JP2002266022A - Method for manufacturing high tensile steel with high toughness and high ductility - Google Patents

Method for manufacturing high tensile steel with high toughness and high ductility

Info

Publication number
JP2002266022A
JP2002266022A JP2001067395A JP2001067395A JP2002266022A JP 2002266022 A JP2002266022 A JP 2002266022A JP 2001067395 A JP2001067395 A JP 2001067395A JP 2001067395 A JP2001067395 A JP 2001067395A JP 2002266022 A JP2002266022 A JP 2002266022A
Authority
JP
Japan
Prior art keywords
toughness
phase
steel
ductility
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001067395A
Other languages
Japanese (ja)
Inventor
Toshinaga Hasegawa
俊永 長谷川
Masanori Minagawa
昌紀 皆川
Hiroyuki Shirahata
浩幸 白幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001067395A priority Critical patent/JP2002266022A/en
Publication of JP2002266022A publication Critical patent/JP2002266022A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing high tensile steel combining high toughness with high ductility which has sufficient strength required of steel for welded structure, excellent ductility characteristics, such as uniform elongation, and excellent toughness at low temperature and further has high safety. SOLUTION: In the method for manufacturing the high tensile steel having high toughness and high ductility, ultrafine-grained steel having prescribed components and also having 1-3 μm average ferrite grain size and <=50% fraction of second phase is subjected to heat treatment in two-phase region under the following conditions: heating temperature, (Ac1 transformation point + 10 deg.C) to (Ac1 transformation point + 100 deg.C); holding time, <=5 hr; average cooling rate through the temperature region from the heating temperature to 200 deg.C, (0.1 to 100) deg.C/s. By this method, two-phase structure can be formed while suppressing the coarsening of ultrafine-grained structure, and toughness can be combined with uniform elongation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、溶接構造用鋼とし
ての十分な強度を有し,かつ一様伸び等の延性特性に優
れると共に低温靱性にも優れた、高靭性・高延性高張力
鋼の製造方法に関するものである。この方法で製造した
鋼は、例えば海洋構造物、圧力容器、造船、橋梁、建築
物、ラインパイプなどの溶接鋼構造物一般に用いること
ができるが、高延性と高靭性とが両立できることから、
特に耐震性を必要とする建築、橋梁等の構造物用鋼材と
して有用である。また鋼材の形態としては特に問わない
が、構造部材として用いられ低温靭性が要求される鋼
板、特に厚板、鋼管素材あるいは形鋼で有用である。
The present invention relates to a high-toughness, high-ductility, high-tensile steel having sufficient strength as a steel for welded structures, excellent ductility such as uniform elongation, and excellent low-temperature toughness. And a method for producing the same. Steel produced by this method can be used in general for welded steel structures such as marine structures, pressure vessels, shipbuilding, bridges, buildings, line pipes, etc., since high ductility and high toughness can be compatible,
It is especially useful as a steel material for structures such as buildings and bridges that require earthquake resistance. Although the form of the steel material is not particularly limited, the present invention is useful for a steel plate used as a structural member and requiring low-temperature toughness, particularly a thick plate, a steel pipe material or a shaped steel.

【0002】[0002]

【従来の技術】延性特性、特に一様伸びの向上には軟質
相のフェライト(α)に適量の、マルテンサイト相等の
硬質相を分散させることが有効であることが知られてい
る。この軟質αと硬質相からなる二相鋼の製造方法は従
来から種々提案されているが、焼入れと焼戻し熱処理の
間にフェライト(α)+オーステナイト(γ)二相域に
加熱する中間熱処理を施す方法(以下、QLT処理とい
う)に代表されるように、基本的には軟質相としてのα
と硬質相としてのベイナイトあるいはマルテンサイト、
あるいは両相の混合組織を混在させることを目的として
いる。
2. Description of the Related Art It is known that it is effective to disperse an appropriate amount of a hard phase such as a martensite phase in a soft phase ferrite (α) to improve ductility characteristics, particularly uniform elongation. Although various methods for producing a duplex stainless steel comprising a soft α and a hard phase have been conventionally proposed, an intermediate heat treatment for heating a ferrite (α) + austenite (γ) dual phase region between quenching and tempering heat treatment is performed. Method (hereinafter referred to as QLT treatment), basically, α as a soft phase
And bainite or martensite as a hard phase,
Alternatively, the purpose is to mix a mixed structure of both phases.

【0003】そして、全体の強度レベル及び降伏比、延
性特性はこれらの相の混在比率を変えることによって制
御されてきた。この軟質相と硬質相の混合組織を得るた
めの製造方法は従来から種々提案されており、例えば特
開昭53−23817号公報には、鋼板を再加熱焼入れ
した後、Ac1 変態点とAc3 変態点の間に再加熱して
γとαの二相としてから空冷する方法が示され、また特
開平4−314824号公報には、同様に二相域に再加
熱した後に焼入れる方法が開示されている。また、再加
熱処理を施さずにオンラインで製造する方法としては、
例えば特開昭63−286517号公報には、γ域から
二相域にかけて熱間圧延を施した後、Ar3 変態点より
20〜100℃低い温度まで空冷してα相を生成させ、
その後急冷する方法が開示されている。
[0003] The overall strength level, yield ratio, and ductility properties have been controlled by changing the mixture ratio of these phases. Various production methods for obtaining a mixed structure of the soft phase and the hard phase have been conventionally proposed. For example, JP-A-53-23817 discloses that after a steel sheet is reheated and quenched, the Ac1 transformation point and the Ac3 transformation point are obtained. A method of reheating between points to form two phases of γ and α and then air cooling is disclosed, and Japanese Patent Application Laid-Open No. 4-314824 discloses a method of quenching after reheating similarly to a two-phase region. ing. In addition, as a method of manufacturing online without reheating treatment,
For example, JP-A-63-286517 discloses that after hot rolling is performed from a γ region to a two-phase region, air cooling is performed to a temperature 20 to 100 ° C. lower than the Ar3 transformation point to generate an α phase.
Thereafter, a method of quenching is disclosed.

【0004】再加熱焼入れした後、さらにAc1 変態点
とAc3 変態点の間に再加熱してγとαの二相としてか
ら、空冷または水冷する二相域熱処理を包含するQLT
処理は組織制御が比較的容易であるが、二相域熱処理ま
までは靭性が極端に劣化するため、さらにAc1 変態点
未満で焼戻し処理を施すことが必須となる。このため、
QLT処理は工程が複雑であり、生産性の低下が大きい
問題を有する。また、Ac1 変態点未満で焼戻し処理を
施すと、硬質相の強度低下とα母相での析出強化のため
に、二相域熱処理で得られた高い一様伸びがむしろ劣化
する。
After reheating and quenching, QLT including a two-phase heat treatment of reheating between the Ac1 transformation point and the Ac3 transformation point to form two phases of γ and α, followed by air cooling or water cooling.
Although the structure is relatively easy to control, the toughness is extremely deteriorated if the heat treatment is performed in the two-phase region. Therefore, it is necessary to perform a tempering treatment at a temperature lower than the Ac1 transformation point. For this reason,
The QLT process has a problem that the process is complicated and the productivity is greatly reduced. When tempering is performed at a temperature lower than the Ac1 transformation point, the high uniform elongation obtained by the two-phase region heat treatment is rather deteriorated due to a decrease in the strength of the hard phase and the strengthening of precipitation in the α matrix.

【0005】[0005]

【発明が解決しようとする課題】二相域熱処理を施し
て、一様伸びに代表される延性特性を高める鋼において
は、高一様伸びと靭性とを両立させることは、従来の技
術によっては困難であった。そこで本発明は、従来の二
相域熱処理材と同等以上の一様伸びを有し、さらに良好
な靭性を有する高張力鋼を製造する方法を提供すること
を課題とする。
In steels which enhance the ductility characteristics typified by uniform elongation by performing two-phase heat treatment, it is difficult to achieve both high uniform elongation and toughness by a conventional technique. It was difficult. Therefore, an object of the present invention is to provide a method for producing a high-strength steel having uniform elongation equal to or higher than that of a conventional two-phase region heat-treated material and further having good toughness.

【0006】[0006]

【課題を解決するための手段】二相域熱処理を施した鋼
において靭性確保が困難なのは、一般的には硬質相の靭
性が劣るためであるが、一様伸び確保のためには硬質相
の存在は不可避である。そこで、本発明者らは、軟質相
であるフェライトの靭性を高めることによって、二相組
織全体としての靭性を確保する方法を検討した。具体的
には、二相域熱処理前の素材としてフェライト粒径が3
μm程度以下の超細粒鋼を用い、化学組成、二相域熱処
理条件を適正化することで靭性の劣化を極力抑制した上
で、一様伸びを高めるための適正な化学組成、熱処理条
件を検討した。
The reason that it is difficult to secure toughness in steel subjected to dual-phase heat treatment is generally because the toughness of the hard phase is inferior. Existence is inevitable. Therefore, the present inventors have studied a method of securing the toughness of the entire two-phase structure by increasing the toughness of ferrite, which is a soft phase. Specifically, as a material before the two-phase region heat treatment, the ferrite grain size is 3
Using ultra-fine-grained steel of about μm or less, by optimizing the chemical composition and heat treatment conditions in the two-phase region, minimize the deterioration of toughness, and then set the appropriate chemical composition and heat treatment conditions to increase uniform elongation. investigated.

【0007】結晶粒径を微細化すればするほど熱的には
不安定となり、超細粒組織ほど熱処理等によって組織が
粗大化しやすくなるため、超細粒組織に二相域熱処理を
施して超細粒組織に硬質相を形成せしめることは容易で
はない。本発明者らは、フェライト域〜二相域で累積圧
下率の大きい圧延を加えてることによるフェライトの再
結晶を利用して製造された超細粒鋼における、高靭性と
高一様伸びとを両立できる二相域熱処理法を検討し、超
細粒組織の粗大化を抑制するためには二相域熱処理条件
を工夫することは当然であるが、さらに、二相域熱処理
を施す前の超細粒組織にも一定の要件を満足する必要が
あることを見出し、本発明に至った。
[0007] The finer the grain size, the more thermally unstable, and the more the ultrafine grain structure is likely to be coarsened by heat treatment or the like. It is not easy to form a hard phase in a fine grain structure. The present inventors, in the ultrafine-grained steel manufactured by utilizing the recrystallization of ferrite by applying a large rolling reduction of the cumulative reduction in the ferrite region to the two-phase region, high toughness and high uniform elongation. It is natural to consider a two-phase region heat treatment method that can be compatible, and to devise two-phase region heat treatment conditions in order to suppress coarsening of the ultrafine grain structure. The present inventors have found that it is necessary to satisfy certain requirements for the fine-grained structure, and have reached the present invention.

【0008】本発明の要旨とするところは以下の通りで
ある。 (1) 質量%で、 C :0.01〜0.2%、 Si:0.01〜1%、 Mn:0.1〜2%、 Al:0.001〜0.1%、 N :0.001〜0.01% を含有し、かつ、 Ti:0.003〜0.1%、 V :0.005〜0.5%、 Nb:0.003〜0.1% の1種また2種以上を含有し、さらに不純物として、P
:0.02%以下、 S :0.01%以下を
含有し、残部が鉄及び不可避不純物からなり,平均フェ
ライト粒径が1〜3μmで、組織に占めるフェライト以
外の第二相の割合が50%以下の超細粒フェライト組織
を有する鋼に、加熱温度が(Ac1 変態点+10℃)〜
(Ac1 変態点+100℃)、保持時間が5時間以下
で、かつ加熱温度から200℃までの平均冷却速度が
0.1〜100℃/sの二相域熱処理を施すことを特徴と
する高靱性・高延性高張力鋼の製造方法。
The gist of the present invention is as follows. (1) In mass%, C: 0.01 to 0.2%, Si: 0.01 to 1%, Mn: 0.1 to 2%, Al: 0.001 to 0.1%, N: 0 0.001 to 0.01%, Ti: 0.003 to 0.1%, V: 0.005 to 0.5%, Nb: 0.003 to 0.1% Species or more, and as impurities, P
: 0.02% or less, S: 0.01% or less, the balance consisting of iron and unavoidable impurities, the average ferrite grain size is 1 to 3 µm, and the proportion of the second phase other than ferrite in the structure is 50%. % Of steel having an ultrafine grained ferrite structure of not more than (Ac1 transformation point + 10 ° C)
(Ac1 transformation point + 100 ° C), high toughness characterized by applying a two-phase heat treatment at a holding time of 5 hours or less and an average cooling rate from a heating temperature to 200 ° C of 0.1 to 100 ° C / s. -A method for producing high-ductility, high-tensile steel.

【0009】(2) 二相域熱処理を施すに際して、3
00℃から加熱温度に至るまでの昇温速度が1〜100
℃/sであることを特徴とする前記(1)に記載の高靱性
・高延性高張力鋼の製造方法。 (3) 二相域熱処理の後に、さらに加熱温度が250
〜600℃の焼戻しを施すことを特徴とする前記(1)
または(2)に記載の高靱性・高延性高張力鋼の製造方
法。 (4) 鋼成分として、さらに質量%で、 Ni:0.1〜5%、 Cu:0.1〜1.5%、 Cr:0.01〜2%、 Mo:0.01〜2%、 W :0.01〜2%、 Zr:0.003〜0.1%、 Ta:0.005〜0.2%、 B :0.0002〜0.005% の1種または2種以上を含有することを特徴とする前記
(1)〜(3)のいずれか1項に記載の高靱性・高延性
高張力鋼の製造方法。 (5) 鋼成分として、さらに質量%で、Mg:0.0
005〜0.01%、Ca:0.0005〜0.01
%、Y :0.005〜0.1%のうち1種または2種
以上を含有することを特徴とする前記(1)〜(4)の
いずれか1項に記載の高靱性・高延性高張力鋼の製造方
法。
(2) When performing the two-phase region heat treatment,
The heating rate from 00 ° C to the heating temperature is 1 to 100
The method for producing a high-toughness, high-ductility, high-strength steel according to the above (1), wherein the temperature is ° C / s. (3) After the two-phase heat treatment, the heating temperature is further increased to 250.
(1) characterized in that tempering at up to 600 ° C. is performed.
Or the method for producing a high toughness / high ductility / high tensile strength steel according to (2). (4) As a steel component, Ni: 0.1 to 5%, Cu: 0.1 to 1.5%, Cr: 0.01 to 2%, Mo: 0.01 to 2%, by mass%. W: 0.01 to 2%, Zr: 0.003 to 0.1%, Ta: 0.005 to 0.2%, B: 0.0002 to 0.005% The method for producing a high-toughness / high-ductility high-tensile steel according to any one of the above (1) to (3). (5) As a steel component, Mg: 0.0
005-0.01%, Ca: 0.0005-0.01
%, Y: one or two or more of 0.005 to 0.1% are contained, and the high toughness / high ductility / high ductility according to any one of the above (1) to (4) is provided. Manufacturing method for tensile steel.

【0010】[0010]

【発明の実施の形態】以下に本発明の実施の形態につい
て詳細に述べる。本発明は、組織、化学組成を適正化し
た超細粒鋼に適切な熱処理を施して、超細粒組織の粗大
化を抑制しながら、硬質第二相を適切に分散させること
で、高靭性と高一様伸びとを両立させることを要件とし
ている。そこで、先ず化学組成と熱処理前の超細粒組織
の限定理由とその作用を述べ、次いで超細粒組織の粗大
化を抑制しながら、硬質第二相を適切に分散させる方法
の限定理由について述べる。
Embodiments of the present invention will be described below in detail. The present invention provides an appropriate heat treatment to an ultrafine-grained steel having an optimized structure and chemical composition to suppress the coarsening of the ultrafine-grained structure and appropriately disperse the hard second phase to achieve high toughness. And high uniform elongation. Therefore, first, the chemical composition and the reason for limiting the ultrafine grain structure before heat treatment and its action are described, and then the limiting reason for the method for appropriately dispersing the hard second phase while suppressing the coarsening of the ultrafine grain structure is described. .

【0011】Cは鋼の強度を向上させる有効な成分とし
て添加するもので、0.01%未満では構造用鋼に必要
な強度の確保が困難であり、また0.2%を超える過剰
の添加は、硬質相の増加及び脆化を招いて靭性、一様伸
びともに劣化するため、0.01〜0.2%の範囲とし
た。
C is added as an effective component for improving the strength of steel. If it is less than 0.01%, it is difficult to secure the strength necessary for structural steel, and if C is added in excess of 0.2%. Is in the range of 0.01% to 0.2%, since both the toughness and the uniform elongation are deteriorated due to increase of the hard phase and embrittlement.

【0012】Siは脱酸元素として、また母材の強度確
保に有効な元素である。0.01%未満の添加では脱酸
が不十分となり、また強度確保に不利である。逆に1%
を超える過剰の添加は、粗大な酸化物を形成して延性や
靭性劣化を招く。そこでSiの範囲は0.01〜1%と
した。
Si is an element effective as a deoxidizing element and for ensuring the strength of the base material. Addition of less than 0.01% results in insufficient deoxidation and is disadvantageous for securing strength. 1% conversely
Excessive addition exceeding that causes formation of a coarse oxide and causes deterioration of ductility and toughness. Therefore, the range of Si is set to 0.01 to 1%.

【0013】Mnは母材の強度、靭性の確保に必要な元
素であり、最低限0.1%以上添加する必要がある。し
かし2%を超える過剰な添加は、過剰なC含有と同様に
硬質相による靭性劣化を生じ、溶接部の靭性、割れ性な
ども劣化させるため、上限を2%とした。
Mn is an element necessary for securing the strength and toughness of the base material, and must be added at least 0.1% or more. However, excessive addition exceeding 2% causes toughness deterioration due to the hard phase as well as excessive C content, and also deteriorates the toughness and cracking property of the welded portion. Therefore, the upper limit is set to 2%.

【0014】Alは脱酸、オーステナイト粒径の細粒化
を通した組織微細化等に有効な元素であり、効果を発揮
するためには0.001%以上含有する必要があるが、
0.1%を超えて過剰に添加すると、粗大な酸化物を形
成して延性を極端に劣化させるため、0.001%〜
0.1%の範囲に限定する必要がある。
Al is an element that is effective for deoxidation and finer structure through refinement of austenite grain size, and it is necessary to contain at least 0.001% in order to exhibit the effect.
When added in excess of 0.1%, coarse oxides are formed and ductility is extremely deteriorated.
It must be limited to the range of 0.1%.

【0015】Nは、AlやTiと結びついてオーステナ
イト粒微細化に有効に働くが、その効果が明確になるた
めには0.001%以上含有させる必要がある。一方、
過剰に添加すると固溶Nが増加して降伏比の増加や母
材、溶接熱影響部の靭性の劣化につながる。靭性確保の
観点から許容できる範囲として、上限を0.01%とす
る。
N is effective in refining austenite grains in combination with Al and Ti, but it is necessary to contain 0.001% or more in order to clarify the effect. on the other hand,
Excessive addition increases the solute N, leading to an increase in the yield ratio and deterioration in the toughness of the base metal and the weld heat affected zone. The upper limit is set to 0.01% as an allowable range from the viewpoint of securing toughness.

【0016】さらに、本発明においてはTi,V,Nb
の1種または2種以上を適正に添加することが必須要件
となる。すなわち、熱的に不安定な超細粒組織に二相域
熱処理を施すに際して、超細粒組織の粗大化を安定的に
抑制するためには、熱処理前組織、二相域熱処理条件の
限定だけでは不十分であり、炭窒化物を微細に分散させ
て、粒成長に対するピン止め効果を発揮させる必要があ
る。そのために、微細炭窒化物形成に有効なTi,V,
Nbの1種または2種以上を適正に添加する。本発明に
おいては各元素の添加量を、下記理由により各々限定す
る。
Further, in the present invention, Ti, V, Nb
It is an essential requirement that one or more of the above are added properly. In other words, when performing heat treatment in a two-phase region to a thermally unstable ultrafine-grained structure, in order to stably suppress coarsening of the ultrafine-grained structure, only the structure before the heat treatment and the conditions for the two-phase region heat treatment are limited. However, it is not sufficient, and it is necessary to disperse carbonitrides finely to exert a pinning effect on grain growth. Therefore, Ti, V, effective for forming fine carbonitrides
One or more kinds of Nb are appropriately added. In the present invention, the amount of each element added is limited for the following reasons.

【0017】Tiは、その炭窒化物の形成によりオース
テナイト粒微細化にも有効な元素であるが、本発明にお
いては、超細粒組織の二相域熱処理時の粒成長抑制に有
効である。炭窒化物を形成して効果を発揮できるために
は0.003%以上の添加が必要である。一方0.1%
を超えると、粗大な酸化物あるいは炭窒化物を形成して
靭性や延性を劣化させるため、上限を0.1%とする。
[0017] Ti is an element effective for refining austenite grains by the formation of carbonitrides, but in the present invention, Ti is effective for suppressing grain growth during heat treatment in a two-phase region of an ultrafine grain structure. In order to form carbonitride and exhibit the effect, it is necessary to add 0.003% or more. 0.1%
If it exceeds, coarse oxides or carbonitrides are formed to deteriorate toughness and ductility, so the upper limit is made 0.1%.

【0018】Vも本発明においてはTiと同様の効果を
有する。炭窒化物を微細分散して効果を発揮できるため
には0.005%以上の添加が必要である。一方0.5
%を超えると、粗大な炭窒化物を形成して靭性や延性を
劣化させるため、本発明ではVの含有量を0.005〜
0.5%の範囲に限定する。
V has the same effect as Ti in the present invention. In order to exhibit the effect by finely dispersing the carbonitride, 0.005% or more must be added. 0.5
%, A coarse carbonitride is formed to deteriorate toughness and ductility.
Limited to the range of 0.5%.

【0019】Nbも本発明においてはTiあるいはVと
同様の効果を有する。炭窒化物を微細分散して効果を発
揮できるためには0.003%以上の添加が必要であ
る。一方0.1%を超えると析出脆化が顕著になり、か
つ粗大な炭窒化物を形成してさらに靭性や延性を劣化さ
せるため、本発明ではNbの含有量を0.003〜0.
1%の範囲に限定する。
Nb also has the same effect as Ti or V in the present invention. In order to exhibit the effect by finely dispersing the carbonitride, it is necessary to add 0.003% or more. On the other hand, if it exceeds 0.1%, precipitation embrittlement becomes remarkable, and coarse carbonitrides are formed to further deteriorate toughness and ductility. Therefore, in the present invention, the Nb content is set to 0.003 to 0.3.
Limit to 1% range.

【0020】なお、P,Sは不純物元素であり、極力低
減することが好ましい。Pは靭性を劣化させる傾向が顕
著で、靭性確保の点から許容できる量として上限を0.
02%とした。
It should be noted that P and S are impurity elements and are preferably reduced as much as possible. P has a remarkable tendency to deteriorate toughness, and the upper limit is set to 0.
02%.

【0021】SはMnSを形成して特に延性値を劣化せ
るため、本発明が対象としているような、延性を確保す
る必要のある鋼板では特に低減が必要な元素である。た
だし、延性の劣化を実用的に許容できる上限として、そ
の含有量の上限を0.01%とする。
Since S forms MnS and particularly deteriorates the ductility value, S is an element that needs to be particularly reduced in a steel sheet which is required to ensure ductility as is the object of the present invention. However, the upper limit of the content is set to 0.01% as a practically allowable upper limit of ductility deterioration.

【0022】以上が本発明鋼の基本成分であるが、所望
の強度レベルに応じて母材強度の上昇の目的で、必要に
応じてNi,Cu,Cr,Mo,W,Zr,Ta,Bの
1種または2種以上を含有することができる。それらの
成分の限定理由を以下に説明する。
The basic components of the steel of the present invention have been described above. Ni, Cu, Cr, Mo, W, Zr, Ta, and B may be used, if necessary, for the purpose of increasing the strength of the base material according to the desired strength level. Or one or more of these. The reasons for limiting these components are described below.

【0023】Niは、母材の強度と靭性を同時に向上で
き、非常に有効な元素であるが、効果を発揮させるため
には0.1%以上含有させる必要がある。含有量が多く
なると強度、靭性は向上するが、5%を超えて添加して
も効果が飽和するため、経済性も考慮して上限を5%と
する。
Ni is a very effective element that can simultaneously improve the strength and toughness of the base material, but must be contained in an amount of 0.1% or more in order to exert its effect. When the content is increased, the strength and toughness are improved, but the effect is saturated even if it exceeds 5%, so the upper limit is set to 5% in consideration of economy.

【0024】CuもほぼNiと同様の効果を有し、その
効果を発揮するためには0.1%以上添加するが、1.
5%超の添加では熱間加工性に問題を生じるため、0.
1〜1.5%の範囲に限定する。
Cu also has almost the same effect as Ni, and in order to exhibit that effect, 0.1% or more is added.
Addition of more than 5% causes a problem in hot workability.
Limited to the range of 1 to 1.5%.

【0025】Crは母材の強度向上に有効な元素である
が、明瞭な効果を生じるためには0.01%以上必要で
あり、一方2%を超えて添加すると靭性が劣化する傾向
を有するため、0.01〜2%の範囲とする。
[0025] Cr is an element effective for improving the strength of the base material, but it must be 0.01% or more in order to produce a clear effect, while if added over 2%, the toughness tends to deteriorate. Therefore, the range is 0.01 to 2%.

【0026】Moも母材の強度向上に有効な元素である
が、明瞭な効果を生じるためには0.01%以上必要で
あり、一方2%を超えて添加すると靭性が劣化する傾向
を有するため、0.01〜2%の範囲とする。
Mo is also an element effective for improving the strength of the base material, but it must be 0.01% or more in order to produce a clear effect, while if added over 2%, the toughness tends to deteriorate. Therefore, the range is 0.01 to 2%.

【0027】WもMoと同様に母材の強度向上に有効な
元素であるが、明瞭な効果を生じるためには0.01%
以上必要であり、一方2%を超えて添加すると靭性が劣
化する傾向を有するため、0.01〜2%の範囲とす
る。
W is an element effective for improving the strength of the base material, similarly to Mo. However, in order to produce a clear effect, 0.01%
On the other hand, if added in excess of 2%, the toughness tends to deteriorate, so the content is set in the range of 0.01 to 2%.

【0028】Zrは析出強化や細粒化に効果を発揮する
元素であるが、効果を発揮するためには0.003以上
の添加が必要である。一方、0.1%超の過剰の添加で
は析出物の粗大化による靱性の劣化を生じるため、0.
003%〜0.1%の範囲に限定する。
Zr is an element that exerts an effect on precipitation strengthening and grain refinement, but in order to exhibit the effect, it is necessary to add 0.003 or more. On the other hand, excessive addition of more than 0.1% causes deterioration of toughness due to coarsening of precipitates.
It is limited to the range of 003% to 0.1%.

【0029】Taも同様に析出強化や細粒化に有効であ
るが、効果を発揮するためには0.005%以上必要で
あり、0.2%超では逆に靱性劣化を生じるため、その
範囲を0.005%〜0.2%とする。
[0029] Ta is also effective for precipitation strengthening and grain refinement, but it must be 0.005% or more in order to exert its effect, and if it exceeds 0.2%, on the contrary, toughness deteriorates. The range is 0.005% to 0.2%.

【0030】Bは0.0002%以上のごく微量添加で
鋼材の焼入性を高めて強度上昇に非常に有効であるが、
過剰に添加するとBNを形成して、逆に焼入性を落とし
たり、靭性を大きく劣化させるため、上限を0.005
%とする。
B is very effective in increasing the strength by increasing the hardenability of steel by adding a very small amount of 0.0002% or more.
When added in excess, BN is formed, and conversely, the hardenability is lowered and the toughness is greatly deteriorated.
%.

【0031】さらに、本発明においては延性や溶接部の
靱性(HAZ靱性)を安定的に向上させることを目的と
して、Mg,Ca,Yの1種または2種以上を含有する
ことができる。いずれも酸化物、硫化物の微細分散によ
り延性特性を改善すると共に、溶接熱影響部(HAZ)
の組織を微細化してHAZ靱性を向上せしめる。その効
果を発揮するためには、Mg,Caはそれぞれ0.00
05%以上、Yは0.005%以上含有させる必要があ
る。一方、過剰に添加すると酸化物、硫化物が粗大化し
て、それ自身が脆性破壊の起点となってHAZ靱性を逆
に劣化させるため、上限をMgおよびCaはそれぞれ
0.01%、Yは0.1%に限定する。
Further, in the present invention, one or more of Mg, Ca and Y can be contained for the purpose of stably improving ductility and toughness of a welded portion (HAZ toughness). In each case, the ductility is improved by fine dispersion of oxides and sulfides, and the weld heat affected zone (HAZ)
To improve the HAZ toughness. In order to exhibit the effect, Mg and Ca are each 0.00%.
It is necessary to contain not less than 05% and 0.005% or more of Y. On the other hand, if added in excess, the oxides and sulfides coarsen and themselves become the starting point of brittle fracture, which degrades the HAZ toughness. Limited to 1%.

【0032】以上が、本発明の化学組成に関する限定理
由である。次に、延性特性向上のための熱処理を施す前
の鋼が有すべき超細粒組織の限定理由を述べる。一様伸
び等の延性特性向上のために、軟質相のフェライトと硬
質相との二相組織とする必要があるが、硬質相は靭性に
好ましくないため、従来は該二相鋼において靭性と延性
とを両立させることが困難であった。
The above are the reasons for limiting the chemical composition of the present invention. Next, the reason for limiting the ultrafine grain structure that the steel should have before heat treatment for improving the ductility properties is described. In order to improve ductility characteristics such as uniform elongation, it is necessary to have a two-phase structure of a soft phase of ferrite and a hard phase. It was difficult to achieve both.

【0033】そこで本発明者らは、軟質相であるフェラ
イトの組織を極力微細化することで、硬質相による靭性
劣化を相殺する方法を検討した。その結果、フェライト
粒径が3μm程度以下の超細粒鋼において、硬質相形成
のための二相域熱処理を適正化すれば、靭性と一様伸び
とをともに高めることが可能であることを詳細な実験に
より知見した。
Therefore, the present inventors have studied a method for minimizing the microstructure of ferrite, which is a soft phase, to offset the toughness deterioration due to the hard phase. As a result, in ultrafine-grained steel with a ferrite grain size of about 3 μm or less, it is possible to improve both toughness and uniform elongation by optimizing heat treatment in the two-phase region for hard phase formation. It was found by various experiments.

【0034】すなわち本発明においては、二相域熱処理
前の鋼の組織要件を、平均フェライト粒径が1〜3μm
で、組織に占めるフェライト以外の第二相の割合が50
%以下に限定する。つまり、平均フェライト粒径の下限
を1μmとしたのは、フェライト粒径が1μm未満の超
細粒であると熱的に極めて不安定となり、後述の二相域
熱処理を施した際に異常な粒成長を生じる場合があり、
その結果靭性が顕著に劣化する場合があるためである。
一方、平均フェライト粒径が3μm超であれば、本発明
の化学組成を有する鋼においては、このような粒成長が
生じることはなく、安定的に靭性確保が図られる。
That is, in the present invention, the microstructure requirement of the steel before the heat treatment in the two-phase region is determined as follows.
And the proportion of the second phase other than ferrite in the structure is 50%
% Or less. That is, the reason why the lower limit of the average ferrite grain size is set to 1 μm is that ultrafine grains having a ferrite grain size of less than 1 μm become extremely unstable thermally and become abnormal when subjected to the two-phase region heat treatment described later. May cause growth,
As a result, the toughness may be significantly deteriorated.
On the other hand, if the average ferrite grain size is more than 3 μm, such grain growth does not occur in the steel having the chemical composition of the present invention, and the toughness is stably ensured.

【0035】また、平均フェライト粒径が3μm以下の
超細粒組織であれば、二相域熱処理時に形成される硬質
第二相も微細となり、靭性劣化がほとんど生じない。し
かし、平均フェライト粒径が3μm超では、このような
効果は期待できず、靭性に好ましくない硬質第二相が粗
大に分散する可能性があり、靭性劣化を確実に防ぐこと
は困難となる。
Further, if the average ferrite grain size is 3 μm or less, the hard second phase formed during the heat treatment in the two-phase region becomes fine, and the toughness hardly deteriorates. However, if the average ferrite particle size exceeds 3 μm, such an effect cannot be expected, and the hard second phase, which is unfavorable in toughness, may be coarsely dispersed, making it difficult to reliably prevent toughness deterioration.

【0036】本発明においては、組織要件として、さら
に組織に占めるフェライト以外の第二相の割合を50%
以下に限定する。これは、フェライト以外の第二相の割
合が50%超であると、二相域熱処理によって形成され
る第二相が粗大になり、超細粒組織による靭性向上効果
が有効でなくなるためである。フェライト以外の第二相
の割合が50%以下であれば、鋼の靭性は主として超細
粒フェライトの影響を受けるため、硬質第二相のサイズ
分散状態によらずに良好な靭性を確保することが可能と
なる。
In the present invention, as a structure requirement, the proportion of the second phase other than ferrite in the structure is further set at 50%.
Limited to the following. This is because if the proportion of the second phase other than ferrite is more than 50%, the second phase formed by the heat treatment in the two-phase region becomes coarse, and the effect of improving the toughness by the ultrafine grain structure becomes ineffective. . If the ratio of the second phase other than ferrite is 50% or less, the toughness of the steel is mainly affected by ultrafine ferrite, so that good toughness is ensured regardless of the size dispersion state of the hard second phase. Becomes possible.

【0037】なお、本発明においては超細粒組織の形成
手段については問わないが、その具体的手段は、本発明
者らによるものを含めて種々提案されている。例えば特
開平7−126797号公報や特開平8−295982
号公報に開示されている方法によれば、本発明の組織要
件を満足する鋼を製造することが可能である。
In the present invention, there is no limitation on the means for forming the ultrafine grain structure, but various specific means have been proposed, including those by the present inventors. For example, JP-A-7-126797 and JP-A-8-295982
According to the method disclosed in Japanese Patent Laid-Open Publication No. H10-115, it is possible to produce steel satisfying the structural requirements of the present invention.

【0038】以上が、本発明における化学組成及び二相
域熱処理前の鋼が具備すべき組織要件の限定理由であ
る。次に、高一様伸び特性を達成するために必要な、軟
質相と硬質相との適正な二相混合組織を形成させるため
の製造条件に関する要件を示す。
The above are the reasons for limiting the chemical composition and the structural requirements of the steel before the heat treatment in the two-phase region in the present invention. Next, requirements for manufacturing conditions for forming an appropriate two-phase mixed structure of a soft phase and a hard phase, which are necessary to achieve high uniform elongation characteristics, will be described.

【0039】本発明においては、適正な化学組成を有
し、平均フェライト粒径が1〜3μmで、組織に占める
フェライト以外の第二相の割合が50%以下の超細粒フ
ェライト組織を有する鋼に対して、加熱温度が(Ac1
変態点+10℃)〜(Ac1 変態点+100℃)、保持
時間が5時間以下で、かつ加熱温度から200℃までの
平均冷却速度が0.1〜100℃/sの二相域熱処理を施
すことにより、軟質相と硬質相との適正な二相混合組織
を形成させて、靭性と延性とを両立させる。
In the present invention, a steel having an appropriate chemical composition, an average ferrite grain size of 1 to 3 μm, and an ultrafine-grained ferrite structure in which the proportion of the second phase other than ferrite in the structure is 50% or less is used. The heating temperature is (Ac1
Transformation point + 10 ° C) to (Ac1 transformation point + 100 ° C), two-phase zone heat treatment with a holding time of 5 hours or less and an average cooling rate from the heating temperature to 200 ° C of 0.1 to 100 ° C / s. Thereby, an appropriate two-phase mixed structure of a soft phase and a hard phase is formed, and both toughness and ductility are achieved.

【0040】加熱温度の下限を(Ac1 変態点+10
℃)とするのは、強度確保のためには硬質相を十分な量
形成させる必要があるが、そのためには加熱段階でオー
ステナイトを十分確保する必要があるためで、可能な保
持時間の範囲で十分なオーステナイト量を確保するため
に、Ac1 変態点よりも10℃高い加熱温度とする。加
熱温度が高いほど硬質相は増加するが、軟質相の割合が
減少すると、延性特性は劣化し、かつ加熱前に有してい
た超細粒組織が粒成長により減少、解消する恐れがある
ため、一様伸びと強度がバランスして、かつ超細粒組織
が保持されて靭性が劣化しない加熱温度として、詳細な
実験に基づき、(Ac1 変態点+100℃)を上限とし
て限定する。
The lower limit of the heating temperature is set to (Ac1 transformation point + 10
° C) because it is necessary to form a sufficient amount of the hard phase in order to secure the strength, but it is necessary to secure austenite sufficiently in the heating step for that purpose. In order to secure a sufficient amount of austenite, the heating temperature is set to be higher by 10 ° C. than the Ac1 transformation point. The higher the heating temperature, the more the hard phase increases, but if the ratio of the soft phase decreases, the ductility characteristics deteriorate, and the ultrafine grain structure that had before heating may decrease or disappear due to grain growth. Based on a detailed experiment, the heating temperature at which the uniform elongation and strength are balanced and the ultrafine grain structure is maintained and the toughness is not deteriorated is limited to (Ac1 transformation point + 100 ° C) as an upper limit.

【0041】上記理由に基づいて、超細粒組織に付与す
る熱処理の加熱温度は(Ac1 変態点+10℃)〜(A
c1 変態点+100℃)とする必要があるが、その加熱
保持時間は、熱処理中の超細粒組織の粗大化を最小限に
止めるために、本発明では5時間以下に限定する。保持
時間が5時間超であると、超細粒組織が静的再結晶・粒
成長し、その結果フェライト粒が顕著に粗大化して、靭
性劣化を惹起する恐れがあるため、好ましくない。保持
時間が5時間以下であれば、若干の粒成長は生じる可能
性はあるものの、靭性の劣化量は許容できる程度に抑制
できる。なお、熱処理前の鋼の超細粒組織を保持して、
靭性劣化を完全に抑制することを目的とする場合は、さ
らに加熱温度の上限を(Ac1 変態点+50℃)、保持
時間を1時間以下に限定することが好ましい。
Based on the above reason, the heating temperature of the heat treatment applied to the ultrafine grain structure is (Ac1 transformation point + 10 ° C.) to (A
(c1 transformation point + 100 ° C.), but the heating and holding time is limited to 5 hours or less in the present invention in order to minimize the coarsening of the ultrafine grain structure during the heat treatment. If the holding time is longer than 5 hours, the ultrafine grain structure statically recrystallizes and grows, and as a result, the ferrite grains may be significantly coarsened and the toughness may be deteriorated. If the holding time is 5 hours or less, although there is a possibility that some grain growth may occur, the deterioration amount of toughness can be suppressed to an acceptable level. In addition, maintaining the ultrafine grain structure of the steel before heat treatment,
In order to completely suppress the deterioration of toughness, it is preferable to further limit the upper limit of the heating temperature to (Ac1 transformation point + 50 ° C) and the holding time to 1 hour or less.

【0042】本発明においては、加熱・保持後の冷却
は、加熱温度から200℃までの平均冷却速度で0.1
〜100℃/sに限定する。該冷却速度の加減を限定する
のは、加熱段階で形成されたオーステナイトを確実にベ
イナイトあるいはマルテンサイト、あるいは両相の混合
組織に変態させるためである。加熱温度から200℃ま
での平均冷却速度で、0.1℃/s以上であれば、本発明
の化学組成範囲であれば所望の硬質相を形成できる。冷
却速度が0.1℃/s未満であると、化学組成によって
は、ベイナイト相が形成されず、セメンタイトの粗大な
パーライト相あるいは疑似パーライト相に変態する恐れ
があり、延性の向上が望めない上、靭性も劣化する傾向
がある。
In the present invention, cooling after heating and holding is performed at an average cooling rate from the heating temperature to 200.degree.
~ 100 ° C / s. The reason for limiting the cooling rate is to surely transform austenite formed in the heating step into bainite or martensite or a mixed structure of both phases. If the average cooling rate from the heating temperature to 200 ° C. is 0.1 ° C./s or more, a desired hard phase can be formed within the chemical composition range of the present invention. If the cooling rate is less than 0.1 ° C./s, depending on the chemical composition, a bainite phase may not be formed and the cementite may be transformed into a coarse pearlite phase or a pseudo pearlite phase, and improvement in ductility cannot be expected. , The toughness also tends to deteriorate.

【0043】硬質相形成の観点からは、冷却速度は大き
いほど好ましいが、実用的には100℃/s以下で十分で
あり、それ以上冷却速度を大きくしても、材質向上に対
する効果が飽和する一方で、鋼の形状悪化、残留応力の
増加の懸念が生じるため、本発明においては熱処理にお
ける冷却速度の上限を100℃/sとする。
From the viewpoint of hard phase formation, the higher the cooling rate, the better, but practically 100 ° C./s or less is sufficient. Even if the cooling rate is further increased, the effect of improving the material is saturated. On the other hand, there is a concern that the shape of the steel deteriorates and the residual stress increases. Therefore, in the present invention, the upper limit of the cooling rate in the heat treatment is set to 100 ° C./s.

【0044】熱処理後の冷却速度の制御は200℃まで
行えば問題ない。すなわち、硬質相であるベイナイトあ
るいはマルテンサイトへの変態は200℃までにほぼ1
00%完了しており、200℃以降の冷却条件によって
最終的な材質は影響をほとんど受けないためである。た
だし、極めて冷却速度が遅いと炭化物が粒内に析出して
延性を劣化させる恐れがあるため、200℃以下の冷却
速度は0.01℃/s以上になるように留意すべきであ
る。
There is no problem if the cooling rate after the heat treatment is controlled up to 200.degree. That is, the transformation to the hard phase bainite or martensite is almost one by 200 ° C.
This is because the final material is hardly affected by the cooling conditions after 200 ° C. However, if the cooling rate is extremely low, carbides may precipitate in the grains and deteriorate ductility. Therefore, it should be noted that the cooling rate at 200 ° C. or less is 0.01 ° C./s or more.

【0045】さらに本発明においては、必要に応じて、
該二相域熱処理において300℃から加熱温度に至るま
での昇温速度を1〜100℃/sに限定する。通常の熱処
理では、鋼を熱処理炉に挿入してから昇温を開始する
か、あるいは加熱温度近傍に設定した熱処理炉に挿入す
る炉加熱法が一般的であるが、これらの方法では、厚板
のように鋼のサイズが大きい場合には、昇温速度はせい
ぜい10〜20℃/s程度であるが、高周波加熱や通電加
熱あるいは、加熱温度よりも高温に設定した炉に挿入し
た後、炉温を鋼の温度に応じて調整する等の方法によっ
て、昇温速度が1〜100℃/sの急速加熱を行うと、昇
温中のオーステナイト相の生成サイトが増加するため、
通常の炉加熱法では達成できない硬質相の微細分散が達
成され、かつ素材組織の変化を極力抑制できるようにな
る。
Further, in the present invention, if necessary,
In the two-phase region heat treatment, the rate of temperature rise from 300 ° C. to the heating temperature is limited to 1 to 100 ° C./s. In normal heat treatment, it is common to start the heating after inserting the steel into the heat treatment furnace, or a furnace heating method in which the steel is inserted into a heat treatment furnace set near the heating temperature. When the size of the steel is large as described above, the heating rate is at most about 10 to 20 ° C./s, but after inserting into a furnace set to a higher temperature than the heating temperature, such as high-frequency heating, current heating, or heating, the furnace By performing a rapid heating at a heating rate of 1 to 100 ° C./s by a method such as adjusting the temperature according to the temperature of the steel, the generation sites of the austenite phase during the heating increase,
The fine dispersion of the hard phase, which cannot be achieved by the ordinary furnace heating method, is achieved, and the change in the material structure can be suppressed as much as possible.

【0046】すなわち、本発明のように、素材の超細粒
組織を極力変化させないことが好ましい場合において
は、特に二相域熱処理における急速加熱は、二相域熱処
理で不可避な靭性劣化を極限的に抑制するためには非常
に有効である。昇温速度は1℃/s以上であれば、硬質相
の微細分散とその結果としての靭性劣化抑制効果は安定
して享受される。
That is, in the case where it is preferable not to change the ultrafine grain structure of the material as much as possible as in the present invention, especially rapid heating in the heat treatment in the two-phase region limits the inevitable deterioration of toughness in the heat treatment in the two-phase region. It is very effective to suppress If the heating rate is 1 ° C./s or more, the fine dispersion of the hard phase and the resultant effect of suppressing the deterioration of toughness can be stably enjoyed.

【0047】昇温速度は大きいほど好ましいが、100
℃/sを超えるような急速加熱は、現状で得られる熱処理
設備の能力からは現実的でなく、かつ達成できたとして
も組織微細化効果は飽和する傾向にあることと、鋼の温
度分布の均一性確保が難しくなるため、本発明では昇温
速度の上限を100℃/sとする。なお、昇温速度の制御
を300℃以上からと設定したのは、300℃未満の範
囲では、昇温速度によらず、変態点以下で組織形成に影
響するCや転位の移動の程度が300℃以上の高温域に
比べて無視できるほど小さいためである。
The higher the rate of temperature rise, the more preferable.
Rapid heating exceeding ℃ / s is not realistic from the current capacity of heat treatment equipment, and even if it can be achieved, the microstructure refining effect tends to saturate, and the temperature distribution of steel In the present invention, the upper limit of the heating rate is set to 100 ° C./s because it is difficult to ensure uniformity. The reason why the control of the heating rate was set to be from 300 ° C. or higher is that the degree of movement of C or dislocation that affects the formation of the structure below the transformation point is 300 degrees or less regardless of the heating rate in the range below 300 ° C. This is because it is negligibly small compared to a high temperature range of not less than ° C.

【0048】またさらに、本発明においては鋼の残留応
力除去、強度調整の目的で、加熱温度が250〜600
℃の焼戻しを施すことができる。焼戻しの加熱温度が2
50℃未満であると焼戻し効果が十分でなく、一方60
0℃超であると硬質相の強度が低下するため、強度・一
様伸びバランスが劣化するため好ましくない。なお、焼
戻しの保持時間や冷却条件については、材質への影響は
加熱温度に比べて非常に小さく、現実的な条件範囲では
特に規定する必要はないが、組織の粗大化抑制のため
に、保持時間は48h以下、またセメンタイトの粒内析
出による延性劣化を防ぐために、冷却速度は0.01℃
/s以上がより好ましい。
Further, in the present invention, for the purpose of removing the residual stress of the steel and adjusting the strength, the heating temperature is from 250 to 600.
° C tempering. Heating temperature for tempering is 2
If the temperature is lower than 50 ° C., the tempering effect is not sufficient.
If the temperature is higher than 0 ° C., the strength of the hard phase decreases, and the balance between strength and uniform elongation deteriorates. Note that the effect on the material of the tempering holding time and cooling conditions is very small compared to the heating temperature, and it is not necessary to particularly specify the conditions in a practical condition range. The time was 48 hours or less, and the cooling rate was 0.01 ° C to prevent ductility deterioration due to intragranular precipitation of cementite.
/ s or more is more preferable.

【0049】[0049]

【実施例】以下に、本発明の実施例を説明する。表1に
示す化学組成を有する鋼片を用いて、表2に示す方法に
より鋼板を製造した。なお表1,2中には、化学組成あ
るいは鋼組織が本発明を満足していない比較例も合わせ
て示す。表2に示す鋼板にさらに熱処理を施した後、機
械的性質を調査した。その際の熱処理条件と機械的性質
を表3に示す。また表3には、本発明を満足していない
比較例の熱処理条件と機械的性質も併せて示した。
Embodiments of the present invention will be described below. Using steel pieces having the chemical compositions shown in Table 1, steel sheets were manufactured by the methods shown in Table 2. Tables 1 and 2 also show comparative examples in which the chemical composition or the steel structure does not satisfy the present invention. After further heat treatment of the steel sheets shown in Table 2, the mechanical properties were investigated. Table 3 shows the heat treatment conditions and mechanical properties at that time. Table 3 also shows heat treatment conditions and mechanical properties of Comparative Examples not satisfying the present invention.

【0050】機械的性質としては、引張特性及び2mm
Vノッチシャルピー衝撃特性を調査した。機械的性質は
圧延方向に直角に板厚中心部より試験片を採取して行っ
た。引張試験片は平行部が6mmφ×24mmの丸棒試
験片、シャルピー試験片は試験片厚さ10mmの標準試
験片とした。引張試験は室温で実施し、シャルピー試験
は種々温度で試験を実施し、破面遷移温度(vTrs)
を求めた。
As mechanical properties, tensile properties and 2 mm
The V-notch Charpy impact characteristics were investigated. The mechanical properties were obtained by taking test pieces from the center of the sheet thickness at right angles to the rolling direction. The tensile test piece was a round bar test piece having a parallel portion of 6 mmφ × 24 mm, and the Charpy test piece was a standard test piece having a test piece thickness of 10 mm. Tensile test is performed at room temperature, Charpy test is performed at various temperatures, and fracture surface transition temperature (vTrs)
I asked.

【0051】表3のうち、試験番号A1−1〜A10−
2の鋼板は、本発明の要件を全て満足しているものであ
り、二相域熱処理を施しているにも関わらず、超細粒組
織をほぼ保持しているため、vTrsは全て−119℃
以下と極めて良好で、一様伸びも、引張強度が約500
MPa級ではほぼ17.9%以上、約800MPa級で
も13.6%以上と、非常に高い値を有しており、本発
明によって極めて高いレベルの高靭性(vTrs)と高
延性(引張特性)とが両立した鋼の製造が可能であるこ
とが明白である。また表3から、本発明のうちでも二相
域熱処理に際して昇温速度を大きくした方が、靭性がさ
らに良好となっていることが確認された。
In Table 3, test numbers A1-1 to A10-
The steel sheet of No. 2 satisfies all the requirements of the present invention and, despite being subjected to the heat treatment in the two-phase region, almost retains the ultrafine-grained structure.
Very good with uniform elongation and tensile strength of about 500
It has a very high value of about 17.9% or more in the MPa class, and 13.6% or more in the about 800 MPa class. According to the present invention, a very high level of high toughness (vTrs) and high ductility (tensile properties). It is clear that the production of steel compatible with the above is possible. Also, from Table 3, it was confirmed that, in the present invention, the toughness was further improved when the heating rate was increased during the heat treatment in the two-phase region.

【0052】一方、表3のうち、試験番号B1−1〜B
6−4は本発明の要件のうちのいずれかを満足していな
いものであり、以下に示す理由により、本発明により製
造された試験番号A1−1〜A10−2鋼板に比べて明
らかに機械的性質が劣っている。すなわち、試験番号B
1−1は、鋼板が通常の熱間圧延により製造されている
ため、二相域熱処理前のフェライト粒径が本発明を満足
しておらず、二相域熱処理によって靭性が大きく劣化し
ている。
On the other hand, in Table 3, test numbers B1-1 to B1-1
No. 6-4 does not satisfy any of the requirements of the present invention. For the following reasons, the machine number is clearly higher than the test numbers A1-1 to A10-2 steel plates manufactured by the present invention. Inferior properties. That is, test number B
1-1, since the steel sheet is manufactured by normal hot rolling, the ferrite grain size before the two-phase region heat treatment does not satisfy the present invention, and the toughness is greatly deteriorated by the two-phase region heat treatment. .

【0053】試験番号B2−1も、熱間圧延条件が適正
でないため、二相域熱処理前のフェライト粒径、第二相
分率が本発明を満足しておらず、二相域熱処理後の靭性
が劣る。試験番号B3−1,B4−1,B5−1は化学
組成が本発明を満足していない例であり、B3−1はC
量が過大であるため、一様伸び、靭性ともに本発明より
も顕著に劣っており、B4−1はMn量が過大であるた
め、靭性が十分でない。また試験番号B5−1は、二相
域熱処理の際に超細粒組織の成長を抑制するために必須
のTi,V,Nbのいずれもが含有されていないため、
二相域熱処理時に超細粒組織が粗大化し、その結果靭性
が本発明にくらべて劣っている。
Test No. B2-1 also shows that the ferrite grain size and the second phase fraction before the heat treatment in the two-phase region do not satisfy the present invention because the hot rolling conditions are not appropriate, and Poor toughness. Test numbers B3-1, B4-1, and B5-1 are examples in which the chemical composition does not satisfy the present invention.
Since the amount is too large, both the uniform elongation and the toughness are remarkably inferior to those of the present invention, and B4-1 has an excessively large Mn amount, so that the toughness is not sufficient. Test No. B5-1 does not contain any of Ti, V, and Nb, which are essential for suppressing the growth of ultrafine grain structure during the two-phase heat treatment.
During the heat treatment in the two-phase region, the ultrafine grain structure is coarsened, and as a result, the toughness is inferior to that of the present invention.

【0054】試験番号B6−1,B6−2は化学組成、
熱処理前の組織要件は本発明を満足しているものの、軟
質相と硬質相を適正に分布させるための熱処理条件が本
発明を満足していないために、各々靭性、一様伸びが劣
る例である。すなわち試験番号B6−1は、二相域熱処
理温度が高すぎるため、超細粒組織がほぼ解消されてフ
ェライト粒径が粗大化しており、同一組成の本発明鋼に
比べて強度、靭性とも劣っている。また試験番号B6−
2は、二相域熱処理に相当する熱処理において、加熱温
度がAc1 変態点に達していないため硬質相が形成され
ず、強度は低めであり、かつ一様伸びが二相域熱処理材
に比べて大幅に劣る。
Test numbers B6-1 and B6-2 are chemical compositions,
Although the structural requirements before heat treatment satisfy the present invention, the heat treatment conditions for properly distributing the soft phase and the hard phase do not satisfy the present invention. is there. That is, in the test number B6-1, since the heat treatment temperature in the two-phase region was too high, the ultrafine grain structure was almost eliminated and the ferrite grain size was coarsened, and the strength and toughness were inferior to the steel of the present invention having the same composition. ing. Test number B6-
No. 2 shows that in the heat treatment corresponding to the two-phase region heat treatment, a hard phase is not formed because the heating temperature has not reached the Ac1 transformation point, the strength is relatively low, and the uniform elongation is higher than that of the two-phase region heat treated material. Significantly inferior.

【0055】試験番号B6−3は、二相域熱処理の保持
時間が過大なため、本発明の化学組成であっても、超細
粒フェライトの粒成長が生じてしまうため、靭性の劣化
が著しい。一方試験番号B6−4は、二相域熱処理にお
ける冷却が本発明をはずれて極端に徐冷となっているた
め、一様伸び向上に必須の硬質第二相が形成されず、粗
大なパーライト相となっており、そのため一様伸びが本
発明に比べて大きく劣る。合わせて引張強度の劣化も生
じており好ましくない。以上の実施例から、本発明によ
れば、2mmVノッチシャルピー衝撃特性と一様伸びと
が共に優れた、高靭性・高延性鋼の製造が可能であるこ
とが明白である。
In test number B6-3, the retention time of the heat treatment in the two-phase region was excessively long, and even with the chemical composition of the present invention, the grain growth of ultrafine ferrite occurred, so that the toughness was significantly deteriorated. . On the other hand, in the test number B6-4, the cooling in the two-phase region heat treatment deviated from the present invention and was extremely slow cooling, so that the hard second phase essential for uniform elongation improvement was not formed, and the coarse pearlite phase was not formed. Therefore, the uniform elongation is significantly inferior to that of the present invention. In addition, the tensile strength also deteriorates, which is not preferable. From the above examples, it is clear that according to the present invention, it is possible to produce a high toughness and high ductility steel excellent in both 2 mm V notch Charpy impact characteristics and uniform elongation.

【0056】[0056]

【表1】 [Table 1]

【0057】[0057]

【表2】 [Table 2]

【0058】[0058]

【表3】 [Table 3]

【0059】[0059]

【発明の効果】本発明により、溶接構造用鋼としての十
分な強度を有し、かつ一様伸び等の延性特性に優れると
共に低温靱性にも優れた、安全性の高い高靭性・高延性
高張力鋼が高価な合金元素の多量添加に頼ることなく、
安価に製造可能となり、産業上の効果は極めて顕著であ
る。
Industrial Applicability According to the present invention, high safety, high toughness and high ductility, which have sufficient strength as welded structural steel, have excellent ductility characteristics such as uniform elongation, and also have excellent low temperature toughness. Without relying on large amounts of expensive alloying elements,
It can be manufactured at low cost, and the industrial effect is extremely remarkable.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、 C :0.01〜0.2%、 Si:0.01〜1%、 Mn:0.1〜2%、 Al:0.001〜0.1%、 N :0.001〜0.01% を含有し、かつ、 Ti:0.003〜0.1%、 V :0.005〜0.5%、 Nb:0.003〜0.1% の1種また2種以上を含有し、さらに不純物として、 P :0.02%以下、 S :0.01%以下を含有し、 残部が鉄及び不可避不純物からなり,平均フェライト粒
径が1〜3μmで、組織に占めるフェライト以外の第二
相の割合が50%以下の超細粒フェライト組織を有する
鋼に、加熱温度が(Ac1 変態点+10℃)〜(Ac1
変態点+100℃)、保持時間が5時間以下で、かつ加
熱温度から200℃までの平均冷却速度が0.1〜10
0℃/sの二相域熱処理を施すことを特徴とする高靱性・
高延性高張力鋼の製造方法。
1. Mass%, C: 0.01 to 0.2%, Si: 0.01 to 1%, Mn: 0.1 to 2%, Al: 0.001 to 0.1%, N : 0.001 to 0.01%, Ti: 0.003 to 0.1%, V: 0.005 to 0.5%, Nb: 0.003 to 0.1% Further, it contains two or more kinds, further contains as impurities P: 0.02% or less, S: 0.01% or less, the balance consisting of iron and unavoidable impurities, and an average ferrite particle size of 1 to 3 μm. The heating temperature of the steel having an ultrafine-grained ferrite structure in which the proportion of the second phase other than ferrite in the structure is 50% or less is from (Ac1 transformation point + 10 ° C.) to (Ac1
(Transformation point + 100 ° C), holding time is 5 hours or less, and the average cooling rate from the heating temperature to 200 ° C is 0.1 to 10
High toughness characterized by applying a two-phase heat treatment at 0 ° C / s
Manufacturing method of high ductility and high tensile steel.
【請求項2】 二相域熱処理を施すに際して、300℃
から加熱温度に至るまでの昇温速度が1〜100℃/sで
あることを特徴とする請求項1に記載の高靱性・高延性
高張力鋼の製造方法。
2. A temperature of 300 ° C. for performing a two-phase region heat treatment.
The method for producing a high-toughness, high-ductility, high-tensile steel according to claim 1, wherein the rate of temperature rise from the temperature to the heating temperature is 1 to 100 ° C / s.
【請求項3】 二相域熱処理の後に、さらに加熱温度が
250〜600℃の焼戻しを施すことを特徴とする請求
項1または2に記載の高靱性・高延性高張力鋼の製造方
法。
3. The method for producing a high-toughness, high-ductility, high-strength steel according to claim 1, wherein tempering at a heating temperature of 250 to 600 ° C. is further performed after the two-phase region heat treatment.
【請求項4】 鋼成分として、さらに質量%で、 Ni:0.1〜5%、 Cu:0.1〜1.5%、 Cr:0.01〜2%、 Mo:0.01〜2%、 W :0.01〜2%、 Zr:0.003〜0.1%、 Ta:0.005〜0.2%、 B :0.0002〜0.005% の1種または2種以上を含有することを特徴とする請求
項1〜3のいずれか1項に記載の高靱性・高延性高張力
鋼の製造方法。
4. As a steel component, Ni: 0.1 to 5%, Cu: 0.1 to 1.5%, Cr: 0.01 to 2%, Mo: 0.01 to 2 by mass%. %, W: 0.01 to 2%, Zr: 0.003 to 0.1%, Ta: 0.005 to 0.2%, B: 0.0002 to 0.005% The method for producing a high-toughness, high-ductility, high-strength steel according to any one of claims 1 to 3, characterized by comprising:
【請求項5】 鋼成分として、さらに質量%で、 Mg:0.0005〜0.01%、 Ca:0.0005〜0.01%、 Y :0.005〜0.1% のうち1種または2種以上を含有することを特徴とする
請求項1〜4のいずれか1項に記載の高靱性・高延性高
張力鋼の製造方法。
5. As the steel component, one of the following mass%: Mg: 0.0005 to 0.01%, Ca: 0.0005 to 0.01%, Y: 0.005 to 0.1% The method for producing a high-toughness, high-ductility, high-strength steel according to any one of claims 1 to 4, wherein the method includes at least two types.
JP2001067395A 2001-03-09 2001-03-09 Method for manufacturing high tensile steel with high toughness and high ductility Withdrawn JP2002266022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001067395A JP2002266022A (en) 2001-03-09 2001-03-09 Method for manufacturing high tensile steel with high toughness and high ductility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001067395A JP2002266022A (en) 2001-03-09 2001-03-09 Method for manufacturing high tensile steel with high toughness and high ductility

Publications (1)

Publication Number Publication Date
JP2002266022A true JP2002266022A (en) 2002-09-18

Family

ID=18925753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001067395A Withdrawn JP2002266022A (en) 2001-03-09 2001-03-09 Method for manufacturing high tensile steel with high toughness and high ductility

Country Status (1)

Country Link
JP (1) JP2002266022A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005087966A1 (en) * 2004-03-11 2005-09-22 Nippon Steel Corporation Steel plate excellent in machinability, toughness and weldability, and method for production thereof
JP2007254881A (en) * 2006-02-27 2007-10-04 Jfe Steel Kk Corrosion-resistant steel material for ship and vessel
JP2007291494A (en) * 2006-03-30 2007-11-08 Jfe Steel Kk Corrosion-resistant steel material for crude oil storage tank, and crude oil storage tank
JP2012077336A (en) * 2010-09-30 2012-04-19 Jfe Steel Corp High-strength hot-rolled steel sheet excellent in bending characteristics and low temperature toughness, and method for production thereof
JP2014505170A (en) * 2010-12-28 2014-02-27 ポスコ High strength steel sheet with excellent cryogenic toughness and method for producing the same
US8747578B2 (en) * 2003-12-12 2014-06-10 Jfe Steel Corporation Steel for structural part of automobile and method for producing the same
CN110117756A (en) * 2019-05-21 2019-08-13 安徽工业大学 A kind of Cu alloying deep-draw dual phase sheet steel and preparation method thereof
WO2020032493A1 (en) * 2018-08-07 2020-02-13 주식회사 포스코 Steel for pressure vessel having excellent surface quality and impact toughness, and method for manufacturing same
CN117144241A (en) * 2023-07-24 2023-12-01 鞍钢股份有限公司 High-strength steel plate for ship in ice area and manufacturing method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8747578B2 (en) * 2003-12-12 2014-06-10 Jfe Steel Corporation Steel for structural part of automobile and method for producing the same
WO2005087966A1 (en) * 2004-03-11 2005-09-22 Nippon Steel Corporation Steel plate excellent in machinability, toughness and weldability, and method for production thereof
JP2007254881A (en) * 2006-02-27 2007-10-04 Jfe Steel Kk Corrosion-resistant steel material for ship and vessel
JP4525687B2 (en) * 2006-02-27 2010-08-18 Jfeスチール株式会社 Corrosion resistant steel for ships
JP2007291494A (en) * 2006-03-30 2007-11-08 Jfe Steel Kk Corrosion-resistant steel material for crude oil storage tank, and crude oil storage tank
JP4525686B2 (en) * 2006-03-30 2010-08-18 Jfeスチール株式会社 Corrosion resistant steel for crude oil tank and crude oil tank
JP2012077336A (en) * 2010-09-30 2012-04-19 Jfe Steel Corp High-strength hot-rolled steel sheet excellent in bending characteristics and low temperature toughness, and method for production thereof
JP2014505170A (en) * 2010-12-28 2014-02-27 ポスコ High strength steel sheet with excellent cryogenic toughness and method for producing the same
US9255305B2 (en) 2010-12-28 2016-02-09 Posco High-strength steel sheet having superior toughness at cryogenic temperatures, and method for manufacturing same
WO2020032493A1 (en) * 2018-08-07 2020-02-13 주식회사 포스코 Steel for pressure vessel having excellent surface quality and impact toughness, and method for manufacturing same
US11624101B2 (en) 2018-08-07 2023-04-11 Posco Co., Ltd Steel for pressure vessel having excellent surface quality and impact toughness, and method for manufacturing same
CN110117756A (en) * 2019-05-21 2019-08-13 安徽工业大学 A kind of Cu alloying deep-draw dual phase sheet steel and preparation method thereof
CN110117756B (en) * 2019-05-21 2020-11-24 安徽工业大学 Cu-alloyed deep-drawing dual-phase steel plate and preparation method thereof
CN117144241A (en) * 2023-07-24 2023-12-01 鞍钢股份有限公司 High-strength steel plate for ship in ice area and manufacturing method

Similar Documents

Publication Publication Date Title
CN108342655B (en) Quenched and tempered acid-resistant pipeline steel and manufacturing method thereof
KR101977489B1 (en) Steel plate for welded steel pipe having excellent low-temperature toughness, post weld heat treated steel plate and manufacturing method thereof
WO2011061812A1 (en) High-toughness abrasion-resistant steel and manufacturing method therefor
CN108368591B (en) Pressure vessel steel sheet having excellent resistance to post-weld heat treatment and method for manufacturing same
JP2006342421A (en) Method for producing high-tension steel excellent in weld crack resistance
CN110100027B (en) Low yield ratio steel plate having excellent low temperature toughness and method for manufacturing same
JP2001288512A (en) Method of producing high tensile strength steel excellent in toughness and ductility
JP2008075107A (en) Method for manufacturing high-strength/high-toughness steel
JP3546726B2 (en) Method for producing high-strength steel plate with excellent HIC resistance
JP2011080106A (en) High strength cold-rolled steel sheet excellent in balance of extension and formability for extending flange
JPH07278656A (en) Production of low yield ratio high tensile strength steel
JP2002020832A (en) High tensile strength steel excellent in high temperature strength and its production method
JP6394378B2 (en) Abrasion resistant steel plate and method for producing the same
JP2002266022A (en) Method for manufacturing high tensile steel with high toughness and high ductility
JP2000319726A (en) Manufacture of high strength steel plate excellent in weldability
JP3228986B2 (en) Manufacturing method of high strength steel sheet
JPH09256037A (en) Production of thick high tensile strength steel plate for stress relieving annealing treatment
JP2537118B2 (en) Method of manufacturing stress corrosion corrosion resistant ultra high strength steel
JPH059570A (en) Production of high weldability and high strength steel
JP3536687B2 (en) Low-C high-Cr alloy steel having high corrosion resistance and high strength, and method for producing the same
JP3327065B2 (en) Method for producing tempered high-strength steel sheet excellent in brittle crack propagation arrestability
JP4250113B2 (en) Steel plate manufacturing method with excellent earthquake resistance and weldability
JP4742597B2 (en) Production method of non-tempered high strength steel
JPH06293914A (en) Production of low alloy steel plate for line pipe excellent in co2 corrosion resistance and haz toughness
JPS63118012A (en) Production of low yield ratio high tensile thick steel plate

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513