ素子13がオンの状態から説明をはじめ
る。この状態では図2(a)に示すように商用電源1→
高圧トランス18の1次巻線→半導体スイッチ素子13
→ダイオード15の経路で電流が流れ、図3(a)の期
間のI13に示す電流が半導体スイッチ素子13および
高圧トランス18の1次巻線に電流が流れることによっ
て高圧トランス18の1次巻線にエネルギーを蓄積す
る。半導体スイッチ素子13を所定の時間でオフすると
高圧トランス18の1次巻線電流は同じ方向に流れ続け
ようとするので今度は図2(b)に示すごとく商用電源
1→高圧トランス18の1次巻線→半導体スイッチ素子
12の並列ダイオード→コンデンサ16の経路で高圧ト
ランス18の1次巻線に蓄えたエネルギーをコンデンサ
16に充電する。この動作によってコンデンサ16には
商用電源1の電圧を昇圧した電圧が蓄えられる。高圧ト
ランス18の1次巻線に蓄えたエネルギーをすべて放出
すると図2(c)の経路が形成され今度はコンデンサ1
6に充電したエネルギーをコンデンサ16→半導体スイ
ッチ素子12→高圧トランス18の1次巻線→商用電源
1の経路で取り出す。そして半導体スイッチ素子12を
所定の時間でオフすると高圧トランス18の1次巻線は
同じ方向に電流を流し続けようとするので図2(d)の
ように高圧トランス18の1次巻線→商用電源1→コン
デンサ17→半導体スイッチ素子13の並列ダイオード
の経路で電流が流れる。商用電源1の電圧極性が図示と
逆極性の場合は半導体スイッチ素子12、13とダイオ
ード14、15とコンデンサ16、17の動作がそれぞ
れ入れ替わるだけで同様の動作となる。
FIG. 2 is a diagram showing a path through which a current flows in each period of the inverter circuit, and FIG. 3 is an operation waveform diagram corresponding thereto. The description starts from the state in which the semiconductor switch element 13 is turned on with the polarity of the commercial power supply 1 being shown. In this state, as shown in FIG.
Primary winding of high-voltage transformer 18 → semiconductor switch element 13
→ A current flows through the path of the diode 15, and the current indicated by I13 in the period of FIG. 3A flows through the semiconductor switch element 13 and the primary winding of the high-voltage transformer 18, whereby the primary winding of the high-voltage transformer 18 Store energy in. When the semiconductor switching device 13 is turned off for a predetermined time, the primary winding current of the high voltage transformer 18 tries to continue flowing in the same direction, and this time, as shown in FIG. The energy stored in the primary winding of the high-voltage transformer 18 is charged in the capacitor 16 along the path of winding → parallel diode of the semiconductor switching element 12 → capacitor 16. By this operation, a voltage obtained by boosting the voltage of the commercial power supply 1 is stored in the capacitor 16. When all the energy stored in the primary winding of the high-voltage transformer 18 is released, the path shown in FIG.
The energy charged in 6 is taken out through the route of capacitor 16 → semiconductor switch element 12 → primary winding of high-voltage transformer 18 → commercial power supply 1. Then, when the semiconductor switching element 12 is turned off for a predetermined time, the primary winding of the high voltage transformer 18 tries to keep the current flowing in the same direction. Therefore, as shown in FIG. A current flows through the parallel diode path of the power supply 1 → capacitor 17 → semiconductor switch element 13. When the voltage polarity of the commercial power supply 1 is opposite to that shown in the figure, the semiconductor switch elements 12 and 13, the diodes 14 and 15, and the capacitors 16 and 17 are replaced with each other, and the same operation is performed.

【0016】上記の動作においてコンデンサ16、17
は半導体スイッチ素子12、13のオンオフによって高
圧トランス18の1次巻線に高周波電流を発生させるイ
ンバータ動作と商用電源1の電圧に対して昇圧した電圧
をコンデンサ16、17に発生させる動作を兼用できる
ような容量に設計され、コンデンサ16、17の容量は
相等しい容量で構成されている。この結果商用電源1の
電圧極性が図示の場合はコンデンサ16に商用電源1の
電圧を昇圧した電圧を蓄え、反対に商用電源1の電圧極
性が図示とは逆極性の場合はコンデンサ17に商用電源
1の電圧を昇圧した電圧を蓄える動作をする。したがっ
て商用電源1の電圧極性によらずコンデンサ16、17
に発生する電圧を等しくすることができるので商用電源
1の電流は正負対称な波形とすることができる。そし
て、このような動作を継続することで図4に示すように
商用電源1の周期に対してコンデンサ16、17の電圧
波形は商用電源1の電圧極性に応じて昇圧した電圧を発
生する。このため高圧トランス18の1次巻線に流れる
電流の包絡線波形はV18(Lp)に示すような波形と
なる。この電圧を高圧トランス18は昇圧してマグネト
ロン8に印加するのでマグネトロン8に印加する電圧は
V8のような波形を示し、常に発振電圧VAK(TH)
以上の電圧を維持することが可能となる。この結果入力
電流I1は商用電源1のいずれの期間においても電流を
流すことができ、力率の改善、高調波の抑制を実現する
ことができる。
In the above operation, the capacitors 16 and 17
Can perform both an inverter operation for generating a high-frequency current in the primary winding of the high-voltage transformer 18 by turning on / off the semiconductor switching elements 12, 13 and an operation for generating a voltage boosted with respect to the voltage of the commercial power source 1 in the capacitors 16, 17. The capacitors 16 and 17 are designed to have the same capacitance, and the capacitors 16 and 17 have the same capacitance. As a result, when the voltage polarity of the commercial power source 1 is shown, the voltage obtained by boosting the voltage of the commercial power source 1 is stored in the capacitor 16, and when the voltage polarity of the commercial power source 1 is opposite to that shown in the figure, the commercial power source is stored in the capacitor 17. It operates to store the voltage obtained by boosting the voltage of 1. Therefore, the capacitors 16 and 17 are independent of the voltage polarity of the commercial power source 1.
Since the voltages generated at 1 and 2 can be made equal, the current of the commercial power source 1 can have a positive and negative symmetrical waveform. By continuing such operation, as shown in FIG. 4, the voltage waveforms of the capacitors 16 and 17 with respect to the cycle of the commercial power source 1 generate a boosted voltage according to the voltage polarity of the commercial power source 1. Therefore, the envelope waveform of the current flowing through the primary winding of the high-voltage transformer 18 has a waveform as shown by V18 (Lp). This voltage is boosted by the high-voltage transformer 18 and applied to the magnetron 8. Therefore, the voltage applied to the magnetron 8 has a waveform like V8, and the oscillation voltage VAK (TH) is always present.
It is possible to maintain the above voltage. As a result, the input current I1 can flow in any period of the commercial power supply 1, and the power factor can be improved and harmonics can be suppressed.

【0017】また、図3において期間(a)から(b)
へ移行する際ダイオード15をカットオフする動作にな
るが電流経路として半導体スイッチ素子13が直列に接
続されているので電流の遮断は半導体スイッチ素子13
が行うことになりダイオード15のスイッチングスピー
ドは要求されない。また、オフ時にダイオード15に印
加する電圧は零であるのでターンオフ時のスイッチング
損失はまったく生じない。したがってダイオード14、
15の設計としては順方向オン電圧VFを重視した設計
で導通時の損失を重点的に抑制するように設計すること
が可能となり、ダイオード14、15の小型化と同時に
ダイオード14、15を冷却する構成の簡素化を図るこ
とが容易となる。特に電子レンジで用いるようなマグネ
トロン駆動用電源は1000W以上の高電力を扱うので
インバータ回路の電流は40Aから50A程度の非常に
大きな電流レベルとなりダイオード14、15の設計に
おいて順方向オン電圧VFを重視して導通損失を低減す
ることはインバータ回路の効率向上に有益である。この
ためインバータ回路のトータルの電力損失をきわめて低
く抑えることができ、効率の高いマグネトロン駆動用電
源を実現することができる。
Further, in FIG. 3, periods (a) to (b)
When the operation shifts to, the diode 15 is cut off, but since the semiconductor switch element 13 is connected in series as a current path, the semiconductor switch element 13 is cut off.
Therefore, the switching speed of the diode 15 is not required. Further, since the voltage applied to the diode 15 at the time of turning off is zero, no switching loss occurs at the time of turning off. Therefore, the diode 14,
As the design of 15, the forward ON voltage VF can be emphasized so that it can be designed to suppress the loss at the time of conduction, and the diodes 14 and 15 can be downsized and the diodes 14 and 15 can be cooled at the same time. It is easy to simplify the configuration. In particular, a magnetron driving power source used in a microwave oven handles a high electric power of 1000 W or more, so the current of the inverter circuit becomes a very large current level of about 40 A to 50 A, and the forward on-voltage VF is emphasized in the design of the diodes 14 and 15. It is useful to improve the efficiency of the inverter circuit by reducing the conduction loss. Therefore, the total power loss of the inverter circuit can be suppressed to a very low level, and a highly efficient magnetron driving power source can be realized.

【0018】このように本実施例で使用するマグネトロ
ン駆動用電源においては従来例で示した回路とは全く異
なった回路動作によってダイオード14、15の設計を
順方向オン電圧VF重視の設計とすることが可能となり
ダイオード14、15の損失を極小化しマグネトロン駆
動用電源全体の電力変換効率を向上している。この効果
はコンデンサ16、17がインバータ動作と商用電源1
の電圧を昇圧した電圧を加える動作を兼用することによ
って発揮される特有の効果であり、従来例にて挙げた特
開平10−271846の構成とは異なったコンデンサ
の回路機能と回路動作によって実現されるものである。
As described above, in the magnetron driving power source used in this embodiment, the diodes 14 and 15 are designed with the forward ON voltage VF emphasized by the circuit operation which is completely different from the circuit shown in the conventional example. It becomes possible to minimize the loss of the diodes 14 and 15 and improve the power conversion efficiency of the entire magnetron driving power source. The effect is that capacitors 16 and 17 operate as an inverter and commercial power supply 1
This is a peculiar effect which is exhibited by also performing the operation of applying the voltage obtained by boosting the voltage of No. 1, which is realized by the circuit function and the circuit operation of the capacitor different from the configuration of Japanese Patent Laid-Open No. 10-271846 mentioned in the conventional example. It is something.

【0019】図5は本実施例のマグネトロン駆動用電源
のより実際的な回路構成を示したものであり、商用電源
1の出力にインダクタ19とコンデンサ20からなるロ
ーパスフィルタ21を設けることによってインバータ回
路の高周波電流が商用電源へ流れないように構成したも
のである。このように商用電源1とインバータ回路の間
にローパスフィルタ21を挿入する構成とすることによ
りインバータ回路の高周波電流あるいは電圧が商用電源
側へ回り込まないようにすることによって端子雑音の低
減を図ることが可能となる。なお、本構成によっても上
述の動作は何ら変わらない。以下半導体スイッチ素子1
2、13のドライブ信号の制御を行う駆動回路22を中
心に説明していく。
FIG. 5 shows a more practical circuit configuration of the magnetron driving power source of this embodiment. By providing a low-pass filter 21 consisting of an inductor 19 and a capacitor 20 at the output of the commercial power source 1, an inverter circuit is provided. It is configured so that the high-frequency current of (4) does not flow to the commercial power supply. In this way, the low-pass filter 21 is inserted between the commercial power source 1 and the inverter circuit so that the high frequency current or voltage of the inverter circuit is prevented from sneaking into the commercial power source side, thereby reducing the terminal noise. It will be possible. Note that the above operation does not change even with this configuration. Semiconductor switch element 1 below
The drive circuit 22 that controls the drive signals 2 and 13 will be mainly described.

【0020】駆動回路22は半導体スイッチ素子12、
13を駆動してインバータ回路を動作させる。駆動回路
22が半導体スイッチ素子12、13へ送る駆動信号V
g12、Vg13は図6(a)に示すようにデッドタイ
ムを有し相補的にオンオフするような波形である。この
ように半導体スイッチ素子12、13を相補的にオンオ
フすることによってインバータ回路はマグネトロン8へ
電力を伝送している。
The drive circuit 22 is a semiconductor switch element 12,
13 is driven to operate the inverter circuit. Drive signal V sent from the drive circuit 22 to the semiconductor switch elements 12 and 13
As shown in FIG. 6A, g12 and Vg13 have waveforms which have a dead time and complementarily turn on and off. In this way, the semiconductor switch elements 12 and 13 are complementarily turned on and off, whereby the inverter circuit transmits power to the magnetron 8.

【0021】ここで半導体スイッチ素子13のオン時間
比率Don13とインバータ回路の変換電力Pとの関係
を図7に示す。図中で実線にて示した曲線は商用電源1
の電圧極性が図5に示す極性の場合での変換電力Pの変
化を示したものであり、破線で示した曲線はこれとは逆
に商用電源1の電圧極性が図5とは逆の電圧極性の場合
での変換電力Pの変化を示している。このように商用電
源1の電圧極性によって半導体スイッチ素子13のオン
時間比率Don13とインバータ回路の変換電力Pの関
係は異なったものとなる。したがって、半導体スイッチ
素子13のオン時間比率Don13が略50%の状態で
は商用電源1の電圧極性によらずいずれの電圧極性にお
いても同じ電力変換が可能なので商用電源1の電流は図
8(b)に示すように正負対称の波形とすることができ
る。しかしながら商用電源1の電流を正負対称な正弦波
にしようとすると変換電力はこの一点のみで限定されて
しまう。家庭用の電子レンジなどでは電子レンジで加熱
する際に食品に応じてさまざまな加熱電力が選択され
る。たとえばレンジ“強”、“中”、“弱”などの設定
によって加熱電力の調整が必要とされる。これに対応す
るためには半導体スイッチ素子13のオン時間比率Do
n13を所望の出力電力に応じて変化させることが必要
となるが、商用電源1の電圧極性に関係なく一定のオン
時間比Don13で所望の出力電力に調整しようとする
と図7に示した半導体スイッチ素子13のオン時間比率
Don13と変換電力Pの関係からオン時間比Don1
3が50%から外れることとなり、商用電源1の電圧が
正の期間と負の期間で異なった電流波形を示すことにな
る。そして制御方法を誤れば図8(a)に示すような正
負がアンバランスな電流波形となってしまう。この場
合、電流波形が対称波形とならないので偶数次の高調波
が発生することになり結局のところ力率を向上すること
はできなくなってしまう。
FIG. 7 shows the relationship between the ON time ratio Don13 of the semiconductor switch element 13 and the converted power P of the inverter circuit. The curve shown by the solid line in the figure is the commercial power supply 1
Shows the change in the converted power P when the voltage polarity of the commercial power source 1 is the polarity shown in FIG. 5, and the curve shown by the broken line is the reverse of this, and the voltage polarity of the commercial power source 1 is the opposite voltage to that in FIG. The change of the conversion electric power P in the case of polarity is shown. Thus, the relationship between the ON time ratio Don13 of the semiconductor switch element 13 and the converted power P of the inverter circuit varies depending on the voltage polarity of the commercial power supply 1. Therefore, when the ON time ratio Don13 of the semiconductor switch element 13 is approximately 50%, the same power conversion can be performed regardless of the voltage polarity of the commercial power source 1 and the current of the commercial power source 1 is as shown in FIG. As shown in, the waveform can be symmetrical. However, if an attempt is made to make the current of the commercial power source 1 a positive and negative symmetrical sine wave, the converted power will be limited to only this one point. In a microwave oven for home use, various heating powers are selected according to the food when heating in the microwave oven. For example, the heating power needs to be adjusted by setting the range "strong", "medium", "weak", and the like. In order to deal with this, the on-time ratio Do of the semiconductor switching device 13
Although it is necessary to change n13 in accordance with the desired output power, the semiconductor switch shown in FIG. 7 is used when adjusting the desired output power with a constant on-time ratio Don13 regardless of the voltage polarity of the commercial power supply 1. From the relationship between the ON time ratio Don13 of the element 13 and the converted power P, the ON time ratio Don1
3 is out of 50%, and the voltage of the commercial power supply 1 shows different current waveforms in the positive period and the negative period. If the control method is erroneous, a positive and negative current waveform will be unbalanced as shown in FIG. In this case, since the current waveform does not have a symmetrical waveform, even harmonics are generated, and eventually the power factor cannot be improved.

【0022】そこで本実施例においては商用電源1の電
圧極性に応じて半導体スイッチ素子12、13の駆動信
号を入れ替えるように駆動回路22が動作するようにし
ている。すなわち図9に示すように商用電源1の電圧波
形V1(点線)の電圧極性が正の場合には昇圧チャージ
アップとインバータ動作を司る半導体スイッチ素子13
のオン時間比率(実線)Don13を高め、その逆極性
時には半導体スイッチ素子13のオン時間比率Don1
3を低める。また、商用電源電圧V1の正極時におい
て、0電圧から最大電圧に達するまでの谷間部では最も
昇圧チャージアップができるオン時間比率Don13と
し、最大電圧付近(ピーク部)では逆にオン時間比率D
on13を少し下げている。このように半導体スイッチ
素子13のオン時間比率Don13を変えることによ
り、歪みの少ない入力電流を得ることが可能となり、容
易にレンジ“強”、“中”、“弱”などの加熱電力の調
整が行える。ここで、負極性時に昇圧チャージアップ機
能とインバータ機能を司ることとなるもう一方の半導体
スイッチ素子12は上記説明した半導体スイッチ素子1
3を追従して相補的な動作となることは言うまでもな
い。
Therefore, in this embodiment, the drive circuit 22 operates so that the drive signals of the semiconductor switch elements 12 and 13 are switched according to the voltage polarity of the commercial power supply 1. That is, as shown in FIG. 9, when the voltage polarity of the voltage waveform V1 (dotted line) of the commercial power supply 1 is positive, the semiconductor switch element 13 that controls the boost charge-up and the inverter operation.
The ON time ratio (solid line) Don13 of the semiconductor switch element 13 is increased and the ON time ratio Don1 of the semiconductor switch element 13 is set to the opposite polarity.
Lower 3 Further, when the commercial power supply voltage V1 is positive, the ON time ratio Don13 is the maximum boost charge-up in the valley portion from 0 voltage to the maximum voltage, and conversely in the vicinity of the maximum voltage (peak portion).
on13 is lowered a little. By changing the ON time ratio Don13 of the semiconductor switch element 13 in this way, it is possible to obtain an input current with less distortion, and it is possible to easily adjust the heating power in the ranges "strong", "medium", "weak", and the like. You can do it. Here, the other semiconductor switch element 12 that controls the boost charge-up function and the inverter function when the polarity is negative is the semiconductor switch element 1 described above.
It goes without saying that a complementary operation is performed by following # 3.

【0023】この際、図9の商用電源電圧V1の極性が
入れ替わる変極点においてオン時間比率Don13は5
0%となっており、変極点部を詳細に示した図10のよ
うにVg13とVg12のオン時間T1とT2は等しく
なっている。この制御により、変極点において昇圧チャ
ージアップ機能とインバータ機能の両方を司る一方の半
導体スイッチ素子とインバータ機能のみを司るもう一方
の半導体スイッチ素子と役割交代をスムーズに行うこと
ができ、その結果、入力電流における変極点付近で発生
していた針状の歪みを抑えることができ、安定した入力
電流が得られる。
At this time, the on-time ratio Don13 is 5 at the inflection point where the polarities of the commercial power supply voltage V1 in FIG.
It is 0%, and the on-times T1 and T2 of Vg13 and Vg12 are equal as shown in FIG. 10 showing the inflection point part in detail. With this control, it is possible to smoothly switch roles between one semiconductor switch element that controls both the boost charge-up function and the inverter function and the other semiconductor switch element that controls only the inverter function at the inflection point. It is possible to suppress needle-like distortion that has occurred in the vicinity of the inflection point in the current and obtain a stable input current.

【0024】また、全体としてもマグネトロン駆動用電
源の回路での発生損失を低減しつつマグネトロン駆動電
源の変換電力が変化して、半導体スイッチ素子13のオ
ン時間比率Don13が略50%の状態からいずれかの
方向へずれて変換電力が増減しても常に商用電源1の電
流波形は正負対称な正弦波状の波形を維持することが可
能となる。このため変換電力を変化させても常に高い電
力変換効率を維持したまま高力率で電流の歪の少ない動
作を実現することが可能となる。
In addition, as a whole, the conversion power of the magnetron drive power supply is changed while reducing the loss generated in the circuit of the magnetron drive power supply, and the ON time ratio Don13 of the semiconductor switch element 13 starts from a state of about 50%. Even if the converted power deviates in that direction and the converted power increases or decreases, the current waveform of the commercial power source 1 can always maintain a positive and negative symmetrical sinusoidal waveform. Therefore, even if the conversion power is changed, it is possible to realize an operation with a high power factor and a small current distortion while always maintaining a high power conversion efficiency.

【0025】(実施例2) 本発明の第2の実施例に用いる回路図を図11に示す。
図11に示す電源極性判定手段23は商用電源1の電圧
極性を判定し駆動回路22に商用電源1が正の電圧極性
か負の電圧極性かの信号を伝達する。その一例として図
12に示す通り、商用電源V1が正極性のときは伝達信
号V23をLOWレベル、負極性の時はV23をHIG
Hレベルという具合にして判別を行う。駆動回路22は
この判定信号に基づき半導体スイッチ素子12、13の
オン時間比率を入れ替えるように動作すると同時に図9
で示した様に商用電源1の極性に応じて各々のオン時間
比率を変化させ、商用電源の谷間部では昇圧チャージア
ップ機能を司る側の半導体スイッチ素子のオン時間比率
を高め、逆にピーク部では低める制御を行い、歪みの少
ない入力電流波形I1を得る。
(Second Embodiment) FIG. 11 shows a circuit diagram used in a second embodiment of the present invention.
The power supply polarity determination means 23 shown in FIG. 11 determines the voltage polarity of the commercial power supply 1 and transmits a signal indicating whether the commercial power supply 1 has a positive voltage polarity or a negative voltage polarity to the drive circuit 22. As an example thereof, as shown in FIG. 12, when the commercial power source V1 has a positive polarity, the transmission signal V23 has a LOW level, and when the commercial power source V1 has a negative polarity, V23 is HIG.
Judgment is made in the state of H level. The drive circuit 22 operates so as to switch the ON time ratios of the semiconductor switch elements 12 and 13 based on this determination signal, and at the same time, as shown in FIG.
As shown in, the on-time ratio of each is changed according to the polarity of the commercial power supply 1, and the on-time ratio of the semiconductor switch element that controls the boost charge-up function is increased in the valley part of the commercial power supply, and conversely the peak part. Then, control is performed to lower the input current waveform I1 with less distortion.

【0026】この際、商用電源の極性は極性判定手段2
3により判別できるため、図13に示す通り、変極点と
なるZVPを検知した後、インバータ動作の一周期分だ
け同時オフの休止期間を設けてコンデンサの放電を十分
行い、各々の半導体スイッチ素子の役割を入れ替えるこ
とができる。この構成では変極点での各々の半導体スイ
ッチ素子のオンオフデューティ比は図13で示すように
Vg13とVg12のオン時間をT1≠T2としても変
極点における針状の入力電流歪みを抑制することが可能
となる。
At this time, the polarity of the commercial power source is determined by the polarity determining means 2
As shown in FIG. 13, after detecting ZVP, which is the inflection point, the capacitor is sufficiently discharged by providing a pause period of simultaneous off for one cycle of the inverter operation, as shown in FIG. You can switch roles. With this configuration, the on / off duty ratio of each semiconductor switching element at the inflection point can suppress needle-like input current distortion at the inflection point even when the on time of Vg13 and Vg12 is set to T1 ≠ T2 as shown in FIG. Becomes

【0027】[0027]

【発明の効果】以上のように本発明の高周波加熱電源装
置によれば、昇圧チャージアップ機能とインバータ機能
とを司る一方の半導体スイッチ素子とインバータ機能の
みを司るもう一方の半導体スイッチ素子との役割交代が
商用交流電源の極性が入れ替わる度に必要となる回路構
成において発生していた変極点部の針状の入力電流歪み
を抑えることができ、安定した入力電流を得ることがで
きる。
As described above, according to the high-frequency heating power supply device of the present invention, the roles of one semiconductor switch element that controls the boost charge-up function and the inverter function and the other semiconductor switch element that controls only the inverter function. It is possible to suppress the needle-like input current distortion at the inflection point, which has occurred in the circuit configuration in which the alternation is required each time the polarity of the commercial AC power supply is switched, and it is possible to obtain a stable input current.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1におけるマグネトロン駆動用
電源の動作説明用回路図
FIG. 1 is a circuit diagram for explaining an operation of a magnetron driving power source according to a first embodiment of the present invention.

【図2】同マグネトロン駆動用電源の各動作モードでの
電流経路図
FIG. 2 is a current path diagram in each operation mode of the power supply for driving the magnetron.

【図3】同マグネトロン駆動用電源のインバータ回路の
動作波形図
FIG. 3 is an operation waveform diagram of an inverter circuit of the power supply for driving the magnetron.

【図4】同マグネトロン駆動用電源の動作波形図FIG. 4 is an operation waveform diagram of the power supply for driving the magnetron.

【図5】同マグネトロン駆動用電源の構成を示す回路図FIG. 5 is a circuit diagram showing a configuration of a power supply for driving the magnetron.

【図6】同マグネトロン駆動用電源の半導体スイッチ素
子の駆動信号波形図
FIG. 6 is a drive signal waveform diagram of a semiconductor switching device of the power supply for driving the magnetron.

【図7】同マグネトロン駆動用電源の半導体スイッチ素
子のオン時間比率Don13と変換電力Pのグラフ
FIG. 7 is a graph of the on-time ratio Don13 and the conversion power P of the semiconductor switching element of the magnetron driving power supply.

【図8】同マグネトロン駆動用電源の商用電源電流波形
の一例を示す図
FIG. 8 is a diagram showing an example of a commercial power supply current waveform of the magnetron driving power supply.

【図9】同マグネトロン駆動用電源における商用電源と
半導体スイッチ素子オン時間比率の関係を示す図
FIG. 9 is a diagram showing a relationship between a commercial power supply and a semiconductor switching element ON time ratio in the magnetron driving power supply.

【図10】同マグネトロン駆動用電源における変極点付
近の半導体スイッチ素子の駆動信号波形図
FIG. 10 is a drive signal waveform diagram of the semiconductor switch element near the inflection point in the magnetron drive power supply.

【図11】本発明の実施例2におけるマグネトロン駆動
用電源の回路図
FIG. 11 is a circuit diagram of a magnetron driving power supply according to a second embodiment of the present invention.

【図12】同マグネトロン駆動用電源における電源極性
判定手段の出力波形図
FIG. 12 is an output waveform diagram of the power supply polarity determining means in the power supply for driving the magnetron.

【図13】同マグネトロン駆動用電源における変極点付
近の半導体スイッチ素子の駆動信号波形図
FIG. 13 is a drive signal waveform diagram of the semiconductor switch element near the inflection point in the magnetron driving power supply.

【図14】従来のマグネトロン駆動用電源を示す回路図FIG. 14 is a circuit diagram showing a conventional magnetron driving power supply.

【図15】同マグネトロン駆動用電源の動作波形図FIG. 15 is an operation waveform diagram of the magnetron driving power supply.

【図16】特開平10−271846号公報に公開され
た電源装置の回路図
FIG. 16 is a circuit diagram of a power supply device disclosed in Japanese Unexamined Patent Publication No. 10-271846.

【符号の説明】[Explanation of symbols]

1 商用電源 7 高圧整流回路 8 マグネトロン 12 第1の半導体スイッチ素子 13 第2の半導体スイッチ素子 14 第1のダイオード 15 第2のダイオード 16 第1のコンデンサ 17 第2のコンデンサ 18 高圧トランス 22 駆動回路 23 電源極性判定手段 1 Commercial power supply 7 High voltage rectifier circuit 8 magnetron 12 First semiconductor switch element 13 Second semiconductor switch element 14 First diode 15 Second diode 16 First capacitor 17 Second capacitor 18 High voltage transformer 22 Drive circuit 23 Power supply polarity determination means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 北泉 武 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 末永 治雄 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開2002−110337(JP,A) 特開 平8−280173(JP,A) 特開2002−110338(JP,A) 特開2002−270361(JP,A) 特開2002−272100(JP,A) (58)調査した分野(Int.Cl.7,DB名) H05B 6/66 H02M 3/28 H02M 7/12 H05B 6/12 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Takeshi Kitazumi 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Haruo Suenaga 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. (56) References JP-A-2002-110337 (JP, A) JP-A-8-280173 (JP, A) JP-A-2002-110338 (JP, A) JP-A-2002-270361 (JP, A) JP-A-2002 −272100 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H05B 6/66 H02M 3/28 H02M 7/12 H05B 6/12

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 第1および第2の逆導通可能な半導体ス
イッチ素子の直列接続体と、第1および第2のダイオー
ドの直列接続体を並列接続し、前記第1および第2のダ
イオードに各々並列に第1と第2のコンデンサを接続
し、前記第1および第2の逆導通可能な半導体スイッチ
素子の接続点と前記第1および第2のダイオードの接続
点との間に商用電源と高圧トランスの1次巻線の直列回
路とを接続し、前記高圧トランスの2次巻線の出力は高
圧整流回路を介してマグネトロンを駆動する構成とし、
前記第1および第2の逆導通可能な半導体スイッチ素子
のオンオフデューティ比を前記商用電源の極性が変わる
変極点付近で各々約50%とした高周波加熱電源装置。
1. A series connection body of first and second semiconductor switch elements capable of reverse conduction and a series connection body of first and second diodes are connected in parallel, and are respectively connected to the first and second diodes. A first and a second capacitors are connected in parallel, and a commercial power source and a high voltage are provided between a connection point of the first and second reverse-conductive semiconductor switch elements and a connection point of the first and second diodes. The primary winding of the transformer is connected to a series circuit, and the output of the secondary winding of the high-voltage transformer drives the magnetron via a high-voltage rectifier circuit.
A high-frequency heating power supply device in which the on-off duty ratios of the first and second semiconductor switch elements capable of reverse conduction are each set to about 50% near the inflection point where the polarity of the commercial power supply changes.
【請求項2】 第1および第2の逆導通可能な半導体ス
イッチ素子の直列接続体と、第1および第2のダイオー
ドの直列接続体を並列接続し、前記第1および第2のダ
イオードに各々並列に第1と第2のコンデンサを接続
し、前記第1および第2の逆導通可能な半導体スイッチ
素子の接続点と前記第1および第2のダイオードの接続
点との間に商用電源と高圧トランスの1次巻線の直列回
路とを接続し、前記高圧トランスの2次巻線の出力は高
圧整流回路を介してマグネトロンを駆動する駆動回路を
備えた構成とし、前記商用電源の変極点付近の制御にお
いて極性判別手段を持ちつつその変極点を検知すること
により、昇圧チャージアッブ機能とインバータ機能の両
方の役割とインバータ機能のみの役割とを相補的に同時
に行う前記第1および第2の逆導通可能な半導体スイッ
チ素子の役割を入れ替える構成とし、前記駆動回路は、
商用電源の極性の変極点となるZVPを検知した後イン
バータ動作における前記第1および第2の逆導通可能な
半導体スイッチ素子の直列接続体の同時オフの休止期間
を設けてコンデンサの放電を十分行う高周波加熱電源装
置。
2. A series connection body of first and second semiconductor switch elements capable of reverse conduction and a series connection body of first and second diodes are connected in parallel, and each is connected to the first and second diodes. A first and a second capacitors are connected in parallel, and a commercial power source and a high voltage are provided between a connection point of the first and second reverse-conductive semiconductor switch elements and a connection point of the first and second diodes. A drive circuit is connected to the series circuit of the primary winding of the transformer, and the output of the secondary winding of the high voltage transformer drives the magnetron through a high voltage rectifier circuit.
With the above configuration, by detecting the inflection point while having the polarity discrimination means in the control near the inflection point of the commercial power source, the roles of both the boost charge-up function and the inverter function and the role of the inverter function only are complemented. Of the semiconductor switch elements capable of performing the first and second reverse conductions, which are simultaneously performed, and the drive circuit comprises:
After detecting ZVP, which is the inflection point of the polarity of the commercial power supply,
The first and second reverse conductions in the barter operation are possible.
Simultaneous off pause period of series connection of semiconductor switching devices
A high-frequency heating power supply device that is provided with sufficient capacity to discharge the capacitor .
JP2001069964A 2000-09-27 2001-03-13 High frequency heating power supply Expired - Fee Related JP3501133B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2001069964A JP3501133B2 (en) 2001-03-13 2001-03-13 High frequency heating power supply
PCT/JP2001/008392 WO2002028149A2 (en) 2000-09-27 2001-09-26 Magnetron drive power supply
CNB018029264A CN1171505C (en) 2000-09-27 2001-09-26 Magnetron drive power supply
US10/130,222 US6624579B2 (en) 2000-09-27 2001-09-26 Magnetron drive power supply
DE60104981T DE60104981T2 (en) 2000-09-27 2001-09-26 MAGNETRONSVERSORGUNGSSTEUERMITTEL
KR1020027006673A KR100766534B1 (en) 2000-09-27 2001-09-26 Magnetron drive power supply
EP01972509A EP1254590B8 (en) 2000-09-27 2001-09-26 Magnetron drive power supply
CN01269659U CN2562101Y (en) 2000-09-27 2001-09-26 Magnetron driving power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001069964A JP3501133B2 (en) 2001-03-13 2001-03-13 High frequency heating power supply

Publications (2)

Publication Number Publication Date
JP2002272118A JP2002272118A (en) 2002-09-20
JP3501133B2 true JP3501133B2 (en) 2004-03-02

Family

ID=18927918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001069964A Expired - Fee Related JP3501133B2 (en) 2000-09-27 2001-03-13 High frequency heating power supply

Country Status (1)

Country Link
JP (1) JP3501133B2 (en)

Also Published As

Publication number Publication date
JP2002272118A (en) 2002-09-20

Similar Documents

Publication Publication Date Title
KR100766534B1 (en) Magnetron drive power supply
JP2003324956A (en) Method of controlling series resonant bridge inverter circuit and the circuit
US8017893B2 (en) High-frequency heating apparatus
JP6313080B2 (en) High frequency power supply
JP3501133B2 (en) High frequency heating power supply
JP4240791B2 (en) Magnetron drive power supply
JP3216643B1 (en) Power supply for magnetron drive
JP2768813B2 (en) Inverter microwave oven drive circuit
JP2000032751A (en) Converter
JP2007027104A (en) Induction heating apparatus
JP4752159B2 (en) High frequency power supply
JPH0487185A (en) Driver circuit for inverter type microwave oven
JP3501137B2 (en) Power supply for magnetron drive
JP3501136B2 (en) Power supply for magnetron drive
JP3334274B2 (en) Inverter device
JP2012060704A (en) Load driving device
JP7215962B2 (en) Electromagnetic induction heating device
Kifune et al. Novel constant frequency time ratio controlled series load resonant high frequency soft switching inverter
JP2005268083A (en) Power source for magnetron drive
JP2006134690A (en) Induction heating device
JP2022190981A (en) Power supply device
JPH0992456A (en) High frequency heating device
JPH06215868A (en) High frequency heating device
JPH03283289A (en) Driving circuit for inverter microwave oven
Yachiangkam et al. Automatic variable frequency asymmetrical control of half-bridge series resonant inverters for low-cost domestic induction cooking

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees