JP3491633B1 - Coil type automatic surface water quality monitoring device - Google Patents

Coil type automatic surface water quality monitoring device

Info

Publication number
JP3491633B1
JP3491633B1 JP2002162207A JP2002162207A JP3491633B1 JP 3491633 B1 JP3491633 B1 JP 3491633B1 JP 2002162207 A JP2002162207 A JP 2002162207A JP 2002162207 A JP2002162207 A JP 2002162207A JP 3491633 B1 JP3491633 B1 JP 3491633B1
Authority
JP
Japan
Prior art keywords
observation
water quality
type automatic
spool
water surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002162207A
Other languages
Japanese (ja)
Other versions
JP2004012153A (en
Inventor
旭▲てい▼ 荘
Original Assignee
台禹監測科技股▲ふん▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台禹監測科技股▲ふん▼有限公司 filed Critical 台禹監測科技股▲ふん▼有限公司
Priority to JP2002162207A priority Critical patent/JP3491633B1/en
Publication of JP2004012153A publication Critical patent/JP2004012153A/en
Application granted granted Critical
Publication of JP3491633B1 publication Critical patent/JP3491633B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment

Abstract

【要約】 【課題】海水や河川水の水質観測のためのサンプリング
を自動連続観測可能とし、サンプリングの際の水位変化
や観測機器を搭載した浮体が不定の方向に漂流すること
で電線が水中の物体に絡まるなど問題を解消する。 【解決手段】コイル型自動水面水質観測装置であって、
1つの観測装置26、1つの観測センサー31、センサ
ーを載せる浮体30、浮体に連結するロープ20及びセ
ンサーと1つの観測装置を連結する信号ライン25から
構成され、ロープはトルクスプリング13を備えたスプ
ール10によって水位変化に対応して繰り出され、また
信号ラインはコイル状に前記ロープに配置されることに
より水位変化に応じて延長可能であり、ロープと別体構
造として安価に製造することができる。
Abstract: [Problem] To enable automatic continuous observation of seawater and river water sampling for observation of water quality, and change of water level at the time of sampling or floating body equipped with observation equipment drifting in an indeterminate direction, causing electric wires to flow in the water. Eliminate problems such as entanglement with objects. A coil type automatic surface water quality monitoring device, comprising:
It comprises one observation device 26, one observation sensor 31, a floating body 30 on which the sensor is mounted, a rope 20 connected to the floating body, and a signal line 25 connecting the sensor and one observation device, and the rope is a spool provided with the torque spring 13. The signal line is extended in accordance with a change in water level, and the signal line can be extended in accordance with the change in water level by being arranged on the rope in a coil shape, and can be manufactured at a low cost as a separate structure from the rope.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は一種の水質観測装置
で、とくにコイル型自動水面水質観測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water quality observing device, and more particularly to a coil type automatic water surface water quality observing device.

【0002】[0002]

【従来の技術】現代社会において科学技術が高度に発達
しているが、一方では深刻な環境汚染を招いている。と
くに水質汚染は最も深刻な問題となっている。現在大量
の汚染物質が廃棄され、河川やダム、水路などに流れ込
んでいる。工場などの固定した汚染源や自動車などの移
動する汚染源がよく見かけられる。また、処理されてい
ない廃棄物が河川に流れ込んだり、廃棄物の汚染物質が
雨で流され河に入り込んだりする状況も見かけられる。
灌漑用水や民生用水に汚染された水が混入したならば、
水処理のコストが増加するだけではなく、人体や水中生
物に有害な影響を与える事件が発生する可能性がある。
水源汚染を解決する前に先ず、水質がどのような物質で
汚染されているのか、どの範囲で汚染されているのかを
正確に観測、分析する必要がある。いいかえれば、水源
の様々な水質パラメーター情報を長期にわたり観測、分
析しなければならない。
2. Description of the Related Art Although science and technology are highly developed in modern society, they are causing serious environmental pollution. Water pollution is the most serious problem. Currently, a large amount of pollutants are discarded and are flowing into rivers, dams, and waterways. Fixed pollution sources such as factories and moving pollution sources such as automobiles are often found. There are also some cases where untreated waste flows into rivers, and pollutants from wastes are washed into the river by rain.
If contaminated water is mixed with irrigation water or civil water,
Not only will the cost of water treatment increase, there may be incidents that have harmful effects on the human body and aquatic life.
Before resolving water source pollution, it is first necessary to accurately observe and analyze what kind of substance the water quality is contaminated with and in what range. In other words, information on various water quality parameters of water sources must be observed and analyzed over a long period of time.

【0003】以前は手作業によるサンプリングが行われ
ていたが、24時間、特定の場所で水質を観測し続けるこ
とはできない。サンプリングは時間と手間がかかり、コ
ストが高く、サンプルの量が少なく、サンプリングの頻
度が不規則となる。規則的なサンプリングを行うには自
動化サンプリングが必要となる。現在、自動連続観測が
可能な水質観測装置は少なく、ダクトポンプでサンプリ
ングし、室内の観測分析水槽に運ぶものによっている。
しかし、そのサンプリングの取水管は水位の変化に対応
することができない。このほか、従来はブイやフロート
の上に観測機器を設置するものもあるが、ほとんどもの
はケーブルと電線を岸に係留する必要があり、浮きが不
定の方向に漂流することで電線が水中の物体に絡まり、
水質観測に影響を与えることがある。
Previously, manual sampling was performed, but it is not possible to continue observing water quality at a specific place for 24 hours. Sampling is time consuming, labor intensive, costly, small in sample size, and irregular in sampling frequency. Automated sampling is required to perform regular sampling. At present, there are few water quality observation devices that can perform automatic continuous observation, and some use a duct pump to sample and carry it to an indoor observation and analysis tank.
However, the sampling intake pipe cannot respond to changes in water level. In addition, conventionally, there are some that install observation equipment on buoys or floats, but most of them require mooring cables and wires on the shore, and floating wires float in an indefinite direction, so that the wires can be submerged in water. Entangled in an object,
May affect water quality observation.

【0004】[0004]

【発明が解決しようとする課題】従来の水質観測装置が
持つ取水管の位置を変更できない、ケーブルが水中物体
に絡まるといった問題を解決する。
It is possible to solve the problems that the position of the intake pipe of the conventional water quality observation device cannot be changed and the cable is entangled with an underwater object.

【0005】[0005]

【課題を解決するための手段】本発明は上記問題を解決
するため、コイル型自動水面水質観測装置を提供する。
本発明の水質観測装置は、1つのセンサー部分、1つの
センサー部分を載せる浮体、1つの浮体に連結するロー
プ及び1つのセンサー部分と1つの観測装置を連結する
信号ラインから構成され、前記ロープと信号ラインが水
中物体に接触しないという特徴を持つ。さらに、岸には
ポールを架設し、1つのスプールがポールの側端に取り
付けられ、一定のトルク弾性を持つ部品が前記スプール
に一定のトルクを提供し、ロープがスプールに巻かれ、
浮体が前記ロープの一端に連結され、前記浮体の周辺に
固定されたセンサー部分が少なくとも1種類の水質パラ
メーターを観測し、らせん状の信号ラインが観測した信
号を観測装置に送り、信号ラインがロープの直線部分の
周囲をらせん状に取り囲み、前記信号ラインの長さが前
記浮体の昇降に伴い自動的に調整できる。
In order to solve the above problems, the present invention provides a coil type automatic water surface water quality observing apparatus.
The water quality observing device of the present invention comprises one sensor part, a floating body on which one sensor part is mounted, a rope connected to one floating body, and a signal line connecting one sensor part and one observing device. It has the feature that the signal line does not touch the underwater object. Further, a pole is installed on the shore, one spool is attached to a side end of the pole, a component having a certain torque elasticity provides a certain torque to the spool, and a rope is wound around the spool,
A floating body is connected to one end of the rope, and a sensor portion fixed around the floating body observes at least one kind of water quality parameter, and a spiral signal line sends the observed signal to an observation device, and the signal line is a rope. The circumference of the straight line portion is spirally surrounded, and the length of the signal line can be automatically adjusted as the floating body moves up and down.

【0006】[0006]

【発明の実施の形態】図1、2に実施例1を示す。本発
明は岸に架設されたコイル型自動水面水質観測装置であ
り、その水質観測装置のケース18はポール19の上部側端
に固定され、ポールのもう一端は岸に固定されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 is shown in FIGS. The present invention is a coil-type automatic water surface water quality observing device installed on a shore, in which a case 18 of the water quality observing device is fixed to an upper end of a pole 19 and the other end of the pole is fixed to the shore.

【0007】1つの中心軸11はケース18の側壁に取り付
けられ、1つのスプール10が前記中心軸11で回転できる
ようにベアリング12と共に取り付けられ、前記の円筒状
のスプール10の両側端は対応する車輪側面状である。
One central shaft 11 is mounted on a side wall of the case 18, and one spool 10 is mounted together with a bearing 12 so that the spool 10 can rotate on the central shaft 11, and both side ends of the cylindrical spool 10 correspond to each other. The wheels are lateral.

【0008】ディスク型スプリング13は前記スプール10
と中心軸11の間に設けられ、ディスク型スプリング13の
一端がスプール10の内壁面に、もう一端が中心軸11に固
定されている。これにより、回転してねじれたディスク
型スプリング13が前記スプール10を自動的に元の位置に
戻そうと働く。
The disk-shaped spring 13 is the spool 10.
The disk-shaped spring 13 is fixed to the inner wall surface of the spool 10, and the other end is fixed to the central shaft 11. This causes the rotating and twisted disc spring 13 to automatically return the spool 10 to its original position.

【0009】ロープ20は前記スプール10の外周面に巻か
れ、ロープ20の最上部はスプール10に接続されている。
且つ前記ロープの最下部は浮体30に接続されており、前
記浮体30の側面には複数のフック32があり、フック32に
は水中の炭化水素化合物を観測できる観測ケーブル31を
懸けることができる。前記観測ケーブル31は波状に浮体
30周辺に掛けられ、ガソリン重油などの炭化水素化合物
を観測できる導電ポリマーで作製されている。観測ケー
ブル31が水面の炭化水素化合物や油と接触すると、観測
ケーブル31の電気抵抗が急増し、すぐに水面の油による
汚染や油の漏出を感知することができる。
The rope 20 is wound around the outer peripheral surface of the spool 10, and the uppermost portion of the rope 20 is connected to the spool 10.
Further, the lowermost part of the rope is connected to the floating body 30, and a plurality of hooks 32 are provided on the side surface of the floating body 30, and an observation cable 31 capable of observing a hydrocarbon compound in water can be hung on the hook 32. The observation cable 31 has a wavy floating body.
It is made of a conductive polymer that can be hung around 30 and observe hydrocarbon compounds such as gasoline heavy oil. When the observation cable 31 comes into contact with a hydrocarbon compound or oil on the water surface, the electric resistance of the observation cable 31 rapidly increases, and it is possible to immediately detect the contamination of the water surface with the oil or the leakage of the oil.

【0010】信号ライン25の一端は前記観測ケーブル31
の一端に連結され、もう一端は電気回路板17に接続され
ている。前記電気回路板17はさらに観測装置26に接続さ
れ、且つ信号ライン25はロープ20の直線部分の周囲をら
せん状に取り囲んでいる。
One end of the signal line 25 is connected to the observation cable 31.
Is connected to one end and the other end is connected to the electric circuit board 17. The electric circuit board 17 is further connected to an observing device 26, and the signal line 25 spirally surrounds the straight part of the rope 20.

【0011】本発明を実際に使用する際、前記浮体30と
それを取り巻く観測ケーブル31は水面に浮かび、直接水
面に浮く油や炭化水素化合物に接触し、観測することが
できる。さらに浮体30はそれ自身の重力、浮力、ロープ
20の引力が平衡を保ち、浮体30は水位の昇降に伴い決ま
った場所の水面に浮かんでいることができる。そのうち
ロープ20の引力はスプール10内のディスク型スプリング
13から供される。ディスク型スプリング13が回転する
と、スプール10に対してそれに相当するトルクが働く。
ロープ20がスプール10を回転させ、直線部分が長くなる
と、ロープ20は相当する引力を浮体30に作用させる。
When the present invention is actually used, the floating body 30 and the observation cable 31 surrounding the floating body 30 float on the water surface and can be observed by directly contacting oil or hydrocarbon compounds floating on the water surface. In addition, the floating body 30 is its own gravity, buoyancy, rope
The attractive force of 20 is balanced, and the floating body 30 can float on the surface of the water at a predetermined place as the water level rises and falls. Among them, the attractive force of the rope 20 is the disc-shaped spring in the spool 10.
Served from 13. When the disc-shaped spring 13 rotates, a torque corresponding to that acts on the spool 10.
When the rope 20 rotates the spool 10 and the straight portion becomes longer, the rope 20 exerts a corresponding attractive force on the floating body 30.

【0012】図1、2に示すように水位が変化すると、
ロープ20の長さはその引力で自動的に調整され、浮体30
の重力とそれにかかる浮力、ロープの引力が平衡に達し
て、浮体30は適度に水面上に浮き、観測ケーブル31は常
に水面と接触することができる。
When the water level changes as shown in FIGS.
The length of the rope 20 is automatically adjusted by its attractive force, and the floating body 30
When the gravity of the robot, the buoyant force applied to it, and the attractive force of the rope reach equilibrium, the floating body 30 appropriately floats on the water surface, and the observation cable 31 can always contact the water surface.

【0013】本発明のコイル型自動水面水質観測装置は
以下の優れた機能を持っている。ロープ20と信号ライ
ン25が水中物体に絡まることがなく、ディスク型スプリ
ング13をスプール10と中心軸11の間に設置することで、
ロープ20は引力を受け、漂流したり、水中物体と絡まっ
たりするという問題が解決できる。さらに信号ライン25
はロープ20の直線部分の周囲をらせん状に取り囲んでお
り、浮体30の昇降によって長さを自動的に変化させるこ
とができ、信号ライン25は水中物体と絡まることがな
い。本発明は分離したロープ20と信号ライン25を採用
しているため、その生産コストは1本のケーブル内に信
号ライン25を包み込むより大幅に安くてすむ。観測ケ
ーブル31はコストの低い信号ライン25によって陸上の観
測設備に連結されているため、複雑且つ高価な非接触型
データ伝達装置を採用する必要がない。
The coil type automatic water surface quality observing apparatus of the present invention has the following excellent functions. The rope 20 and the signal line 25 do not get entangled in the underwater object, and by installing the disc type spring 13 between the spool 10 and the central shaft 11,
The rope 20 receives an attractive force and can solve the problem of drifting or being entangled with an underwater object. Further signal line 25
Surrounds the straight part of the rope 20 in a spiral shape, and its length can be automatically changed by raising and lowering the floating body 30, and the signal line 25 does not get entangled with an underwater object. Since the present invention employs a separate rope 20 and signal line 25, its production cost is significantly lower than wrapping the signal line 25 in a single cable. Since the observation cable 31 is connected to the onshore observation equipment by the low-cost signal line 25, it is not necessary to employ a complicated and expensive non-contact data transmission device.

【0014】次に、本発明の実施例2を図3に示す。実
施例1の観測ケーブル31が数個の水質観測部品35に置き
換えられている。数個の水質観測部品35は浮体30の底周
辺に固定され、それぞれ浮体30内の観測信号伝達板33に
接続され、それぞれ一定の水深におけるpH値、水温、溶
解酸素、導電性、透明度、重金属含有量などの水質パラ
メーターを観測し、観測した信号を信号ライン25を通じ
て離れた観測装置まで送り、長期的かつ正確に一定の水
深の水質をモニタリングすることができる。観測信号伝
達板33は周期性作業消費電力を採用し、例えば1分間に
一度信号を読み取り、残りの時間は省エネモードとな
る。これにより、バッテリーを数ヶ月にわたり連続使用
できる。
Next, a second embodiment of the present invention is shown in FIG. The observation cable 31 of the first embodiment is replaced with several water quality observation parts 35. Several water quality observation parts 35 are fixed around the bottom of the floating body 30 and connected to the observation signal transmission plate 33 in the floating body 30, respectively, pH value at a constant water depth, water temperature, dissolved oxygen, conductivity, transparency, heavy metal It is possible to observe water quality parameters such as the content and send the observed signal to a distant observation device through the signal line 25 to accurately monitor the water quality at a certain depth in the long term. The observation signal transmission plate 33 adopts periodical work power consumption, for example, the signal is read once a minute, and the energy saving mode is set for the remaining time. This allows the battery to be used continuously for several months.

【0015】本発明の実施例3を図4に示す。実施例1
と実施例2のディスク型スプリング13の変わりに、作動
がより精密な定トルクスプリング16を採用している。回
転軸14にベアリング15が取り付けられた後、ケース18の
側壁に固定され、第1ドラム21が回転軸14の端に取り付
けられ、第2ドラム22がケース18の側壁に固定され、定
トルクスプリング16の一端が第1ドラム21に、もう一端
が第2ドラム22にそれぞれ接続され、前記回転軸14はス
プール10に連結され、同時に回転する。前記定トルクス
プリング16が回転軸14と連動し、スプール10に弾力を与
え、元の位置に戻そうと作用する。
A third embodiment of the present invention is shown in FIG. Example 1
Instead of the disc-type spring 13 of the second embodiment, a constant torque spring 16 that operates more precisely is adopted. After the bearing 15 is attached to the rotary shaft 14, it is fixed to the side wall of the case 18, the first drum 21 is attached to the end of the rotary shaft 14, the second drum 22 is fixed to the side wall of the case 18, and a constant torque spring is used. One end of 16 is connected to the first drum 21 and the other end is connected to the second drum 22, respectively, and the rotating shaft 14 is connected to the spool 10 and rotates simultaneously. The constant torque spring 16 works in conjunction with the rotary shaft 14 to give an elastic force to the spool 10 so as to return it to its original position.

【0016】本発明の実施例4を図5に示す。この実施
例では別に水位観測装置を備える。水位観測装置は、複
数の磁石43が等間隔にスプール10の側面に固定され、さ
らに磁性観測部品46が対応してケース18上の基板45に固
定されている。浮体30が水位によって昇降すると、スプ
ール10と複数の磁石43も同時に回転し、磁石43が磁性観
測部品と近づいたり、離れたりすることで、磁性観測部
品46にパルス信号が発生し、ロープ20の直線距離または
浮体30の昇降による水位の変化を測定し、さらに観測信
号を離れた観測装置26まで送る。次に、数個の対応する
滑車48は巻かれたロープ20がよりスムースに動くことが
できるようにし、かつロープ20を順にスプールの上に巻
くことができるようにする。
A fourth embodiment of the present invention is shown in FIG. In this embodiment, a water level observation device is separately provided. In the water level observing device, a plurality of magnets 43 are fixed to the side surface of the spool 10 at equal intervals, and further a magnetic observing component 46 is correspondingly fixed to a substrate 45 on the case 18. When the floating body 30 moves up and down depending on the water level, the spool 10 and the plurality of magnets 43 also rotate at the same time, and the magnet 43 approaches or leaves the magnetism observing component, thereby generating a pulse signal in the magnetism observing component 46 and causing the rope 20 to move. The change in the water level due to the linear distance or the elevation of the floating body 30 is measured, and the observation signal is sent to the distant observation device 26. Next, several corresponding pulleys 48 allow the wound rope 20 to move more smoothly, and the rope 20 in turn be wound onto a spool.

【0017】本発明の実施例5を図6に示す。これには
別の水位観測装置が含まれる。ロープ20がケース18の上
にある観測車輪66の周辺に巻かれ、ロープ20は浮体30の
昇降と同時に観測車輪66を回転し、前記観測車輪66の円
周付近には複数の磁石67を等間隔に配置し、ケース18上
に設置された磁性観測部品68が順番に磁石の移動信号を
検知し、磁石67が移動し、磁性観測部品68と近づいた
り、離れたりして、パルス信号を発生し、ロープ20の長
さまたは浮体30の昇降した水位の変化を検知し、さらに
観測信号を離れた観測装置26まで送る。次に、同ロープ
20はケース18上に設置された滑車64を通ることで、ロー
プ20は巻き取りと伸ばしの動作がさらにスムースにな
る。
A fifth embodiment of the present invention is shown in FIG. This includes another water level monitoring device. The rope 20 is wound around the observation wheel 66 on the case 18, the rope 20 rotates the observation wheel 66 at the same time when the floating body 30 is moved up and down, and a plurality of magnets 67 are provided near the circumference of the observation wheel 66. The magnetic observation part 68 installed on the case 18 detects the movement signal of the magnet in order, and the magnet 67 moves to approach or leave the magnetic observation part 68 to generate a pulse signal. Then, the change in the length of the rope 20 or the water level of the floating body 30 ascended and descended is detected, and the observation signal is sent to the distant observation device 26. Next, the rope
When 20 passes through the pulley 64 installed on the case 18, the rope 20 makes the winding and stretching operations smoother.

【0018】[0018]

【発明の効果】本発明が提供するコイル型自動水面水質
観測装置は、浮体外側の水質観測部品で固定の水深の水
質パラメーターを測定し、且つ浮体はスプールで引かれ
るロープと平衡の状態を維持することができ、コイル型
信号ラインが水質観測部品と観測装置の間を接続してい
るため、本発明は低コストで作製でき、水中物質と絡ま
る心配がない。
The coil type automatic water surface water quality observing device provided by the present invention measures the water quality parameter at a fixed water depth with a water quality observing component outside the floating body, and the floating body maintains a state of equilibrium with a rope drawn by a spool. Since the coil type signal line connects between the water quality observing component and the observing device, the present invention can be manufactured at low cost and there is no fear of getting entangled with the substance in water.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の水質観測装置の実施例1局部断面図
(浮体が高水位にある状態)
FIG. 1 is a partial cross-sectional view of a first embodiment of a water quality observation device of the present invention (state in which a floating body is at a high water level)

【図2】本発明の水質観測装置の実施例1局部断面図
(浮体が低水位にある状態)
FIG. 2 is a partial cross-sectional view of the first embodiment of the water quality observation device of the present invention (state in which the floating body is at a low water level)

【図3】本発明の水質観測装置の実施例2局部断面図FIG. 3 is a partial sectional view of a second embodiment of the water quality observation device of the present invention

【図4】本発明の水質観測装置の実施例3局部断面図FIG. 4 is a partial cross-sectional view of a third embodiment of the water quality observation device of the present invention

【図5】本発明の水質観測装置の実施例4局部断面図FIG. 5 is a partial sectional view of a fourth embodiment of the water quality observation device of the present invention.

【図6】本発明の水質観測装置の実施例5局部断面図FIG. 6 is a partial sectional view of a fifth embodiment of the water quality observation device of the present invention.

【符号の説明】[Explanation of symbols]

(10)スプール (11)中心軸 (12)ベアリング (13)ディスク型スプリング (14)回転軸 (15)ベアリング (16)定トルクスプリング (17)電気回路版 (18)ケース (19)ポール (20)ロープ (21)第1ドラム (22)第2ドラム (25)信号ライン (26)観測装置 (30)浮体 (31)観測ケーブル (32)フック (33)観測信号伝達板 (35) 水質観測部品 (43) 磁石 (45) 基板 (46) 磁性観測部品 (48) 滑車 (64) 滑車 (66) 観測車輪 (67) 磁石 (68) 磁性観測部品 (10) spool (11) Central axis (12) Bearing (13) Disc type spring (14) Rotation axis (15) Bearing (16) Constant torque spring (17) Electric circuit version (18) Case (19) Paul (20) Rope (21) First drum (22) Second drum (25) Signal line (26) Observation equipment (30) Floating body (31) Observation cable (32) Hook (33) Observation signal transmission board (35) Water quality observation parts (43) Magnet (45) PCB (46) Magnetic observation parts (48) Pulley (64) Pulley (66) Observation wheel (67) Magnet (68) Magnetic observation parts

Claims (20)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】1本のポール、1つのスプール、1本のロ
ープ、1つの浮体、1つの制御部品、1つのセンサー部
分、1つの信号ライン、1つの観測装置から構成され、 前記ポールは水際に架設され、 前記スプールは前記ポールの一側端に取り付けられ、 前記ロープは前記スプールの周囲に巻きつけられ、それ
ぞれ上下に2つの末端を持ち、 前記浮体はロープの一端に接続され、 前記制御部品はスプールに接続され、水位の変化が生じ
ると、スプールに連動し、スプールから伸びた直線部分
のロープの長さを調節し、前記浮体が水面上に安定して
浮かんでいられるようにし、 前記センサー部分は、浮体の周辺に固定され、水質に関
する少なくとも1種類の信号を送り出し、 前記信号ラインは、一端がセンサー部分に接続され、ロ
ープの直線部分をらせん状に取り囲み、信号ラインは浮
体の昇降に応じて、自動的にその長さを調整し、 前記観測装置は、前記信号ラインの別の一端に接続され
ていることを特徴とするコイル型自動水面水質観測装
置。
1. A pole, a spool, a rope, a float, a control part, a sensor part, a signal line, and an observation device. The spool is attached to one end of the pole, the rope is wound around the spool, and has two ends, one above and one below, and the floating body is connected to one end of the rope. The part is connected to the spool, and when the water level changes, it interlocks with the spool and adjusts the length of the rope in the straight portion extending from the spool so that the floating body can float stably on the water surface, The sensor part is fixed around the floating body and sends out at least one kind of signal regarding water quality, and one end of the signal line is connected to the sensor part, and a straight line of a rope is provided. The coil is characterized in that the portion is spirally surrounded, and the length of the signal line is automatically adjusted in accordance with the elevation of the floating body, and the observation device is connected to another end of the signal line. -Type automatic water surface quality observation device.
【請求項2】信号ラインのらせん状部分はロープの直線
部分の周囲を取り囲むことを特徴とする、請求項1に記
載のコイル型自動水面水質観測装置。
2. The coil type automatic water surface water quality observing device according to claim 1, wherein the spiral portion of the signal line surrounds a straight line portion of the rope.
【請求項3】制御部品がスプールに一定のトルクを提供
する定トルク弾性部品であることを特徴とする、請求項
1に記載のコイル型自動水面水質観測装置。
3. The coil type automatic water surface water quality observing device according to claim 1, wherein the control component is a constant torque elastic component that provides a constant torque to the spool.
【請求項4】定トルク弾性部品が1つのディスク型スプ
リングで、一端がポールの側端に取り付けられ、もう一
端がスプールに取り付けられていることを特徴とする、
請求項3に記載のコイル型自動水面水質観測装置。
4. The constant torque elastic component is one disc-shaped spring, one end of which is attached to a side end of a pole and the other end of which is attached to a spool.
The coil type automatic water surface water quality observing device according to claim 3.
【請求項5】1つの中心軸がポールの側端に取り付けら
れ、且つスプールが前記中心軸において回転することを
特徴とする、請求項3に記載のコイル型自動水面水質観
測装置。
5. The coil type automatic water surface water quality observing device according to claim 3, wherein one central axis is attached to a side end of the pole, and the spool rotates on the central axis.
【請求項6】定トルク弾性部品が1つのディスク型スプ
リングで、一端が中心軸に取り付けられ、もう一端がス
プール内に接続されていることを特徴とする、請求項3
または請求項5に記載のコイル型自動水面水質観測装
置。
6. The constant torque elastic component is one disc-shaped spring, one end of which is attached to the central shaft and the other end of which is connected to the spool.
Alternatively, the coil type automatic water surface water quality observing device according to claim 5.
【請求項7】1つの回転軸がポールの側端に取り付けら
れ、且つスプールが回転軸上に取り付けられていること
を特徴とする、請求項3に記載のコイル型自動水面水質
観測装置。
7. The coil type automatic water surface water quality observing device according to claim 3, wherein one rotating shaft is attached to a side end of the pole, and the spool is attached on the rotating shaft.
【請求項8】定トルク弾性部品が定トルクスプリングで
あることを特徴とする、請求項7に記載のコイル型自動
水面水質観測装置。
8. The coil type automatic water surface water quality observing device according to claim 7, wherein the constant torque elastic component is a constant torque spring.
【請求項9】定トルクスプリングには、第1ドラム、第
2ドラム、及びスプリングを含み、 前記第1ドラムは回転軸に取り付けられ、 前記第2ドラムはケースの側壁に取り付けられ、 前記スプリングは第1ドラムと第2ドラムの間に巻かれ
ていることを特徴とする、請求項8に記載のコイル型自
動水面水質観測装置。
9. The constant torque spring includes a first drum, a second drum, and a spring, the first drum is attached to a rotating shaft, the second drum is attached to a side wall of a case, and the spring is The coil type automatic water surface water quality observing device according to claim 8, which is wound between the first drum and the second drum.
【請求項10】センサー部分が波状で、且つ浮体の周辺
のフックに掛けられた観測ケーブルであり、複雑な数個
の水面観測点を構成することができ、精密に水面に含ま
れる炭化水素化合物を含む油膜を観測できることを特徴
とする、請求項1に記載のコイル型自動水面水質観測装
置。
10. A hydrocarbon compound in which a sensor portion is an undulating observation cable hung on a hook around a floating body and capable of constituting several complicated water surface observation points, and is a hydrocarbon compound precisely contained in the water surface. The coil type automatic water surface water quality observing device according to claim 1, characterized in that an oil film containing the can be observed.
【請求項11】観測ケーブルは導電ポリマーで作製さ
れ、油層の炭化水素化合物が生成する第2電気抵抗値は
炭化水素化合物が存在しない場合の第1電気抵抗値を大
きく上回ることを特徴とする、請求項10に記載のコイ
ル型自動水面水質観測装置。
11. The observation cable is made of a conductive polymer, and the second electric resistance value produced by the hydrocarbon compound in the oil layer is much higher than the first electric resistance value in the absence of the hydrocarbon compound. The coil type automatic water surface water quality observing device according to claim 10.
【請求項12】浮体の周囲には複数のフックが固定さ
れ、観測ケーブルを波状に掛けるのに供することを特徴
とする、請求項1に記載のコイル型自動水面水質観測装
置。
12. The coil-type automatic water surface water quality observing device according to claim 1, wherein a plurality of hooks are fixed around the floating body and are used to hang the observation cable in a wavy manner.
【請求項13】センサー部分には少なくとも1つの水質
観測部品を含み、少なくとも1種類以上の水質パラメー
ター信号を送り出すことを特徴とする、請求項1に記載
のコイル型自動水面水質観測装置。
13. The coil type automatic water surface water quality observing device according to claim 1, wherein the sensor portion includes at least one water quality observing component and sends out at least one kind of water quality parameter signal.
【請求項14】センサー部分には1つの観測信号伝達板
を含み、水質観測信号を電子信号に変えることができる
ことを特徴とする、請求項13に記載のコイル型自動水
面水質観測装置。
14. The coil type automatic water surface water quality observing device according to claim 13, wherein the sensor portion includes one observation signal transmitting plate, and the water quality observation signal can be converted into an electronic signal.
【請求項15】観測信号伝達板は一定の時間間隔で信号
を読み取るようにし、読み取らないときは省エネモード
になるよう設計することを特徴とする、請求項14に記
載のコイル型自動水面水質観測装置。
15. The coil type automatic water surface water quality observation according to claim 14, wherein the observation signal transmission plate is designed to read the signal at a constant time interval and to be set to the energy saving mode when not reading. apparatus.
【請求項16】観測信号伝達板が浮体内に設置されるこ
とを特徴とする、請求項14に記載のコイル型自動水面
水質観測装置。
16. The coil-type automatic water surface water quality observing device according to claim 14, wherein the observation signal transmitting plate is installed in the floating body.
【請求項17】1つの水位観測装置を含み、水位の昇降
を観測できることを特徴とする、請求項1に記載のコイ
ル型自動水面水質観測装置。
17. The coil-type automatic water surface water quality observing device according to claim 1, comprising one water level observing device and capable of observing elevation of the water level.
【請求項18】水位観測装置には、複数の磁石と1つの
磁性観測部品を含み、 前記磁石はスプールの側面に固定され、浮体が水位とと
もに移動すると、スプールと複数の磁石も同時に移動
し、 前記磁性観測部品は対応してポール側端にあるケースに
取り付けられ、複数の磁石の移動によるパルス信号を観
測し、水位の変化を検知することを特徴とする、請求項
17に記載のコイル型自動水面水質観測装置。
18. The water level observing device includes a plurality of magnets and one magnetic observing part, wherein the magnet is fixed to a side surface of the spool, and when the floating body moves with the water level, the spool and the plurality of magnets move simultaneously. 18. The coil type according to claim 17, wherein the magnetism observing component is attached to a case corresponding to an end on the pole side, and a pulse signal due to movement of a plurality of magnets is observed to detect a change in water level. Automatic water surface quality observation device.
【請求項19】水位観測装置には1つの観測車輪、複数
の磁石、1つの磁性観測部品を含み、 前記観測車輪はポール側端にあるケース上に取り付けら
れ、ロープが観測車輪に巻きつけられ、且つ浮体が昇降
すると、ロープが同時に観測車輪を回転させ、 前記磁石は観測車輪の側面の円周部分に固定され、水位
が変化すると、観測車輪と複数の磁石も同時に回転し、 前記磁性観測部品は対応してポール側端にあるケースに
取り付けられ、磁性観測部品は磁石の移動で生産される
パルス信号を観測し、水位の変化を検知することを特徴
とする、請求項17に記載のコイル型自動水面水質観測
装置。
19. The water level observing device includes one observing wheel, a plurality of magnets, and one magnetic observing part, wherein the observing wheel is mounted on a case at a side end of a pole, and a rope is wound around the observing wheel. And, when the floating body moves up and down, the rope rotates the observation wheel at the same time, the magnet is fixed to the circumferential part of the side surface of the observation wheel, and when the water level changes, the observation wheel and the plurality of magnets also rotate at the same time. 18. The component according to claim 17, characterized in that the components are attached to a case corresponding to the pole side end, and the magnetic observation component observes the pulse signal produced by the movement of the magnet to detect the change in the water level. Coil type automatic surface water quality observation device.
【請求項20】水位観測装置にはポールの側端に取り付
けられた1組の滑車を含み、ロープが滑車に巻かれてい
ることを特徴とする、請求項19に起債のコイル型自動
水面水質観測装置。
20. The coil-type automatic water surface quality of the bond issuer according to claim 19, wherein the water level observing device includes a pair of pulleys attached to the side ends of the poles, and a rope is wound around the pulleys. Observation device.
JP2002162207A 2002-06-03 2002-06-03 Coil type automatic surface water quality monitoring device Expired - Fee Related JP3491633B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002162207A JP3491633B1 (en) 2002-06-03 2002-06-03 Coil type automatic surface water quality monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002162207A JP3491633B1 (en) 2002-06-03 2002-06-03 Coil type automatic surface water quality monitoring device

Publications (2)

Publication Number Publication Date
JP2004012153A JP2004012153A (en) 2004-01-15
JP3491633B1 true JP3491633B1 (en) 2004-01-26

Family

ID=30431011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002162207A Expired - Fee Related JP3491633B1 (en) 2002-06-03 2002-06-03 Coil type automatic surface water quality monitoring device

Country Status (1)

Country Link
JP (1) JP3491633B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108182345A (en) * 2018-01-31 2018-06-19 扬州大学 Consider small-sized river pollutant carrying capacity computational methods under probabilistic vertex generalization of degradation coefficient
CN108197426A (en) * 2018-01-31 2018-06-22 扬州大学 Plan the lower uncertain small-sized river pollutant carrying capacity evaluation method of degradation coefficient of arbitrary multiple spot generalization of sewage draining exit
CN108345990A (en) * 2018-01-31 2018-07-31 河海大学 The uncertain lower midpoint rivers the Gai Hua pollutant carrying capacity of degradation coefficient rationalizes planing method
CN110749359A (en) * 2019-11-22 2020-02-04 汪海洋 A hydrology water resource intelligent monitoring device for among irrigation
CN112505270A (en) * 2020-10-23 2021-03-16 中国水利水电科学研究院 Optimization method for improving dissolved oxygen in stagnant temperature layer of reservoir

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011053012A (en) * 2009-08-31 2011-03-17 Showa Kiki Kogyo Co Ltd Oil detection device
JP5530969B2 (en) * 2011-03-31 2014-06-25 Jx日鉱日石エネルギー株式会社 Hydrocarbon oil contamination detection apparatus and hydrocarbon oil contamination detection method
KR101500515B1 (en) * 2013-04-10 2015-03-10 (주)유민에쓰티 Oil leakage detecting apparatus
KR101508980B1 (en) 2013-10-29 2015-04-08 한국해양과학기술원 Apparatus for detecting spilled oil
TWI577966B (en) * 2016-04-11 2017-04-11 財團法人國家實驗研究院 Composite hydrological monitoring system
CN106768187B (en) * 2016-12-28 2023-11-24 长江水利委员会水文局长江三峡水文水资源勘测局 Fixing device for sea-way topography measuring water level self-recording instrument of multi-tide station
KR102051135B1 (en) * 2017-11-29 2020-01-08 주식회사 라스테크 Apparatus for measuring quality of water
CN108489571A (en) * 2018-04-12 2018-09-04 张鹤洋 A kind of anti-sticking survey line measured for groundwater level
CN109613195B (en) * 2018-12-17 2022-09-27 江西师范大学 Real-time lake water quality measuring device under water level fluctuation condition
CN111948364B (en) * 2020-06-18 2023-03-21 安徽机电职业技术学院 Water environment monitoring equipment
CN111947729A (en) * 2020-08-10 2020-11-17 济南轨道交通集团有限公司 Underground water input type horizontal lifting liquid level monitor and method
CN113636611B (en) * 2021-07-30 2023-08-08 海南天鸿市政设计股份有限公司 Device for controlling water inflow by high and low liquid level
CN114371266B (en) * 2021-12-29 2023-04-07 唐山师范学院 Water quality testing device based on water pressure feedback multilayer single-point detection
CN114323810B (en) * 2022-03-16 2022-06-14 山东省鲁南地质工程勘察院(山东省地质矿产勘查开发局第二地质大队) Hydrogeology is with water level observation device
CN116086574B (en) * 2023-03-24 2023-06-30 山东省鲁南地质工程勘察院(山东省地质矿产勘查开发局第二地质大队) Automatic monitoring equipment for buried depth of underground water level
CN116626250A (en) * 2023-05-11 2023-08-22 艾德旺斯环保科技南通有限公司 Water environment monitoring system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108182345A (en) * 2018-01-31 2018-06-19 扬州大学 Consider small-sized river pollutant carrying capacity computational methods under probabilistic vertex generalization of degradation coefficient
CN108197426A (en) * 2018-01-31 2018-06-22 扬州大学 Plan the lower uncertain small-sized river pollutant carrying capacity evaluation method of degradation coefficient of arbitrary multiple spot generalization of sewage draining exit
CN108345990A (en) * 2018-01-31 2018-07-31 河海大学 The uncertain lower midpoint rivers the Gai Hua pollutant carrying capacity of degradation coefficient rationalizes planing method
CN108182345B (en) * 2018-01-31 2021-03-23 扬州大学 Small-sized river pollutant carrying capacity calculation method under vertex generalization considering degradation coefficient uncertainty
CN108197426B (en) * 2018-01-31 2021-04-02 扬州大学 Method for estimating pollutant carrying capacity of small riverway with uncertain coefficient by planning any multi-point generalized descent of sewage discharge outlet
CN108345990B (en) * 2018-01-31 2021-08-31 河海大学 Reasonable planning method for generalization of pollutant carrying capacity of river channel under condition of uncertain degradation coefficient
CN110749359A (en) * 2019-11-22 2020-02-04 汪海洋 A hydrology water resource intelligent monitoring device for among irrigation
CN112505270A (en) * 2020-10-23 2021-03-16 中国水利水电科学研究院 Optimization method for improving dissolved oxygen in stagnant temperature layer of reservoir

Also Published As

Publication number Publication date
JP2004012153A (en) 2004-01-15

Similar Documents

Publication Publication Date Title
JP3491633B1 (en) Coil type automatic surface water quality monitoring device
US7040157B2 (en) Variable depth automated dynamic water profiler
Wang et al. Remote stripping electrode for in situ monitoring of labile copper in the marine environment
JP2016129514A (en) Aquaculture water tank water quality monitoring device and aquaculture system using the same
US6536277B1 (en) Level-tracing water-monitoring apparatus
CN104677677A (en) Drop-type water body acquisition system
US6429778B1 (en) Water-monitoring apparatus capable of auto-tracing water level and non-contact signal relay for the same
JP3452559B2 (en) Water quality monitoring and measuring device that automatically rises and falls along the water surface
CN109555093B (en) Control method of marine floater salvaging and detecting device
US3781624A (en) Liquid level indicator and flow measuring device
CN208420563U (en) A kind of water area monitoring device
CN107132324A (en) Sampling formula sewage monitoring analysis system and method
JPH08145982A (en) Water quality automatic measuring instrument
CN2660483Y (en) Dragline type underwater creeper
CN2610315Y (en) Float water gage
CN109371943B (en) Marine floater fishing and comprehensive detecting device
CN214252252U (en) Water quality environment monitoring device based on wireless sensor
KR100832679B1 (en) Water quality measuring buoy system of automatic adaptability on water depth
RU2642677C1 (en) Underwater winch probe
CN105752867A (en) Electric hydrographic winch
CN214041373U (en) Water pollution synthesizes intelligent early warning device based on thing networking
CN2457602Y (en) Fixed point floating type water quality monitor in water
CN216283789U (en) Water level monitoring device for hydraulic engineering
CN107140117A (en) A kind of marine detecting instrument anti-halobios adhersion lowering or hoisting gear
CN207866812U (en) A kind of power plant water monitoring device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees