JP3494357B2 - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP3494357B2
JP3494357B2 JP1942599A JP1942599A JP3494357B2 JP 3494357 B2 JP3494357 B2 JP 3494357B2 JP 1942599 A JP1942599 A JP 1942599A JP 1942599 A JP1942599 A JP 1942599A JP 3494357 B2 JP3494357 B2 JP 3494357B2
Authority
JP
Japan
Prior art keywords
electrode
bump electrode
pad electrode
bump
semiconductor pellet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1942599A
Other languages
Japanese (ja)
Other versions
JP2000223533A (en
Inventor
五郎 池上
孝夫 三好
Original Assignee
関西日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 関西日本電気株式会社 filed Critical 関西日本電気株式会社
Priority to JP1942599A priority Critical patent/JP3494357B2/en
Publication of JP2000223533A publication Critical patent/JP2000223533A/en
Application granted granted Critical
Publication of JP3494357B2 publication Critical patent/JP3494357B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item

Abstract

PROBLEM TO BE SOLVED: To secure electrical and mechanical connection between a bump electrode and a pad electrode, even substances where electrically insulating fine particles such as silica, alumina, or the like dispersed in large quantity into a resinous adhesive are used for connecting a semiconductor pellet with a wiring board. SOLUTION: In this semiconductor device, a semiconductor pellet 1 where a bump electrode 3 is made and a wiring board 4 where a flat pad electrode 8 is made, corresponding to the bump electrode 3 of the semiconductor pellet 1 at least, on an insulating substrate 5, are faced to each other via a resinous adhesive 9 where fillers 12 for reduction of thermal expansion coefficient are dispersed, and several electrodes are superposed on top of one another and are pressurized to electrically connect each electrode and also to bond the facing opposite faces of the semiconductor pellet 1 and the wiring board 4. In this case, the bump electrode 3 is composed of a metal softer than the fillers wiring the adhesive, and the peripheral section adjacent to the pressure contact end face is bulged by crushing, while pressure-welding this bump electrode 3 to the pad electrode 8 and recessing the surface of the pad electrode 3.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は半導体ペレットと配
線基板とを樹脂系接着材を介して対向させそれぞれの電
極を圧着して電気的に接続した構造の半導体装置に関す
る。 【0002】 【従来の技術】電子回路装置のうち、ビデオカメラやノ
ート型パーソナルコンピュータのように可搬形の電子回
路装置では小型、軽量化が要求され、これに用いられる
電子部品も一層の小型化が要求されている。また電子制
御装置によって制御される機械装置でも、作業ポジショ
ンにあるモータなどの駆動機構に制御部を直接的に組み
込んで高精度かつ高速制御を可能としているが、このよ
うな制御部も取付位置や取付寸法の制約がある場合、小
型化、高密度実装が強く要求されている。このような要
求に対応するのに、電子部品の形状を変えたり電子部品
本体を縮小するなどして小型化する方法と、外形寸法は
同じかあるいは大型化しても複数の機能部品を集積化し
て実質的に小型化する方法とがある。また電子部品本体
を直接的に配線基板に実装して実装密度を高め小型化を
実現している。図4は高密度実装構造の半導体装置を示
す。図において、1は半導体ペレットで、半導体基板2
内に図示省略するが多数の電子回路素子を形成して内部
接続し、その一主面に電子回路の要部と接続されたバン
プ電極3を多数形成したものである。4は配線基板で、
セラミックやガラス、エポキシ樹脂、ガラスエポキシ樹
脂などの絶縁基板5上に配線用の導電パターン6を形成
し、導電パターン6上をレジスト膜7で被覆し、このレ
ジスト膜7のうち半導体ペレット1のバンプ電極3と対
応する部分を窓明けして導電パターン6の一部を露呈さ
せパッド電極8を形成している。9は配線基板4上のパ
ッド電極8で囲まれる領域に予め供給され、バンブ電極
3とパッド電極8とを位置決めした状態で配線基板4に
対向配置された半導体ペレット1によって押し拡げられ
た樹脂系接着材で、熱硬化性のエポキシ樹脂などが用い
られる。この半導体装置は、半導体ペレット1を加圧し
てバンプ電極3とパッド電極8とを圧接させ電気的に接
続する際に、配線基板4上に予め供給された接着材9が
電極重合部間に充填されるが、バンプ電極3とパッド電
極8の対向面は完全に平坦ではなくしかも平行ではない
ため、重合加圧される時に電極間から接着材が追い出さ
れるため、各電極3、8は密着し電気的接続に支障はな
い。特に図5〜図7に示すようにキャピラリ10に挿通
した金属ワイヤ11の先端に金属ボール11aを形成し
この金属ボール11aをキャピラリ10の下端で半導体
基板2に押し付け、キャピラリ10を上昇させてワイヤ
11を所定長さ繰出した後、キャピラリ10上方でワイ
ヤ11をクランプしてさらにキャピラリ10を上昇させ
ることによりワイヤ11を引き切ってバンプ電極3を形
成したものでは、バンプ電極3の先端が小径であるた
め、パッド電極8に圧着される際にバンプ電極3の小径
先端から押しつぶされ、パッド電極8側からみるとバン
プ電極3は電極8中央部から接着材9を外方に押し出し
つつ密着重合されるため重合部間に接着材が残留する虞
は小さい。ところで図4半導体装置は、セラミックやガ
ラスに比して軽量な樹脂系絶縁基板からなる配線基板4
を用いると、半導体ペレット1と絶縁基板5とでは熱膨
張率の差が大きいため、動作と停止を繰り返しにより温
度上昇すると配線基板4が反り、温度降下により反った
配線基板4が平坦状態に戻ることを繰り返す。この繰り
返しにより接着材9の接着界面に亀裂を生じ、この亀裂
が成長して耐湿性を低下させ、剥離が電極重合部に及ぶ
と、変形応力が直接的に電極重合部に作用して剥離させ
電気的接続を損なうという問題がある。そのためエポキ
シ樹脂からなるベース樹脂にシリカやアルミナの微粒子
を分散させて熱膨張率が半導体ペレット1と配線基板4
の中間の熱膨張率となるように調整した接着材を用いて
変形を緩和している。この種低熱膨張率の接着材として
例えば粒径が1〜20μmのフィラーを50〜70重量
%含有させたものが一般的に用いられる。これにより、
消費電力が大きく動作時の温度上昇が大きい半導体装置
の信頼性を高めることができる。 【0003】 【発明が解決しようとする課題】一方、この低熱膨張率
の接着材を用いた半導体装置では、接着材9を発煙硝酸
で完全に溶解し、配線基板4を固定して半導体ペレット
1にブロックを当て基板4と平行に力をかけることによ
り半導体ペレット4を配線基板4から剥離してバンプ電
極3の剥離表面を観察したところ、図8に示すように剥
離面の中央部に樹脂系接着材9内に分散されたシリカや
アルミナなどの微粒子からなるフィラー12を噛んでい
ることがわかった。具体的には圧着後、直径50μm、
高さ40μmのバンプ電極を150個有する半導体ペレ
ットでは90〜95個のバンプ電極がフィラーを噛み込
んでおり、発生率は約60〜63%であった。また噛み
込まれたフィラーはほぼ電極重合部の中央部に集中し、
重合面積の10〜18%を占めていた。従ってこの半導
体ペレットでは電極の全接続面積の6〜11%が導電性
のないフィラーによって導電面積が縮小されていた。フ
ィラーが電極重合部の中央部に集中して噛み込まれるの
は、半導体ペレット1を配線基板4と対向させ加圧する
際に、予め配線基板4上に供給された接着材9が加圧さ
れ拡がるが、半導体ペレット1と配線基板4の間隔が数
10μmで、接着材9は拡がり開始から極短時間で完了
するため、電極3,8間のフィラーはほとんど流動せ
ず、バンプ電極3の先端部に位置するフィラーがパッド
電極8の間に挟持され、周縁部のフィラーはバンプ電極
3の先端部が圧潰されて平坦になる際に樹脂とともに押
し退けられて電極重合部から排除されるものと考えられ
る。電極重合部に噛み込まれたフィラーは電極内に埋め
込まれているが、その熱膨張率は電極材料の熱膨張率と
異なり、電極材料とは密着しないため、急激に温度変化
する環境で繰り返し動作させると、電極材料とフィラー
との間に微小空洞を生じるため、噛み込まれたフィラー
の量が増大すると空洞部分から亀裂が成長し、最終的に
電極間の電気的接続を不安定にする虞があった。このよ
うな問題を解決するものとして、特開平10−2563
04号公報(先行技術)にはバンプ電極とパッド電極の
電気的接続部をゴム状弾性を有し銀粉体を含有させた導
電性接着材で仮接続し、さらにこの接着材を加熱硬化さ
せた後に、半導体ペレットと配線基板とを熱硬化性エポ
キシ樹脂で接続した半導体装置が開示されているが、接
着材供給工程、加熱工程がそれぞれ増加するため、コス
ト面から直ちに採用することが出来なかった。 【0004】 【課題を解決するための手段】本発明は上記課題の解決
を目的として提案されたもので、半導体ペレットに形成
した多数のバンプ電極と配線基板上の平坦なパッド電極
とを位置決めして、半導体ペレットと配線基板とを熱膨
張率低減用のフィラーが分散された樹脂系接着材を介し
て対向させそれぞれの電極を重合加圧し各電極間を電気
的に接続するとともに半導体ペレットと配線基板の対向
面間を接着した半導体装置において、バンプ電極を接着
材中のフィラーより軟らかい金属で構成し、かつこのバ
ンプ電極をパッド電極に圧接させてパッド電極表面を凹
湾曲させつつ、圧接端面と隣接する周面部分を圧潰によ
り膨出させたことを特徴とする半導体装置を提供する。 【0005】 【発明の実施の形態】本発明による半導体装置は、バン
プ電極を接着材中のフィラーより軟らかい金属で構成
し、かつこのバンプ電極をパッド電極に圧接させてパッ
ド電極表面を凹湾曲させつつ、圧接端面と隣接する周面
部分を圧潰により膨出させたことを特徴とするが、半導
体ペレットのバンプ電極材料として接着材中のフィラー
より十分軟らかい金を用い、さらにこの半導体ペレット
を可撓性を有する絶縁基板にパッド電極を形成した配線
基板で、さらにはパッド電極が銅よりなる導電パターン
の露出部にニッケル、金を順次積層したものが好適であ
る。また、バンプ電極とパッド電極の接触界面が傾斜し
た環状圧接界面とする。この場合、バンプ電極とパッド
電極の環状圧接界面の面積が圧接端面の面積の20%以
上とすることにより接着材中のフィラーが電極間に噛み
込まれても環状圧接界面ではフィラーの分布を少なくで
きる。 【0006】 【実施例】以下に本発明の実施例を図1から説明する。
図において図4と同一物には同一符号を付し重複する説
明を省略する。図1半導体装置が図4半導体装置と大き
く相異するのは、バンプ電極3の先端部をパッド電極8
に押圧し、パッド電極8を凹湾曲させつつ、圧接端面と
隣接する周面部分を圧潰により膨出させたことのみであ
る。この膨出を良好にするためバンプ電極3は接着材9
中のフィラーより軟らかい金属で構成している。また、
この軟らかい金属よりなるバンプ電極3によってパッド
電極8が凹湾曲し易いように配線基板4には可撓性を有
する絶縁基板5が用いられる。より具体的には図2に示
すようにエポキシ樹脂からなる絶縁基板5に厚さ18μ
mの銅箔を積層しこれをエッチングして形成した導電パ
ターン6をレジスト膜7で覆い、この要部を窓明けして
導電パターン6の一部を露呈させ、この窓明け部分に厚
さ3〜5μmのニッケル層13を形成し、さらにニッケ
ル層13上に厚さ0.03〜1.0μmの金めっき層1
4を形成して導電パッド8を形成している。パッド電極
8を構成する銅やニッケルは金で形成したバンプ電極3
に比して硬いため、加圧しても通常は変形しにくい。配
線基板4は可撓性を有する絶縁基板5を用いているが、
各電極3、8の圧接を良好にするため配線基板4を18
0〜250℃に加熱すると、絶縁基板5は一層軟化し、
パッド電極8の周縁部下面も軟化する。これに対して先
端形状が半球状あるいは回転放物体状のバンプ電極3を
パッド電極8に当接させ加圧すると加圧力はバンプ電極
3の先端部に集中し、パッド電極8を絶縁基板5に押し
込みロート状に凹湾曲させる。即ち図3に示すようにバ
ンプ電極3の回転放物体状の先端部3aは図示点線で示
すようにパッド電極8に当接し加圧力により図示点線矢
印A方向に進行して、パッド電極8の表面を図示実線B
で示すように凹湾曲させ、凹湾曲部が深く広くなるにつ
れて、図示Cで示すバンプ電極3の先端が圧潰され平坦
になる。同時にバンプ電極3の圧潰された部分は図示矢
印D方向に膨出して径大となり、凹湾曲部を埋め、バン
プ電極3の端面だけでなくその周面もパッド電極8と圧
接する。一方、接着材9中に分散されたシリカやアルミ
ナなどの微細なフィラー12のうち、加圧された半導体
ペレット1のバンプ電極3がパッド電極8に当接する瞬
間に各電極3、8間に残留したフィラー12(図3中、
符号Eで示す)は電極3、8間に閉じ込められる。これ
に対して、バンプ電極3は先端部の圧潰変形によって下
端部周面は膨出し下端から順次パッド電極8の凹湾曲面
に圧着するため、電極間に位置する接着材9が圧着面か
ら排除され、同時にフィラー12は圧着面から排除され
る。このようにして、バンプ電極3の先端部圧潰による
周面の膨出によって各電極3、8間には符号Fで示すよ
うに傾斜した環状の圧接界面が形成される。一度接着し
た半導体ペレット1を配線基板4から剥離して電極間に
フィラーがどの程度残留しているか観察したところ、バ
ンプ電極3の先端部ではその中央部に従来と同程度のフ
ィラーが残留していたのに対して環状圧接界面Fでは全
ての電極でフィラーを確認することができなかった。ま
たオージェ電子分光分析により各電極3、8の接続界面
の状態を確認したところ、バンプ電極3の先端部及び先
端部と隣接する周面部分では金−ニッケル合金の深い層
が形成されていることが確認され、圧着状態も良好であ
ることが確認できた。この環状圧接界面Fはバンプ電極
3の下端の平坦な圧接部より径大で、例えば、バンプ電
極3の先端の平坦な圧着端面の直径を50μmとしたと
き、環状圧接界面の巾はペレット1の加圧力と配線基板
4の材料によって3〜20μmとすることができるか
ら、バンプ電極3先端のみの圧着面積に対して各電極
3、8の圧着面積を24〜160%拡大でき、フィラー
の噛み込み面積より格段に広い面積で圧着できるため、
各電極3、8の電気的、機械的接続を良好にできる。本
発明による半導体装置は従来装置と全く同じ工程で製造
することが出来るため製造も容易である。 【0007】 【発明の効果】以上のように本発明によれば、半導体ペ
レットと配線基板とを接続する樹脂系接着材にシリカや
アルミナなどの電気的に絶縁性の微粒子を多量に分散さ
せたものを用いても、バンプ電極とパッド電極の電気
的、機械的接続を確実にできる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device having a structure in which a semiconductor pellet and a wiring board are opposed to each other via a resin-based adhesive, and respective electrodes are pressed and electrically connected. The present invention relates to a semiconductor device. 2. Description of the Related Art Among electronic circuit devices, portable electronic circuit devices such as video cameras and notebook personal computers are required to be smaller and lighter, and the electronic components used therein are further downsized. Is required. In mechanical devices controlled by the electronic control unit, high-precision and high-speed control is possible by directly incorporating a control unit into a drive mechanism such as a motor in a work position. When there are restrictions on the mounting dimensions, miniaturization and high-density mounting are strongly required. In order to respond to such demands, a method of reducing the size by changing the shape of the electronic component or reducing the size of the electronic component body and a method of integrating a plurality of functional components even if the external dimensions are the same or large are adopted. There is a method of substantially reducing the size. In addition, the electronic component main body is directly mounted on a wiring board to increase the mounting density and achieve downsizing. FIG. 4 shows a semiconductor device having a high-density mounting structure. In the figure, reference numeral 1 denotes a semiconductor pellet, and a semiconductor substrate 2
Although not shown, a number of electronic circuit elements are formed and connected internally, and a number of bump electrodes 3 connected to the main parts of the electronic circuit are formed on one main surface thereof. 4 is a wiring board,
A conductive pattern 6 for wiring is formed on an insulating substrate 5 of ceramic, glass, epoxy resin, glass epoxy resin, or the like, and the conductive pattern 6 is covered with a resist film 7. A portion corresponding to the electrode 3 is opened and a part of the conductive pattern 6 is exposed to form a pad electrode 8. Reference numeral 9 denotes a resin-based resin that is supplied in advance to a region surrounded by the pad electrode 8 on the wiring substrate 4 and is expanded by the semiconductor pellet 1 disposed opposite to the wiring substrate 4 in a state where the bump electrode 3 and the pad electrode 8 are positioned. As an adhesive, a thermosetting epoxy resin or the like is used. In this semiconductor device, when the semiconductor pellet 1 is pressurized and the bump electrode 3 and the pad electrode 8 are pressed and electrically connected to each other, the adhesive 9 supplied in advance on the wiring board 4 is filled between the electrode overlap portions. However, since the opposing surfaces of the bump electrode 3 and the pad electrode 8 are not completely flat and not parallel, the adhesive material is expelled from between the electrodes when the polymerizing pressure is applied. There is no problem with the electrical connection. In particular, as shown in FIGS. 5 to 7, a metal ball 11a is formed at the end of a metal wire 11 inserted into the capillary 10, and the metal ball 11a is pressed against the semiconductor substrate 2 at the lower end of the capillary 10 to raise the capillary 10 After the wire 11 is extended by a predetermined length, the wire 11 is clamped above the capillary 10 and the capillary 11 is further raised to cut the wire 11 to form the bump electrode 3. Therefore, when the bump electrode 3 is pressed against the pad electrode 8, it is crushed from the small-diameter end of the bump electrode 3. When viewed from the pad electrode 8 side, the bump electrode 3 is tightly polymerized while pushing the adhesive 9 outward from the center of the electrode 8. Therefore, there is little possibility that the adhesive remains between the overlapping portions. FIG. 4 shows a wiring board 4 made of a resin-based insulating substrate which is lighter than ceramic or glass.
Is used, since the difference in the coefficient of thermal expansion between the semiconductor pellet 1 and the insulating substrate 5 is large, the wiring substrate 4 warps when the temperature rises due to repeated operation and shutdown, and the warped wiring substrate 4 returns to a flat state due to the temperature drop. Repeat that. The repetition causes a crack at the bonding interface of the adhesive material 9, and the crack grows to lower the moisture resistance. When the peeling reaches the electrode overlap portion, the deformation stress directly acts on the electrode overlap portion to cause the peeling. There is a problem that the electrical connection is impaired. Therefore, fine particles of silica or alumina are dispersed in a base resin made of an epoxy resin, so that the coefficient of thermal expansion is
The deformation is alleviated by using an adhesive adjusted to have an intermediate coefficient of thermal expansion. As such an adhesive having a low coefficient of thermal expansion, for example, an adhesive containing 50 to 70% by weight of a filler having a particle size of 1 to 20 μm is generally used. This allows
The reliability of a semiconductor device which consumes large power and has a large temperature rise during operation can be improved. On the other hand, in a semiconductor device using an adhesive having a low coefficient of thermal expansion, the adhesive 9 is completely dissolved with fuming nitric acid, the wiring substrate 4 is fixed, and the semiconductor pellet 1 is fixed. The semiconductor pellet 4 was separated from the wiring substrate 4 by applying a force in parallel with the substrate 4 by applying a block to the substrate 4 and the peeled surface of the bump electrode 3 was observed. As shown in FIG. It was found that the filler 12 composed of fine particles such as silica and alumina dispersed in the adhesive 9 was bitten. Specifically, after crimping, the diameter is 50 μm,
In a semiconductor pellet having 150 bump electrodes with a height of 40 μm, 90 to 95 bump electrodes bite the filler, and the occurrence rate was about 60 to 63%. Also, the bitten filler is concentrated almost at the center of the electrode overlap,
It occupied 10 to 18% of the polymerization area. Therefore, in this semiconductor pellet, the conductive area was reduced by the non-conductive filler in 6 to 11% of the total connection area of the electrodes. The reason that the filler is concentrated and bitten into the central portion of the electrode overlap portion is that when the semiconductor pellet 1 is opposed to the wiring board 4 and pressed, the adhesive 9 previously supplied on the wiring board 4 is pressed and spreads. However, since the interval between the semiconductor pellet 1 and the wiring board 4 is several tens of μm and the adhesive 9 is completed in a very short time from the start of spreading, the filler between the electrodes 3 and 8 hardly flows and the tip of the bump electrode 3 Is sandwiched between the pad electrodes 8, and the filler at the periphery is pushed away together with the resin when the tip of the bump electrode 3 is crushed and flattened, and is removed from the electrode overlap portion. . The filler caught in the electrode overlap portion is embedded in the electrode, but its coefficient of thermal expansion is different from that of the electrode material and does not adhere to the electrode material, so it repeatedly operates in an environment where the temperature changes rapidly. In this case, a microcavity is generated between the electrode material and the filler. Therefore, when the amount of the bitten filler increases, a crack grows from the cavity, which may eventually make the electrical connection between the electrodes unstable. was there. To solve such a problem, Japanese Patent Laid-Open Publication No.
No. 04 (prior art), an electrical connection between a bump electrode and a pad electrode is temporarily connected with a conductive adhesive containing silver powder having rubbery elasticity, and the adhesive is heated and cured. After that, a semiconductor device in which a semiconductor pellet and a wiring board are connected to each other with a thermosetting epoxy resin is disclosed. However, since an adhesive supply step and a heating step are respectively increased, it cannot be adopted immediately from the viewpoint of cost. Was. SUMMARY OF THE INVENTION The present invention has been proposed for solving the above problems, and is intended to position a large number of bump electrodes formed on a semiconductor pellet and a flat pad electrode on a wiring board. Then, the semiconductor pellet and the wiring board are opposed to each other via a resin-based adhesive in which a filler for reducing the coefficient of thermal expansion is dispersed, and the respective electrodes are polymerized and pressurized to electrically connect the respective electrodes. In the semiconductor device in which the opposing surfaces of the substrate are bonded, the bump electrode is made of a metal softer than the filler in the adhesive, and the bump electrode is pressed against the pad electrode so that the surface of the pad electrode is concavely curved. And a semiconductor device characterized in that a peripheral surface portion adjacent to the press-contact end surface is swelled by crushing. [0005] The semiconductor device according to the embodiment of the present invention constitutes the bump electrode at a softer filler in the adhesive metal, and is concave curved pad electrode surface is pressed against the bump electrode to the pad electrode In addition, the peripheral surface portion adjacent to the press-contact end surface is swelled by crushing, but gold which is sufficiently softer than the filler in the adhesive is used as the bump electrode material of the semiconductor pellet, and the semiconductor pellet is furthermore flexible. It is preferable to use a wiring board in which pad electrodes are formed on an insulating substrate having a property, and further, nickel and gold are sequentially laminated on exposed portions of a conductive pattern in which pad electrodes are made of copper. Further, the contact interface between the bump electrode and the pad electrode is an annular press contact interface that is inclined. In this case, by setting the area of the annular pressure contact interface between the bump electrode and the pad electrode to 20% or more of the area of the pressure contact end face, even if the filler in the adhesive is caught between the electrodes, the distribution of the filler at the annular pressure contact interface is reduced. it can. An embodiment of the present invention will be described below with reference to FIG.
In the figure, the same components as those in FIG. 4 are denoted by the same reference numerals, and duplicate description will be omitted. The semiconductor device shown in FIG. 1 is largely different from the semiconductor device shown in FIG.
Pressed in, while the pad electrode 8 is concave curved, only that swelled by crushing a peripheral surface portion adjacent to the pressure contact edge. In order to improve the swelling, the bump electrode 3 is made of an adhesive 9.
It is composed of a metal softer than the filler inside. Also,
A flexible insulating substrate 5 is used for the wiring substrate 4 so that the pad electrode 8 is easily concavely curved by the bump electrode 3 made of the soft metal. More specifically, as shown in FIG. 2, the insulating substrate 5 made of epoxy resin has a thickness of 18 μm.
The conductive pattern 6 formed by laminating and etching the copper foil is covered with a resist film 7, a main part of the conductive pattern 6 is opened, and a part of the conductive pattern 6 is exposed. A nickel layer 13 having a thickness of 0.03 to 1.0 μm is formed on the nickel layer 13.
4 are formed to form conductive pads 8. Copper or nickel constituting the pad electrode 8 is a bump electrode 3 made of gold.
, It is usually hard to deform even when pressed. The wiring board 4 uses a flexible insulating board 5.
To improve the pressure contact between the electrodes 3 and 8, the wiring board 4 is
When heated to 0 to 250 ° C., the insulating substrate 5 is further softened,
The lower surface of the periphery of the pad electrode 8 also softens. On the other hand, when the bump electrode 3 having a hemispherical or parabolic tip is brought into contact with the pad electrode 8 and pressed, the pressing force is concentrated on the tip of the bump electrode 3, and the pad electrode 8 is transferred to the insulating substrate 5. It is concavely curved like a push-in funnel. That is, as shown in FIG. 3, the parabolic tip 3a of the bump electrode 3 comes into contact with the pad electrode 8 as shown by the dotted line and advances in the direction of the arrow A shown by the dotted line by the pressing force. Solid line B
The tip of the bump electrode 3 shown in FIG. 1C is crushed and flattened as the concavely curved portion becomes deeper and wider as shown in FIG. At the same time, the crushed portion of the bump electrode 3 swells in the direction of the arrow D in the drawing to have a large diameter, fills the concave curved portion, and presses not only the end surface of the bump electrode 3 but also its peripheral surface with the pad electrode 8. On the other hand, among the fine fillers 12 such as silica and alumina dispersed in the adhesive material 9, at the moment when the bump electrode 3 of the pressurized semiconductor pellet 1 comes into contact with the pad electrode 8, the fine filler 12 remains between the electrodes 3 and 8. Filler 12 (in FIG. 3,
(Indicated by the symbol E) is confined between the electrodes 3, 8. On the other hand, the bump electrode 3 has its lower end peripheral surface bulged due to the crushing deformation of the front end portion and is pressed from the lower end to the concave curved surface of the pad electrode 8 so that the adhesive material 9 located between the electrodes is removed from the pressed surface. At the same time, the filler 12 is removed from the crimping surface. In this way, a swelling of the peripheral surface due to crushing of the tip portion of the bump electrode 3 forms an inclined annular pressure contact interface between the electrodes 3 and 8 as indicated by the reference symbol F. When the semiconductor pellet 1 once adhered was peeled off from the wiring board 4 and the amount of filler remaining between the electrodes was observed. At the tip of the bump electrode 3, the same amount of filler as the conventional one remained at the center of the bump electrode 3. On the other hand, no filler could be confirmed at all electrodes at the annular pressure-welding interface F. When the state of the connection interface between the electrodes 3 and 8 was confirmed by Auger electron spectroscopy analysis, it was confirmed that a deep layer of a gold-nickel alloy was formed at the tip of the bump electrode 3 and at the peripheral surface adjacent to the tip. Was confirmed, and it was confirmed that the crimping condition was also good. This annular press-contact interface F is larger in diameter than the flat press-contact portion at the lower end of the bump electrode 3. For example, when the flat crimp end face at the tip of the bump electrode 3 has a diameter of 50 μm, the width of the annular press-contact interface is equal to that of the pellet 1. Since the pressure can be set to 3 to 20 μm depending on the pressing force and the material of the wiring board 4, the pressure contact area of each of the electrodes 3 and 8 can be increased by 24 to 160% with respect to the pressure contact area of only the tip of the bump electrode 3, so that the filler is caught. Because it can be crimped in a much larger area than the area,
Electrical and mechanical connection between the electrodes 3 and 8 can be improved. Since the semiconductor device according to the present invention can be manufactured in exactly the same steps as the conventional device, the manufacturing is also easy. As described above, according to the present invention, a large amount of electrically insulating fine particles such as silica and alumina are dispersed in a resin adhesive for connecting a semiconductor pellet and a wiring board. Even if a bump electrode is used, electrical and mechanical connection between the bump electrode and the pad electrode can be ensured.

【図面の簡単な説明】 【図1】 本発明の実施例を示す側断面図 【図2】 図1半導体装置の要部拡大側断面図 【図3】 バンプ電極とパッド電極の接続状態を説明す
る要部拡大側断面図 【図4】 従来の半導体装置の一例を示す側断面図 【図5】 図4装置のパッド電極を製造工程の一例を示
す側断面図 【図6】 パッド電極を製造工程の一例を示す側断面図 【図7】 パッド電極を製造工程の一例を示す側断面図 【図8】 図4装置が有する課題を説明する電極重合部
の側断面図 【符号の説明】 1 半導体ペレット 3 バンプ電極 4 配線基板 5 絶縁基板 8 パッド電極 9 樹脂系接着材 12 フィラー
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a side sectional view showing an embodiment of the present invention. FIG. 2 is an enlarged side sectional view of a main part of a semiconductor device. FIG. 3 illustrates a connection state between a bump electrode and a pad electrode. FIG. 4 is a side sectional view showing an example of a conventional semiconductor device. FIG. 5 is a side sectional view showing an example of a manufacturing process of a pad electrode of the device. FIG. FIG. 7 is a side sectional view showing an example of a manufacturing process of a pad electrode. FIG. 8 is a side sectional view of an electrode overlapping portion for explaining a problem of the apparatus. Semiconductor pellet 3 Bump electrode 4 Wiring board 5 Insulating substrate 8 Pad electrode 9 Resin-based adhesive 12 Filler

Claims (1)

(57)【特許請求の範囲】 【請求項1】一主面に多数のバンプ電極が形成された半
導体ペレットと、絶縁基板上に少なくとも前記半導体ペ
レットのバンプ電極と対応して平坦なパッド電極が形成
された配線基板とを熱膨張率低減用のフィラーが分散さ
れた樹脂系接着材を介して対向させそれぞれの電極を重
合させて加圧し各電極間を電気的に接続するとともに半
導体ペレットと配線基板の対向面間を接着した半導体装
置において、 上記バンプ電極を接着材中のフィラーより軟らかい金属
で構成し、かつこのバンプ電極をパッド電極に圧接させ
てパッド電極表面を凹湾曲させつつ、圧接端面と隣接す
る周面部分を圧潰により膨出させ バンプ電極とパッド電極とが傾斜した環状圧接界面を有
し、 バンプ電極とパッド電極の前記の環状圧接界面の帯状リ
ング部分の幅が圧接端面の直径の6%〜40%であるこ
とを特徴とする半導体装置。
(57) [Claim 1] A semiconductor pellet having a large number of bump electrodes formed on one main surface and a flat pad electrode on an insulating substrate corresponding to at least the bump electrode of the semiconductor pellet. The formed wiring board is opposed via a resin-based adhesive in which a filler for reducing the coefficient of thermal expansion is dispersed, and the respective electrodes are polymerized and pressurized to electrically connect the respective electrodes and to connect the semiconductor pellet and the wiring. In the semiconductor device in which the opposing surfaces of the substrate are bonded, the bump electrode is made of a metal softer than the filler in the adhesive, and the bump electrode is pressed against the pad electrode so that the surface of the pad electrode is concavely curved, and the pressing end face is formed. Has a ring-shaped pressure contact interface in which the bump electrode and the pad electrode are swelled by crushing the adjacent peripheral surface portion.
And a band-shaped rib at the above-mentioned annular pressure-contact interface between the bump electrode and the pad electrode.
A width of the pressing portion is 6% to 40% of a diameter of the press contact end face .
JP1942599A 1999-01-28 1999-01-28 Semiconductor device Expired - Fee Related JP3494357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1942599A JP3494357B2 (en) 1999-01-28 1999-01-28 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1942599A JP3494357B2 (en) 1999-01-28 1999-01-28 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2000223533A JP2000223533A (en) 2000-08-11
JP3494357B2 true JP3494357B2 (en) 2004-02-09

Family

ID=11998929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1942599A Expired - Fee Related JP3494357B2 (en) 1999-01-28 1999-01-28 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3494357B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2928032B1 (en) * 2008-02-22 2011-06-17 Commissariat Energie Atomique CONNECTING COMPONENT HAVING INSERTS WITH COMPENSATING RODS.
JP2010027717A (en) * 2008-07-16 2010-02-04 Sharp Corp Production process of semiconductor device and semiconductor device
EP4210096A4 (en) * 2020-09-25 2023-11-08 Huawei Technologies Co., Ltd. Chip and manufacturing method therefor, and electronic equipment

Also Published As

Publication number Publication date
JP2000223533A (en) 2000-08-11

Similar Documents

Publication Publication Date Title
JP4056424B2 (en) Manufacturing method of semiconductor device
US6331679B1 (en) Multi-layer circuit board using anisotropic electro-conductive adhesive layer
US7090482B2 (en) Semiconductor device package manufacturing method and semiconductor device package manufactured by the method
WO2000045431A1 (en) Method of packaging semiconductor device using anisotropic conductive adhesive
KR100462563B1 (en) Semiconductor device having flat electrodes of a first semiconductor pellet and protruded electrodes of a second semiconductor pellet directly contacted with the flat electrodes
JPH10199934A (en) Mounting structure of semiconductor element and mounting method thereof
JPH1145954A (en) Method and structure for flip-chip connection and electronic device employing it
KR100376336B1 (en) Semiconductor device and method for manufacturing same
JP2770821B2 (en) Semiconductor device mounting method and mounting structure
JP2008192984A (en) Semiconductor device and method of manufacturing the same
JP3494357B2 (en) Semiconductor device
JP3981817B2 (en) Manufacturing method of semiconductor device
TW511201B (en) Method for mounting flip chip on circuit board through reliable electrical connections at low contact resistance
JP4480417B2 (en) Electrode bump, its manufacture, and its connection method
JP3575384B2 (en) Method for manufacturing semiconductor device
JP3519924B2 (en) Semiconductor device structure and method of manufacturing the same
JP2003059971A (en) Wiring board and manufacturing method therefor, and semiconductor device
JP3438583B2 (en) Anisotropic conductive film connection method
JP2000235990A (en) Semiconductor device
JP2000252323A (en) Semiconductor device and manufacture thereof
JP2823667B2 (en) Semiconductor element mounting method
JPH1116946A (en) Mounting method of semiconductor device
JP3252759B2 (en) Semiconductor device and manufacturing method thereof
JP3506424B2 (en) Mounting method of semiconductor element
JP2010062589A (en) Packaging process of electronic component

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees