JPH08145982A - Water quality automatic measuring instrument - Google Patents

Water quality automatic measuring instrument

Info

Publication number
JPH08145982A
JPH08145982A JP29251594A JP29251594A JPH08145982A JP H08145982 A JPH08145982 A JP H08145982A JP 29251594 A JP29251594 A JP 29251594A JP 29251594 A JP29251594 A JP 29251594A JP H08145982 A JPH08145982 A JP H08145982A
Authority
JP
Japan
Prior art keywords
water
water quality
sample
hose
quality data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29251594A
Other languages
Japanese (ja)
Inventor
Takao Yamamoto
孝夫 山本
Akio Minami
章雄 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP29251594A priority Critical patent/JPH08145982A/en
Publication of JPH08145982A publication Critical patent/JPH08145982A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To measure water quality data for each specific time and each depth by providing a hose take-up device, a water bath for storing sample water, a water-sampling pump for sucking the sample water, and a detector for measuring water quality data. CONSTITUTION: A water-sampling nozzle 21 is mounted to one tip of a hose 20 and a hose take-up device 22 for winding off the hose to a specific depth is installed at the other tip. A water-sampling pump 23 for sucking the sample water through a hose 20 from the nozzle 21 is piped and connected to the device 22, the dust of the sample water is eliminated by a strainer 24, and the sample water is led to a water bath 25. A plurality of detector elements 26 for measuring each water quality data such as turbidity, water temperature, and pH are provided in the water bath 25 so that they are dipped in the sample water. A signal is outputted to the device 22 for driving it so that the nozzle 21 reaches a specific depth from a controller 31. The pump 23 is operated and the sample water is sucked into the water bath 25. In the water bath 25, each kind of element 26 measures the water quality data of the sample water and the measurement result is outputted to the device 31.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、湖沼、ダム貯水池など
の特定水域において、濁度、水温等の水質測定を自動で
行うシステムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a system for automatically measuring water quality such as turbidity and water temperature in specific water areas such as lakes and dam reservoirs.

【0002】[0002]

【従来の技術】湖沼、ダム貯水池における水面から所望
深度の水質データの分布状況を常時正確に観測し、水の
汚染状況を把握することが放流・浄化操作を行う上で重
要な情報となっている。すなわち、この情報は貯水を飲
料水として取水する場合に重要となるばかりか、冷水層
や濁水層を下流域に放流する場合にも農作物の発育に影
響するし、さらに濁度、水温、溶存酸素、PH等の変化
が淡水魚の養殖、プランクトン生育などにも影響を与
え、誤って放流・浄化操作をすれば賠償問題を引き起こ
す虞れも出てくる。
2. Description of the Related Art It is important to accurately observe the distribution status of water quality data at a desired depth from the water surface in lakes and dam reservoirs, and to grasp the water pollution status in order to perform discharge and purification operations. There is. That is, this information is important not only when the stored water is taken as drinking water, but also when the cold water layer or the turbid water layer is discharged to the downstream region, it affects the growth of crops, and further, the turbidity, the water temperature, and the dissolved oxygen. , PH, etc. also affect freshwater fish farming, plankton growth, etc., and there is a risk of compensation problems if the discharge and purification operations are mistakenly performed.

【0003】このような問題を未然に防ぐためには、所
望深度の水質データを取るための検出体を水中に投入す
ることが必要であり、常時正確に水質データを自動で観
測することが望まれている。そこで従来から例えば図2
および図3に示す装置により濁度、水温等の水質データ
を測定することが行われている。すなわち、図2に示す
ように湖岸または湖底に塔1を建設し、観測用の検出体
2を塔に沿って垂直方向に昇降動させる塔方式か、また
は図3に示すように湖面5に浮力体6を浮かせ、前記浮
力体の直下に複数の固定検出体を設置し、あるいは前記
浮力体にウインチ7を設け検出体2を自動昇降させて測
定する浮力体方式がある。なお、貯水は雨水と放流によ
り増減するため、湖面5の高さは最高でH.W.L、中
間でN.W.L、最低でL.W.Lとなる。
In order to prevent such problems, it is necessary to put a detector for taking water quality data at a desired depth into water, and it is desirable to constantly and accurately observe water quality data. ing. So, for example, as shown in FIG.
Also, water quality data such as turbidity and water temperature are measured by the device shown in FIG. That is, as shown in FIG. 2, a tower 1 is constructed on the lake shore or the bottom of the lake, and the detector 2 for observation is vertically moved up and down along the tower, or as shown in FIG. There is a buoyant body method in which the body 6 is floated, a plurality of fixed detection bodies are installed directly below the buoyancy body, or a winch 7 is provided on the buoyancy body to automatically raise and lower the detection body 2 for measurement. Since the amount of stored water increases or decreases depending on the amount of rainwater and discharge, the height of the lake surface 5 is at the maximum. W. L, N.M. in the middle. W. L, at least L. W. It becomes L.

【0004】[0004]

【発明が解決しようとする課題】上述した従来の水質測
定装置においては次のような問題点がある。 (1) 湖岸壁3に塔1を建設する塔方式は、水平移動およ
び昇降移動自在にする付帯設備を含めて設備が大がかり
となり、建設費が高額となるほか、保守点検性が悪いと
いった問題がある。また採取できる水は、ダムの湖岸近
傍の腕部材4の腕長さ範囲内に限定され、ダム全体では
なく局所的に偏った水質データしか収集・観測できない
という問題も含んでいる。またダム全体の水質データを
得るには、湖岸から離れたダム貯水池の中央部の深度の
最も深い箇所の水も採取しなければならず、そのような
箇所の湖底に建造物である塔を建設することは技術面で
も費用面でも困難であり、さらに貯水は雨水と放流によ
り増減水するため、濁流およびそれに浮遊するゴミ・流
木等によって塔が損壊する危険性がある。 (2) ダムを設けた人工湖では、塔の建設がダムの構造強
度等に悪影響を与えることを危惧して塔などの建造物の
建設を禁止したり、ダム貯水池が国立公園・国定公園な
どの特定地域に存する場合は、景観保護・環境保全のた
めに塔が湖面上に現出するのを禁止するといった問題も
ある。 (3) 浮力体方式においては、検出体2を浮力体5から所
定の深度に降ろす場合、機械的、電気的、光学的検出方
式を利用した精密な検出体2が、立ち枯れの樹木8に絡
み付いたり岩や流木あるいは廃屋9に衝突して破損した
り、湖底10に堆積したヘドロに埋まって引き上げがで
きなくなるという問題点がある。 (4) さらに浮力体方式においては、機械的、電気的、光
学的検出方式を利用した検出体2から出力される電気信
号はケーブル11の中の導線を伝わり、ケーブル巻取り
部12ではスリップリングを介して最終的に制御盤を通
ってダム管理室13に伝送される。ここで、図4にスリ
ップリングの構造模式図を示す。スリップリングの機能
は、回転部材14の外周にすり接触抵抗の小さい絶縁部
材15を介して装着した砲金などで形成されるスリップ
リング16により、前記スリップリングの外周に固定ブ
ラシ17を配設して導線18を介して回転導体部から固
定導体部へ電気的に接続させることである。したがっ
て、スリップリングを使用することにより伝送系統内部
に回路の不完全さ即ち物理的接触部(接点)が存在する
ため、伝送系の信号を乱す有害な成分である電気的雑音
が発生し易い。なお、このような電気的雑音により正確
な検出体2の情報が伝送できなくなる問題が生ずる。 (5) 塔方式および浮力体方式の両者において、水質デー
タを検知する検出体は常に水中に浸されているので寿命
が短くなり、百数十メートルの水深に耐えられる耐水圧
構造でなければならない。また検出体の周囲の水が静止
したままであると測定誤差が生じる。
The conventional water quality measuring device described above has the following problems. (1) The tower system for constructing the tower 1 on the lake quay 3 has a large amount of equipment including auxiliary equipment that allows horizontal movement and vertical movement, resulting in high construction costs and poor maintenance and inspection. is there. Further, the water that can be collected is limited to within the arm length range of the arm member 4 near the lake shore of the dam, and there is a problem that only locally biased water quality data can be collected and observed, not the entire dam. In addition, in order to obtain water quality data for the entire dam, it is necessary to collect the water at the deepest point in the central part of the dam reservoir away from the shoreline, and construct a tower that is a structure on the bottom of the lake at such a point. It is difficult in terms of technology and cost, and since the amount of stored water increases and decreases due to rainwater and discharge, there is a risk that the tower will be damaged by muddy flow and dust / driftwood floating in it. (2) In an artificial lake with a dam, we fear that construction of the tower will adversely affect the structural strength of the dam and prohibit the construction of structures such as towers, and dam reservoirs such as national parks and national parks. In the case of being in a specific area, there is also a problem that the tower is prohibited from appearing on the surface of the lake in order to protect the landscape and protect the environment. (3) In the buoyancy body method, when the detection body 2 is lowered from the buoyancy body 5 to a predetermined depth, the precise detection body 2 using mechanical, electrical or optical detection method is entangled with the dead tree 8 There are problems that the rocks and driftwood collide with the abandoned house 9 and are damaged, or that they cannot be pulled up because they are buried in the sludge accumulated on the lake bottom 10. (4) Further, in the buoyancy body method, the electric signal output from the detection body 2 using the mechanical, electrical, and optical detection methods is transmitted through the conductor wire in the cable 11, and the slip ring is used in the cable winding portion 12. Finally, it is transmitted to the dam management room 13 through the control panel. Here, FIG. 4 shows a schematic diagram of the structure of the slip ring. The function of the slip ring is that the fixed brush 17 is provided on the outer periphery of the slip ring by the slip ring 16 formed of gun metal or the like mounted on the outer periphery of the rotating member 14 via the insulating member 15 having a small contact resistance. This is to electrically connect the rotating conductor portion to the fixed conductor portion via the conductor wire 18. Therefore, by using the slip ring, there is an incomplete circuit, that is, a physical contact portion (contact point) inside the transmission system, and thus electrical noise, which is a harmful component that disturbs the signal of the transmission system, is easily generated. Note that such electrical noise causes a problem that accurate information of the detector 2 cannot be transmitted. (5) In both the tower method and the buoyant body method, the detection body that detects water quality data is always immersed in water, so its life is shortened and it must be a water pressure resistant structure that can withstand a water depth of hundreds of tens of meters. . If the water around the detector remains stationary, a measurement error will occur.

【0005】すなわち、上述の従来の水質測定装置で
は、構造が複雑でかつ設備費の高騰を招くばかりでな
く、維持管理や保守が面倒であるという問題点があっ
た。したがって本発明の目的は、従来技術の問題点を解
消するためになされたものであり、廉価な設備費でかつ
保守管理が容易でしかもダム貯水池の所望位置、所望深
度の水質を測定誤差が生じず常時正確かつ容易に測定す
ることのでき、しかも水質データ検出体の長寿命化を図
ることができる水質自動測定装置を提供することであ
る。
That is, the above-mentioned conventional water quality measuring device has a problem that not only the structure is complicated and the equipment cost rises, but also maintenance and maintenance are troublesome. Therefore, the object of the present invention is to solve the problems of the prior art, inexpensive equipment cost and easy maintenance, and error in measuring the water quality at the desired position and depth of the dam reservoir. It is an object of the present invention to provide an automatic water quality measuring device that can always measure accurately and easily and can extend the life of the water quality data detector.

【0006】[0006]

【課題を解決するための手段】本発明は、水面に係留さ
れた浮力体と、前記浮力体上に試料水を流すホースを巻
出し/巻取りするホース巻取装置と、前記試料水を吸い
上げる採水ポンプと、前記試料水を貯留する水槽と、前
記水槽内に設置されかつ前記採水ポンプに吸い上げられ
た前記試料水の水質データを測定する検出体と、前記ホ
ース巻取装置および検出体を作動制御する制御装置を具
備し、所定時刻かつ所定深度毎の水質データを測定する
ことを特徴とするものである。
According to the present invention, a buoyant body moored on a water surface, a hose winding device for unwinding / winding a hose for flowing sample water on the buoyant body, and sucking up the sample water. A water sampling pump, a water tank for storing the sample water, a detector installed in the water tank and measuring water quality data of the sample water sucked up by the water sampling pump, the hose winding device, and a detector. The water quality data is measured at a predetermined time and at a predetermined depth.

【0007】[0007]

【実施例】以下本発明に係る一実施例を添付図面に基づ
いて説明する。図1は本発明を実施するための水質自動
測定装置の概略的構成図であり、図2および図3と同一
部分は同一の参照符号で示す。本実施例に係る水質自動
測定装置19は次に説明するような構成となっている。
ホース20の一側先端には採水ノズル21が取り付けら
れ、他側には所定の深度に前記ホースを巻出しあるいは
巻取りするためのホース巻取装置22が設置される。な
お採水ノズル21先端の深度を正確に把握するために
は、ホース20の外周に等間隔の距離を置いて印を付け
てそれをセンサーで読み取る方法、あるいはホース巻取
装置22にその回転部の回転数を読み取るセンサーを設
置する方法を採用する(図示せず)。前記ホース巻取装
置には試料となる水を採水ノズル21からホース20の
中を通って吸い上げるための採水ポンプ23が配管接続
され、さらに前記採水ポンプの先には試料水の中の大き
なゴミを除去するためにストレーナ24が配管され、最
終的には水槽25に配管が導かれている。前記水槽には
濁度、水温、PH等の各種水質データを測定するための
検出体素子26が複数個、試料水に浸るように付設され
ている。また、採水ポンプ23により吸い上げられた試
料水を水槽25から溢れささないために、水槽25の側
壁上部にオーバーフロー管27を連結し余分な試料水を
外部の湖面5に排出させる。水槽25の側壁下部には排
出管28が連結され、さらに排出弁29を介して湖面5
と連通している。なお測定終了後の試料水は、前記排出
弁を開いて湖面5に排出される。前記検出体素子からの
各水質データの出力信号は、各々の変換器30を介して
制御装置31に出力され所望時刻の水質測定が可能とな
る。なお、上述の構成要素は全て浮力体6の上に設置さ
れ、前記浮力体は湖岸に打ち込まれたコンクリートアン
カーにロープを介して係留されている(図示せず)。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a schematic configuration diagram of an automatic water quality measuring apparatus for carrying out the present invention, and the same portions as those in FIGS. 2 and 3 are denoted by the same reference numerals. The automatic water quality measuring device 19 according to the present embodiment has a configuration described below.
A water sampling nozzle 21 is attached to one end of the hose 20, and a hose winding device 22 for unwinding or winding the hose to a predetermined depth is installed on the other side. In addition, in order to accurately grasp the depth of the tip of the water sampling nozzle 21, a mark is provided on the outer circumference of the hose 20 at equal intervals and the mark is read by a sensor, or the hose take-up device 22 has its rotating part. A method of installing a sensor for reading the number of revolutions is adopted (not shown). A water sampling pump 23 for sucking up the sample water from the water sampling nozzle 21 through the hose 20 is connected to the hose winding device by piping, and the tip of the water sampling pump is connected to the water sampling pump 23. A strainer 24 is piped to remove large dust, and finally the pipe is guided to a water tank 25. A plurality of detector elements 26 for measuring various kinds of water quality data such as turbidity, water temperature and PH are attached to the water tank so as to be immersed in the sample water. Further, in order to prevent the sample water sucked up by the water sampling pump 23 from overflowing from the water tank 25, an overflow pipe 27 is connected to the upper part of the side wall of the water tank 25 to discharge the excess sample water to the outside lake surface 5. A discharge pipe 28 is connected to the lower part of the side wall of the water tank 25, and a lake surface 5 is connected via a discharge valve 29.
Is in communication with The sample water after the measurement is discharged to the lake surface 5 by opening the discharge valve. The output signal of each water quality data from the detector element is output to the control device 31 via each converter 30, and the water quality at a desired time can be measured. All the above-mentioned components are installed on the buoyancy body 6, and the buoyancy body is moored to the concrete anchor driven into the lakeshore via a rope (not shown).

【0008】続いて水質自動測定装置19による水質測
定の動きについて説明する。まず、制御装置31から採
水ノズル21が所定深度になるようにホース巻取装置2
2に信号を出力して駆動させ、排水弁29は閉じてお
く。この状態で制御装置31のシーケンサ端末32の命
令信号により採水ポンプ23を作動させ、試料水を水槽
25に吸い上げる。水槽25においては、各種の検出体
素子26が試料水の水質データを測定し、その際、採水
ポンプ23は測定が完了するまで作動は継続し、オーバ
ーフロー管27の設置位置を越える試料水はオーバーフ
ロー管27から溢れ排出され、水槽25には常に新しい
試料水が流れ込みこの新しい試料水の水質を検出体素子
26で測定することになる。検出体素子26の測定結果
は制御装置31に出力され、前記制御装置の中のリモー
トI/O33から離れたダム管理室13までインサーネ
ット、光ケーブル等のケーブル11を介して伝送され、
ダム管理室13で測定結果をモニタ部あるいは記録部等
で読み取ることが可能となる。また、ダム管理室13で
は、この水質データ測定結果から判断して貯水の放流・
浄化操作を行う。 なお、本実施例の水槽25の寸法
は、長さ200mm×幅200mm×深さ100mmすなわち
容量4l、水槽25内の滞留時間を5秒として採水ポン
プ23の容量は48l/分、揚程5mとし、流速2m/
秒とするとホース内径φ25とした。 所定深度の試料
水の水質測定が完了したならば、採水ポンプ23を停止
し、排水弁29を開にし、排出管28を介して水槽25
に貯まっている試料水を排出する。なお、他の所定深度
の試料水の水質データも上述と同様にして測定できる。
Next, the movement of water quality measurement by the automatic water quality measuring device 19 will be described. First, the hose winding device 2 is controlled by the control device 31 so that the water sampling nozzle 21 has a predetermined depth.
A signal is output to 2 for driving, and the drain valve 29 is closed. In this state, the water sampling pump 23 is operated by a command signal from the sequencer terminal 32 of the control device 31, and the sample water is sucked up into the water tank 25. In the water tank 25, the various detector elements 26 measure the water quality data of the sample water, and at that time, the water sampling pump 23 continues to operate until the measurement is completed, and the sample water exceeding the installation position of the overflow pipe 27 is not collected. Overflowing from the overflow pipe 27, new sample water constantly flows into the water tank 25, and the quality of this new sample water is measured by the detector element 26. The measurement result of the detector element 26 is output to the control device 31 and transmitted to the dam management room 13 remote from the remote I / O 33 in the control device via the cable 11 such as an internet or an optical cable.
In the dam management room 13, the measurement result can be read by the monitor unit or the recording unit. In addition, in the dam management room 13, judging from this water quality data measurement result
Perform purification operation. The dimensions of the water tank 25 in this embodiment are 200 mm in length × 200 mm in width × 100 mm in depth, that is, a capacity of 4 l, the residence time in the water tank 25 is 5 seconds, the capacity of the water sampling pump 23 is 48 l / min, and the lift is 5 m. , Flow velocity 2m /
The inner diameter of the hose was φ25 in seconds. When the water quality measurement of the sample water at the predetermined depth is completed, the water sampling pump 23 is stopped, the drain valve 29 is opened, and the water tank 25 is opened via the discharge pipe 28.
Drain the sample water stored in. Water quality data of sample water at other predetermined depths can also be measured in the same manner as described above.

【0009】[0009]

【発明の効果】以上詳述したように本発明によれば、下
記の効果を奏する。 (1)付帯設備を含めて構造が簡易、コンパクトで点検
保守が容易で且つ設備費や維持管理費が廉価で、景観を
損なうことなく湖水、ダム貯水池などの水質測定を自動
で行うシステムを提供することができる。 (2)浮力体上の水槽内に検出体素子を設置するため、
検出体素子に耐圧性の必要がなくなり汎用検出体素子が
使用でき、また検出体素子が立ち枯れの樹木や岩などに
絡み付いたり湖底のヘドロに埋まって破損することがな
く、検出体素子の長寿命化が図れる。さらに検出体素子
が常に湖面上に設置しているため維持調整が容易であ
る。 (3)伝送回路途中にスリップリング等の物理的接触部
(接点)が存在しないこととゲーブル長さが短くなるこ
とから、電気的雑音が生じ難く水質データ測定精度が向
上する。
As described in detail above, the present invention has the following effects. (1) Provides a system that automatically measures water quality of lake water, dam reservoirs, etc. without compromising the landscape, with a simple structure including incidental facilities, compact structure, easy inspection and maintenance, inexpensive equipment and maintenance costs can do. (2) In order to install the detector element in the water tank on the buoyancy body,
The detector element does not need pressure resistance and can be used as a general-purpose detector element, and the detector element does not become entangled with dead trees or rocks or buried in the sludge on the lake bottom and damaged, resulting in a long life of the detector element. Can be realized. Furthermore, since the detector element is always installed on the surface of the lake, maintenance and adjustment is easy. (3) Since there is no physical contact portion (contact point) such as a slip ring in the middle of the transmission circuit and the gable length is short, electrical noise is unlikely to occur and the water quality data measurement accuracy is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施に係る水質自動測定装置を示す
概略的構成図である。
FIG. 1 is a schematic configuration diagram showing an automatic water quality measuring device according to one embodiment of the present invention.

【図2】従来の塔方式の水質測定装置の概略構成を示す
側面図である。
FIG. 2 is a side view showing a schematic configuration of a conventional tower-type water quality measuring device.

【図3】従来の浮力体方式の水質測定装置の概略構成を
示す側面図である。
FIG. 3 is a side view showing a schematic configuration of a conventional buoyancy body type water quality measuring device.

【図4】図3の浮力体方式の水質測定装置に使用される
スリップリングの構造模式図である。
FIG. 4 is a structural schematic view of a slip ring used in the buoyancy body type water quality measuring device of FIG.

【符号の説明】[Explanation of symbols]

1:塔、2:検出体、3:湖岸壁、4:腕部材、5:湖
面、6:浮力体、7:ウインチ、8:立ち枯れの樹木、
9:廃屋、10:湖底、11:ケーブル、12:ケーブ
ル巻取り部、13:ダム管理室、14:回転部材 15:絶縁部材、16:スリップリング、17:固定ブ
ラシ、18:導線、19:水質自動測定装置、20:ホ
ース、21:採水ノズル、22:ホース巻取装置、2
3:採水ポンプ、24:ストレーナ、25:水槽、2
6:検出体素子、27:オーバーフロー管、28:排水
管、29:排水弁、30:変換器、31:制御装置、3
2:シーケンサ端末、33:リモートI/O
1: Tower, 2: Detecting body, 3: Lake quay, 4: Arm member, 5: Lake surface, 6: Buoyant body, 7: Winch, 8: Dead tree,
9: Abandoned house, 10: Lake bottom, 11: Cable, 12: Cable winding section, 13: Dam management room, 14: Rotating member, 15: Insulating member, 16: Slip ring, 17: Fixed brush, 18: Conducting wire, 19: Automatic water quality measuring device, 20: hose, 21: water sampling nozzle, 22: hose winding device, 2
3: Water sampling pump, 24: Strainer, 25: Water tank, 2
6: detector element, 27: overflow pipe, 28: drain pipe, 29: drain valve, 30: converter, 31: control device, 3
2: Sequencer terminal, 33: Remote I / O

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 水面に係留された浮力体と、前記浮力体
上に試料水を流すホースを巻出し/巻取りするホース巻
取装置と、前記試料水を吸い上げる採水ポンプと、前記
試料水を貯留する水槽と、前記水槽内に設置されかつ前
記採水ポンプに吸い上げられた前記試料水の水質データ
を測定する検出体と、前記ホース巻取装置および検出体
を作動制御する制御装置を具備し、所定時刻かつ所定深
度毎の水質データを測定することを特徴とする水質自動
測定装置。
1. A buoyant body moored on the water surface, a hose winding device for unwinding / winding up a hose for flowing sample water on the buoyant body, a water sampling pump for sucking up the sample water, and the sample water. A water tank that stores water, a detector that is installed in the water tank and that measures water quality data of the sample water sucked up by the water sampling pump, and a controller that controls the operation of the hose winding device and the detector. The water quality automatic measuring device is characterized by measuring water quality data at a predetermined time and at a predetermined depth.
JP29251594A 1994-11-28 1994-11-28 Water quality automatic measuring instrument Pending JPH08145982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29251594A JPH08145982A (en) 1994-11-28 1994-11-28 Water quality automatic measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29251594A JPH08145982A (en) 1994-11-28 1994-11-28 Water quality automatic measuring instrument

Publications (1)

Publication Number Publication Date
JPH08145982A true JPH08145982A (en) 1996-06-07

Family

ID=17782818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29251594A Pending JPH08145982A (en) 1994-11-28 1994-11-28 Water quality automatic measuring instrument

Country Status (1)

Country Link
JP (1) JPH08145982A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000049631A (en) * 2000-04-19 2000-08-05 강선규 Multi-channel pH/Ion Measuring System of using the PC monitor
KR100404279B1 (en) * 2000-04-19 2003-11-03 (주) 이스텍 Water Quality Measuring System of using the PC monitor
JP2007138415A (en) * 2005-11-15 2007-06-07 Chugoku Electric Power Co Inc:The Water area cleaning method and cleaning facility
CN103675308A (en) * 2013-12-30 2014-03-26 力合科技(湖南)股份有限公司 On-line analyzer for aquatic VOCs (Volatile Organic Chemicals)
JP2014228488A (en) * 2013-05-24 2014-12-08 東亜ディーケーケー株式会社 Water quality inspection device
KR101535624B1 (en) * 2013-12-05 2015-07-13 어영상 Units for automatic measuring quality of water
CN105865842A (en) * 2016-05-22 2016-08-17 渭南师范学院 River water quality sampling device
CN107807013A (en) * 2017-09-26 2018-03-16 上海大学 A kind of autonomous sampling system of constant temperature ocean water quality
WO2019045402A1 (en) * 2017-08-31 2019-03-07 재단법인대구경북과학기술원 Water sampling apparatus for water quality inspection
CN116147735A (en) * 2023-04-19 2023-05-23 山东省煤田地质局第五勘探队 Underground hydrogeological water level observation and regulation equipment

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000049631A (en) * 2000-04-19 2000-08-05 강선규 Multi-channel pH/Ion Measuring System of using the PC monitor
KR100404279B1 (en) * 2000-04-19 2003-11-03 (주) 이스텍 Water Quality Measuring System of using the PC monitor
JP2007138415A (en) * 2005-11-15 2007-06-07 Chugoku Electric Power Co Inc:The Water area cleaning method and cleaning facility
JP2014228488A (en) * 2013-05-24 2014-12-08 東亜ディーケーケー株式会社 Water quality inspection device
KR101535624B1 (en) * 2013-12-05 2015-07-13 어영상 Units for automatic measuring quality of water
CN103675308A (en) * 2013-12-30 2014-03-26 力合科技(湖南)股份有限公司 On-line analyzer for aquatic VOCs (Volatile Organic Chemicals)
CN105865842A (en) * 2016-05-22 2016-08-17 渭南师范学院 River water quality sampling device
WO2019045402A1 (en) * 2017-08-31 2019-03-07 재단법인대구경북과학기술원 Water sampling apparatus for water quality inspection
CN107807013A (en) * 2017-09-26 2018-03-16 上海大学 A kind of autonomous sampling system of constant temperature ocean water quality
CN107807013B (en) * 2017-09-26 2020-10-16 上海大学 Constant-temperature ocean water quality autonomous sampling system
CN116147735A (en) * 2023-04-19 2023-05-23 山东省煤田地质局第五勘探队 Underground hydrogeological water level observation and regulation equipment

Similar Documents

Publication Publication Date Title
US7040157B2 (en) Variable depth automated dynamic water profiler
KR200438336Y1 (en) Control Apparatus for Water Analysis
US20110012728A1 (en) Sensor and System to Detect Bridge Scour
JPH08145982A (en) Water quality automatic measuring instrument
JP3491633B1 (en) Coil type automatic surface water quality monitoring device
JP2002168674A (en) Submerged water level meter
KR101025872B1 (en) Apparatus for vertical profiling seawater from buoy being able to observe waves
CN206804580U (en) Embedded river water quality monitors multi-parameter all-in-one
KR100667581B1 (en) Measurement apparatus for underground water supply pipe of smooth ground
CN101706311B (en) Magnetic suspension type double-purpose meter for water levels and layered settlement
KR100430902B1 (en) A sample picking apparatus for examination of water
CN211668612U (en) Hydrology monitoring is with single-column radar water level measurement device
CN113148012A (en) Hydrology monitoring buoy control system
JP2006167654A (en) Monitor for water quality of sewage
JP2011047847A (en) Ground water level detector
CN111855940A (en) Water conservancy intellectualized management platform based on Internet of things
WO2019205553A1 (en) Water instrument fixing apparatus and water quality set-depth in-situ monitoring system using same
CN201561721U (en) Magnetic suspension type water-level layering and settling dual-purpose meter
CN219574071U (en) Ecological river and lake dynamic monitoring device
CN219830025U (en) Shallow groundwater monitoring device of wetland ecosystem
CN215098114U (en) Hydrology monitoring buoy control system
CN213902515U (en) Drainage measurement system
CN218489849U (en) Buoy for monitoring water quality environment
CN113957929B (en) Municipal pipe network intelligence well lid
CN114321564B (en) Robot for detecting inflow and infiltration points of sewage pipeline