JP3497102B2 - Granulation state detection method - Google Patents

Granulation state detection method

Info

Publication number
JP3497102B2
JP3497102B2 JP20344499A JP20344499A JP3497102B2 JP 3497102 B2 JP3497102 B2 JP 3497102B2 JP 20344499 A JP20344499 A JP 20344499A JP 20344499 A JP20344499 A JP 20344499A JP 3497102 B2 JP3497102 B2 JP 3497102B2
Authority
JP
Japan
Prior art keywords
granulation
resistance value
granulator
relationship
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20344499A
Other languages
Japanese (ja)
Other versions
JP2001029768A (en
Inventor
正人 馬場
伸司 小栗
秀一 新田
博之 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP20344499A priority Critical patent/JP3497102B2/en
Publication of JP2001029768A publication Critical patent/JP2001029768A/en
Application granted granted Critical
Publication of JP3497102B2 publication Critical patent/JP3497102B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Glanulating (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、医薬、農薬、洗剤
等の製造工程において粘着性を有する粉粒体を造粒する
際に、その造粒の進捗度に対応する造粒状態を検出する
方法と装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention detects a granulation state corresponding to the progress of granulation when granulating a granular material having adhesiveness in the manufacturing process of medicines, agricultural chemicals, detergents and the like. Method and apparatus.

【0002】[0002]

【従来の技術】例えば特開昭63‐232831号公報
は、造粒を行うために粉粒体を造粒容器内で攪拌用ロー
タにより攪拌する際に、その造粒容器内に設けたプロー
ブへの粉粒体の衝突圧を検出し、その衝突圧を電気信号
に変換して高速フーリエ変換することで、その攪拌用ロ
ータの回転数と攪拌羽根の枚数との積に対応する特徴周
波数での振動強度を求めることを開示している。その振
動強度は粉粒体の粒径に対応することから造粒状態を表
し、その振動強度が所定値に達した時点で造粒を終了す
ることで所望粒径の粉粒体を得ることができる。
2. Description of the Related Art For example, Japanese Patent Application Laid-Open No. 63-232831 discloses a probe provided in a granulation container when a granulation container is stirred by a stirring rotor in the granulation container. By detecting the collision pressure of the powder and granules, converting the collision pressure into an electric signal and performing a fast Fourier transform, a characteristic frequency corresponding to the product of the rotation speed of the stirring rotor and the number of stirring blades It discloses to determine the vibration intensity. Since the vibration intensity corresponds to the particle size of the granular material, it represents the granulated state, and when the vibration intensity reaches a predetermined value, the granulation is completed to obtain the granular material having the desired particle size. it can.

【0003】[0003]

【発明が解決しようとする課題】しかし上記従来技術で
は、洗剤組成物のように高い粘着性を有する粉粒体はプ
ローブに付着するため、プローブによる粒体の衝突圧の
検出精度が低下し、造粒状態を精度良く検出することが
できない。また、高い粘着性成分を有する粉粒体を造粒
する場合、造粒過程にある粉粒体の粒径は急激に増加
し、一方、その衝突圧を電気信号に変換して高速フーリ
エ変換して粉粒体の粒径に対応する振動強度を求めるの
には時間を要することから、特に粒径変化の大きな造粒
過程において造粒状態の検出に遅れが生じ、粒径検出精
度は劣化する。
However, in the above-mentioned prior art, since a granular material having high adhesiveness such as a detergent composition adheres to the probe, the accuracy of detection of the collision pressure of the granular material by the probe decreases, The granulation state cannot be detected accurately. Also, when granulating a granular material having a high stickiness component, the particle size of the granular material in the granulating process increases rapidly, while the collision pressure is converted into an electric signal and subjected to fast Fourier transform. Since it takes time to obtain the vibration strength corresponding to the particle size of the granular material, there is a delay in the granulation state detection, especially in the granulation process where the particle size changes greatly, and the particle size detection accuracy deteriorates. .

【0004】本発明は、上記問題を解決することのでき
る造粒状態の検出方法と検出装置を提供することを目標
とする。
An object of the present invention is to provide a granulation state detection method and detection apparatus which can solve the above problems.

【0005】[0005]

【課題を解決するための手段】本発明の造粒状態検出方
法は、造粒機内で粘着性を有する粉粒体を攪拌して造粒
を行うに際し、その造粒機内における粉粒体の攪拌抵抗
に対応する抵抗値と、造粒の進捗度に対応する造粒状態
との関係を予め求め、その造粒機内における粉粒体の流
動領域で回転する部材を回転駆動するのに要する動力に
対応する値を、その抵抗値として測定し、その測定した
抵抗値と上記予め求めた関係とから造粒状態を検出する
ことを特徴とする。造粒の進行に伴い粉粒体の攪拌抵抗
は変化することから、その攪拌抵抗に対応する抵抗値と
造粒の進捗度に対応する造粒状態との相関関係を予め求
め、その抵抗値を造粒中に測定することで、その関係と
測定値とから造粒状態を求めることができる。この際、
粉粒体の流動領域内で回転する部材には粉粒体が付着し
難いため、その回転する部材を回転駆動するのに要する
動力に対応する値を抵抗値として測定することで、造粒
状態を精度良く検出できる。その抵抗値は、その回転す
る部材を回転駆動するのに要する動力に対応する値であ
ればよく、例えば、その回転する部材を回転駆動する原
動機の負荷に対応する消費電力値、負荷電流値、その回
転する部材の撓みや振動強度等を抵抗値として測定でき
る。その造粒状態としては、攪拌抵抗に相関して造粒の
進捗度を表すことができるものであればよく、例えば造
粒対象の粉粒体の平均粒径、嵩密度、全粉粒体に対する
一定目開きの篩を通過する粉粒体の重量割合である収
率、全粉粒体重量に対する設定粒径以上の粒子の重量割
合である粗粉率、全粉粒体重量に対する設定粒径以下の
粒子の重量割合である微粉率等を検出すればよい。
Means for Solving the Problems The method for detecting a granulated state according to the present invention comprises: stirring granules in a granulator when agitating the granules having adhesiveness in the granulator. The relationship between the resistance value corresponding to the resistance and the granulation state corresponding to the progress of granulation is obtained in advance, and the power required to rotationally drive the member rotating in the flow region of the granular material in the granulator is used. It is characterized in that a corresponding value is measured as the resistance value and the granulation state is detected from the measured resistance value and the previously obtained relation. Since the stirring resistance of the granules changes with the progress of granulation, the correlation between the resistance value corresponding to the stirring resistance and the granulation state corresponding to the progress of granulation is obtained in advance, and the resistance value is By measuring during granulation, the granulated state can be obtained from the relationship and the measured value. On this occasion,
Since it is difficult for the granular material to adhere to the member that rotates in the flow region of the granular material, the granulation state can be determined by measuring the resistance value that corresponds to the power required to drive the rotating member to rotate. Can be accurately detected. The resistance value may be a value corresponding to the power required to rotationally drive the rotating member, for example, the power consumption value corresponding to the load of the prime mover that rotationally drives the rotating member, the load current value, The bending and vibration strength of the rotating member can be measured as a resistance value. The granulation state may be one that can represent the progress of granulation in correlation with stirring resistance, for example, the average particle size of the granules to be granulated, the bulk density, and the total granules. Yield, which is the weight ratio of the powder or granules that pass through the sieve with a certain opening, Coarse powder ratio, which is the weight ratio of particles having a size equal to or larger than the set particle size to the weight of the whole powder, or less than the set particle size to the weight of the whole powder The fine powder ratio, which is the weight ratio of the particles, may be detected.

【0006】[0006]

【0007】前記造粒機は、粉粒体を入れる容器と、そ
の容器内に縦軸中心に回転駆動可能に設けられる回転シ
ャフトと、その回転シャフトと同行回転するように設け
られる攪拌羽根とを有し、その攪拌羽根は、その容器内
部底面にクリアランスをおいて配置され、そのクリアラ
ンスと前記抵抗値と造粒状態との関係を予め求め、前記
抵抗値として、その攪拌羽根を回転駆動する原動機の負
荷に対応する値を測定し、その抵抗値と造粒状態とが相
関するように、そのクリアランスを求めた関係に基づき
設定する。本件発明者は、縦軸中心に回転駆動される攪
拌羽根により容器内の粉粒体を攪拌する場合、その攪拌
羽根と容器内部底面との間のクリアランスを十分に確保
しないと、その攪拌羽根と容器内部底面との間の粉粒体
に作用する剪断力が過大になり、崩壊した粉粒体が攪拌
羽根や容器内部底面に付着し、その結果、その攪拌羽根
を回転駆動する原動機の負荷に対応する抵抗値と造粒状
態とが相関しなくなることを見い出した。そこで、その
抵抗値と造粒状態とが相関するように、そのクリアラン
スを抵抗値と造粒状態との予め求めた関係に基づき設定
することとした。これにより、その抵抗値の検知精度を
確保できる。
The above-mentioned granulator comprises a container for containing the powder and granules, a rotary shaft provided in the container so as to be rotatable about the vertical axis, and a stirring blade provided so as to rotate together with the rotary shaft. The stirring blade is disposed on the inner bottom surface of the container with a clearance, and the relationship between the clearance and the resistance value and the granulation state is obtained in advance, and the stirring blade is rotationally driven as the resistance value. measuring the value corresponding to the load, so that the resistance value and the granulation condition are correlated, to set based on the relationship determined the clearance. The present inventor, when stirring the powder or granular material in the container by the stirring blade that is rotationally driven about the vertical axis, if the clearance between the stirring blade and the bottom surface inside the container is not sufficiently secured, the stirring blade The shearing force acting on the granular material between the bottom surface inside the container becomes excessive, and the collapsing granular material adheres to the stirring blade and the bottom surface inside the container, resulting in a load on the prime mover that rotates and drives the stirring blade. It was found that the corresponding resistance value and the granulation state became uncorrelated. Therefore, the clearance is set based on the previously determined relationship between the resistance value and the granulated state so that the resistance value and the granulated state are correlated. Thereby, the detection accuracy of the resistance value can be secured.

【0008】本発明の造粒状態検出装置は、造粒機内に
おける粉粒体の攪拌抵抗に対応する抵抗値と、造粒の進
捗度に対応する造粒状態との関係を記憶する手段と、そ
の造粒機内における粉粒体の流動領域で回転する部材
と、その回転する部材を回転駆動するのに要する動力に
対応する値を抵抗値として測定する手段と、その測定し
た抵抗値と上記記憶した関係とから造粒状態を求める手
段とを備え、前記造粒機は、粉粒体を入れる容器と、そ
の容器内に縦軸中心に回転駆動可能に設けられる回転シ
ャフトと、この回転シャフトと同行回転するように設け
られる攪拌羽根とを有し、その攪拌羽根は、その容器内
部底面にクリアランスをおいて配置され、前記抵抗値と
して、その攪拌羽根を回転駆動する原動機の負荷に対応
する値が測定され、その抵抗値と造粒状態とが相関する
ように、そのクリアランスと前記抵抗値と造粒状態との
予め求めた関係に基づき、そのクリアランスを設定可能
である。本発明の造粒状態検出装置を用いることで本発
明の造粒状態検出方法を実施できる。
The granulated state detecting device of the present invention comprises means for storing the relationship between the resistance value corresponding to the stirring resistance of the granules in the granulator and the granulated state corresponding to the progress of granulation, A member rotating in the flow region of the granular material in the granulator, a means for measuring a value corresponding to the power required to rotationally drive the rotating member as a resistance value, the measured resistance value and the memory and and means for obtaining a granulated state and a relationship, the granulator, a container holding the granules, its
The rotary shaft is installed in the container so that it can rotate about the vertical axis.
Provided to rotate with the shaft and this rotary shaft.
And a stirring blade that is inside the container.
It is placed with a clearance on the bottom of the part and
The load on the prime mover that drives the stirring blade to rotate.
Value is measured, and the resistance value and the granulation state correlate
The clearance, the resistance and the granulation state
The clearance can be set based on the relationship obtained in advance
Is. The granulated state detecting method of the present invention can be carried out by using the granulated state detecting device of the present invention.

【0009】[0009]

【発明の実施の形態】図1〜図6に示す比較形態の横型
造粒機1は、洗剤組成物等の粘着性を有する粉粒体を入
れる容器2を備える。その容器2は、横軸心の円筒形容
器本体2aと、粉粒体の投入部2bと、粉粒体の排出部
2cと、排気部2dとを有する。その容器2内で、その
容器本体2aの軸と同心の横軸中心に回転可能に回転シ
ャフト3が両端支持される。その回転シャフト3は第1
原動機71により、図1において矢印100方向に回転
駆動される。
BEST MODE FOR CARRYING OUT THE INVENTION A horizontal granulator 1 according to a comparative embodiment shown in FIGS. 1 to 6 is provided with a container 2 for containing a powdery or granular material having adhesiveness such as a detergent composition. The container 2 has a cylindrical container body 2a with a horizontal axis, a powder / granule input part 2b, a powder / granule discharge part 2c, and an exhaust part 2d. In the container 2, a rotary shaft 3 is supported at both ends rotatably about a horizontal axis concentric with the axis of the container body 2a. The rotating shaft 3 is the first
The prime mover 71 is rotationally driven in the direction of arrow 100 in FIG.

【0010】その回転シャフト3と矢印100方向に同
行回転するように6つの攪拌部材4が設けられる。各攪
拌部材4は、その回転シャフト3から突出するアーム5
に取り付けられる。それら攪拌部材4は、回転シャフト
3の軸方向において互いに離れた6位置において、回転
方向において例えば60度毎に配置されている。なお、
図では回転シャフト3の中央側の2つのみ表示し、回転
シャフト3の両端側の4つの図示は省略している。
Six stirring members 4 are provided so as to rotate together with the rotary shaft 3 in the direction of arrow 100. Each stirring member 4 has an arm 5 protruding from the rotating shaft 3.
Attached to. The stirring members 4 are arranged at, for example, 60 degrees in the rotation direction at six positions separated from each other in the axial direction of the rotary shaft 3. In addition,
In the figure, only two on the center side of the rotary shaft 3 are shown, and the four illustrations on both end sides of the rotary shaft 3 are omitted.

【0011】図3〜図5に示すように、各攪拌部材4
は、その回転方向においてアーム5の前方に位置する板
状の前壁4aと、その回転シャフト3の軸方向において
アーム5の両側に位置する一対の板状の側壁4b、4c
と、その回転シャフト3の径方向において側壁4b、4
cの外方に位置する板状の底壁4dとを有する。その前
壁4aの表面4a′は、回転シャフト3の外周部に対し
て回転径方向の間隔をおいて配置される。なお、その回
転径方向とは回転シャフト3の径方向を意味する。その
前壁4aの表面4a′と回転シャフト3の外周部との距
離は、回転方向前方に向かうに従い大きくされている。
一方の側壁4bの表面4b′は、回転シャフト3の外周
部に対して回転径方向の間隔をおいて配置される。その
側壁4bの表面4b′と回転シャフト3の外周部との距
離は、回転方向前方に向かうに従い大きくされると共に
回転シャフト3の一端に向かうに従い大きくされてい
る。他方の側壁4cの表面4c′は、回転シャフト3の
外周部に対して回転径方向の間隔をおいて配置される。
その側壁4cの表面4c′と回転シャフト3の外周部と
の距離は、回転方向前方に向かうに従い大きくされると
共に回転シャフト3の他端に向かうに従い大きくされて
いる。回転シャフト3の軸方向と径方向における各側壁
4b、4cの寸法は、回転方向後方に向かうに従い大き
くされている。その前壁4aの表面4a′と各側壁4
b、4cの表面4b′、4c′が、回転シャフト3の回
転により粉粒体を回転シャフト3の外周部に向かって流
動させる攪拌面を構成する。図2、図3に示すように、
各側壁4b、4cの外端縁に、回転時の負荷軽減のため
に複数の爪4eが形成される。その底壁4dの表面4
d′は、その容器本体2aの内周部2a′に対して回転
径方向の間隔をおいて配置され、その回転径方向の間隔
が一定となるように、その容器本体2aの内周部2a′
と底壁4dの表面4d′は、その回転シャフト3の軸心
を中心とする回転体に沿う曲面とされている。
As shown in FIGS. 3 to 5, each stirring member 4
Is a plate-shaped front wall 4a located in front of the arm 5 in its rotation direction, and a pair of plate-shaped side walls 4b, 4c located on both sides of the arm 5 in the axial direction of the rotation shaft 3.
And the side walls 4b, 4 in the radial direction of the rotating shaft 3
and a plate-shaped bottom wall 4d positioned outside c. The front surface 4a 'of the front wall 4a is arranged at an interval in the radial direction of rotation with respect to the outer peripheral portion of the rotary shaft 3. The rotational radial direction means the radial direction of the rotary shaft 3. The distance between the front surface 4a 'of the front wall 4a and the outer peripheral portion of the rotary shaft 3 is increased toward the front in the rotation direction.
The surface 4b 'of the one side wall 4b is arranged at a radial interval with respect to the outer peripheral portion of the rotary shaft 3. The distance between the surface 4b ′ of the side wall 4b and the outer peripheral portion of the rotary shaft 3 is increased toward the front in the rotation direction and toward one end of the rotary shaft 3. The surface 4c 'of the other side wall 4c is arranged at a radial interval with respect to the outer peripheral portion of the rotary shaft 3.
The distance between the surface 4c 'of the side wall 4c and the outer peripheral portion of the rotary shaft 3 is increased toward the front in the rotation direction and is increased toward the other end of the rotary shaft 3. The dimensions of the side walls 4b and 4c in the axial direction and the radial direction of the rotary shaft 3 are increased toward the rear in the rotational direction. The front surface 4a 'of the front wall 4a and each side wall 4
Surfaces 4b 'and 4c' of b and 4c form a stirring surface that causes the powdery particles to flow toward the outer peripheral portion of the rotary shaft 3 by the rotation of the rotary shaft 3. As shown in FIGS. 2 and 3,
A plurality of claws 4e are formed on the outer edge of each side wall 4b, 4c to reduce the load during rotation. Surface 4 of the bottom wall 4d
The d'is arranged at an interval in the radial direction of rotation with respect to the inner peripheral part 2a 'of the container body 2a, and the inner peripheral part 2a of the container body 2a is arranged so that the interval in the radial direction of rotation is constant. ′
The surface 4d 'of the bottom wall 4d is a curved surface along the rotary body centered on the axis of the rotary shaft 3.

【0012】その容器本体2aの内周部2a′に6つの
粉砕部材6が設けられている。各粉砕部材6は、容器本
体2aの回転径方向に沿う軸中心に回転可能な回転シャ
フト6aと、この回転シャフト6aから回転径方向外方
に突出する複数の粉砕ブレード6bとを有し、第2原動
機72により回転駆動される。図1における2点鎖線2
00は、その容器2内において流動する粉粒体の表面位
置の一例を示す。その粉砕部材6は粉粒体の流動領域内
で回転することで粉粒体を砕いたり微細化する。なお、
ここでの回転径方向は、回転シャフト6aの径方向を意
味する。図2に示すように、その粉砕部材6は、回転シ
ャフト3の軸方向に離れた3位置において、2つずつ回
転シャフト3の回転方向において離れて配置される。3
つの粉砕部材6の配置高さは、容器本体2aの略1/2
の高さとされ、残りの3つの粉砕部材6の配置高さは、
容器本体2aの1/2の高さと底部との間とされてい
る。なお、その粉砕部材6の数は特に限定されない。
Six crushing members 6 are provided on the inner peripheral portion 2a 'of the container body 2a. Each crushing member 6 has a rotary shaft 6a rotatable about an axis along the radial direction of the container body 2a, and a plurality of crushing blades 6b protruding outward from the rotary shaft 6a in the radial direction. 2 It is rotationally driven by the prime mover 72. Two-dot chain line 2 in FIG.
00 indicates an example of the surface position of the powdery or granular material flowing in the container 2. The crushing member 6 rotates in the flow region of the granular material so as to crush or miniaturize the granular material. In addition,
The rotational radial direction here means the radial direction of the rotary shaft 6a. As shown in FIG. 2, the crushing members 6 are arranged two by two in the rotation direction of the rotary shaft 3 at three positions separated in the axial direction of the rotary shaft 3. Three
The arranging height of the two crushing members 6 is approximately 1/2 of that of the container body 2a.
And the arrangement height of the remaining three crushing members 6 is
It is between the half height of the container body 2a and the bottom. The number of the crushing members 6 is not particularly limited.

【0013】その回転シャフト3と同行回転するように
6つの流動方向変更部材7が設けられる。本比較形態
は、各流動方向変更部材7は、上記各攪拌部材4に一対
一で対向する。すなわち、各流動方向変更部材7は、各
攪拌部材4と回転シャフト3との間に配置され、上記ア
ーム5に取り付けられる。なお、その流動方向変更部材
7の数は特に限定されない。図3〜図4に示すように、
各流動方向変更部材7は、その回転方向においてアーム
5の前方側に位置する板状の前壁7aと、その回転シャ
フト3の軸方向においてアーム5の両側に位置する一対
の板状の側壁7b、7cと、その回転シャフト3の回転
径方向において両側壁7b、7cの外方に位置する板状
の底壁7dとを有する。その前壁7aの表面7a′は、
回転シャフト3の外周部に対して回転径方向の間隔をお
いて配置され、その回転径方向の間隔は、回転方向前方
に向かうに従い大きくされている。一方の側壁7bの表
面7b′は、回転シャフト3の外周部に対して回転径方
向の間隔をおいて配置され、その回転径方向の間隔は、
回転方向前方に向かうに従い大きくされていると共に回
転シャフト3の一端に向かうに従い大きくされている。
他方の側壁7cの表面7c′は、回転シャフト3の外周
部に対して回転径方向の間隔をおいて配置され、その回
転径方向の間隔は、回転方向前方に向かうに従い大きく
されていると共に回転シャフト3の他端に向かうに従い
大きくされている。その前壁7aの表面7a′と各側壁
7b、7cの表面7b′、7c′が、回転シャフト3の
回転により粉粒体を回転シャフト3の外周部に向かって
流動させる補助攪拌面を構成する。各側壁7b、7cの
回転シャフト3の軸方向と径方向における寸法は、回転
方向後方に向かうに従い大きくされた後に一定とされて
いる。その底壁7dの表面は、上記攪拌面4a′、4
b′、4c′と回転シャフト3の外周部との間におい
て、容器本体2aの内周部2a′に対して回転径方向の
間隔をおいて配置され、且つ、その粉粒体の流動方向を
回転シャフト3の外周部に向かう方向から容器本体2a
の内周部2a′に向かう方向に変更させる変更面7d′
を構成する。その容器本体2aの内周部2a′と変更面
7d′との回転径方向の間隔が一定となるように、その
容器本体2aの内周部2a′と変更面7d′は、その回
転シャフト3の軸心を中心とする回転体に沿う曲面とさ
れている。その回転体は、本比較形態では円柱とされる
が、特に限定されない。
Six flow direction changing members 7 are provided so as to rotate together with the rotary shaft 3. In this comparative embodiment , the flow direction changing members 7 face the stirring members 4 in a one-to-one manner. That is, each flow direction changing member 7 is arranged between each stirring member 4 and the rotating shaft 3 and attached to the arm 5. The number of the flow direction changing members 7 is not particularly limited. As shown in FIGS.
Each flow direction changing member 7 has a plate-shaped front wall 7a located on the front side of the arm 5 in the rotation direction and a pair of plate-shaped side walls 7b located on both sides of the arm 5 in the axial direction of the rotation shaft 3. , 7c and a plate-shaped bottom wall 7d located outside both side walls 7b, 7c in the radial direction of rotation of the rotary shaft 3. The surface 7a 'of the front wall 7a is
The rotary shaft 3 is arranged with a gap in the radial direction of rotation with respect to the outer peripheral portion of the rotary shaft 3, and the gap in the radial direction of rotation is increased toward the front in the rotational direction. A surface 7b 'of one side wall 7b is arranged at a radial interval with respect to the outer peripheral portion of the rotary shaft 3, and the radial interval is
It is increased toward the front in the rotation direction and is increased toward the one end of the rotary shaft 3.
The surface 7c 'of the other side wall 7c is arranged at a distance in the radial direction of rotation with respect to the outer peripheral portion of the rotary shaft 3, and the distance in the radial direction of rotation is made larger toward the front in the rotational direction and rotates. It is made larger toward the other end of the shaft 3. The surface 7a 'of the front wall 7a and the surfaces 7b', 7c 'of the respective side walls 7b, 7c constitute an auxiliary stirring surface for causing the granular material to flow toward the outer peripheral portion of the rotary shaft 3 by the rotation of the rotary shaft 3. . The dimensions of the side walls 7b and 7c in the axial direction and the radial direction of the rotary shaft 3 are set to be constant after being increased toward the rear in the rotational direction. The surface of the bottom wall 7d has the stirring surfaces 4a ′, 4
b ', 4c' and the outer peripheral portion of the rotary shaft 3 are arranged at an interval in the radial direction of rotation with respect to the inner peripheral portion 2a 'of the container body 2a, and the flow direction of the granular material is From the direction toward the outer peripheral portion of the rotating shaft 3, the container body 2a
Change surface 7d 'for changing the direction toward the inner peripheral portion 2a' of the
Make up. The inner peripheral portion 2a 'and the changing surface 7d' of the container main body 2a are arranged so that the inner peripheral portion 2a 'of the container main body 2a and the changing surface 7d' have a constant radial distance between them. It is a curved surface along the rotating body centered on the axis center of. The rotating body is a cylinder in this comparative example, but is not particularly limited.

【0014】その変更面7d′は、上記攪拌面4a′、
4b′、4c′と回転径方向の間隔をおいて対向する部
分を有する。本比較形態では、回転方向における変更面
7d′の寸法は回転方向における攪拌部材4の寸法と略
等しくされ、回転シャフト3の軸方向における変更面7
d′の寸法は回転シャフト3の軸方向における攪拌部材
4の寸法よりも大きくされることで、回転径方向におい
て変更面7d′は攪拌面4a′、4b′、4c′の全体
を覆う。その変更面7d′は、回転途中で上記粉砕部材
6の全体と回転径方向において対向する部分を有する。
すなわち、回転シャフト3の中央側の2つの流動方向変
更部材7の変更面7d′は、回転シャフト3の中央側に
配置された2つの粉砕部材6と回転途中で回転径方向に
おいて対向する。回転シャフト3の一端側の流動方向変
更部材7の変更面7d′は、回転シャフト3の一端側に
配置された2つの粉砕部材6と回転途中で回転径方向に
おいて対向する。回転シャフト3の他端側の流動方向変
更部材7の変更面7d′は、回転シャフト3の他端側に
配置された2つの粉砕部材6と回転途中で回転径方向に
おいて対向する。
The changing surface 7d 'is the stirring surface 4a',
4b ', 4c' and a portion facing each other with a space in the radial direction of rotation. In the present comparative embodiment , the size of the changing surface 7d ′ in the rotation direction is made substantially equal to the size of the stirring member 4 in the rotating direction, and the change surface 7d ′ in the axial direction of the rotary shaft 3 is made.
The dimension of d'is made larger than the dimension of the stirring member 4 in the axial direction of the rotating shaft 3, so that the changing surface 7d 'covers the entire stirring surfaces 4a', 4b ', 4c' in the radial direction of rotation. The changing surface 7d 'has a portion facing the entire crushing member 6 in the radial direction of rotation during rotation.
That is, the changing surfaces 7 d ′ of the two flow direction changing members 7 on the center side of the rotating shaft 3 face the two crushing members 6 arranged on the center side of the rotating shaft 3 in the radial direction of rotation during the rotation. The changing surface 7d 'of the flow direction changing member 7 on one end side of the rotating shaft 3 faces the two crushing members 6 arranged on one end side of the rotating shaft 3 in the radial direction of rotation during the rotation. The changing surface 7d ′ of the flow direction changing member 7 on the other end side of the rotating shaft 3 faces the two crushing members 6 arranged on the other end side of the rotating shaft 3 in the radial direction of rotation during rotation.

【0015】図2に示すように、その回転シャフト3と
同行回転するように2つの補助攪拌部材10が、回転シ
ャフト3の両端近傍の2位置に設けられている。
As shown in FIG. 2, two auxiliary stirring members 10 are provided at two positions near both ends of the rotary shaft 3 so as to rotate together with the rotary shaft 3.

【0016】その容器本体2aの内部に、粉末状の粉粒
体を粒状にするための造粒液を供給するための3本のパ
イプ31が設けられている。
Inside the container body 2a, there are provided three pipes 31 for supplying a granulating liquid for granulating the powdery granular material.

【0017】図1に示すように、コンピュータにより構
成される信号処理装置28に、上記第2原動機72の一
つの負荷に対応する負荷電流を測定する電流測定器25
がA/D変換器27を介して接続されている。また、そ
の信号処理装置28に、各原動機71、72のドライバ
ー29、30、キーボード等の入力装置31、外部記憶
装置やプリンター等のデータ記録部32、CRTや液晶
ディスプレイ等の表示部33が接続される。
As shown in FIG. 1, in a signal processing device 28 composed of a computer, a current measuring device 25 for measuring a load current corresponding to one load of the second prime mover 72.
Are connected via the A / D converter 27. Further, the signal processing device 28 is connected to the drivers 29 and 30 of the respective prime movers 71 and 72, an input device 31 such as a keyboard, a data recording unit 32 such as an external storage device or a printer, and a display unit 33 such as a CRT or a liquid crystal display. To be done.

【0018】その信号処理装置28は、その造粒機1内
における粉粒体の攪拌抵抗に対応する抵抗値と、造粒の
進捗度に対応する造粒状態との予め求めた関係を記憶す
る。その抵抗値として、その造粒機1内における粉粒体
の流動領域で回転する部材を回転駆動するのに要する動
力に対応する値が測定され、本比較形態では上記第2原
動機72の負荷電流値が測定される。その造粒状態とし
て本比較形態では造粒物の平均粒径が用いられる。
The signal processing device 28 stores the previously determined relationship between the resistance value corresponding to the stirring resistance of the granular material in the granulator 1 and the granulation state corresponding to the progress of granulation. . As the resistance value, a value corresponding to the power required to rotationally drive the member rotating in the flow region of the granular material in the granulator 1 is measured. In this comparative embodiment , the load current of the second prime mover 72 is measured. The value is measured. In this comparative embodiment , the average particle size of the granulated product is used as the granulated state.

【0019】その信号処理装置28は、造粒機1内で粘
着性を有する粉粒体を攪拌して造粒を行うに際し、予め
求めて記憶した上記関係と、造粒中に電流測定器25に
より測定された第2原動機72の負荷電流値から造粒物
の平均粒径を演算する。その演算結果は上記データ記録
部32や表示部33に出力されて記録、表示される。こ
れにより、造粒状態として造粒物の平均粒径が検出され
る。また、上記入力装置31から信号処理装置28に目
標粒径が入力され、その目標粒径に対応する第2原動機
72の負荷電流値を信号処理装置28は予め求めて記憶
した上記関係から演算し、この演算された負荷電流値に
測定された第2原動機72の負荷電流値が達した時に、
各原動機71、72のドライバー29、30に駆動停止
信号を出力して造粒を終了させる。
The signal processing device 28, when agitating the granular material having the adhesive property in the granulator 1, conducts the granulation, and the above-mentioned relation which is obtained and stored in advance and the current measuring device 25 during the granulation. The average particle size of the granulated product is calculated from the load current value of the second prime mover 72 measured by. The calculation result is output to the data recording unit 32 and the display unit 33 and recorded and displayed. As a result, the average particle size of the granulated product is detected as the granulated state. Further, the target particle size is input from the input device 31 to the signal processing device 28, and the load current value of the second prime mover 72 corresponding to the target particle size is calculated by the signal processing device 28 from the previously stored relation. , When the measured load current value of the second prime mover 72 reaches the calculated load current value,
A driving stop signal is output to the drivers 29 and 30 of the respective prime movers 71 and 72 to end the granulation.

【0020】図7、図8に示す実施形態の竪型造粒機
101は、洗剤組成物等の粘着性を有する粉粒体を入れ
る容器103と、この容器103内で縦軸中心に第1原
動機171により回転駆動される回転シャフト105と
を備え、その容器103は架台102により支持され
る。その容器103の内周部は、その回転シャフト10
5の軸心を中心とする回転体に沿う曲面とされている。
その回転シャフト105から回転径方向外方に向かい突
出する4本のアーム106が設けられ、各アーム106
の先端に攪拌部材107が一体的に設けられている。そ
のアーム106と攪拌部材107とで攪拌羽根108が
構成されている。各攪拌羽根108が回転シャフト10
5と同行して図8において矢印100方向に回転するこ
とで、その容器103に仕込まれる粉粒体が攪拌されて
流動する。その攪拌羽根108は、その容器103の内
部底面にクリアランスをおいて配置される。また、その
容器103内に粉末状原料を粒状にするための造粒液を
供給するためのパイプ110が設けられている。図7に
おける2点鎖線200は、その容器103内において流
動する粉粒体の表面位置の一例を示す。その回転シャフ
ト105の外周部に対向する容器103の内周部に、粉
砕部材113が横軸中心に回転可能に設けられている。
その粉砕部材113は、造粒機101内における粉粒体
の流動領域内で回転するように攪拌部材107の上方に
配置され、第2原動機172により回転駆動されること
で粉粒体を砕いたり微細化する。
The vertical granulator 101 according to the present embodiment shown in FIGS. 7 and 8 is a container 103 in which a powdery or granular material having an adhesive property such as a detergent composition is placed, and a vertical axis centered in the container 103 in the vertical axis. 1 and a rotating shaft 105 that is driven to rotate by a prime mover 171, and the container 103 thereof is supported by a gantry 102. The inner peripheral portion of the container 103 has the rotating shaft 10
The curved surface is formed along the rotating body with the axis of 5 as the center.
Four arms 106 projecting outward from the rotary shaft 105 in the radial direction of rotation are provided.
An agitating member 107 is integrally provided at the tip of the. The arm 106 and the stirring member 107 form a stirring blade 108. Each stirring blade 108 is a rotating shaft 10.
By rotating in the direction of arrow 100 in FIG. 8 along with 5, the powder or granular material charged in the container 103 is agitated and flows. The stirring blade 108 is arranged on the inner bottom surface of the container 103 with a clearance. In addition, a pipe 110 for supplying a granulating liquid for granulating the powdery raw material is provided in the container 103. A two-dot chain line 200 in FIG. 7 shows an example of the surface position of the granular material flowing in the container 103. A crushing member 113 is provided on the inner peripheral portion of the container 103 facing the outer peripheral portion of the rotary shaft 105 so as to be rotatable about the horizontal axis.
The crushing member 113 is arranged above the stirring member 107 so as to rotate in the flow region of the granular material in the granulator 101, and is rotatably driven by the second prime mover 172 to crush the granular material. Miniaturize.

【0021】コンピュータにより構成される信号処理装
置128に、上記第1原動機171の負荷に対応する消
費電力を測定する電力測定器125がA/D変換器12
7を介して接続されている。また、その信号処理装置1
28に、各原動機171、172のドライバー129、
130、キーボード等の入力装置131、外部記憶装置
やプリンター等のデータ記録部132、CRTや液晶デ
ィスプレイ等の表示部133が接続される。
In the signal processing device 128 composed of a computer, the power measuring device 125 for measuring the power consumption corresponding to the load of the first prime mover 171 is provided with the A / D converter 12.
It is connected via 7. In addition, the signal processing device 1
28, the driver 129 of each prime mover 171, 172,
130, an input device 131 such as a keyboard, a data recording unit 132 such as an external storage device or a printer, and a display unit 133 such as a CRT or a liquid crystal display.

【0022】その信号処理装置128は、その造粒機1
01内における粉粒体の攪拌抵抗に対応する抵抗値と、
造粒の進捗度に対応する造粒状態との予め求めた関係を
記憶する。その抵抗値として、その造粒機101内にお
ける粉粒体の流動領域で回転する部材を回転駆動するの
に要する動力に対応する値が測定され、本実施形態では
粉粒体の流動領域内で回転する攪拌羽根108を回転駆
動する上記第1原動機171の消費電力値が測定され
る。その造粒状態として本実施形態では造粒物の平均粒
径が用いられる。
The signal processor 128 is the granulator 1
01, the resistance value corresponding to the stirring resistance of the granular material,
The relationship obtained in advance with the granulation state corresponding to the degree of progress of granulation is stored. As the resistance value, a value corresponding to the power required to rotationally drive the member rotating in the flow region of the granular material in the granulator 101 is measured, and in the present embodiment, in the flow region of the granular material, The power consumption value of the first prime mover 171 that rotationally drives the rotating stirring blade 108 is measured. In this embodiment, the average particle size of the granulated product is used as the granulated state.

【0023】その信号処理装置128は、造粒機101
内で粘着性を有する粉粒体を攪拌して造粒を行うに際
し、予め求めて記憶した上記関係と、造粒中に電力測定
器125により測定された第1原動機171の消費電力
値から造粒物の平均粒径を演算する。その演算結果は上
記データ記録部132や表示部133に出力されて記
録、表示される。これにより、造粒状態として造粒物の
平均粒径が検出される。また、上記入力装置131から
信号処理装置128に目標粒径が入力され、その目標粒
径に対応する第1原動機171の消費電力値を信号処理
装置128は予め求めて記憶した上記関係から演算し、
この演算された消費電力値に測定された第1原動機17
1の消費電力値が達した時に、各原動機171、172
のドライバー129、130に駆動停止信号を出力して
造粒を終了させる。
The signal processor 128 is the granulator 101.
When the granules having stickiness in the inside are agitated and granulated, the above-mentioned relation obtained in advance and stored and the power consumption value of the first prime mover 171 measured by the power meter 125 during the granulation are used for the granulation. Calculate the average particle size of the granules. The calculation result is output to the data recording unit 132 and the display unit 133 to be recorded and displayed. As a result, the average particle size of the granulated product is detected as the granulated state. Further, the target particle size is input from the input device 131 to the signal processing device 128, and the power consumption value of the first prime mover 171 corresponding to the target particle size is calculated by the signal processing device 128 from the previously stored relationship. ,
The first prime mover 17 measured to the calculated power consumption value
When the power consumption value of 1 is reached, each of the prime movers 171, 172
A driving stop signal is output to the drivers 129 and 130 of 1 to end the granulation.

【0024】その攪拌羽根108と容器103の内部底
面との間の上記クリアランスと、上記抵抗値と、上記造
粒状態との関係は予め求められ、その抵抗値と造粒状態
とが相関するように、そのクリアランスは求めた関係に
基づき設定されている。すなわち、そのクリアランスを
十分に確保しないと、その攪拌羽根108と容器103
の内部底面との間の粉粒体に作用する剪断力が過大にな
り、崩壊した粉粒体が攪拌羽根108や容器103の内
部底面に付着し、その結果、その攪拌羽根108を回転
駆動する第1原動機171の消費電力値に対応する抵抗
値が、造粒物の平均粒径に対応する造粒状態に相関しな
くなる。そのため、その抵抗値と造粒状態とが相関する
ように、そのクリアランスを抵抗値と造粒状態との予め
求めた関係に基づき小さくなり過ぎないように設定して
いる。さらに、そのクリアランスが過大になると、その
攪拌羽根108と容器103の内部底面との間の粉粒体
に作用する剪断力が弱くなって造粒の進行のさまたげに
なったり粉体が滞留したりすることから、そのクリアラ
ンスは、その抵抗値と造粒状態とが相関する範囲で過大
にならないように設定するのが好ましい。
The relationship between the clearance between the stirring blade 108 and the inner bottom surface of the container 103, the resistance value, and the granulation state is obtained in advance, and the resistance value and the granulation state are correlated with each other. In addition, the clearance is set based on the obtained relationship. That is, unless the clearance is sufficiently secured, the stirring blade 108 and the container 103
The shearing force acting on the granular material between the inner surface and the inner bottom surface becomes excessive, and the collapsed granular material adheres to the stirring blade 108 and the inner bottom surface of the container 103, and as a result, the stirring blade 108 is rotationally driven. The resistance value corresponding to the power consumption value of the first prime mover 171 does not correlate with the granulated state corresponding to the average particle size of the granulated product. Therefore, the clearance is set so as not to become too small based on the previously determined relationship between the resistance value and the granulated state so that the resistance value and the granulated state are correlated. Further, if the clearance becomes too large, the shearing force acting on the powdery particles between the stirring blade 108 and the inner bottom surface of the container 103 becomes weak, which hinders the progress of granulation or the powder stays. Therefore, the clearance is preferably set so as not to become excessive in the range where the resistance value and the granulated state correlate.

【0025】なお、その攪拌羽根108と容器103の
内部底面との間のクリアランスは、その攪拌羽根108
の下面と容器103の内部底面との間隔が一定でない場
合、その間隔の中の最小値をいう。本実施形態では、図
9の(1)に示すように、その攪拌羽根108を構成す
るアーム106の下面は、回転シャフト105から離間
するにつれて容器103の内部底面から離れ、且つ、図
9の(2)に示すように、矢印100で示す回転方向前
方に向かうに従い容器103の内部底面に近接し、ま
た、攪拌部材107の下面はアーム106の下面よりも
上方に位置することから、そのアーム106の回転方向
前方側下面の最小値と容器103の内部底面との間隔が
クリアランスCとされる。
The clearance between the stirring blade 108 and the inner bottom surface of the container 103 is determined by the clearance of the stirring blade 108.
When the distance between the lower surface of the container and the inner bottom surface of the container 103 is not constant, it means the minimum value in the distance. In the present embodiment, as shown in (1) of FIG. 9, the lower surface of the arm 106 that constitutes the stirring blade 108 is separated from the inner bottom surface of the container 103 as it is separated from the rotary shaft 105, and As shown in 2), as it goes forward in the direction of rotation indicated by the arrow 100, it approaches the inner bottom surface of the container 103, and the lower surface of the stirring member 107 is located above the lower surface of the arm 106. The clearance C is the distance between the minimum value of the lower surface on the front side in the rotation direction and the inner bottom surface of the container 103.

【0026】上記比較形態および実施形態によれば、造
粒の進行に伴い粉粒体の攪拌抵抗は変化することから、
その攪拌抵抗に対応する抵抗値である第2原動機72の
負荷電流値あるいは第1原動機171の消費電力値と、
造粒の進捗度に対応する造粒状態を表す造粒物の平均粒
径との相関関係を予め求め、その抵抗値を造粒中に測定
することで、その相関関係と測定値とから造粒状態を求
めることができる。この際、粉粒体の流動領域内で回転
する粉砕部材6あるいは攪拌羽根108には粉粒体が付
着し難いため、その粉砕部材6あるいは攪拌羽根108
を回転駆動するのに要する動力に対応する第2原動機7
2の負荷電流値あるいは第1原動機171の消費電力値
を抵抗値として測定することで、造粒状態を精度良く検
出できる。
According to the above-mentioned comparative embodiment and embodiment, since the stirring resistance of the granular material changes with the progress of granulation,
A load current value of the second prime mover 72 or a power consumption value of the first prime mover 171 which is a resistance value corresponding to the stirring resistance;
By obtaining a correlation with the average particle size of the granulated product that represents the granulation state corresponding to the progress of granulation in advance, and measuring the resistance value during granulation, the correlation and the measured value The grain state can be obtained. At this time, since it is difficult for the powder or granules to adhere to the crushing member 6 or the stirring blade 108 rotating in the flow region of the powder or granules, the crushing member 6 or the stirring blade 108 is not supported.
Second prime mover 7 corresponding to the power required to rotationally drive the
By measuring the load current value of 2 or the power consumption value of the first prime mover 171 as the resistance value, the granulation state can be accurately detected.

【0027】上記比較形態によれば、粉粒体は攪拌部材
4の回転により攪拌され、また凝集した場合は粉砕部材
6の回転により砕かれ、微細化される。その攪拌部材4
の攪拌面4a′、4b′、4c′により、粉粒体は回転
シャフト3の外周部に向かい流動させられる。その粉粒
体の流動方向は、流動方向変更部材7の変更面7d′に
より、回転シャフト3の外周部に向かう方向から容器2
の内周部に向かう方向に変更させられる。これにより、
その粉粒体と粉砕部材6との接触機会を増大できるの
で、その粉砕部材6を回転駆動する第2原動機72の負
荷に対応する値を抵抗値として測定することで、抵抗値
の検知精度を向上できる。
According to the above-mentioned comparative embodiment , the granular material is agitated by the rotation of the agitating member 4, and when agglomerated, is crushed by the rotation of the pulverizing member 6 to be made into fine particles. The stirring member 4
The agitating surfaces 4a ', 4b', 4c 'of FIG. 1 cause the granular material to flow toward the outer peripheral portion of the rotary shaft 3. The flow direction of the granular material is changed by the changing surface 7d ′ of the flow direction changing member 7 from the direction toward the outer peripheral portion of the rotary shaft 3 to the container 2
It can be changed to the direction toward the inner circumference. This allows
Since the chances of contact between the powder and granular material and the crushing member 6 can be increased, by measuring the value corresponding to the load of the second prime mover 72 that rotationally drives the crushing member 6 as the resistance value, the detection accuracy of the resistance value can be improved. Can be improved.

【0028】上記実施形態によれば、攪拌羽根108と
容器103の内部底面との間のクリアランスを、抵抗値
と造粒状態とが相関するように設定することで、その抵
抗値の検知精度を確保できる。
According to the above you facilities embodiment, the clearance between the inner bottom surface of the stirring blade 108 and the container 103, by the resistance value and the granulation state is set to correlate, the detection of the resistance value Accuracy can be secured.

【0029】上記比較形態では抵抗値として第2原動機
72の負荷電流値を測定し、実施形態では抵抗値として
第1原動機171の消費電力値を測定したが、造粒機内
における粉粒体の流動領域で回転する部材を回転駆動す
るのに要する動力に対応する値であればよく、例えば
較形態では第2原動機72の消費電力値や第1原動機7
1の消費電力や負荷電流値を測定し、実施形態では第1
原動機171の負荷電流値や第2原動機172の消費電
力や負荷電流値を測定してもよい。また、図7において
2点鎖線で示すように、抵抗値を検出するための専用の
ブレード状部材180を、造粒機101内における粉粒
体の流動領域に回転可能に設け、そのブレード状部材1
80を回転駆動する原動機181の消費電力や負荷電流
値を抵抗値として測定器125′で測定し、AD変換器
127′を介して信号処理装置128に入力してもよ
い。
[0029] The load current value of the second prime mover 72 as the comparative example in the resistance value is measured, although in the implementation form was measured power consumption values of the first prime mover 171 as the resistance value, of the particulate material in the granulator The value may be any value corresponding to the power required to rotationally drive the member rotating in the flow region, for example, the ratio
In the comparative mode , the power consumption value of the second prime mover 72 and the first prime mover 7
The power consumption and the load current value of 1 was measured, first in implementation form
The load current value of the prime mover 171 and the power consumption or load current value of the second prime mover 172 may be measured. Further, as shown by a chain double-dashed line in FIG. 7, a dedicated blade-shaped member 180 for detecting the resistance value is rotatably provided in the flow region of the granular material in the granulator 101, and the blade-shaped member is provided. 1
The power consumption and load current value of the prime mover 181 that rotates 80 may be measured as a resistance value by the measuring device 125 ′ and input to the signal processing device 128 via the AD converter 127 ′.

【0030】[0030]

【発明の効果】本発明によれば、造粒状態を時間遅れな
く精度良く検出できる造粒状態検出方法と、その方法の
実施に供し得る造粒状態検出装置を提供できる。
According to the present invention, it is possible to provide a granulated state detecting method capable of accurately detecting the granulated state without time delay, and a granulated state detecting device which can be used for carrying out the method.

【0031】[0031]

【比較例】図10の(1)は、比較形態の造粒機1に一
定量の粉粒体を仕込んで造粒を行った場合の造粒時間と
第2原動機72の負荷電流値との関係を実線で示し、ま
た、比較形態の造粒機1から流動方向変更部材7を取り
外して一定量の粉粒体を仕込んで造粒を行った場合の造
粒時間と第2原動機72の負荷電流値との関係を破線で
示す。図10の(2)は、比較形態の造粒機1に一定量
の粉粒体を仕込んで造粒を行った場合の第2原動機72
の負荷電流値と造粒物の平均粒径との関係を示す測定点
を◆で示し、この場合の回帰直線を実線で示し、また、
比較形態の造粒機1から流動方向変更部材7を取り外し
て一定量の粉粒体を仕込んで造粒を行った場合の第2原
動機72の負荷電流値と造粒物の平均粒径との関係を示
す測定点を□で示し、この場合の回帰直線を破線で示
す。その造粒機1の容量は2000リットル、攪拌部材
4の回転数は70rpm、粉砕部材6の回転数は360
0rpmとし、その造粒機1への粉粒体の仕込み重量は
300kgfとした。図10(1)、(2)より、第2
原動機72の負荷電流値と造粒物の平均粒径とは相関
し、第2原動機72の負荷電流の測定値から造粒の進捗
度に対応する造粒状態として造粒物の平均粒径を精度良
く検出できるのを確認できる。さらに、流動方向変更部
材7の存在により粉粒体が粉砕部材6に集約されること
で、第2原動機72の負荷電流値と造粒物の平均粒径と
の関係を示す回帰直線の傾きが小さくなり、その原動機
72の負荷電流の測定値から造粒物の平均粒径すなわち
造粒状態の変化を、より精度良く検出できるのを確認で
きる。
[Comparative Example] (1) of FIG. 10 shows the granulation time and the load current value of the second prime mover 72 in the case where the granulator 1 of the comparative embodiment is charged with a certain amount of powder and granulated. The relationship is shown by a solid line, and the granulation time and the load of the second prime mover 72 when the flow direction changing member 7 is removed from the granulator 1 of the comparative form and a certain amount of granules are charged to perform granulation The relationship with the current value is shown by the broken line. (2) of FIG. 10 shows the second prime mover 72 in the case where the granulator 1 of the comparative embodiment is charged with a certain amount of powder and granules for granulation.
The measurement points showing the relationship between the load current value and the average particle size of the granulated product are shown by ◆, and the regression line in this case is shown by the solid line.
Of the load current value of the second prime mover 72 and the average particle size of the granulated product when the flow direction changing member 7 is removed from the granulator 1 of the comparative embodiment and a certain amount of powder or granules is charged to perform granulation. The measurement points indicating the relationship are indicated by □, and the regression line in this case is indicated by the broken line. The capacity of the granulator 1 is 2000 liters, the rotation speed of the stirring member 4 is 70 rpm, and the rotation speed of the crushing member 6 is 360.
The rpm was 0 rpm, and the weight of the granules charged into the granulator 1 was 300 kgf. From FIG. 10 (1) and (2), the second
The load current value of the prime mover 72 correlates with the average particle size of the granulated product, and the average grain size of the granulated product is determined from the measured value of the load current of the second prime mover 72 as a granulated state corresponding to the progress of granulation. It can be confirmed that it can be detected accurately. Furthermore, the presence of the flow direction changing member 7 causes the powder particles to be aggregated in the crushing member 6, so that the slope of the regression line showing the relationship between the load current value of the second prime mover 72 and the average particle size of the granulated product is It can be confirmed that the average particle size of the granulated product, that is, the change in the granulated state can be detected more accurately from the measured value of the load current of the prime mover 72.

【0032】[0032]

【実施例1】図11の(1)は、実施形態の造粒機10
1に一定量の粉粒体を仕込んで造粒を行った場合の造粒
時間と第1原動機171の消費電力値との関係を実線で
示す。図11の(2)は、実施形態の造粒機101に一
定量の粉粒体を仕込んで造粒を行った場合の第1原動機
171の消費電力値と造粒物の平均粒径との関係を示す
測定点を◆で示す。この場合の回帰直線を実線で示す。
その造粒機101の容量は2500リットル、攪拌羽根
108の回転数は100rpm、粉砕部材113の回転
数は3600rpmとし、その造粒機101への粉粒体
の仕込み重量は500kgfとした。図11(1)、
(2)より、第1原動機171の消費電力値と造粒物の
平均粒径とは相関し、第1原動機171の消費電力の測
定値から造粒の進捗度に対応する造粒状態として造粒物
の平均粒径を精度良く検出できるのを確認できる。
Embodiment 1 FIG. 11 (1), the granulator 10 of implementation form
A solid line shows the relationship between the granulation time and the power consumption value of the first prime mover 171 when a certain amount of powder and granules is charged in No. 1 for granulation. (2) in FIG. 11, an average particle diameter of the power consumption value and the granulated product of the first prime mover 171 in the case of performing granulation are charged a certain amount of powdery grains in granulator 101 implementation form The measurement points indicating the relationship of are indicated by ◆. The regression line in this case is shown by a solid line.
The capacity of the granulator 101 was 2500 liters, the rotation speed of the stirring blade 108 was 100 rpm, the rotation speed of the crushing member 113 was 3600 rpm, and the weight of the granules charged into the granulator 101 was 500 kgf. FIG. 11 (1),
From (2), the power consumption value of the first prime mover 171 and the average particle size of the granulated product are correlated, and the measured value of the power consumption of the first prime mover 171 indicates the granulation state corresponding to the progress of the granulation. It can be confirmed that the average particle size of the granules can be accurately detected.

【0033】[0033]

【実施例2】施形態の造粒機101に一定量の粉粒体
を仕込み、攪拌羽根108と容器103の内部底面との
間のクリアランスと、粉粒体の粘着性を、それぞれ3通
りに変化させて造粒を行った。その粉粒体として洗剤組
成物の噴霧乾燥粒子に結晶性アルミノ珪酸塩微粉末を加
え、液体バインダーとしてノニオン界面活性剤を添加し
たものを用いた。造粒機101の容量、運転条件は実施
と同様とした。図12の(1)〜(3)は粉粒体の
粘着性に対応する破壊荷重が47gfの場合、図13の
(1)〜(3)は粉粒体の粘着性に対応する破壊荷重が
60gfの場合、図14の(1)〜(3)は粉粒体の粘
着性に対応する破壊荷重が97gfの場合における、そ
の造粒時間と造粒物の平均粒径との関係、造粒時間と第
1原動機171の消費電力値との関係、造粒物の平均粒
径と第1原動機171の消費電力値との関係を定性的に
示す。各図において、そのクリアランスが2mmの場合
の測定点を□、この場合の関係を実線で示し、クリアラ
ンスが4mmの場合の測定点を〇、この場合の関係を1
点鎖線で示し、クリアランスが7mmの場合の測定点を
△、この場合の関係を2点鎖線で示す。その粉粒体の粘
着性を示す破壊荷重を測定するため、図15の(1)に
示すように、中空で上下が開口する直径40mmの円柱
体成形型α内に、粉温40℃、重量40gの粉粒体サン
プルβを充填し、そのサンプルβを荷重付与体γにより
上方から1kgfの荷重で3分間加圧し、次に図15の
(2)に示すように成形型αから取り出し、しかる後に
図15の(3)に示すように成形されたサンプルβに上
方から荷重を作用させ、その荷重を次第に増加させるこ
とで円柱形サンプルβを破壊し、その破壊直前の荷重を
測定した。その破壊荷重が47gfの粉粒体の組成は有
機成分41重量%、無機成分51重量%、水分8%、破
壊荷重が60gfの粉粒体の組成は有機成分45重量
%、無機成分50重量%、水分5%、破壊荷重が97g
fの粉粒体の組成は有機成分49重量%、無機成分47
重量%、水分4%とした。
Example 2 was charged a certain amount of powdery grains in granulator 101 implementation form, the clearance between the inner bottom surface of the stirring blade 108 and the container 103, the adhesion of the powder particles, each in triplicate Granulation was carried out while changing to. As the powder and granules, fine powder of crystalline aluminosilicate was added to spray-dried particles of the detergent composition, and a nonionic surfactant was added as a liquid binder. The capacity and operating conditions of the granulator 101 were the same as in Example 1 . When (1) to (3) of FIG. 12 have a breaking load corresponding to the adhesiveness of the powder or granular material of 47 gf, (1) to (3) of FIG. 13 have the breaking load corresponding to the adhesiveness of the powder or granular material. In the case of 60 gf, (1) to (3) in FIG. 14 show the relationship between the granulation time and the average particle size of the granulated product when the breaking load corresponding to the adhesiveness of the powder and granules is 97 gf. The relationship between the time and the power consumption value of the first prime mover 171 and the relationship between the average particle size of the granulated product and the power consumption value of the first prime mover 171 are qualitatively shown. In each figure, the measurement point when the clearance is 2 mm is □, the relationship in this case is shown by a solid line, the measurement point when the clearance is 4 mm is ◯, and the relationship in this case is 1
The dotted line indicates the measurement point when the clearance was 7 mm, and the relationship in this case is indicated by the two-dot chain line. In order to measure the breaking load indicating the adhesiveness of the powder or granular material, as shown in (1) of FIG. 15, powder temperature 40 ° C. 40 g of the granular material sample β is filled, the sample β is pressed from above with a load of 1 kgf for 3 minutes, and then taken out from the forming mold α as shown in (2) of FIG. After that, a load was applied from above to the sample β formed as shown in (3) of FIG. 15, the cylindrical sample β was broken by gradually increasing the load, and the load immediately before the break was measured. The composition of the granular material having a breaking load of 47 gf is 41% by weight of the organic component, 51% by weight of the inorganic component and 8% of water, and the composition of the granular material having a breaking load of 60 gf is 45% by weight of the organic component and 50% by weight of the inorganic component. , Moisture 5%, breaking load 97g
The composition of the granular material of f is 49% by weight of organic component and 47% of inorganic component.
Weight% and water content 4%.

【0034】図12(1)、図13(1)、図14
(1)より、造粒時間の経過に応じて造粒状態に対応す
る平均粒径が大きくなって造粒が進行し、その進捗度は
クリアランスが小さくなる程に大きくなる。これは、そ
のクリアランスが小さくなるにつれ、攪拌羽根108と
容器103の内部底面との間の粉粒体に作用する剪断力
が増大することによる。図12の(2)、(3)より、
粉粒体の粘着性に対応する破壊荷重が47gfの場合
は、クリアランスが2mm、4mm、7mmの何れであ
っても、造粒時間の経過に応じて攪拌抵抗に対応する消
費電力値が増加し、その消費電力はクリアランスが小さ
くなる程に大きくなり、造粒状態と抵抗値とが相関す
る。図13の(2)、(3)より、粉粒体の粘着性に対
応する破壊荷重が60gfの場合は、クリアランスが4
mmあるいは7mmであれば、造粒時間の経過に応じて
攪拌抵抗に対応する消費電力値が増加し、その消費電力
はクリアランスが小さくなる程に大きくなり、造粒状態
と抵抗値とが相関するが、クリアランスが2mmである
と、造粒時間の経過に対する消費電力値の変化は一定で
はなく、造粒状態と抵抗値とは相関しなくなる。図14
の(2)、(3)より、粉粒体の粘着性に対応する破壊
荷重が97gfの場合は、クリアランスが7mmであれ
ば、造粒時間の経過に応じて攪拌抵抗に対応する消費電
力値が増加し、造粒状態と抵抗値とが相関するが、クリ
アランスが2mmあるいは4mmであると、造粒時間の
経過に対する消費電力値の変化は一定ではなく、造粒状
態と抵抗値とは相関しなくなる。図16は、その造粒状
態と抵抗値とが相関するように設定されるクリアランス
の下限値と、粉粒体の粘着性に対応する破壊荷重との関
係を示す。その下限値以上にクリアランスを設定するこ
とで、粉粒体の粘着性の影響を受けることなく、その抵
抗値の測定値に基づき造粒状態を精度良く検知できる。
例えば、破壊荷重が60gf、水分5%、粉温40℃の
粘着性を有する洗剤組成物を造粒する場合、そのクリア
ランスは4〜7mmに設定するのが好ましい。本願発明
を適用する上で、その粉粒体の粘着性に対応する破壊荷
重は好ましくは30gf以上であり、より好ましくは4
5gf以上であり、更に好ましくは50gf以上であ
る。
12 (1), 13 (1) and 14
From (1), the average particle size corresponding to the granulation state increases as the granulation time elapses, and the granulation proceeds, and the progress degree increases as the clearance decreases. This is because as the clearance becomes smaller, the shearing force acting on the granular material between the stirring blade 108 and the inner bottom surface of the container 103 increases. From (2) and (3) of FIG. 12,
When the breaking load corresponding to the adhesiveness of the granules is 47 gf, the power consumption value corresponding to the stirring resistance increases with the lapse of granulation time, regardless of whether the clearance is 2 mm, 4 mm, or 7 mm. The power consumption increases as the clearance decreases, and the granulation state correlates with the resistance value. From (2) and (3) of FIG. 13, when the breaking load corresponding to the adhesiveness of the powder or granular material is 60 gf, the clearance is 4
If it is mm or 7 mm, the power consumption value corresponding to the stirring resistance increases as the granulation time elapses, and the power consumption increases as the clearance becomes smaller, and the granulation state and the resistance value correlate. However, when the clearance is 2 mm, the change in the power consumption value with the passage of the granulation time is not constant, and the granulation state and the resistance value are not correlated. 14
From (2) and (3), when the breaking load corresponding to the adhesiveness of the powder and granules is 97 gf and the clearance is 7 mm, the power consumption value corresponding to the stirring resistance according to the progress of granulation time. However, when the clearance is 2 mm or 4 mm, the change in the power consumption value with the passage of the granulation time is not constant, and the granulation state and the resistance value correlate. Will not do. FIG. 16 shows the relationship between the lower limit value of the clearance set so that the granulated state and the resistance value are correlated with each other, and the breaking load corresponding to the adhesiveness of the powder or granular material. By setting the clearance above the lower limit value, it is possible to accurately detect the granulation state based on the measured value of the resistance value without being affected by the adhesiveness of the powder or granular material.
For example, when granulating a sticky detergent composition having a breaking load of 60 gf, a water content of 5% and a powder temperature of 40 ° C., the clearance is preferably set to 4 to 7 mm. In applying the present invention, the breaking load corresponding to the adhesiveness of the powder or granular material is preferably 30 gf or more, and more preferably 4
It is 5 gf or more, more preferably 50 gf or more.

【図面の簡単な説明】[Brief description of drawings]

【図1】比較形態の横型混合装置の側断面図FIG. 1 is a side sectional view of a horizontal mixing device of a comparative form .

【図2】比較形態の横型混合装置の部分破断正面図FIG. 2 is a partially cutaway front view of a horizontal mixing device of a comparative form .

【図3】比較形態の横型混合装置の部分斜視図FIG. 3 is a partial perspective view of a horizontal mixing device of a comparative form .

【図4】比較形態の横型混合装置の部分正面図FIG. 4 is a partial front view of a horizontal mixing device of a comparative form .

【図5】比較形態の横型混合装置の部分背面図FIG. 5 is a partial rear view of a horizontal mixing device of a comparative form .

【図6】比較形態の横型混合装置の部分平面図FIG. 6 is a partial plan view of a horizontal mixing device of a comparative form .

【図7】本発明の実施形態の竪型混合装置の構成説明用
側面図
[7] configuration explanatory side view of the vertical mixing device implementation form of the present invention

【図8】本発明の実施形態の竪型混合装置の構成説明用
平面図
[8] configuration explanatory plan view of the vertical mixing device implementation form of the present invention

【図9】本発明の実施形態の竪型混合装置における攪拌
羽根のアームの(1)は部分側面図、(2)は部分断面
[9] The arm of the stirring blade in the vertical mixing device implementation form of the present invention (1) is a partial side view, (2) is a partial sectional view

【図10】比較形態の横型混合装置の流動方向変更部材
がある場合とない場合の(1)は造粒時間と原動機負荷
電流との関係を示し、(2)は原動機負荷電流と造粒物
の平均粒径との関係を示す図
FIG. 10 (1) shows the relationship between granulation time and prime mover load current with and without the flow direction changing member of the horizontal mixer of the comparative embodiment , and (2) shows prime mover load current and granules. Figure showing the relationship with the average particle size of

【図11】本発明の実施形態の竪型混合装置の(1)は
造粒時間と原動機消費電力との関係を示し、(2)は原
動機消費電力と造粒物の平均粒径との関係を示す図
[11] the vertical mixing device implementation form of the present invention (1) shows the relationship between the granulation time and the prime mover power, (2) the average particle size of the prime mover power and granules Diagram showing relationships

【図12】本発明の実施形態の竪型混合装置の攪拌羽根
と容器内部底面との間のクリアランスを変更した場合に
おいて、粉粒体の粘着性に対応する破壊荷重が47gf
の場合の(1)は造粒時間と造粒物の平均粒径との関係
を示し、(2)は造粒時間と原動機消費電力との関係を
示し、(3)は造粒物の平均粒径と原動機消費電力との
関係を示す図
In Figure 12] If you change the clearance between the stirring blade and the vessel inner bottom surface of the vertical mixing device implementation of the invention, the breaking load corresponding to sticky granule 47gf
In the case of (1), the relationship between the granulation time and the average particle size of the granulated product is shown, (2) is the relationship between the granulation time and the power consumption of the prime mover, and (3) is the average of the granulated product. Diagram showing the relationship between particle size and motor power consumption

【図13】本発明の実施形態の竪型混合装置の攪拌羽根
と容器内部底面との間のクリアランスを変更した場合に
おいて、粉粒体の粘着性に対応する破壊荷重が60gf
の場合の(1)は造粒時間と造粒物の平均粒径との関係
を示し、(2)は造粒時間と原動機消費電力との関係を
示し、(3)は造粒物の平均粒径と原動機消費電力との
関係を示す図
In [13] If you change the clearance between the stirring blade and the vessel inner bottom surface of the vertical mixing device implementation of the invention, the breaking load corresponding to sticky granule 60gf
In the case of (1), the relationship between the granulation time and the average particle size of the granulated product is shown, (2) is the relationship between the granulation time and the power consumption of the prime mover, and (3) is the average of the granulated product. Diagram showing the relationship between particle size and motor power consumption

【図14】本発明の実施形態の竪型混合装置の攪拌羽根
と容器内部底面との間のクリアランスを変更した場合に
おいて、粉粒体の粘着性に対応する破壊荷重が97gf
の場合の(1)は造粒時間と造粒物の平均粒径との関係
を示し、(2)は造粒時間と原動機消費電力との関係を
示し、(3)は造粒物の平均粒径と原動機消費電力との
関係を示す図
In Figure 14] If you change the clearance between the stirring blade and the vessel inner bottom surface of the vertical mixing device implementation of the invention, the breaking load corresponding to sticky granule 97gf
In the case of (1), the relationship between the granulation time and the average particle size of the granulated product is shown, (2) is the relationship between the granulation time and the power consumption of the prime mover, and (3) is the average of the granulated product. Diagram showing the relationship between particle size and motor power consumption

【図15】(1)〜(3)は粉粒体の粘着性に対応する
破壊荷重の測定方法の説明図
15 (1) to (3) are explanatory views of a method for measuring a breaking load corresponding to the adhesiveness of a powder or granular material.

【図16】本発明の実施形態の竪型混合装置の攪拌羽根
と容器内部底面との間のクリアランスの下限値と粉粒体
の粘着性に対応する破壊荷重との関係を示す図
Diagram showing the relationship between the breaking load corresponding to sticky lower and granule clearance between the stirring blade and the vessel inner bottom surface of the vertical mixing device implementation form of FIG. 16 the present invention

【符号の説明】[Explanation of symbols]

1、101 造粒機 2 容器 3 回転シャフト 4 攪拌部材 4a′、4b′、4c′ 攪拌面 6 粉砕部材 7 流動方向変更部材 7d′ 変更面 25 電流測定器 28、128 信号処理装置 72 第2原動機 103 容器 105 回転シャフト 108 攪拌羽根 125 電力測定器 171 第1原動機 1, 101 granulator 2 containers 3 rotating shaft 4 Stirring member 4a ', 4b', 4c 'stirring surface 6 Crushing member 7 Flow direction changing member 7d 'change side 25 current measuring instrument 28,128 Signal processing device 72 Second prime mover 103 container 105 rotating shaft 108 Stirring blade 125 power meter 171 First prime mover

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山下 博之 和歌山県和歌山市湊1334番地花王株式会 社研究所内 (56)参考文献 特開 平8−159890(JP,A) 特開 平3−137931(JP,A) 特開 平10−296064(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 2/10 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Hiroyuki Yamashita Inventor Hiroyuki Yamashita, Wakayama Prefecture 1334 Minato Minato Kao Co., Ltd. (56) References JP-A-8-159890 (JP, A) JP-A-3-137931 ( JP, A) JP-A-10-296064 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) B01J 2/10

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】造粒機内で粘着性を有する粉粒体を攪拌し
て造粒を行うに際し、 その造粒機内における粉粒体の攪拌抵抗に対応する抵抗
値と、造粒の進捗度に対応する造粒状態との関係を予め
求め、 その造粒機内における粉粒体の流動領域で回転する部材
を回転駆動するのに要する動力に対応する値を、その抵
抗値として測定し、 その測定した抵抗値と上記予め求めた関係とから造粒状
態を検出する造粒状態検出方法であって、 前記造粒機は、粉粒体を入れる容器と、その容器内に縦
軸中心に回転駆動可能に設けられる回転シャフトと、こ
の回転シャフトと同行回転するように設けられる攪拌羽
根とを有し、 その攪拌羽根は、その容器内部底面にクリアランスをお
いて配置され、 そのクリアランスと前記抵抗値と造粒状態との関係を予
め求め、 前記抵抗値として、その攪拌羽根を回転駆動する原動機
の負荷に対応する値を測定し、 その抵抗値と造粒状態とが相関するように、そのクリア
ランスを求めた関係に基づき設定する造粒状態検出方
Claims: 1. When granulating a powdery substance having adhesiveness by stirring in a granulator, the resistance value corresponding to the stirring resistance of the powdery substance in the granulator and the progress of the granulation are measured. The relationship with the corresponding granulation state is obtained in advance, the value corresponding to the power required to rotationally drive the member rotating in the flow region of the granules in the granulator is measured as the resistance value, and the measurement a granulation state detecting method for detecting a granulated state from the resistance value and the a previously determined relationship, the granulator, a container holding the bulk material, longitudinally within the container
A rotary shaft that is rotatably driven around the axis, and
Stirrer provided to rotate with the rotating shaft of
It has a root and its stirring blade has a clearance on the inner bottom surface of the container.
Are arranged have, pre the relationship between the resistance value and granulated state and its clearance
Because determined, as the resistance value, a prime mover for rotating the stirring blades
The value corresponding to the load is measured, and the resistance value is cleared so that it correlates with the granulation state.
Granulation state detection method to be set based on the relationship obtained by obtaining the lance
Law .
【請求項2】造粒機内における粉粒体の攪拌抵抗に対応
する抵抗値と、造粒の進捗度に対応する造粒状態との関
係を記憶する手段と、 その造粒機内における粉粒体の流動領域で回転する部材
と、 その回転する部材を回転駆動するのに要する動力に対応
する値を抵抗値として測定する手段と、 その測定した抵抗値と上記記憶した関係とから造粒状態
を求める手段とを備え 前記造粒機は、粉粒体を入れる容器と、その容器内に縦
軸中心に回転駆動可能に設けられる回転シャフトと、こ
の回転シャフトと同行回転するように設けられる攪拌羽
根とを有し、 その攪拌羽根は、その容器内部底面にクリアランスをお
いて配置され、 前記抵抗値として、その攪拌羽根を回転駆動する原動機
の負荷に対応する値が測定され、その抵抗値と造粒状態
とが相関するように、そのクリアランスと前記抵抗値と
造粒状態との予め求めた関係に基づき、そのクリアラン
スを設定可能な造粒状態検出装置。
2. A means for storing the relationship between the resistance value corresponding to the stirring resistance of the granules in the granulator and the granulation state corresponding to the progress of granulation, and the granules in the granulator. The member that rotates in the flow region, the means that measures the value corresponding to the power required to rotationally drive the rotating member as the resistance value, and the measured resistance value and the stored relationship described above and means for determining the granulator, a container holding the bulk material, longitudinally within the container
A rotary shaft that is rotatably driven around the axis, and
Stirrer provided to rotate with the rotating shaft of
It has a root and its stirring blade has a clearance on the inner bottom surface of the container.
Are arranged have, as the resistance value, a prime mover for rotating the stirring blades
The value corresponding to the load is measured, and its resistance value and granulation state
So that the clearance and the resistance value
Clear run based on the relationship obtained in advance with the granulation state
Granulation state detector that can set the flow rate.
JP20344499A 1999-07-16 1999-07-16 Granulation state detection method Expired - Fee Related JP3497102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20344499A JP3497102B2 (en) 1999-07-16 1999-07-16 Granulation state detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20344499A JP3497102B2 (en) 1999-07-16 1999-07-16 Granulation state detection method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003330537A Division JP2004090003A (en) 2003-09-22 2003-09-22 Granulation state detection method

Publications (2)

Publication Number Publication Date
JP2001029768A JP2001029768A (en) 2001-02-06
JP3497102B2 true JP3497102B2 (en) 2004-02-16

Family

ID=16474224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20344499A Expired - Fee Related JP3497102B2 (en) 1999-07-16 1999-07-16 Granulation state detection method

Country Status (1)

Country Link
JP (1) JP3497102B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4959121B2 (en) * 2004-09-09 2012-06-20 大平洋機工株式会社 Granulation method for powder, dehydrated cake, etc.

Also Published As

Publication number Publication date
JP2001029768A (en) 2001-02-06

Similar Documents

Publication Publication Date Title
JP3497102B2 (en) Granulation state detection method
JPH06210152A (en) Method for suppress increase in proportion of amorphous state and recrystallization in crystalline organic compound
JP2004090003A (en) Granulation state detection method
JP2750325B2 (en) Crushing and sizing machine
JP4141594B2 (en) Granulation method
JP2002126561A (en) Shredding device
JP3609934B2 (en) Measuring method of particle size
JPS5955338A (en) Granulator used in common as mixer
JP2010500164A (en) Granulating and mixing device
JPH0743061Y2 (en) Powder and granular material feeder
JP3059063B2 (en) Resin particle blending equipment
JPH11262650A (en) Automatic granulating apparatus for powder
JP3479456B2 (en) Method for measuring flow characteristics of powders
JP3349920B2 (en) Pre-extrusion granulator
JP2004315053A (en) Powdery and granular material discharging device from flexible container bag
CN219688290U (en) Anti-blocking device for discharging point of rubber belt conveyor and rubber belt conveyor
JPS59143826A (en) Detection of clogging of silo with stored material
JP4266550B2 (en) Stirring granulation method and stirring granulation apparatus
JP2672817B2 (en) Mixing machine
JP2001021481A (en) Method for measuring properties of powder
JPH1016901A (en) Method for scraping out powdered medicine of powdered medicine portion packaging equipment
CN209911165U (en) Device for measuring volatile content in elastomer material
JP2540623B2 (en) Grindability test method
JPH0652928U (en) Remaining soil mixing machine
JPH08142045A (en) Stirring mixer for particles of different kind

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees