JP3497654B2 - Fe-Cu alloy steel having good strength, ductility, and toughness and method for producing the same - Google Patents

Fe-Cu alloy steel having good strength, ductility, and toughness and method for producing the same

Info

Publication number
JP3497654B2
JP3497654B2 JP07942196A JP7942196A JP3497654B2 JP 3497654 B2 JP3497654 B2 JP 3497654B2 JP 07942196 A JP07942196 A JP 07942196A JP 7942196 A JP7942196 A JP 7942196A JP 3497654 B2 JP3497654 B2 JP 3497654B2
Authority
JP
Japan
Prior art keywords
less
alloy steel
ductility
toughness
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07942196A
Other languages
Japanese (ja)
Other versions
JPH09241793A (en
Inventor
直紀 丸山
昌章 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP07942196A priority Critical patent/JP3497654B2/en
Publication of JPH09241793A publication Critical patent/JPH09241793A/en
Application granted granted Critical
Publication of JP3497654B2 publication Critical patent/JP3497654B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、体心立方(bc
c)構造を有するCu析出相を鋼中に分布せしめること
を特徴とした、従来鋼より良好な強度−延性、強度−靭
性の両方を達成するFe−Cu合金鋼に関するものであ
り、フェライト組織からなる降伏強度10kgf/mm
2程度の軟鋼から主としてマルテンサイト組織からなる
120kgf/mm2程度の高張力鋼まで幅広い強度の
材料に適用が可能である。
TECHNICAL FIELD The present invention relates to a body-centered cubic (bc)
c) Fe-Cu alloy steel that achieves both strength-ductility and strength-toughness better than conventional steel, characterized by distributing a Cu precipitation phase having a structure in the steel Yield strength 10kgf / mm
It can be applied to materials with a wide range of strengths, from mild steel of about 2 to high tensile steel of about 120 kgf / mm 2 mainly composed of martensite structure.

【0002】[0002]

【従来の技術】近年来、自動車や船舶などの外板や建築
物等の構造物には軽量化が要求されており、その解決手
段として鋼板の高強度化が不可欠となっていた。従来、
鋼板を高強度化する手段としたは大きく分けて、(1)
Si,Ni,Mo等の固溶強化元素を多量に添加するか
あるいはNb,Ti,V等の析出強化元素を多量に添加
する、(2)結晶粒を微細化するかあるいは複合組織に
制御する2つの方法があり、使用される用途に応じた材
質的要求、経済性を考慮し最適な強化法が選択されてき
た。
2. Description of the Related Art In recent years, weight reduction has been demanded for outer panels such as automobiles and ships and structures such as buildings, and it has been essential to increase the strength of steel sheets as a means for solving the problem. Conventionally,
The means for increasing the strength of a steel sheet is roughly divided into (1)
Add a large amount of solid solution strengthening elements such as Si, Ni and Mo, or add a large amount of precipitation strengthening elements such as Nb, Ti and V. (2) Miniaturize crystal grains or control to a composite structure. There are two methods, and the optimum strengthening method has been selected in consideration of material requirements and economic efficiency according to the application used.

【0003】上述した(1)の方法による強化は、その
組織がフェライト、ベイナイト、マルテンサイトの以下
にかかわらず古くから利用されてきているが、一般的に
高い引張強度を得ようとするとそれに反比例して延性や
靱性が悪化してしまう。さらにMo,Ni等の元素を多
量に添加すると、炭素当量が増加して溶接性が劣化する
という問題点も生じる。
The strengthening by the above-mentioned method (1) has been used for a long time regardless of whether the structure is ferrite, bainite, or martensite, but it is generally inversely proportional to high tensile strength when trying to obtain high tensile strength. Then, ductility and toughness deteriorate. Furthermore, when a large amount of elements such as Mo and Ni are added, the carbon equivalent increases and the weldability deteriorates.

【0004】一方、(2)の方法による強化は、フェラ
イト・マルテンサイトの2相組織鋼(例えば特公昭61
−15128号公報)に代表されるように強度と延性、
あるいは下部ベイナイト鋼のように強度と靭性を両立す
ることが可能な方法である。しかしながら、この方法は
組織を選択した時点で達成できる強度がある程度決まっ
てしまうため、低強度から高強度鋼に至るあらゆる強
度レベルでの強度−延性、強度−靭性特性向上に適用す
ることができない。このため、あらゆる強度レベルの鋼
について現有する鋼に比べさらに良好な強度−延
性、強度−靭性特性を有する鋼を開発することが望ま
れていた。
[0004] On the other hand, by that strength of the method (2), two-phase structure steel of ferrite-martensite (for example Japanese Patent Publication 61
Strength and ductility, as typified by JP-A-15128).
Alternatively, it is a method capable of achieving both strength and toughness as in lower bainite steel. However, this method cannot be applied to improve strength-ductility and strength-toughness characteristics at all strength levels from low-strength steel to high-strength steel because the strength that can be achieved is determined to some extent when the structure is selected. . Because of this, steel of all strength levels
Even better strength than steel material to existing on wood - ductility, strength - it has been desired to develop a steel material having a toughness properties.

【0005】そこで発明者らは、上記の目的を達成すべ
く鋭意、実験と検討を重ねた結果、適正量のCuを添加
し、かつ析出するCuの構造を適正に制御することによ
って、鋼板の組織の如何にかかわらず従来の析出強化に
より高強度化した鋼板よりも、優れた強度−靭性、強度
−延性の両方を達成できることを見いだした。
Therefore, as a result of earnestly conducting experiments and studies to achieve the above object, the inventors of the present invention added a proper amount of Cu and appropriately controlled the structure of the precipitated Cu, thereby It has been found that, regardless of the structure, it is possible to achieve both superior strength-toughness and strength-ductility than a conventional steel sheet that has been strengthened by precipitation strengthening.

【0006】Cuを添加する鋼板として、特開昭61−
288015号公報、特開平5−331591号公報、
特開平6−108200号公報が開示されている。これ
らは高温での溶体化処理後に550℃前後の時効処理を
施すことによって析出する面心立方(以下、fcc)構
造を有するε−Cuを利用し、高強度−高靭性かあるい
は高強度−高延性を達成できるとしている。
[0006] as a steel plate that the addition of Cu, JP-A-61-
288015, JP-A-5-331591,
Japanese Unexamined Patent Publication No. 6-108200 is disclosed. These use ε-Cu having a face-centered cubic (fcc) structure that precipitates by subjecting to an aging treatment at around 550 ° C. after solution treatment at high temperature, and has high strength-high toughness or high strength-high strength. It says that ductility can be achieved.

【0007】しかしながら、本発明が示すようにfcc
構造のε−Cuでは、従来の析出強化法の範疇を超えた
強度−靭性、強度−延性の両方を達成することはできな
い。また「Journal of Nuclear M
aterials」(vol.148、1987、p.
107)には、フェライト中に体心立方(以下、bc
c)構造のCuを析出させることで高い硬度が得られる
と記載されている。しかしながら、靱性や延性、あるい
は強度−延性、強度−靭性特性に関する記載はなく、ま
たマルテンサイトやベイナイトなどの他の組織を有する
鋼についての記載はない。
However, as the present invention shows, fcc
With ε-Cu having a structure, it is not possible to achieve both strength-toughness and strength-ductility that exceed the categories of conventional precipitation strengthening methods. See also “Journal of Nuclear M
materials "(vol. 148, 1987, p.
107) is a body-centered cubic (hereinafter bc) in ferrite.
It is described that high hardness can be obtained by depositing Cu having a structure c). However, there is no description about toughness and ductility, or strength-ductility, strength-toughness characteristics, and about steels having other structures such as martensite and bainite.

【0008】[0008]

【発明が解決しようとする課題】本発明は上記した現状
に鑑み開発されたもので、低強度鋼から高強度鋼まです
べての鋼種について、従来強化法で問題となっていた高
強度化による延性、靱性の劣化を抑えて、高強度を達成
することができる鋼材とその製造方法を提供することを
目的としたものである。
DISCLOSURE OF THE INVENTION The present invention was developed in view of the above-mentioned present situation, and ductility due to high strength, which has been a problem in the conventional strengthening method, for all steel types from low strength steel to high strength steel. It is an object of the present invention to provide a steel material capable of suppressing deterioration of toughness and achieving high strength, and a manufacturing method thereof.

【0009】[0009]

【課題を解決するための手段】本発明は、前記課題を解
決するために次の手段を講じた。すなわち、本発明の第
1の特徴は、C:0.2wt%以下、Si:3.0wt
%以下、Mn:3.0wt%以下およびCu:0.5〜
5.0wt%を含有し、残部はFeおよび不可避的不純
物からなり、かつ粒径(直径)が1〜15nmのbcc
構造を有するCuが析出分率20〜80%で分散したマ
ルテンサイト組織あるいはベイナイト組織あるいはフェ
ライト組織あるいはこれらのうちの2種または3種の混
合組織からなる、良好な強度、延性、靱性を有すること
を特徴とするFe−Cu合金鋼である。
The present invention has taken the following means in order to solve the above problems. That is,
The first feature is that C: 0.2 wt% or less, Si: 3.0 wt
% Or less, Mn: 3.0 wt% or less and Cu: 0.5 to
Contains 5.0 wt%, the balance Fe and unavoidable impurities
Bcc with a particle size (diameter) of 1 to 15 nm
A structure in which Cu having a structure is dispersed at a precipitation fraction of 20 to 80%.
Rutensite structure or bainite structure or Fe
Wright tissue or a mixture of two or three of these
Have good strength, ductility, and toughness with a composite structure
Fe-Cu alloy steel.

【0010】 本発明の第2の特徴は、前記のFe−Cu
合金鋼にNi:0.5〜5.0wt%、Cr:3.0w
t%以下、Ti:0.10wt%以下、Nb:0.15
wt%以下、V:0.15wt%以下の内の1種または
2種以上を含有することを特徴とするものである。
A second aspect of the present invention, said Fe-Cu
Alloy steel with Ni: 0.5-5.0 wt%, Cr: 3.0 w
t% or less, Ti: 0.10 wt% or less, Nb: 0.15
It is characterized by containing one or more of V wt.% or less and V: 0.15 wt% or less.

【0011】本発明の第3の特徴は、C:0.2wt%
以下、Si:3.0wt%以下、Mn:3.0wt%以
下、および、Cu:0.5〜5.0wt%を含有し、残
部はFeおよび不可避的不純物からなるFe−Cu合金
鋼を、750℃以上の温度に再加熱するかあるいは75
0℃以上の温度で圧延終了し、該合金鋼を10℃/se
c以上の冷却速度で冷却した後、250℃以上かつ45
0℃以下で20分以上の時効処理を施したものをさらに
480℃以上かつ600℃以下で10〜120分の時効
処理を施すことを特徴とする、良好な強度、延性、靭性
を有するFe−Cu合金鋼の製造方法である。
The third feature of the present invention is that C: 0.2 wt%.
Hereinafter, Si: 3.0 wt% or less, Mn: 3.0 wt% or less
Below, and containing Cu: 0.5 to 5.0 wt%, the balance
Fe-Cu alloy consisting of Fe and unavoidable impurities
Reheat the steel to a temperature above 750 ° C or 75
Rolling is completed at a temperature of 0 ° C or higher, and the alloy steel is heated at 10 ° C / se.
After cooling at a cooling rate of c or higher, 250 ° C or higher and 45
The one that has been aged for 20 minutes or more at 0 ° C or less is further
Aging for 10 to 120 minutes above 480 ℃ and below 600 ℃
Good strength, ductility and toughness, characterized by being treated
Is a method for producing an Fe-Cu alloy steel having

【0012】本発明の第4の特徴は、C:0.2wt%
以下、Si:3.0wt%以下、Mn:3.0wt%以
下、および、Cu:0.5〜5.0wt%を含有し、残
部はFeおよび不可避的不純物からなるFe−Cu合金
鋼を、750℃以上の温度に加熱するかあるいは750
℃以上の温度で圧延終了した後、該合金鋼を0.5〜
℃/secの冷却速度で室温まで冷却することを特徴と
する、良好な強度、延性、靭性を有するFe−Cu合金
鋼の製造方法である。
The fourth feature of the present invention is C: 0.2 wt%
Hereinafter, Si: 3.0 wt% or less, Mn: 3.0 wt% or less
Below, and containing Cu: 0.5 to 5.0 wt%, the balance
Fe-Cu alloy consisting of Fe and unavoidable impurities
Heating the steel to a temperature above 750 ° C or 750
After finishing rolling at a temperature of ℃ or more, the alloy steel is 0.5 to 8
Characterized by cooling to room temperature at a cooling rate of ° C / sec
Fe-Cu alloy with good strength, ductility and toughness
It is a method of manufacturing steel.

【0013】 本発明の第5の特徴は、C:0.2wt
%以下、Si:3.0wt%以下、Mn:3.0wt%
以下、および、Cu:0.5〜5.0wt%を含有し、
残部はFeおよび不可避的不純物からなるFe−Cu合
金鋼を、750℃以上の温度に加熱するかあるいは75
0℃以上の温度で圧延終了した後、該合金鋼を10℃/
sec以上の冷却速度で冷却した後、480℃〜600
℃で10〜120分の時効処理を施し、粒径(直径)が
1〜15nmのbcc構造を有するCuが析出分率20
〜80%で分散したマルテンサイト組織あるいはベイナ
イト組織あるいはフェライト組織あるいはこれらのうち
の2種または3種の混合組織とすることを特徴とする、
良好な強度、延性、靭性を有するFe−Cu合金鋼の製
造方法である。
The fifth feature of the present invention is that C: 0.2 wt.
% Or less, Si: 3.0 wt% or less, Mn: 3.0 wt%
The following, and containing Cu: 0.5 to 5.0 wt%,
The balance is Fe-Cu alloy steel consisting of Fe and inevitable impurities, heated to a temperature of 750 ° C or higher, or 75
After finishing rolling at a temperature of 0 ° C or higher, the alloy steel is cooled to 10 ° C /
After cooling at a cooling rate of sec or more, 480 ° C to 600
And facilities aging treatment 10 to 120 minutes at ° C., the particle size (diameter)
Cu having a bcc structure of 1 to 15 nm has a precipitation fraction of 20.
Martensite structure or bainer dispersed at ~ 80%
Ferrite structure or ferrite structure or of these
Characterized in that it is a mixed tissue of two or three kinds of
This is a method for producing an Fe-Cu alloy steel having good strength, ductility, and toughness.

【0014】 本発明の第6の特徴は、C:0.2wt
%以下、Si:3.0wt%以下、Mn:3.0wt%
以下、および、Cu:0.5〜5.0wt%を含有し、
残部はFeおよび不可避的不純物からなるFe−Cu合
金鋼を、750℃以上の温度に加熱するかあるいは75
0℃以上の温度で圧延終了し、該合金鋼を10℃/se
c以上の冷却速度で冷却し、室温で1%以上の予歪みを
加えた後、480℃〜600℃で10〜120分の時効
処理を施し、粒径(直径)が1〜15nmのbcc構造
を有するCuが析出分率20〜80%で分散したマルテ
ンサイト組織あるいはベイナイト組織あるいはフェライ
ト組織あるいはこれらのうちの2種または3種の混合組
織とすることを特徴とする、良好な強度、延性、靭性を
有するFe−Cu合金鋼の製造方法である。
The sixth feature of the present invention is C: 0.2 wt.
% Or less, Si: 3.0 wt% or less, Mn: 3.0 wt%
The following, and containing Cu: 0.5 to 5.0 wt%,
The balance is Fe-Cu alloy steel consisting of Fe and inevitable impurities, heated to a temperature of 750 ° C or higher, or 75
Rolling is completed at a temperature of 0 ° C or higher, and the alloy steel is heated at 10 ° C / se.
cooled in c above cooling rate, after the addition of 1% or more prestrain at room temperature, and facilities the aging treatment 10-120 minutes at 480 ° C. to 600 ° C., the particle size (diameter) of 1-15 nm bcc Construction
With Cu having a dispersion fraction of 20 to 80%
Site structure or bainite structure or ferai
Tissue or a mixed set of two or three of these
It is a method for producing an Fe-Cu alloy steel having good strength, ductility, and toughness, which is characterized by being woven .

【0015】本発明の第7の特徴は、前記合金鋼が、さ
らに、Ni:0.5〜5.0wt%、Cr:3.0wt
%以下、Ti:0.10wt%以下、Nb:0.15w
t%以下、V:0.15wt%以下の内の1種または2
種以上を含有することを特徴とする第3から第6の発明
に記載の、良好な強度、延性、靭性を有するFe−Cu
合金鋼の製造方法である。
A seventh feature of the present invention is that the alloy steel is
In addition, Ni: 0.5 to 5.0 wt%, Cr: 3.0 wt
% Or less, Ti: 0.10 wt% or less, Nb: 0.15w
One or two of t% or less and V: 0.15 wt% or less
Third to sixth inventions characterized by containing at least one species
Fe-Cu having good strength, ductility and toughness
It is a method for manufacturing alloy steel.

【0016】 なお、ここで強度とは引張強度を意味し、
良好な強度−延性、強度−靭性とは、炭化物による析出
強化鋼やCu析出相の構造を適正に制御していない従来
鋼よりも、高強度化した際の延性、靱性の低下が少ない
ことを意味する。具体的にはTiC、NbC、VC等の
炭化物、TiN、NbN、VN、AlN等の窒化物、酸
化物、ε−Cuによる析出強化法に比較して、同一引張
強度で比較した時に一様伸びで2%以上増加し、Vノッ
チシャルピー試験時の衝撃吸収エネルギーvE0 が30
J以上増加しているものを指す。また、bcc構造とは
体心立方構造のことを意味している。
[0016] It should be noted, refers to the tensile strength is here in strength,
Good strength-ductility, strength-toughness means that there is less decrease in ductility and toughness when the strength is increased, as compared with precipitation-strengthened steel by carbide and conventional steel in which the structure of the Cu precipitation phase is not properly controlled. means. Specifically, compared with precipitation strengthening methods such as carbides such as TiC, NbC, and VC, nitrides such as TiN, NbN, VN, and AlN, oxides and ε-Cu, uniform elongation when compared at the same tensile strength. 2% or more, and the impact absorption energy vE 0 in the V-notch Charpy test is 30
It indicates that the number has increased by J or more. The bcc structure means a body-centered cubic structure.

【0017】 ここでbcc構造を有するCuの析出分率
は以下の(1)から(4)の過程により求めるものとす
る。 (1)アトムプローブ電界イオン顕微鏡(AP−FI
M)でマトリックス中にCuが析出していることを確認
する。 (2)マトリックス中の析出物がε−Cuあるいは9R
−Cuでないことを透過型電子顕微鏡で確認する。 (3)集束した電子線プローブを用いたX線分析法(エ
ネルギー分散型X線分光法)によりマトリックスの組成
分析を行う。 (4)下式に分析値を代入する。bcc−Cuの析出分
率=(マトリックス中のCuの分析値/添加Cu量)×
100(%)この他に、bcc−Cuとε−Cuを判別
する手法として、広域X線吸収端微細構造(EXAF
S)を用いる方法も実施可能である。
[0017] Here, precipitation fraction of Cu having a bcc structure shall be obtained by the process of the following (1) (4). (1) Atom probe field ion microscope (AP-FI
In M), it is confirmed that Cu is precipitated in the matrix. (2) The precipitate in the matrix is ε-Cu or 9R
-Check with a transmission electron microscope that it is not Cu. (3) The composition of the matrix is analyzed by an X-ray analysis method (energy dispersive X-ray spectroscopy) using a focused electron beam probe. (4) Substitute the analysis value in the following formula. Precipitation fraction of bcc-Cu = (analysis value of Cu in matrix / amount of added Cu) ×
100 (%) In addition to this, as a method for discriminating between bcc-Cu and ε-Cu, a wide area X-ray absorption edge fine structure (EXAF) is used.
The method using S) is also practicable.

【0018】[0018]

【発明の実施の形態】本発明鋼では、低強度鋼から高強
度鋼まですべての鋼種について、高強度化による延性、
靱性の劣化を抑えかつ高強度を達成することができる。
その方法は、Feマトリックス中に直径1〜15nmの
体心立方(bcc)構造のCu粒子(以下、bcc−C
u)を整合析出物として微細に分散させることがポイン
トである。
BEST MODE FOR CARRYING OUT THE INVENTION In the steel of the present invention, ductility due to high strength, for all steel types from low strength steel to high strength steel,
It is possible to suppress deterioration of toughness and achieve high strength.
The method is as follows: Cu particles having a body centered cubic (bcc) structure having a diameter of 1 to 15 nm in an Fe matrix (hereinafter referred to as bcc-C).
The point is to finely disperse u) as matching precipitates.

【0019】 発明者らは、種々の析出相の構造を抑制し
た鋼板について機械試験と詳細な観察を重ねた結果、F
eにbcc−Cuを分散させた時に、従来の析出強化法
で特徴的であった伸び値の低下と衝撃時の吸収エネルギ
ーの減少が軽減されることを見いだした。この原因を解
析した結果、鋼板にひずみを加えるかあるいは衝撃を加
えた時にbcc−Cuが9R構造のCu粒子にマルテン
サイト変態し、この際に析出物近傍から転位が一部解放
されると同時にエネルギーの吸収が起こり、その結果、
延性、靱性の劣化が他の析出強化鋼より少なくなってい
ることを見いだした。
The inventors conducted mechanical tests and detailed observations on steel sheets in which various precipitate phase structures were suppressed, and as a result, F
It was found that when bcc-Cu is dispersed in e, the decrease in elongation value and the decrease in absorbed energy upon impact, which are characteristic of the conventional precipitation strengthening method, are reduced. As a result of analyzing this cause, when strain or impact is applied to the steel sheet, bcc-Cu undergoes martensite transformation into Cu particles having a 9R structure, and at the same time, some dislocations are released from the vicinity of the precipitate and at the same time. Absorption of energy occurs, and as a result,
It was found that the deterioration of ductility and toughness was less than that of other precipitation strengthened steels.

【0020】 ちなみにNb(C,N)、Ti(C,N)
等の炭窒化物やfcc構造のε−Cuではひずみ付加あ
るいは衝撃付加で析出相のマルテンサイト変態が起きな
いために上記のような効果は期待できない。更にbcc
−Cuによる析出強化法は、母相の組織に依存せず良好
な強度−延性、強度−靱性特性を与えることも明らかに
した。すなわち、フェライト、ベイナイト、マルテンサ
イトあるいはこれらの混合組織の如何にかかわらず、b
cc−Cu以外の析出強化と比較して、同レベルの強度
を得る場合、延性、靱性の劣化は少なくて済む。
[0020] By the way, Nb (C, N), Ti (C, N)
Such carbonitrides and ε-Cu having the fcc structure cannot expect the above effects because the martensitic transformation of the precipitation phase does not occur due to the addition of strain or impact. Further bcc
It was also clarified that the precipitation strengthening method using -Cu gives good strength-ductility and strength-toughness characteristics regardless of the structure of the parent phase. That is, regardless of whether it is ferrite, bainite, martensite, or a mixed structure thereof, b
Compared with precipitation strengthening other than cc-Cu, when the same level of strength is obtained, ductility and toughness are less likely to deteriorate.

【0021】 以下に、本発明について詳細に説明する。
まず成分の限定理由について説明する。 C:Cは組織をフェライト、ベイナイト、マルテンサイ
ト、あるいはその混合組織に制御するのに必須の元素で
ある。ただし、0.2wt%を超えるとセメンタイトが
多量に析出し、Cu析出物による延性、靱性に対する期
待効果がほとんどなくなるためにその上限を0.2wt
%に限定した。
The present invention will be described in detail below.
First, the reasons for limiting the components will be described. C: C is an essential element for controlling the structure to ferrite, bainite, martensite, or a mixed structure thereof. However, if it exceeds 0.2 wt%, a large amount of cementite precipitates and the expected effect on the ductility and toughness due to Cu precipitates almost disappears, so the upper limit is 0.2 wt.
Limited to%.

【0022】 Si:Siは組織をフェライト、ベイナイ
ト、マルテンサイト、あるいはその混合組織に制御する
のに必須の元素であり、また脱酸元素としても必要であ
る。しかしながら、3.0wt%を超えると熱延時の脱
スケール性の悪化やコスト高を招く。従ってSi含有量
は3.0wt%以下の範囲に制限した。 Mn:MnはSiと同じくAr3変態点を低下させるこ
とで組織をフェライト、ベイナイト、マルテンサイト、
あるいはその混合組織に制御するのに必須の元素であ
る。しかしながら3.0wt%を超えるとコスト高にな
るので、Mn含有量を3.0wt%以下の範囲に制限し
た。
[0022] Si: Si is an essential element to control tissue ferrite, bainite, martensite or a mixture tissue, and is also necessary as a deoxidizing element. However, if it exceeds 3.0 wt%, the descaling property during hot rolling deteriorates and the cost increases. Therefore, the Si content is limited to the range of 3.0 wt% or less. Mn: Mn, like Si, lowers the Ar 3 transformation point to form a structure of ferrite, bainite, martensite,
Alternatively, it is an essential element for controlling the mixed texture. However, if it exceeds 3.0 wt %, the cost becomes high, so the Mn content is limited to the range of 3.0 wt % or less.

【0023】 Cu:Cuは本発明において最も重要な元
素である。しかしながら、0.5wt%未満であるとb
cc−Cuとしての効果が発現せず、また5.0wt%
を超えるとCuの熱間脆性による鋼板の表面割れが顕著
になるために、Cu含有量の範囲を0.5〜5.0wt
%の範囲に制限した。ただし、NiをCuと等量だけ添
加するとCuの熱間脆性が軽減されるので、CuとNi
を複合添加する場合は5.0wt%を超えるCuの添加
も可能である。Cuは炭素当量を上げない元素でもある
ので溶接性の向上にも有効である。
[0023] Cu: Cu is the most important element in the present invention. However, if it is less than 0.5 wt%, b
The effect as cc-Cu does not appear, and 5.0 wt%
If the content exceeds 1.0, surface cracking of the steel sheet due to hot brittleness of Cu becomes significant, so the Cu content range is 0.5 to 5.0 wt.
Limited to the range of%. However, if Ni is added in an amount equal to Cu, the hot embrittlement of Cu is reduced, so Cu and Ni
In the case of adding in a complex manner, Cu exceeding 5.0 wt% can be added. Cu is also an element that does not increase the carbon equivalent and is therefore effective in improving weldability.

【0024】 Cr:CrはMnの代替元素であり、Ar
3変態点を低下させることで組織をフェライト、ベイナ
イト、マルテンサイト、あるいはその混合組織に制御す
るのに用いられる元素である。しかしながら3.0wt
%を超えるとコスト高になるので、Cr含有量を3.0
wt%以下の範囲に制限した。 Ni:NiはCu添加に起因する熱間脆性を抑制する効
果がある。しかしながら、0.5wt%未満であるとそ
の効果が発現せず、また5.0wt%を超えるとコスト
高になる。従って、その適正添加範囲を0.5〜5.0
wt%に限定した。
[0024] Cr: Cr is an alternative element of Mn, Ar
(3) An element used to control the structure to ferrite, bainite, martensite, or a mixed structure thereof by lowering the transformation point. However, 3.0 wt
%, The cost increases, so the Cr content should be 3.0.
The range was limited to wt% or less. Ni: Ni has an effect of suppressing hot brittleness caused by addition of Cu. However, if it is less than 0.5 wt%, the effect is not exhibited, and if it exceeds 5.0 wt%, the cost becomes high. Therefore, the appropriate addition range is 0.5 to 5.0.
Limited to wt%.

【0025】 Ti:Tiは脱酸元素として、また炭窒化
物として再加熱時のオーステナイト粒径を制御する元素
として必要である。しかしTiの添加量が0.10wt
%を超えるとCuの添加効果が失われるため、単独添
加、複合添加いずれの場合もTi含有量の範囲を、0.
10wt%以下とした。 Nb:Nbは炭窒化物として再加熱時のオーステナイト
粒径を制御する元素として必要である。しかしNbの添
加量が0.15wt%を超えるとCuの添加効果が失わ
れるため、単独添加、複合添加いずれの場合もNb含有
量の範囲を、0.15wt%以下とした。 V:Vは炭窒化物として再加熱時のオーステナイト粒径
を制御する元素として必要である。しかしVの添加量が
0.15wt%を超えるとCuの添加効果が失われるた
め、単独添加、複合添加いずれの場合もV含有量の範囲
を、0.15wt%以下とした。
[0025] Ti: Ti is required as an element as a deoxidizing element and also to control the austenite grain size at the time of re-heating as carbonitrides. However, the addition amount of Ti is 0.10 wt.
%, The effect of addition of Cu is lost. Therefore, in both cases of single addition and composite addition, the range of Ti content is set to 0.
It was set to 10 wt% or less. Nb: Nb is necessary as an element that controls the austenite grain size during reheating as a carbonitride. However, when the amount of Nb added exceeds 0.15 wt%, the effect of adding Cu is lost, so the range of Nb content was set to 0.15 wt% or less in both cases of single addition and composite addition. V: V is necessary as an element for controlling the austenite grain size during reheating as a carbonitride. However, if the addition amount of V exceeds 0.15 wt%, the effect of addition of Cu is lost, so the V content range was set to 0.15 wt% or less in both cases of single addition and composite addition.

【0026】 次にbcc−Cuの粒径と析出分率の限定
理由について説明する。bcc−Cuの粒径が1nm未
満だと強度上昇が期待できない。また15nmを超える
とε−Cuあるいは9R構造のCuに相変態してしまい
延性、靱性は急激に低下する。従ってbcc−Cuの粒
径を1nmから15nmの範囲に制限した。ただし、理
想的には1〜8nm程度に大きさを制御することが延性
向上の点から好ましい。bcc−Cuの析出分率が80
%を超えるとε−Cuあるいは9R構造のCuが存在す
る確率も高くなり、靱性、延性の低下を引き起こす。ま
た20%未満だとCuの効果はあまり見られない。従っ
て、bcc−Cuの析出分率は20〜80%の範囲に限
定した。
[0026] Next bcc-Cu of the reasons for limitation of particle size and deposition fraction is described. If the particle size of bcc-Cu is less than 1 nm, strength increase cannot be expected. On the other hand, if it exceeds 15 nm, it undergoes a phase transformation into ε-Cu or Cu having a 9R structure, and ductility and toughness sharply decrease. Therefore, the particle size of bcc-Cu is limited to the range of 1 nm to 15 nm. However, it is ideally preferable to control the size to about 1 to 8 nm from the viewpoint of improving ductility. The precipitation fraction of bcc-Cu is 80.
%, The probability that .epsilon.-Cu or Cu having a 9R structure exists will be high, causing deterioration in toughness and ductility. If it is less than 20%, the effect of Cu is not so great. Therefore, the precipitation fraction of bcc-Cu is limited to the range of 20 to 80%.

【0027】 なお、bcc−Cu析出物の制御方法とし
ては以下に示す方法が有効である。 (1)750℃以上の温度に再加熱するかあるいは75
0℃以上の温度で圧延終了し、これを10℃/sec以
上の冷却速度で冷却した後、250℃以上かつ450℃
以下で20分以上の時効処理を施したものをさらに48
0℃以上かつ600℃以下で10〜120分の時効処理
を施す。
The following method is effective for controlling the bcc-Cu precipitates. (1) Reheat to 750 ° C or higher or 75
Rolling is completed at a temperature of 0 ° C or higher, and after cooling at a cooling rate of 10 ° C / sec or higher, 250 ° C or higher and 450 ° C or higher.
48 more after aging treatment for 20 minutes or more
Aging treatment is performed at 0 ° C. or higher and 600 ° C. or lower for 10 to 120 minutes.

【0028】 (2)750℃以上で加熱するかあるいは
750℃以上で圧延を終了した後、0.5〜8℃/se
cの冷却速度で室温まで冷却する。(3)750℃以上で加熱するかあるいは750℃以上
で圧延を終了した後、10℃/sec以上の冷却速度で
冷却した後、480℃〜600℃で10〜120分間の
時効処理を施す。
[0028] (2) After completing the rolling at 750 ° C. is heated at above or 750 ° C. or higher, 0.5 to 8 ° C. / se
Cool to room temperature at the cooling rate of c. (3) Heat above 750 ° C or above 750 ° C
At a cooling rate of 10 ° C / sec or more after finishing rolling at
After cooling, at 480 ° C to 600 ° C for 10 to 120 minutes
Aging treatment is applied.

【0029】 (4)750℃以上で加熱するかあるいは
750℃以上で圧延を終了した後、10℃/sec以上
の冷却速度で冷却し、室温で1%の予歪みを加えた後、
480℃〜600℃で10〜120分間の時効処理を施
す。これらの熱処理はいずれも、fcc構造のε−Cu
や9R構造のCuに成長あるいは変態しないようにする
ことがポイントである。
[0029] (4) After completing the rolling at 750 ° C. or higher in either heating or 750 ° C. or higher, cooling at 10 ° C. / sec or more cooling rate, after the addition of prestrain of 1% at room temperature,
Aging treatment is performed at 480 ° C to 600 ° C for 10 to 120 minutes. All of these heat treatments are ε-Cu having an fcc structure.
The point is not to grow or transform into Cu of 9R structure.

【0030】 (1)〜(4)の方法の中でFe中にbc
c−Cuを微細に分散させる手法としては(1)の2段
時効法が好ましい。すなわちbcc−Cuの核形成が起
こる温度域で時効し、bcc−Cuの核を微細に分散さ
せた後、それより高温で時効してbcc−Cuを成長さ
せる。
In the methods (1) to (4), bc is added to Fe.
As a method for finely dispersing c-Cu, the two-step aging method (1) is preferable. That is, aging is performed in a temperature range in which bcc-Cu nucleation occurs, the bcc-Cu nuclei are finely dispersed, and then aging is performed at a higher temperature to grow bcc-Cu.

【0031】[0031]

【実施例】次にこの発明を実施例により更に詳細に説明
する。表1に示す成分に調整した鋼材A〜Jを、表2に
示す種々の条件で処理を施した。このようにして得られ
た鋼板から、引張試験用の試験片、シャルピー衝撃試験
用の試験片、透過電子顕微鏡観察用の試験片およびアト
ムプローブ電界イオン顕微鏡(AP−FIM)用の試験
片を切り出した。表3は得られた試験片No.1〜14
の引張強度(TS)、全伸び(T−El)、0℃でのシ
ャルピー衝撃吸収エネルギー値(vE0)、Feマトリ
クス中のCuの主な析出形態および全Cu添加量に対す
るbcc−Cuの析出分率を調査した結果を示してい
る。
EXAMPLES Next, the present invention will be described in more detail by way of examples. The steel materials A to J adjusted to the components shown in Table 1 were treated under various conditions shown in Table 2. From the thus obtained steel sheet, a test piece for tensile test, a test piece for Charpy impact test, a test piece for transmission electron microscope observation, and a test piece for atom probe field ion microscope (AP-FIM) are cut out. It was Table 3 shows the obtained test piece No. 1 to 14
Tensile strength (TS), total elongation (T-El), Charpy impact absorption energy value at 0 ° C. (vE 0 ), main precipitation form of Cu in Fe matrix, and precipitation of bcc-Cu with respect to total Cu addition amount The result of investigating the fraction is shown.

【0032】 表3から明らかなように、Feマトリクス
中のCuの主な析出形態がbcc−Cuでかつその析出
分率が20〜80%の範囲にあるものは、ε−CuやN
bC、TiC、VCなどによる析出強化鋼に比べ、同一
強度で比較してT−El値、vE0値が上昇している。
例えば、試料No.1とNo.2を比較すると引張強度
は720MPaで同一であるにも関わらず、bcc−C
uを適正に分布させたNo.1の方がT−Elで3.5
%、vE0で38J大きくなっている。すなわちNo.
1の方が強度−靭性および強度−延性両方が優れてい
る。
As is clear from Table 3, when the main precipitation form of Cu in the Fe matrix is bcc-Cu and the precipitation fraction thereof is in the range of 20 to 80%, ε-Cu or N is used.
Compared with precipitation-strengthened steels such as bC, TiC, and VC, the T-El value and vE 0 value are higher when compared at the same strength.
For example, sample No. 1 and No. Comparing the two, the tensile strength was 720 MPa and the bcc-C
No. in which u is properly distributed. 1 is T-El 3.5
%, Which is 38 J greatly in vE 0. That is, No.
No. 1 is superior in both strength-toughness and strength-ductility.

【0033】 No.とNo.は冷却速度を変え、C
uの析出形態を変えたものである。No.の方が比較
鋼No.よりT−Elで3.9%、vE0で31J大
きくなっている。No.とNo.はマルテンサイト
とフェライトの2相組織鋼、No.とNo.10はフ
ェライト組織鋼においてCuの析出形態を変えたもので
ある。上と同様にbcc−Cuを適正に分散させたN
o.とNo.の方が、強度−靭性あるいは強度−延
性両方が優れている。
[0033] No. 5 and No. 6 changes the cooling rate, C
This is a modification of the precipitation morphology of u. No. No. 5 is comparative steel No. 6 , T-El is 3.9% larger, and vE 0 is 31 J larger. No. 7 and No. No. 8 is a martensitic and ferrite dual-phase steel, No. 8 9 and No. No. 10 is the one in which the precipitation morphology of Cu is changed in the ferritic steel. N in which bcc-Cu is properly dispersed as in the above.
o. 7 and No. No. 9 is superior in both strength-toughness or strength-ductility.

【0034】 No.11はVCによる析出強化鋼であ
る。No.14はNbC、TiCによる析出強化鋼であ
。bcc−Cu分散強化鋼であるNo.12と比べる
と、本発明鋼であるNo.12の方が同一引張強度で比
較して、T−El、vE0共に大きい。No.13は2
回目の時効処理の温度が600℃を超えてε−Cuが析
出したために、強度−靭性、強度−延性両方が低下した
例である。
[0034] No. 11 precipitation hardening steel der by VC
It No. 14 is precipitation strengthened steel made of NbC and TiC . a b cc-Cu-dispersion-strengthened steel No. Compared with No. 12, the steel of the present invention No. No. 12 has the same tensile strength, and both T-El and vE 0 are larger. No. 13 is 2
This is an example in which both the strength-toughness and the strength-ductility were decreased because the temperature of the second aging treatment exceeded 600 ° C and ε-Cu was precipitated.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【表3A】 [Table 3A]

【0038】[0038]

【表3B】 [Table 3B]

【0039】[0039]

【発明の効果】本発明の合金鋼は、従来の析出強化鋼に
比較して良好な強度−延性、強度−靭性両方を有してお
り、さらにCuを利用していることで溶接性や疲労特性
にも優れる。本発明は、フェライト組織、マルテンサイ
ト組織、ベイナイト組織、およびこれらの混合組織を有
する合金鋼について適用が可能であり、従って軽量化部
材として自動車の外板や足廻り部材等の構造部材、造
船、建築、海洋構造物、鋼管等の構造部材や強度部材に
適用することが可能である。また合金単価の低いCuを
利用することで安価に鋼を製造する効果も有してい
る。
Industrial Applicability The alloy steel of the present invention has both good strength-ductility and strength-toughness as compared with the conventional precipitation-strengthened steels, and the use of Cu further improves weldability and fatigue. Excellent in characteristics. INDUSTRIAL APPLICABILITY The present invention can be applied to an alloy steel having a ferrite structure, a martensite structure, a bainite structure, and a mixed structure thereof, and therefore a structural member such as an automobile outer plate or an underbody member as a lightweight member, shipbuilding, It can be applied to structural members such as architecture, marine structures, steel pipes, and strength members. The low cost for manufacturing a steel material effect by utilizing the low alloy cost per Cu also has.

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) C22C 38/00-38/60

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 良好な強度、延性、靱性を有するFe−
Cu合金鋼において、C:0.2wt%以下、Si:
3.0wt%以下、Mn:3.0wt%以下およびC
u:0.5〜5.0wt%を含有し、残部はFeおよび
不可避的不純物からなり、かつ粒径(直径)が1〜15
nmのbcc構造を有するCuが析出分率20〜80%
で分散したマルテンサイト組織あるいはベイナイト組織
あるいはフェライト組織あるいはこれらのうちの2種ま
たは3種の混合組織からなる、良好な強度、延性、靱性
を有することを特徴とするFe−Cu合金鋼。
1. Fe-having good strength, ductility and toughness
In Cu alloy steel, C: 0.2 wt% or less, Si:
3.0 wt% or less, Mn: 3.0 wt% or less and C
u: 0.5 to 5.0 wt% is contained, the balance is Fe and inevitable impurities, and the particle size (diameter) is 1 to 15
Cu having a bcc structure of 20 nm has a precipitation fraction of 20 to 80%.
Fe-Cu alloy steel having good strength, ductility, and toughness, which comprises a martensite structure, a bainite structure, a ferrite structure, or a mixed structure of two or three of these, dispersed in 1.
【請求項2】 Ni:0.5〜5.0wt%、Cr:
3.0wt%以下、Ti:0.10wt%以下、Nb:
0.15wt%以下、V:0.15wt%以下の内の1
種または2種以上を含有することを特徴とする請求項1
記載のFe−Cu合金鋼。
2. Ni: 0.5 to 5.0 wt%, Cr:
3.0 wt% or less, Ti: 0.10 wt% or less, Nb:
0.15 wt% or less, V: 1 of 0.15 wt% or less
1. The composition according to claim 1, which contains one or more kinds.
The described Fe-Cu alloy steel.
【請求項3】 C:0.2wt%以下、Si:3.0w3. C: 0.2 wt% or less, Si: 3.0 w
t%以下、Mn:3.0wt%以下、および、Cu:t% or less, Mn: 3.0 wt% or less, and Cu:
0.5〜5.0wt%を含有し、残部はFeおよび不可Contains 0.5 to 5.0 wt%, the balance Fe and impenetrable
避的不純物からなるFe−Cu合金鋼を、750℃以上Fe-Cu alloy steel consisting of evasive impurities, 750 ℃ or more
の温度に再加熱するかあるいは750℃以上の温度で圧Reheat to above temperature or press at a temperature above 750 ℃.
延終了し、該合金鋼を10℃/sec以上の冷却速度でAfter completion of rolling, the alloy steel is cooled at a cooling rate of 10 ° C / sec or more.
冷却した後、250℃以上かつ450℃以下で20分以After cooling, keep at 250 ℃ or more and 450 ℃ or less for 20 minutes
上の時効処理を施したものをさらに480℃以上かつ6480 ℃ or more and 6 with the above aging treatment
00℃以下で10〜120分の時効処理を施すことを特Special aging treatment for 10 to 120 minutes below 00 ° C
徴とする、良好な強度、延性、靭性を有するFe−CuFe-Cu with good strength, ductility and toughness
合金鋼の製造方法。Method for manufacturing alloy steel.
【請求項4】 C:0.2wt%以下、Si:3.0w4. C: 0.2 wt% or less, Si: 3.0 w
t%以下、Mn:3.0wt%以下、および、Cu:t% or less, Mn: 3.0 wt% or less, and Cu:
0.5〜5.0wt%を含有し、残部はFeおよび不可Contains 0.5 to 5.0 wt%, the balance Fe and impenetrable
避的不純物からなるFe−Cu合金鋼を、750℃以上Fe-Cu alloy steel consisting of evasive impurities, 750 ℃ or more
の温度に加熱するかあるいは750℃以上の温度で圧延Or heated to 750 ℃ or higher
終了した後、該合金鋼を0.5〜8℃/secの冷却速After the completion, the alloy steel was cooled at a cooling rate of 0.5 to 8 ° C / sec.
度で室温まで冷却することを特徴とする、良好な強度、Good strength, characterized by cooling to room temperature in degrees,
延性、靭性を有するFe−Cu合金鋼の製造方法。A method for producing an Fe-Cu alloy steel having ductility and toughness.
【請求項5】 C:0.2wt%以下、Si:3.0w
t%以下、Mn:3.0wt%以下、および、Cu:
0.5〜5.0wt%を含有し、残部はFeおよび不可
避的不純物からなるFe−Cu合金鋼を、750℃以上
の温度に加熱するかあるいは750℃以上の温度で圧延
終了した後、該合金鋼を10℃/sec以上の冷却速度
で冷却した後、480℃〜600℃で10〜120分の
時効処理を施し、粒径(直径)が1〜15nmのbcc
構造を有するCuが析出分率20〜80%で分散したマ
ルテンサイト組織あるいはベイナイト組織あるいはフェ
ライト組織あるいはこれらのうちの2種または3種の混
合組織とすることを特徴とする、良好な強度、延性、靭
性を有するFe−Cu合金鋼の製造方法。
5. C: 0.2 wt% or less, Si: 3.0 w
t% or less, Mn: 3.0 wt% or less, and Cu:
Fe-Cu alloy steel containing 0.5 to 5.0 wt% and the balance Fe and unavoidable impurities is heated to a temperature of 750 ° C. or higher or after rolling at a temperature of 750 ° C. or higher, after the alloy steel is cooled at 10 ° C. / sec or more cooling rate, and facilities the aging treatment 10-120 minutes at 480 ° C. to 600 ° C., the particle size (diameter) of 1-15 nm bcc
A structure in which Cu having a structure is dispersed at a precipitation fraction of 20 to 80%.
Rutensite structure or bainite structure or Fe
Wright tissue or a mixture of two or three of these
A method for producing an Fe-Cu alloy steel having good strength, ductility, and toughness, which is characterized by having a composite structure .
【請求項6】 C:0.2wt%以下、Si:3.0w
t%以下、Mn:3.0wt%以下、および、Cu:
0.5〜5.0wt%を含有し、残部はFeおよび不可
避的不純物からなるFe−Cu合金鋼を、750℃以上
の温度に加熱するかあるいは750℃以上の温度で圧延
終了し、該合金鋼を10℃/sec以上の冷却速度で冷
却し、室温で1%以上の予歪みを加えた後、480℃〜
600℃で10〜120分の時効処理を施し、粒径(直
径)が1〜15nmのbcc構造を有するCuが析出分
率20〜80%で分散したマルテンサイト組織あるいは
ベイナイト組織あるいはフェライト組織あるいはこれら
のうちの2種または3種の混合組織とすることを特徴と
する、良好な強度、延性、靭性を有するFe−Cu合金
鋼の製造方法。
6. C: 0.2 wt% or less, Si: 3.0 w
t% or less, Mn: 3.0 wt% or less, and Cu:
Fe-Cu alloy steel containing 0.5 to 5.0 wt% and the balance Fe and unavoidable impurities is heated to a temperature of 750 ° C. or higher, or rolled at a temperature of 750 ° C. or higher to finish the alloy. After cooling the steel at a cooling rate of 10 ° C / sec or more and applying a prestrain of 1% or more at room temperature, 480 ° C to
600 facilities the aging treatment 10-120 minutes at ° C., particle size (straight
Cu having a bcc structure with a diameter of 1 to 15 nm is precipitated
Martensite structure dispersed at a rate of 20-80% or
Bainite structure or ferrite structure or these
2. A method for producing an Fe—Cu alloy steel having good strength, ductility, and toughness, characterized by having a mixed structure of two or three of the above .
【請求項7】 前記合金鋼が、さらに、Ni:0.5〜7. The alloy steel further comprises Ni: 0.5-.
5.0wt%、Cr:3.0wt%以下、Ti:0.15.0 wt%, Cr: 3.0 wt% or less, Ti: 0.1
0wt%以下、Nb:0.15wt%以下、V:0.10 wt% or less, Nb: 0.15 wt% or less, V: 0.1
5wt%以下の内の1種または2種以上を含有することContain one or more of 5 wt% or less
を特徴とする請求項3〜6に記載の良好な強度、延性、Good strength and ductility according to claims 3 to 6,
靭性を有するFe−Cu合金鋼の製造方法。A method for producing an Fe-Cu alloy steel having toughness.
JP07942196A 1996-03-08 1996-03-08 Fe-Cu alloy steel having good strength, ductility, and toughness and method for producing the same Expired - Fee Related JP3497654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07942196A JP3497654B2 (en) 1996-03-08 1996-03-08 Fe-Cu alloy steel having good strength, ductility, and toughness and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07942196A JP3497654B2 (en) 1996-03-08 1996-03-08 Fe-Cu alloy steel having good strength, ductility, and toughness and method for producing the same

Publications (2)

Publication Number Publication Date
JPH09241793A JPH09241793A (en) 1997-09-16
JP3497654B2 true JP3497654B2 (en) 2004-02-16

Family

ID=13689410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07942196A Expired - Fee Related JP3497654B2 (en) 1996-03-08 1996-03-08 Fe-Cu alloy steel having good strength, ductility, and toughness and method for producing the same

Country Status (1)

Country Link
JP (1) JP3497654B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100664433B1 (en) * 2000-04-07 2007-01-03 제이에프이 스틸 가부시키가이샤 Hot rolled steel plate, cold rolled steel plate and hot dip galvanized steel plate being excellent in strain aging hardening characteristics, and method for their production
ES2301521T3 (en) * 2001-05-15 2008-07-01 Nisshin Steel Co., Ltd. FERRITIC STAINLESS STEEL AND MARTENSITIC STAINLESS STEEL THAT HAVE BOTH EXCELLENT MACHINABILITY.
CA2387322C (en) * 2001-06-06 2008-09-30 Kawasaki Steel Corporation High-ductility steel sheet excellent in press formability and strain age hardenability, and method for manufacturing the same
WO2004050934A1 (en) 2002-12-05 2004-06-17 Jfe Steel Corporation Non-oriented magnetic steel sheet and method for production thereof
US8097094B2 (en) * 2003-10-06 2012-01-17 Nippon Steel Corporation High-strength electrical steel sheet and processed part of same
CN104962824B (en) * 2015-06-24 2017-03-01 中北大学 A kind of nanometer bainitic steel containing pro-eutectoid ferrite and preparation method thereof

Also Published As

Publication number Publication date
JPH09241793A (en) 1997-09-16

Similar Documents

Publication Publication Date Title
JP3990726B2 (en) High strength duplex steel sheet with excellent toughness and weldability
US5454883A (en) High toughness low yield ratio, high fatigue strength steel plate and process of producing same
EP0649915B1 (en) High-strength martensitic stainless steel and method for making the same
KR20000057266A (en) High-strength steel plate having high dynamic deformation resistance and method of manufacturing the same
JP7190216B2 (en) Method of heat treating high strength steel and products obtained therefrom
JPH06128688A (en) Hot rolled steel plate excellent in fatigue characteristic and it production
EP1493828A1 (en) High tensile steel excellent in high temperature strength and method for production thereof
JP3497654B2 (en) Fe-Cu alloy steel having good strength, ductility, and toughness and method for producing the same
KR20230049074A (en) High strength cold-rolled steel sheet with excellent formability and mathod of manufacturing the same
JP2662409B2 (en) Manufacturing method of ultra-thick tempered high strength steel sheet with excellent low temperature toughness
KR20200134397A (en) Steel plate and method of manufacturing the same
JP2002266022A (en) Method for manufacturing high tensile steel with high toughness and high ductility
JP3300444B2 (en) Manufacturing method of low yield ratio high tensile strength steel sheet with good weather resistance
JP3982781B2 (en) High strength steel with excellent ductility
JP3694383B2 (en) High strength steel with excellent uniform elongation
RU2813064C1 (en) Method for producing high-strength steel sheet
RU2813066C1 (en) Method for producing high-strength steel sheet
RU2813069C1 (en) Method for producing high-strength steel sheet
JP3255937B2 (en) Manufacturing method of quenched steel for hot forging
KR102498158B1 (en) Armored steel havinh high hardness and excellent low-temperature impact toughness and method for manufacturing thereof
JP3530356B2 (en) Good workability high-strength cold-rolled steel sheet with high dynamic deformation resistance for impact absorption at the time of collision and method for producing the same
JP2546888B2 (en) Manufacturing method of high-strength steel sheet with excellent weldability and toughness
JP3436823B2 (en) High fatigue strength welded joint and its heat treatment method
AU2021401505A9 (en) High-hardness armored steel having excellent low-temperature impact toughness, and manufacturing method therefor
KR20240003211A (en) Cold-rolled steel sheet and method of manufacturing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031021

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees