JP3487952B2 - Drive device and drive control method for electric vehicle - Google Patents

Drive device and drive control method for electric vehicle

Info

Publication number
JP3487952B2
JP3487952B2 JP08943595A JP8943595A JP3487952B2 JP 3487952 B2 JP3487952 B2 JP 3487952B2 JP 08943595 A JP08943595 A JP 08943595A JP 8943595 A JP8943595 A JP 8943595A JP 3487952 B2 JP3487952 B2 JP 3487952B2
Authority
JP
Japan
Prior art keywords
battery
power
energy
vehicle
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08943595A
Other languages
Japanese (ja)
Other versions
JPH08289410A (en
Inventor
祥太郎 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP08943595A priority Critical patent/JP3487952B2/en
Priority to US08/630,080 priority patent/US5780980A/en
Publication of JPH08289410A publication Critical patent/JPH08289410A/en
Priority to JP2001103869A priority patent/JP2001339872A/en
Application granted granted Critical
Publication of JP3487952B2 publication Critical patent/JP3487952B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/28Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the electric energy storing means, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/32Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/02Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit
    • B60L15/025Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit using field orientation; Vector control; Direct Torque Control [DTC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/28Conjoint control of vehicle sub-units of different type or different function including control of fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • H01M16/006Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers of fuel cells with rechargeable batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/907Electricity storage, e.g. battery, capacitor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/908Fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/944Characterized by control of fuel cell

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Fuel Cell (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気自動車の駆動装置
及び駆動制御方法に係り、特にハイブリッドバッテリを
電源とする電動機によって駆動される電気自動車の駆動
装置及び駆動制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a drive device and a drive control method for an electric vehicle, and more particularly to a drive device and a drive control method for an electric vehicle driven by an electric motor using a hybrid battery as a power source.

【0002】[0002]

【従来の技術】電気車は一般に、搭載された直流電源を
可変電圧、可変周波数の交流電源に変換するインバータ
と、車両駆動用の三相交流電動機と、この三相交流電動
機の電流及び回転速度を検出する電流センサ及び速度セ
ンサと、アクセル開度に応じて三相交流電動機のトルク
指令を決定するトルク指令演算手段と、前記トルク指令
及び前記電流センサの出力に基づいて三相交流電動機の
電流を制御するための三相交流電流指令を発生する三相
交流電流指令発生手段と、前記三相交流電流指令と前記
三相交流電動機に流れる電流とに基づいて前記インバー
タを制御する信号を発生する信号発生手段を備えてい
る。
2. Description of the Related Art Generally, an electric vehicle generally includes an inverter for converting a direct-current power source mounted on the vehicle into a variable-voltage, variable-frequency alternating-current power source, a three-phase alternating-current motor for driving the vehicle, and current and rotational speed of the three-phase alternating-current motor. A current sensor and a speed sensor for detecting the torque command, a torque command calculation means for determining a torque command of the three-phase AC motor according to the accelerator opening, and a current of the three-phase AC motor based on the torque command and the output of the current sensor. A three-phase AC current command generating means for generating a three-phase AC current command for controlling the, and a signal for controlling the inverter based on the three-phase AC current command and the current flowing in the three-phase AC motor. A signal generating means is provided.

【0003】このような電気車は、大気汚染の原因とな
る有害物質を排気ガスとして排出しない、地球環境と調
和しうるクリーンな自動車として、その利用が拡大され
つつある。化学工業社発行の「化学工業」1992年12月号
の69頁〜74頁には、「電気自動車用電池の開発動向」と
題して、新しい電池の開発動向が紹介されている。
The use of such an electric vehicle is expanding as a clean vehicle that does not emit harmful substances that cause air pollution as exhaust gas and that is in harmony with the global environment. On pages 69-74 of the December 1992 issue of "Chemical Industry" published by Chemical Industry Co., Ltd., the trend of development of new batteries is introduced under the title "Trends of development of batteries for electric vehicles".

【0004】電気車用のバッテリーとしては一般に二次
電池、特に鉛電池が広く用いられているが、二次電池は
一充電当たりの走行距離が短く、このことが電気車の普
及を促進する上で大きな障害となっている。
Secondary batteries, particularly lead batteries, are widely used as batteries for electric vehicles, but the secondary batteries have a short mileage per charge, which promotes the popularization of electric vehicles. Is a major obstacle.

【0005】一方、近年、二次電池に代わる電気車用の
バッテリーとして、固体高分子型燃料電池のような常温
型の燃料電池が注目されつつある。燃料電池は、燃料の
水素と酸素を電気化学的に反応させてエネルギーを取り
出すものであり、燃料が供給される間は出力を発生し続
けるため長時間の運転が可能となる。また、排出物もク
リーンである。しかし、実用化されている常温型の燃料
電池の出力は、単位の電池の出力電圧が1V、あるいは
出力電力が1W/cm2程度であり、低負荷だけでなく高
負荷まで広範囲の出力が要求される電気車用のバッテリ
ーとしては、出力密度が小さいという欠点がある。
On the other hand, in recent years, room temperature fuel cells such as polymer electrolyte fuel cells have been attracting attention as batteries for electric vehicles replacing secondary batteries. The fuel cell electrochemically reacts hydrogen and oxygen of the fuel to take out energy, and continues to generate an output while the fuel is supplied, so that it can be operated for a long time. Also, the emissions are clean. However, the output of a room temperature fuel cell that has been put into practical use is that the output voltage of the unit cell is 1 V or the output power is about 1 W / cm 2 , and a wide range of output is required not only for low loads but also for high loads. As a battery for an electric vehicle to be used, there is a drawback that the output density is low.

【0006】そこで、電動機に流れる電流が多いとき
は、燃料電池と二次電池の両方を使用し、少ないとき
は、燃料電池の余剰電力により二次電池を充電して次の
大きな負荷に耐えられるようにしたハイブリッドバッテ
リの技術が、特開昭47−32321 号公報や特開平6−12472
0 号公報に示されている。
Therefore, when the electric current flowing through the electric motor is large, both the fuel cell and the secondary battery are used. When the electric current is small, the surplus power of the fuel cell charges the secondary battery to withstand the next large load. Such hybrid battery technology is disclosed in JP-A-47-32321 and JP-A-6-12472.
No. 0 publication.

【0007】[0007]

【発明が解決しようとする課題】上記従来のハイブリッ
ドバッテリ方式の電源装置によれば、電気車用のバッテ
リーとして、二次電池や常温型燃料電池の弱点を補い、
広範囲の出力要求に応えられるバッテリーが得られる。
二次電池の定格電圧は通常300Vであるのに対して、
燃料電池の定格電圧は24V〜96V、一般には48V
である。従来のハイブリッドバッテリ方式の電源装置を
備えた電気車において、この定格電圧の大きな差異につ
いて十分に配慮されておらず、走行特性や走行可能距離
等の観点で十分に満足すべきものがなかった。
According to the above-mentioned conventional hybrid battery type power supply device, as a battery for an electric vehicle, the weaknesses of a secondary battery and a room temperature fuel cell are compensated.
A battery that meets a wide range of output requirements can be obtained.
While the rated voltage of the secondary battery is usually 300V,
Rated voltage of fuel cell is 24V ~ 96V, generally 48V
Is. In an electric vehicle equipped with a conventional hybrid battery type power supply device, this large difference in rated voltage has not been sufficiently taken into consideration, and there has been nothing that is sufficiently satisfactory from the viewpoint of running characteristics, travelable distance, and the like.

【0008】本発明の目的は、電気自動車用のバッテリ
ーとして二次電池と燃料電池を組み合わせたハイブリッ
ドバッテリを用いるものにおいて、燃料電池と二次電池
の定格電圧の相違に配慮し、双方の特性を十分に活かし
た最適な使用形態とすることによって、車両の低負荷か
ら高負荷までの広範囲の出力要求に応えられ、かつ走行
可能距離の長い電気自動車の駆動方式を提供することに
ある。
An object of the present invention is to use a hybrid battery in which a secondary battery and a fuel cell are combined as a battery for an electric vehicle, and consider the difference between the rated voltage of the fuel cell and that of the secondary battery so that the characteristics of both can be considered. It is an object of the present invention to provide a drive system for an electric vehicle that can meet a wide range of output demands from a low load to a high load of a vehicle and has a long mileage by making an optimum use form that makes full use of it.

【0009】[0009]

【課題を解決するための手段】本発明は、車両を駆動す
る三相交流電動機と、直流電力を交流電力に変換すると
共に、変換された交流電力を前記三相交流電動機に供給
するインバータと、前記三相交流電動機の動力源であっ
て、二次電池からなると共に前記インバータを介して前
記三相交流電動機に接続されたパワーバッテリー、常時
定出力を発生する燃料電池からなると共に昇圧回路を介
して前記パワーバッテリーに並列に接続されたエネルギ
ーバッテリー及び前記このエネルギーバッテリーにDC
−DCコンバータを介して接続されると共に前記エネル
ギーバッテリーの燃料供給反応生成物排出用ポンプの電
源である車両用補助バッテリーによって構成された直流
電源と、前記インバータの制御信号を発生する信号発生
手段と、キースイッチと、前記パワーバッテリー、前記
エネルギーバッテリー、前記三相交流電動機又は前記イ
ンバータの入力電流のいずれかの電流若しくは電圧に基
づいて前記昇圧回路を制御すると共に前記直流電源の電
圧を所定の範囲に維持するバッテリー電流・電圧制御手
段と、前記キースイッチがオフでかつ前記パワーバッテ
リーの充電量が所定値以下のとき、前記昇圧回路をオン
し前記エネルギーバッテリーから前記パワーバッテリー
への充電を行なわせると共に、前記キースイッチがオフ
でかつ前記充電量が前記所定値よりも大きいとき前記昇
圧回路をオフし前記充電を停止させ、さらには前記キー
スイッチがオフでかつ前記車両用補助バッテリーの充電
量が所定値以下のとき前記DC−DCコンバータを制御
して前記エネルギーバッテリーから前記車両用補助バッ
テリーへの充電を行わせる充電制御手段とを備え、前記
バッテリー電流・電圧制御手段は、前記キースイッチが
オンでかつ前記車両が、制動エネルギーを前記パワーバ
ッテリーに回収する回生モードにあるとき前記昇圧回路
の動作をオフとし、前記エネルギーバッテリーから前記
パワーバッテリーへの充電を停止させることを特徴とす
る電気自動車の駆動装置。
The present invention is a vehicle for driving a vehicle.
And a three-phase AC motor that converts DC power to AC power
Together, supplies the converted AC power to the three-phase AC motor
And the power source for the three-phase AC motor.
It consists of a secondary battery and is
Power battery connected to the three-phase AC motor, always
It consists of a fuel cell that generates a constant output and a boost circuit.
Energy connected in parallel to the power battery
-Battery and DC in this energy battery
-Connected via a DC converter and said energy
Power supply of the battery
Direct current constituted by the auxiliary vehicle battery that is the source
Power supply and signal generation for generating control signals for the inverter
Means, a key switch, the power battery, the
Energy battery, the three-phase AC motor or the battery
The input current of the inverter
The booster circuit is controlled based on the
Battery current / voltage control to maintain the pressure within the specified range
And the key switch is off and the power battery is
When the battery charge is below a specified value, the booster circuit is turned on.
From the energy battery to the power battery
The key switch is turned off
And the charge amount is larger than the predetermined value,
Turn off the pressure circuit to stop the charging, and further press the key
Switch off and charge the vehicle auxiliary battery
Controls the DC-DC converter when the quantity is below a predetermined value
Then, from the energy battery to the vehicle auxiliary bag
Charging control means for charging the terry,
Battery current / voltage control means
When the vehicle is on and the vehicle
When the booster circuit is in the regenerative mode of collecting in the battery
Turn off the operation of the
A drive device for an electric vehicle, which stops charging of a power battery .

【0010】また、本発明は、車両に備えられたエアコ
ン用電動機,パワーステアリング用電動機及びバキュー
ム用電動機を含む補機類を、エネルギーバッテリーを電
源として駆動することを特徴とする。
The present invention also provides an air conditioner provided in a vehicle.
Motor, power steering motor and vacuum
Auxiliary equipment including electric motors for
It is characterized by being driven as a source.

【0011】さらに、本発明は、エネルギーバッテリー
にDC−DCコンバータを介して接続された車両用補助
バッテリーを電源として、エネルギーバッテリーの燃料
供給反応生成物排出用ポンプを駆動することを特徴とす
る。
Further, the present invention is an energy battery.
For vehicles connected to the vehicle via a DC-DC converter
Energy from the battery, using the battery as the power source
Characterized by driving a pump for discharging a supplied reaction product
It

【0012】[0012]

【作用】並列に接続されたパワーバッテリーとエネルギ
ーバッテリーまたは前記電動機のいずれか2つの電流も
しくは電圧が、バッテリー電流・電圧制御手段によって
検知、制御され、直流電源としての電圧が所定の範囲に
維持される。また、前記パワーバッテリーの充電量が所
定値以下の時は、前記エネルギーバッテリーから前記パ
ワーバッテリーへの充電を行い、前記充電量が該所定値
よりも大きい時は充電を停止する。
The current or the voltage of any two of the power battery and the energy battery or the electric motor connected in parallel is detected and controlled by the battery current / voltage control means, and the voltage as the DC power supply is maintained within a predetermined range. It When the charge amount of the power battery is less than or equal to a predetermined value, the energy battery charges the power battery, and when the charge amount is greater than the predetermined value, charging is stopped.

【0013】本発明によれば、電気車の負荷の軽い運転
状態では、電動機の運転に必要な電力は、主としてエネ
ルギーバッテリーから昇圧して供給される。電気車の負
荷が増大し、より大きなパワーが必要になると、主とし
てパワーバッテリーからの電力が三相交流電動機へ供給
される。
According to the present invention, when the electric vehicle is under a light load, the electric power required to operate the electric motor is boosted and supplied mainly from the energy battery. When the load of the electric vehicle increases and more power is required, power from the power battery is mainly supplied to the three-phase AC motor.

【0014】また、常時一定の出力を発生する低電圧の
エネルギーバッテリーから、昇圧して高電圧のパワーバ
ッテリーへ電力を供給して充電することにより、低負荷
から高負荷まで広範囲にわたる出力要求特性を満足させ
つつ、長期間走行することが可能となる。特に、パワー
バッテリーの電力を負荷変動の大きい車両の走行駆動力
に使用し、負荷変動が比較的少ない補機類には長期間に
わたり一定の出力が得られるエネルギーバッテリーの電
力を使用することによって、走行可能距離を延長し、電
源装置のサイズのコンバクト化を図ることができる。ま
た、低負荷から高負荷まで車両の広範囲の出力要求に応
えられ、走行特性を改善することができる。
Further, by charging from a low-voltage energy battery that constantly generates a constant output by boosting and supplying power to a high-voltage power battery, a wide range of output request characteristics from low load to high load can be obtained. It is possible to drive for a long time while satisfying. In particular, by using the power of the power battery as the running drive force of the vehicle with large load fluctuations, and by using the power of the energy battery that can obtain a constant output for a long period of time for auxiliary machines with relatively small load fluctuations, The travelable distance can be extended and the size of the power supply device can be made compact. Further, it is possible to meet a wide range of output demands of the vehicle from a low load to a high load and improve the traveling characteristics.

【0015】[0015]

【実施例】以下、本発明の一実施例を、図1の電気車の
駆動装置のブロック図に従って説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the block diagram of the drive system for an electric vehicle shown in FIG.

【0016】図1において、電気車に搭載された主電源
は、並列に接続されたエネルギーバッテリー1とパワー
バッテリー2からなる直流電源である。エネルギーバッ
テリー1としては常時一定の出力を発生する燃料電池、
パワーバッテリー2としては二次電池である鉛電池を用
いる。3はコントローラ10をバックアップする補助バ
ッテリーである。4はエネルギーバッテリーの電流及び
電圧を検出するエネルギーバッテリー電流・電圧検出
器、5はパワ−バッテリーの電流及び電圧を検出するパ
ワ−バッテリー電流・電圧検出器、6はエネルギーバッ
テリー用のリレ−である。7はエネルギーバッテリー1
の電圧を昇圧してパワーバッテリー2を充電する昇圧回
路である。12は主回路を開閉する主コンタクタ、13
はパワースイッチング素子を用いてバッテリー1及び2
の直流電力を交流電力に変換するインバータ、14は電
気車駆動用の三相交流電動機、15はキースイッチ、1
6は電動機14の回転数Nを検出する速度センサであ
る。また、17(17a,17b,17c)は電流セン
サーであり、交流電動機14の1次巻線に流れる3相交
流の1次電流i(iu,iv,iw)を検出する。18
は、アクセルが踏み込まれているときに踏み込み量に応
じた出力θAを出すアクセルスイッチである。19は、
エネルギーバッテリー1への燃料供給や反応生成物を排
出するためのポンプである。
In FIG. 1, the main power source mounted on the electric vehicle is a DC power source including an energy battery 1 and a power battery 2 connected in parallel. As the energy battery 1, a fuel cell that constantly generates a constant output,
A lead battery, which is a secondary battery, is used as the power battery 2. Reference numeral 3 is an auxiliary battery that backs up the controller 10. 4 is an energy battery current / voltage detector for detecting the current and voltage of the energy battery, 5 is a power battery current / voltage detector for detecting the current and voltage of the power battery, and 6 is a relay for the energy battery. . 7 is the energy battery 1
Is a booster circuit that boosts the voltage of the power source to charge the power battery 2. 12 is a main contactor for opening and closing the main circuit, 13
Uses batteries 1 and 2 with power switching elements
Inverter for converting DC power into AC power, 14 is a three-phase AC motor for driving an electric vehicle, 15 is a key switch, 1
Reference numeral 6 denotes a speed sensor that detects the rotation speed N of the electric motor 14. Further, 17 (17a, 17b, 17c) is a current sensor, which detects the primary current i (iu, iv, iw) of the three-phase alternating current flowing through the primary winding of the AC motor 14. 18
Is an accelerator switch that outputs an output θA corresponding to the amount of depression when the accelerator is depressed. 19 is
It is a pump for supplying fuel to the energy battery 1 and discharging reaction products.

【0017】昇圧回路7は、エネルギーバッテリー1を
短絡するスィッチング用トランジスタ7bと、リアクタ
7a及び逆流阻止ダイオード7cから構成されている。
パワーバッテリー2の定格電圧は300V、エネルギー
バッテリー1の定格電圧は48Vであり、昇圧回路7
で、エネルギーバッテリー1の電圧VEをパワ−バッテ
リー2の定格電圧VPもしくはこれより若干高い電圧ま
で昇圧することにより、エネルギーバッテリー1でパワ
ーバッテリー2を充電すると共に、電気車駆動用の三相
交流電動機14に対する電源として機能する。
The booster circuit 7 is composed of a switching transistor 7b for short-circuiting the energy battery 1, a reactor 7a and a reverse current blocking diode 7c.
The power battery 2 has a rated voltage of 300V and the energy battery 1 has a rated voltage of 48V.
Then, by boosting the voltage VE of the energy battery 1 to the rated voltage VP of the power battery 2 or a voltage slightly higher than this, the energy battery 1 charges the power battery 2 and the three-phase AC motor for driving the electric vehicle. 14 functions as a power source.

【0018】コントローラ10は、回転速度検出手段2
0、一次周波数指令生成手段22、トルク指令演算手段
30、アクセル開度演算手段31、ベクトル制御演算手
段32、交流電流指令発生手段33、電流・電圧制御手
段40、PWM信号発生手段42及びバッテリー電流・
電圧制御手段44を有する。
The controller 10 includes a rotation speed detecting means 2
0, primary frequency command generation means 22, torque command calculation means 30, accelerator opening calculation means 31, vector control calculation means 32, alternating current command generation means 33, current / voltage control means 40, PWM signal generation means 42 and battery current.・
It has a voltage control means 44.

【0019】コントローラ10は、電動機の回転速度
N、電動機電流i及びアクセル開度θAを取り込み、ト
ルク指令演算手段30でトルク指令Trを演算し、一次
周波数指令生成手段22で一次角周波数ω1*を演算し、
ベクトル制御演算手段32で交流電流指令I1を演算す
る。さらに、これらの一次角周波数ω1*、交流電流指令
I1等を用いて、電流・電圧制御手段40及び交流電流指
令発生手段33で、電流制御、交流電圧指令演算などの
各処理を実行し、PWM信号発生手段42からPWM信
号を出力する。このPWM信号に基づき駆動されるイン
バータ13により、バッテリー1及び2の直流電圧から
可変周波数、可変電圧の3相交流電圧が形成され、三相
交流電動機14のトルクが制御される。
The controller 10 takes in the rotational speed N of the electric motor, the electric motor current i, and the accelerator opening θA, calculates the torque command Tr with the torque command calculation means 30, and the primary angular frequency ω 1 * with the primary frequency command generation means 22. Is calculated,
The vector control calculation means 32 calculates the alternating current command I 1 . In addition, these primary angular frequency ω 1 *, AC current command
Using I 1 and the like, the current / voltage control means 40 and the AC current command generation means 33 execute various processes such as current control and AC voltage command calculation, and the PWM signal generation means 42 outputs a PWM signal. The inverter 13 driven based on this PWM signal forms a three-phase AC voltage of variable frequency and variable voltage from the DC voltage of the batteries 1 and 2, and controls the torque of the three-phase AC motor 14.

【0020】回転角速度検出手段20は、速度センサー
16の出力NのA相,B相パルスから交流電動機14の
回転角速度ωr(ω=2π・N/60)を検出する。ト
ルク指令演算手段30では、アクセル開度演算手段31
で求められるアクセルの踏み込み量θAに対応した量
と、回転角速度検出手段20で求められる電動機の回転
角速度ωrを入力として、三相交流電動機14に与える
トルク指令τrが生成される。
The rotational angular velocity detecting means 20 detects the rotational angular velocity ωr (ω = 2π · N / 60) of the AC motor 14 from the A-phase and B-phase pulses of the output N of the speed sensor 16. In the torque command calculation means 30, the accelerator opening calculation means 31
A torque command τr to be given to the three-phase AC electric motor 14 is generated by inputting an amount corresponding to the accelerator depression amount θA calculated in step 1 and the rotational angular velocity ωr of the electric motor determined by the rotational angular velocity detecting means 20.

【0021】ベクトル制御演算手段32は、励磁電動機
指令im及び電動機トルクτMを入力とし、トルク電流指
令It*を生成する。交流電流指令発生手段33は、交流
電流指令I1や一次角周波数ω1*に基づいて、電流・電
圧制御手段40に対する電流指令i*(iu*,iv*,iw
*)を発生する。電流・電圧制御手段40は、電流指令
i*及び電動機電流iを入力とし、電動機トルクτMを得
るための基準信号Eu*,Ev*,Ew*を生成する。
The vector control computing means 32 receives the excitation motor command im and the motor torque τM as inputs and generates a torque current command It *. The alternating current command generating means 33, based on the alternating current command I 1 and the primary angular frequency ω 1 *, supplies a current command i * (iu *, iv *, iw) to the current / voltage control means 40.
*) Occurs. The current / voltage control means 40 receives the current command i * and the electric motor current i as inputs, and generates reference signals Eu *, Ev *, Ew * for obtaining the electric motor torque τM.

【0022】PWM信号発生手段42では、基準信号
(Eu*,Ev*,Ew*)と三角波を比較して、PWM
信号を求め、このPWM信号を基にPWMインバータ1
3のアームを構成する6個パワー素子のゲート信号を形
成する。
The PWM signal generation means 42 compares the reference signals (Eu *, Ev *, Ew *) with the triangular wave, and outputs the PWM signal.
The signal is obtained, and the PWM inverter 1 based on this PWM signal
The gate signals of the six power elements forming the third arm are formed.

【0023】バッテリー電流・電圧制御手段44は、バ
ッテリー電流・電圧検出器4、5の出力に基づいて、エ
ネルギーバッテリー1やパワーバッテリー2の電流や電
圧が所定の範囲に維持されるように制御し、この電流や
電圧が許容値を超えた場合あるいは許容値より低下した
場合には、リレー6あるいは主コンタクタ12のいずれ
かを開状態とし、または昇圧回路7を動作させて、各電
流や電圧が許容値になるように制御する。この制御の詳
細については後で説明する。
The battery current / voltage control means 44 controls the current and voltage of the energy battery 1 and the power battery 2 so as to be maintained within a predetermined range based on the outputs of the battery current / voltage detectors 4 and 5. When the current or voltage exceeds the allowable value or falls below the allowable value, either the relay 6 or the main contactor 12 is opened, or the booster circuit 7 is operated to reduce the current or voltage. Control so that the allowable value is reached. Details of this control will be described later.

【0024】図2にエネルギーバッテリー1の一構成例
を示す。エネルギーバッテリーは、燃料改質部100と
燃料電池セル部120から構成される。燃料改質部10
0では、メタノールCH3OH及びまたはメタンCH4
水H2Oの改質反応により、H2ガスを生成する。燃料電
池セル部110は、燃料電極112、電解114、酸素
電極116及び出力部118を備えており、ポンプ19
によって供給されるH2ガスとO2ガスを原料として、触
媒反応により出力部118に、1セル当たり1W/cm
2程度のセル出力が取り出される。また、反応の結果生
成された水H2Oは、ポンプ19によって排出される。
エネルギーバッテリー1は原料が供給されるかぎり、常
時一定のセル出力が出力部118に得られる。ポンプ1
9は所定の条件で、キースィッチ15のオフの場合も駆
動される。その詳細については後で述べる。
FIG. 2 shows an example of the configuration of the energy battery 1. The energy battery includes a fuel reforming unit 100 and a fuel cell unit 120. Fuel reformer 10
At 0, H 2 gas is generated by the reforming reaction of methanol CH 3 OH and / or methane CH 4 and water H 2 O. The fuel cell unit 110 includes a fuel electrode 112, an electrolysis 114, an oxygen electrode 116, and an output unit 118, and a pump 19
1 W / cm per cell at the output part 118 by catalytic reaction using H 2 gas and O 2 gas supplied by
About 2 cell outputs are taken out. The water H 2 O produced as a result of the reaction is discharged by the pump 19.
As long as the raw materials are supplied to the energy battery 1, a constant cell output is always obtained at the output unit 118. Pump 1
A predetermined condition 9 is driven even when the key switch 15 is off. The details will be described later.

【0025】図3は、エネルギーバッテリー1、パワー
バッテリーの特性を示すものである。本発明では、パワ
ーバッテリー2の電圧VPはエネルギーバッテリー1の
昇圧後の電圧VCに比べて、電流の大きい範囲まで高い
電圧を維持するよう構成されている。ただし、無負荷状
態では、エネルギーバッテリー1の昇圧電圧VCがパワ
ーバッテリー2の電圧VPよりも高くなるように設定さ
れている。従って、電気車の負荷の軽い運転状態では、
電動機14の運転に必要な電力は、主としてエネルギー
バッテリー1から供給される。電気車の負荷が増大し、
より大きなパワーが必要になると、主としてパワーバッ
テリー2からの電力が電動機14へ供給される。
FIG. 3 shows the characteristics of the energy battery 1 and the power battery. In the present invention, the voltage VP of the power battery 2 is configured to maintain a higher voltage than the boosted voltage VC of the energy battery 1 up to a large current range. However, in the no-load state, the boosted voltage VC of the energy battery 1 is set to be higher than the voltage VP of the power battery 2. Therefore, when the electric vehicle has a light load,
Electric power required to operate the electric motor 14 is mainly supplied from the energy battery 1. The load on the electric car increases,
When more power is required, the electric power from the power battery 2 is mainly supplied to the electric motor 14.

【0026】エネルギーバッテリー1の放電電流は、最
大IEMAX以下になるように昇圧回路7で制御される。
The discharge current of the energy battery 1 is controlled by the booster circuit 7 so as to be below the maximum IEMAX.

【0027】パワーバッテリー2が放電状態にあるとき
は、エネルギーバッテリー1によりパワーバッテリー2
を充電する。そのためには、昇圧回路7を動作させ、主
コンタクタ12を開き、エネルギーバッテリー1の電圧
を昇圧してパワーバッテリー2へ電力を供給する。この
とき、バッテリー電流・電圧検出器で検出されるエネル
ギーバッテリー1の電流がIEMAX以下になるよう、昇圧
回路7でコントロールする。パワーバッテリー1の充電
率が所定値(通常90〜100%の範囲内)に達したと
きは、昇圧回路7の動作をオフとし、充電を停止する。
パワーバッテリー2の充電が完了したら、リレー6をオ
フにする。このとき、エネルギーバッテリー1から流れ
る電流はIEMAX以下に制限する。パワーバッテリー2の
充電は電気車がパワーを必要としない状態を選んでおこ
なえばよい。
When the power battery 2 is in a discharged state, the power battery 2 is charged by the energy battery 1.
To charge. For that purpose, the booster circuit 7 is operated, the main contactor 12 is opened, the voltage of the energy battery 1 is boosted, and power is supplied to the power battery 2. At this time, the booster circuit 7 controls so that the current of the energy battery 1 detected by the battery current / voltage detector becomes IEMAX or less. When the charging rate of the power battery 1 reaches a predetermined value (normally within the range of 90 to 100%), the operation of the booster circuit 7 is turned off and the charging is stopped.
When charging of the power battery 2 is completed, the relay 6 is turned off. At this time, the current flowing from the energy battery 1 is limited to IEMAX or less. The power battery 2 may be charged by selecting a state in which the electric vehicle does not need power.

【0028】コントローラ10のバッテリー電流・電圧
制御手段44の動作は、図4に示す通りである。まず、
キースイッチ15がオフの状態で、パワーバッテリー電
流・電圧検出器5により検知されたパワーバッテリー2
の電圧EPが所定の電圧EPC以上であるか否かをチェッ
クする(ステップ402)。もし、所定の電圧EPC以上
である場合には、以下の制御は不要である。
The operation of the battery current / voltage control means 44 of the controller 10 is as shown in FIG. First,
The power battery 2 detected by the power battery current / voltage detector 5 when the key switch 15 is off.
It is checked whether or not the voltage EP of above is equal to or higher than a predetermined voltage EPC (step 402). If the voltage is equal to or higher than the predetermined voltage EPC, the following control is unnecessary.

【0029】もし、パワーバッテリー2の電圧EPが所
定の電圧EPCに達していない場合には、次に、電気車が
制動エネルギーを回収する回生モードかどうかをチェッ
クする(ステップ403)。回生モードにあるときは、
制動エネルギーのパワーバッテリー2への回収効率を高
めるために、昇圧回路7の動作をオフとし、エネルギー
バッテリー1による充電を停止する。電気車が回生モー
ドにないときは昇圧回路7を導通状態にして、パワーバ
ッテリー2を充電する(ステップ404〜406)。次
に、キースイッチ15がオンになると、リレー6、主コ
ンタクタ12を導通状態にして、エネルギーバッテリー
1およびパワーバッテリー2から電動機14へ電力を供
給する(ステップ408〜410)。このとき、エネル
ギーバッテリー1から流れる電流はIEMAX以下に制限す
る。この制御は、バッテリー電流・電圧検出器4によっ
て検出されたバッテリー電流がIEMAX以下になるよう
に、昇圧回路7を駆動することによってなされる。(ス
テップ412〜416)。
If the voltage EP of the power battery 2 has not reached the predetermined voltage EPC, it is next checked whether or not the electric vehicle is in the regenerative mode for recovering braking energy (step 403). When in regenerative mode,
In order to improve the efficiency of collecting the braking energy to the power battery 2, the operation of the booster circuit 7 is turned off and the charging by the energy battery 1 is stopped. When the electric vehicle is not in the regenerative mode, the booster circuit 7 is turned on to charge the power battery 2 (steps 404 to 406). Next, when the key switch 15 is turned on, the relay 6 and the main contactor 12 are turned on, and power is supplied from the energy battery 1 and the power battery 2 to the electric motor 14 (steps 408 to 410). At this time, the current flowing from the energy battery 1 is limited to IEMAX or less. This control is performed by driving the booster circuit 7 so that the battery current detected by the battery current / voltage detector 4 becomes IEMAX or less. (Steps 412 to 416).

【0030】昇圧回路7の動作を図5で説明する。昇圧
回路7が動作状態、すなわちスィッチング用トランジス
タ7bが図の(a)に示すように所定の周期T(t1+
t2)でオン、オフを繰り返す。スィッチング用トラン
ジスタ7bがオンのとき、エネルギーバッテリーの電流
IEbは、図の(b)に示すように変化し、リアクタ7a
を介してエネルギーバッテリーを短絡しトランジスタ7
bに流れる電流ITは図の(c)に示すようにImin,Im
axの間で変化する。スィッチング用トランジスタ7bを
オフにしたとき、エネルギーバッテリーの電圧リアクタ
7aの電圧が重畳され、逆流阻止ダイオード7cを介し
てパワーバッテリーに供給される。このときの充電電流
ICH,充電電圧VCは図の(d),(e)に示すように
変化する。充電電圧VCが、パワーバッテリーの電圧VP
を超えた高い状態に或るとき充電される。
The operation of the booster circuit 7 will be described with reference to FIG. The booster circuit 7 is in an operating state, that is, the switching transistor 7b has a predetermined cycle T (t1 +) as shown in FIG.
Repeated on and off at t2). When the switching transistor 7b is turned on, the energy battery current IEb changes as shown in FIG.
Short the energy battery via the transistor 7
The current IT flowing through b is Imin, Im as shown in FIG.
Varies between ax. When the switching transistor 7b is turned off, the voltage of the voltage reactor 7a of the energy battery is superimposed and supplied to the power battery via the backflow prevention diode 7c. The charging current ICH and charging voltage VC at this time change as shown in (d) and (e) of the figure. The charging voltage VC is the power battery voltage VP
It is charged when it is in a high state that exceeds.

【0031】なお、エネルギーバッテリーVEと充電電
流ICH,充電電圧VCの関係は次式の通りである。
The relationship between the energy battery VE, the charging current ICH and the charging voltage VC is as follows.

【0032】[0032]

【数1】 [Equation 1]

【0033】エネルギーバッテリー1が放電状態にあっ
て、電圧が低いときは、昇圧回路7の動作を停止状態に
して、パワーバッテリー2からのみ電動機14へ電力を
供給する。
When the energy battery 1 is in a discharged state and the voltage is low, the operation of the booster circuit 7 is stopped and power is supplied only from the power battery 2 to the electric motor 14.

【0034】パワーバッテリー2の充放電状態は、バッ
テリー電流・電圧検出器5で検出され、パワーバッテリ
ー2の電圧EPが所定の電圧EPC以上となったときは、
昇圧回路7を停止状態とし、エネルギーバッテリー1か
らの充電を停止させる(ステップ418〜420)。以
下同様の処理により、電気車の電源装置としての、エネ
ルギーバッテリー1及びパワーバッテリー2に関して、
電流、電圧を所定の範囲に維持するような制御がなされ
る。
The charging / discharging state of the power battery 2 is detected by the battery current / voltage detector 5, and when the voltage EP of the power battery 2 exceeds a predetermined voltage EPC,
The booster circuit 7 is stopped and the charging from the energy battery 1 is stopped (steps 418 to 420). With respect to the energy battery 1 and the power battery 2 as the power supply device of the electric vehicle, the same process is performed below.
Control is performed to maintain the current and voltage within a predetermined range.

【0035】このように、パワーバッテリー2の充電量
が所定値以下の時は、キースイッチ15がオフであって
も、ポンプ19を駆動してエネルギーバッテリー1の出
力を発生させて、パワーバッテリー2への充電を行い、
パワーバッテリー2の充電量が該所定値に達したら充電
を停止する。
As described above, when the charge amount of the power battery 2 is less than the predetermined value, even if the key switch 15 is off, the pump 19 is driven to generate the output of the energy battery 1, and the power battery 2 is output. To charge,
When the charged amount of the power battery 2 reaches the predetermined value, the charging is stopped.

【0036】なお、エネルギーバッテリー1になんらか
の異常等例えば発熱あるいは燃料を補充する必要が生じ
たときは、リレー6をオフにする。
When the energy battery 1 has some abnormality such as heat generation or the need to replenish the fuel, the relay 6 is turned off.

【0037】図6は、パワーバッテリー2とエネルギー
バッテリー1の充放電特性を示す図である。例えば、パ
ワーバッテリー2の充電率が75%のときは、エネルギ
ーバッテリー1の電圧が高いため、電流iA がエネルギ
ーバッテリー1からパワーバッテリー2へ電流が流れ
る。放電電流iA1と充電電流iA2が等しくなったところ
で、充電電流と放電電流はバランスする。
FIG. 6 is a diagram showing charge / discharge characteristics of the power battery 2 and the energy battery 1. For example, when the charge rate of the power battery 2 is 75%, the current iA flows from the energy battery 1 to the power battery 2 because the voltage of the energy battery 1 is high. When the discharge current iA1 and the charge current iA2 become equal, the charge current and the discharge current are balanced.

【0038】パワーバッテリー2の充電状態は、バッテ
リー電流・電圧検出器5で検出される。図7は、パワー
バッテリー充電状態の検出方法を示す図であり、ある充
填電流IGが流れた時の電圧ViGを検出し、パワーバッ
テリーの充電状態を判別する。充填電流IG1が流れた時
の電圧がViG1aのとき、充電率は75%であり、電圧が
ViG1bのとき、充電率は95%である。同様に、充填電
流IG2が流れた時の電圧がViG2aのとき、充電率75%
であり、電圧がViG2bのとき、充電率は95%である。
パワーバッテリーの充電制御の一例としては、充電率が
75%以下になったら充電を開始し、充電率が95%程
度になったら充電を停止するのが良い。
The charge state of the power battery 2 is detected by the battery current / voltage detector 5. FIG. 7 is a diagram showing a method of detecting the state of charge of the power battery, in which the voltage ViG when a certain charging current IG flows is detected to determine the state of charge of the power battery. When the voltage when the charging current IG 1 flows is ViG 1 a, the charging rate is 75%, and when the voltage is ViG 1 b, the charging rate is 95%. Similarly, when the voltage when the charging current IG 2 flows is ViG 2 a, the charging rate is 75%.
When the voltage is ViG 2 b, the charging rate is 95%.
As an example of charging control of the power battery, it is preferable to start charging when the charging rate becomes 75% or less and stop charging when the charging rate reaches approximately 95%.

【0039】なお、本発明の電気車駆動用の電動機とし
ては、交流電動機に代えて、直流電動機を用いてもよ
い。また、直流電源を交流電動機用に、可変電圧、可変
周波数の交流電源に変換する手段としては、インバータ
ー以外の手段を用いても良い。
As the electric motor for driving the electric vehicle of the present invention, a DC electric motor may be used instead of the AC electric motor. Further, means other than the inverter may be used as means for converting the DC power supply into an AC power supply of variable voltage and variable frequency for the AC motor.

【0040】また、バッテリー電流・電圧制御手段44
により、エネルギーバッテリー1やパワーバッテリー2
の電流や電圧を所定の範囲に維持する制御において、バ
ッテリー電流・電圧検出器4、5の出力を利用する方法
の外に、バッテリー電流・電圧検出器4、5のいずれか
の1つの電流または電圧と、交流電動機14の1次巻線
に流れる1次電流iとから必要な制御情報を演算で求
め、制御を行なってもよい。例えば、バッテリー電流・
電圧検出器4の出力と、交流電動機14の1次巻線に流
れる1次電流iとによって、交流電動機14の負荷状
態、及び両バッテリー1,2の電流・電圧の状態がわか
るので、上記したのと同様な制御を行なうことができ
る。
Further, the battery current / voltage control means 44
Energy battery 1 and power battery 2
In the control of maintaining the current and voltage of the battery within a predetermined range, in addition to the method of utilizing the output of the battery current / voltage detectors 4 and 5, one of the currents of the battery current / voltage detectors 4 and 5 or Control may be performed by calculating necessary control information from the voltage and the primary current i flowing through the primary winding of the AC motor 14. For example, battery current
Since the output state of the voltage detector 4 and the primary current i flowing through the primary winding of the AC motor 14 indicate the load state of the AC motor 14 and the current / voltage states of both batteries 1 and 2, the above description is given. Control similar to that of can be performed.

【0041】図8は、図1の実施例における、ハイブリ
ッドバッテリのエネルギーバッテリーの制御装置部分の
他の実施例を示す図であり、15はキースイッチ、19
0はエネルギーバッテリー駆動ポンプ用電動機、24は
DC−DCコンバータである。また、120は、エネル
ギーバッテリーの負荷を示し、エアコン用電動機120
a、パワーステアリング用電動機120b、バキューム
用電動機120cが含まれる。また、130はエネルギ
ーバッテリーの負荷用リレーを示し、エアコン用電動機
リレー130a、パワーステアリング用電動機リレー1
30b、バキューム用電動機リレー130cが含まれ
る。さらにエネルギーバッテリー駆動ポンプ用の電動機
リレーとして、第一のリレー(RLf1)190a、第
二のリレー(RLf2)190bが含まれる。
FIG. 8 is a diagram showing another embodiment of the control device portion of the energy battery of the hybrid battery in the embodiment of FIG.
Reference numeral 0 is an electric motor for an energy battery driven pump, and 24 is a DC-DC converter. Further, 120 indicates the load of the energy battery, and the air conditioner motor 120
a, a power steering electric motor 120b, and a vacuum electric motor 120c. Reference numeral 130 denotes a load relay of the energy battery, which is an air conditioner electric motor relay 130a and a power steering electric motor relay 1
30b and a vacuum motor relay 130c are included. Further, a first relay (RLf1) 190a and a second relay (RLf2) 190b are included as electric motor relays for the energy battery driven pump.

【0042】次に、図8のハイブリッドバッテリの制御
装置部分の動作について説明する。この実施例におい
て、エネルギーバッテリー1の駆動ポンプ19は、起動
時にパワーバッテリー2を電源とする。図9を参照しな
がら動作を説明すると、起動前、キースイッチ15は、
オフと成っており、エネルギーバッテリー駆動ポンプ用
の電動機のリレー190(第一のリレー190a、第二
のリレー190b)は共にオフ状態に有る。起動時、キ
ースイッチ15がオンになると、第一のリレー190a
がオンになり、パワーバッテリー2から駆動ポンプ19
の電動機に電力が供給されて、エネルギーバッテリー駆
動ポンプ19が、エネルギーバッテリーすなわち燃料電
池に原料を供給し、その結果エネルギーバッテリー1が
出力を発生する。これに伴って、第二のリレー(RLf
2)190bが動作し、エネルギーバッテリー1から駆
動ポンプ19の電動機に電力を供給するとともに、エネ
ルギーバッテリー1からパワーバッテリー2に対して充
電がなされる。エネルギーバッテリー1が十分な出力を
発生するようになった後、第一のリレー190aはオフ
になる。
Next, the operation of the control device portion of the hybrid battery shown in FIG. 8 will be described. In this embodiment, the drive pump 19 of the energy battery 1 uses the power battery 2 as a power source at the time of starting. The operation will be described with reference to FIG.
It is turned off, and the relays 190 (first relay 190a and second relay 190b) of the electric motor for the energy battery driven pump are both off. When the key switch 15 is turned on at startup, the first relay 190a
Is turned on, and the power battery 2 drives the pump 19
When electric power is supplied to the electric motor, the energy battery driven pump 19 supplies the raw material to the energy battery, that is, the fuel cell, and as a result, the energy battery 1 generates an output. Along with this, the second relay (RLf
2) 190b operates to supply electric power from the energy battery 1 to the electric motor of the drive pump 19, and the energy battery 1 charges the power battery 2. After the energy battery 1 has generated sufficient output, the first relay 190a is turned off.

【0043】このように、エネルギーバッテリー1の起
動後、第二のリレー190bは自己保持される。その
後、電気車の運転停止の為にキースイッチ15がオフに
されても、このエネルギーバッテリーの動作状態は続
き、バッテリー電流・電圧検出器5で検出されるパワー
バッテリー2の電圧が所定値になる迄、エネルギーバッ
テリー1からパワーバッテリー2に対して充電が続けら
れる。
In this way, the second relay 190b is self-held after the activation of the energy battery 1. After that, even if the key switch 15 is turned off to stop the operation of the electric vehicle, the operating state of the energy battery continues, and the voltage of the power battery 2 detected by the battery current / voltage detector 5 reaches a predetermined value. Until then, the charging from the energy battery 1 to the power battery 2 is continued.

【0044】エネルギーバッテリー1の負荷、例えばエ
アコン用電動機、パワーステアリング用電動機、バキュ
ーム用電動機が、それぞれ負荷用のリレー、すなわちエ
アコン用電動機リレー130a、パワーステアリング用
電動機リレー130b、バキューム用電動機リレー13
0cを介してエネルギーバッテリー1に接続されてい
る。なお、各負荷はこのエネルギーバッテリー1に対応
するリレーの他に、それぞれの負荷独自に運転停止を制
御するリレーを備えていることは言うまでもない。
Loads of the energy battery 1, for example, an air conditioner electric motor, a power steering electric motor, and a vacuum electric motor are respectively load relays, that is, an air conditioner electric motor relay 130a, a power steering electric motor relay 130b, and a vacuum electric motor relay 13.
It is connected to the energy battery 1 via 0c. Needless to say, each load is provided with a relay for controlling the operation stop independently for each load, in addition to the relay corresponding to the energy battery 1.

【0045】これら補機類の負荷に対しては、エネルギ
ーバッテリー1から電力が供給される。これは、パワー
バッテリー2の電力を負荷変動の大きい車両の走行駆動
力に使用し、負荷変動が比較的少ない補機類例えばエア
コンには長期間にわたり一定の出力が得られるエネルギ
ーバッテリー1の電力を使用するためである。これによ
って、走行可能距離を延長し、電源装置のサイズのコン
バクト化を図ることができる。また、低負荷から高負荷
まで車両の広範囲の出力要求に応えられ、走行特性を改
善することができる。
Electric power is supplied from the energy battery 1 to the loads of these auxiliary machines. This is because the power of the power battery 2 is used as the running drive force of a vehicle with a large load fluctuation, and the power of the energy battery 1 that can obtain a constant output for a long period of time is supplied to auxiliary machinery such as an air conditioner with a relatively small load fluctuation. This is for use. As a result, the travelable distance can be extended and the size of the power supply device can be made compact. Further, it is possible to meet a wide range of output demands of the vehicle from a low load to a high load and improve the traveling characteristics.

【0046】なお、DC−DCコンバータ24は、エネ
ルギーバッテリー1の電力で補助バッテリー3を充電す
る。この充電の制御は、バッテリー電流・電圧制御手段
44によって補助バッテリー3の電圧を監視しながら行
われる。
The DC-DC converter 24 charges the auxiliary battery 3 with the power of the energy battery 1. This charging control is performed while the battery current / voltage control means 44 monitors the voltage of the auxiliary battery 3.

【0047】図10は、図1の実施例における、エネル
ギーバッテリー1の制御装置部分の他の実施例を示す図
である。この実施例において、エネルギーバッテリー1
の駆動ポンプ19は、起動時に補助バッテリー3を電源
とする。図11を参照しながら動作を説明すると、起動
前、キースイッチ15は、オフと成っており、エネルギ
ーバッテリー駆動ポンプ19の電動機用のリレー190
はオフ状態に有る。起動時、キースイッチ15がオンに
なると、リレー190がオンになり、補助バッテリー3
から駆動ポンプ190の電動機に電力が供給されて、駆
動ポンプ19がエネルギーバッテリーすなわち燃料電池
に原料を供給し、その結果エネルギーバッテリー1が出
力を発生する。これに伴って、エネルギーバッテリー1
からパワーバッテリー2に対して充電がなされる。その
後、電気車の運転停止の為にキースイッチ15がオフに
されても、このエネルギーバッテリーの動作状態は続
き、バッテリー電流・電圧検出器5で検出されるパワー
バッテリー2の電圧が所定値になる迄、エネルギーバッ
テリー1からパワーバッテリー2に対して充電が続けら
れる。
FIG. 10 is a diagram showing another embodiment of the control device portion of the energy battery 1 in the embodiment of FIG. In this embodiment, the energy battery 1
The drive pump 19 uses the auxiliary battery 3 as a power source at the time of startup. The operation will be described with reference to FIG. 11. Before activation, the key switch 15 is off, and the relay 190 for the electric motor of the energy battery-driven pump 19 is activated.
Is off. At startup, when the key switch 15 is turned on, the relay 190 is turned on and the auxiliary battery 3
Is supplied to the electric motor of the drive pump 190, the drive pump 19 supplies the raw material to the energy battery, that is, the fuel cell, and as a result, the energy battery 1 generates an output. With this, energy battery 1
The power battery 2 is charged. After that, even if the key switch 15 is turned off to stop the operation of the electric vehicle, the operating state of the energy battery continues, and the voltage of the power battery 2 detected by the battery current / voltage detector 5 reaches a predetermined value. Until then, the charging from the energy battery 1 to the power battery 2 is continued.

【0048】エネルギーバッテリー1の負荷は図8の場
合と同様、それぞれ負荷用のリレー、すなわちエアコン
用電動機リレー130a、パワーステアリング用電動機
リレー130b、バキューム用電動機リレー130cを
介してエネルギーバッテリー1に接続されており、これ
らの負荷は、エネルギーバッテリー1から電力が供給さ
れる。また、DC−DCコンバータ24は、エネルギー
バッテリー1の電力で補助バッテリー3を充電する。こ
の充電の制御は、パワーバッテリー2に対する場合と同
様に、充電バッテリー電流・電圧制御手段44によって
補助バッテリー3の電圧を監視しながら行われ、キース
イッチ15がオフにされても継続し、電圧が所定値にな
ると駆動ポンプ19を停止させて終了する。この実施例
でも、パワーバッテリー2の電力を負荷変動の大きい車
両の走行駆動力に使用し、負荷変動が比較的少ない補機
類例えばエアコンには、定出力の得られるエネルギーバ
ッテリー1の電力を使用する。また、この実施例は、エ
ネルギーバッテリー1の起動時に補助バッテリー3を電
源とするがこれは駆動ポンプ19による動力消費が比較
的少ないときに効果的である。
Similar to the case of FIG. 8, the load of the energy battery 1 is connected to the energy battery 1 via the load relays, that is, the air conditioner electric motor relay 130a, the power steering electric motor relay 130b, and the vacuum electric motor relay 130c, respectively. The electric power is supplied from the energy battery 1 to these loads. Further, the DC-DC converter 24 charges the auxiliary battery 3 with the power of the energy battery 1. This charging control is performed while monitoring the voltage of the auxiliary battery 3 by the charging battery current / voltage control means 44, similarly to the case of the power battery 2, and continues even if the key switch 15 is turned off, and the voltage is changed. When the predetermined value is reached, the drive pump 19 is stopped and the process ends. Also in this embodiment, the electric power of the power battery 2 is used as the running drive force of the vehicle having a large load fluctuation, and the auxiliary battery such as an air conditioner having a relatively small load fluctuation uses the electric power of the energy battery 1 capable of obtaining a constant output. To do. Further, in this embodiment, the auxiliary battery 3 is used as a power source when the energy battery 1 is started, which is effective when the power consumption by the drive pump 19 is relatively small.

【0049】[0049]

【発明の効果】本発明によれば、常時一定の出力を発生
するエネルギーバッテリーから、パワーバッテリーへ電
力を昇圧して充電することにより、低負荷から高負荷ま
で広範囲にわたる出力要求特性を満足させつつ、長期間
走行することが可能となる。また、低負荷から高負荷ま
で車両の広範囲の出力要求に応えられ、走行特性を改善
することができる。
According to the present invention, an energy battery that constantly generates a constant output charges the power battery by boosting the electric power to charge the battery, thereby satisfying a wide range of output requirement characteristics from low load to high load. It becomes possible to drive for a long time. Further, it is possible to meet a wide range of output demands of the vehicle from a low load to a high load and improve the traveling characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例になる電気車の駆動制御装置
のブロック図である。
FIG. 1 is a block diagram of a drive control device for an electric vehicle according to an embodiment of the present invention.

【図2】図1のエネルギーバッテリーの一構成例を示す
図である。
FIG. 2 is a diagram showing a configuration example of the energy battery of FIG.

【図3】主電源を構成するバッテリーの特性を示す図で
ある。
FIG. 3 is a diagram showing characteristics of a battery constituting a main power source.

【図4】図1のバッテリー電流・電圧制御手段の動作を
示すフロー図である。
FIG. 4 is a flowchart showing the operation of the battery current / voltage control means of FIG.

【図5】昇圧回路の動作を説明する図である。FIG. 5 is a diagram illustrating an operation of a booster circuit.

【図6】パワーバッテリーとエネルギーバッテリーの充
放電特性を示す図である。
FIG. 6 is a diagram showing charge / discharge characteristics of a power battery and an energy battery.

【図7】パワーバッテリー充電状態の検出方法を示す図
である。
FIG. 7 is a diagram showing a method of detecting a state of charge of a power battery.

【図8】図1の実施例における、エネルギーバッテリー
の制御装置部分の他の実施例を示す図である。
FIG. 8 is a diagram showing another embodiment of the control device portion of the energy battery in the embodiment of FIG.

【図9】図8の動作を示すタイムチャートである。9 is a time chart showing the operation of FIG.

【図10】図1の実施例における、エネルギーバッテリ
ーの制御装置部分の他の実施例を示す図である。
10 is a diagram showing another embodiment of the control device portion of the energy battery in the embodiment of FIG.

【図11】図10の動作を示すタイムチャートである。11 is a time chart showing the operation of FIG.

【符号の説明】[Explanation of symbols]

1…エネルギーバッテリー、2…パワーバッテリー、3
…補助バッテリー、7…昇圧回路、12…主コンタク
タ、13…インバータ、14…電動機、15…コントロ
ーラ、16…速度センサ、17…電流検出器、18…ア
クセルスイッチ、19…シフトスイッチ、20…回転速
度検出回路、30…トルク指令演算手段、32…ベクト
ル制御演算手段、40…電動機電流・電圧制御手段、4
2…PWM信号発生手段
1 ... Energy battery, 2 ... Power battery, 3
... auxiliary battery, 7 ... booster circuit, 12 ... main contactor, 13 ... inverter, 14 ... electric motor, 15 ... controller, 16 ... speed sensor, 17 ... current detector, 18 ... accelerator switch, 19 ... shift switch, 20 ... rotation Speed detection circuit, 30 ... Torque command computing means, 32 ... Vector control computing means, 40 ... Motor current / voltage control means, 4
2 ... PWM signal generating means

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭50−152423(JP,A) 特開 昭63−277470(JP,A) 特開 平2−33863(JP,A) 実開 平2−168802(JP,U) 実開 平6−124720(JP,U) (58)調査した分野(Int.Cl.7,DB名) B60L 11/00 H01M 8/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-50-152423 (JP, A) JP-A-63-277470 (JP, A) JP-A-2-33863 (JP, A) 168802 (JP, U) Actual Kaihei 6-124720 (JP, U) (58) Fields investigated (Int.Cl. 7 , DB name) B60L 11/00 H01M 8/00

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】車両を駆動する三相交流電動機と、直流電
力を交流電力に変換すると共に、変換された交流電力を
前記三相交流電動機に供給するインバータと、前記三相
交流電動機の動力源であって、二次電池からなると共に
前記インバータを介して前記三相交流電動機に接続され
たパワーバッテリー、常時定出力を発生する燃料電池か
らなると共に昇圧回路を介して前記パワーバッテリーに
並列に接続されたエネルギーバッテリー及び前記エネル
ギーバッテリーにDC−DCコンバータを介して接続さ
れると共に前記エネルギーバッテリーの燃料供給反応生
成物排出用ポンプの電源である車両用補助バッテリーに
よって構成された直流電源と、前記インバータの制御信
号を発生する信号発生手段と、キースイッチと、前記パ
ワーバッテリー、前記エネルギーバッテリー、前記三相
交流電動機又は前記インバータの入力電流のいずれかの
電流若しくは電圧に基づいて前記昇圧回路を制御すると
共に前記直流電源の電圧を所定の範囲に維持するバッテ
リー電流・電圧制御手段と、前記キースイッチがオフで
かつ前記パワーバッテリーの充電量が所定値以下のと
き、前記昇圧回路をオンし前記エネルギーバッテリーか
ら前記パワーバッテリーへの充電を行なわせると共に、
前記キースイッチがオフでかつ前記充電量が前記所定値
よりも大きいとき前記昇圧回路をオフし前記充電を停止
させ、さらには前記キースイッチがオフでかつ前記車両
用補助バッテリーの充電量が所定値以下のとき前記DC
−DCコンバータを制御して前記エネルギーバッテリー
から前記車両用補助バッテリーへの充電を行わせる充電
制御手段とを備え、前記バッテリー電流・電圧制御手段
は、前記キースイッチがオンでかつ前記車両が、制動エ
ネルギーを前記パワーバッテリーに回収する回生モード
にあるとき前記昇圧回路の動作をオフとし、前記エネル
ギーバッテリーから前記パワーバッテリーへの充電を停
止させることを特徴とする電気自動車の駆動装置。
1. A three-phase AC motor for driving a vehicle, an inverter for converting DC power into AC power and supplying the converted AC power to the three-phase AC motor, and a power source for the three-phase AC motor. A power battery consisting of a secondary battery and connected to the three-phase AC motor via the inverter, a fuel cell constantly generating a constant output, and connected in parallel to the power battery via a booster circuit. it is constituted by the energy battery and before disappeared flannel <br/> ghee said energy battery fuel supply reaction product discharge vehicle auxiliary battery is a power source of the pump is connected via a DC-DC converter to the battery DC power supply, signal generating means for generating a control signal for the inverter, key switch, and the power battery , A battery current / voltage control for controlling the booster circuit based on any one of the input currents or voltages of the energy battery, the three-phase AC motor, or the inverter and maintaining the voltage of the DC power supply within a predetermined range And a means for charging the power battery from the energy battery by turning on the booster circuit when the key switch is off and the charge amount of the power battery is less than or equal to a predetermined value.
When the key switch is off and the charge amount is larger than the predetermined value, the booster circuit is turned off to stop the charging, and further, the key switch is off and the charge amount of the vehicle auxiliary battery is a predetermined value. DC when
Charging control means for controlling a DC converter to charge the vehicle auxiliary battery from the energy battery, wherein the battery current / voltage control means is configured such that the key switch is ON and the vehicle is braked. A drive device for an electric vehicle, characterized in that, when in a regenerative mode for recovering energy to the power battery, the operation of the booster circuit is turned off to stop charging from the energy battery to the power battery.
【請求項2】車両を駆動する三相交流電動機と、直流電
力を交流電力に変換すると共に、変換された交流電力を
前記三相交流電動機に供給するインバータと、前記三相
交流電動機の動力源であって、二次電池からなると共に
主コンタクタ及び前記インバータを介して前記三相交流
電動機に接続されたパワーバッテリー、常時定出力を発
生する燃料電池からなると共に昇圧回路を介して前記パ
ワーバッテリーに並列に接続されたエネルギーバッテリ
ー及び前記このエネルギーバッテリーにDC−DCコン
バータを介して接続されると共に前記エネルギーバッテ
リーの燃料供給反応生成物排出用ポンプの電源である車
両用補助バッテリーによって構成された直流電源と、前
記三相交流電動機の電流及び回転速度を検出する電流セ
ンサ及び速度センサと、アクセル開度及び前記速度セン
サの出力に基づいて三相交流電流指令を発生する交流電
流指令発生手段と、前記三相交流電流指令及び前記電流
センサの出力に基づいて前記インバータの制御信号を発
生するPWM信号発生手段と、キースイッチと、前記パ
ワーバッテリー、前記エネルギーバッテリー、前記三相
交流電動機又は前記インバータの入力電流のいずれかの
電流若しくは電圧に基づいて前記昇圧回路を制御すると
共に、前記直流電源の電圧を所定の範囲に維持するバッ
テリー電流・電圧制御手段と、前記キースイッチがオフ
でかつ前記パワーバッテリーの充電量が所定値以下のと
き、前記昇圧回路をオンし前記エネルギーバッテリーか
ら前記パワーバッテリーへの充電を行わせると共に、前
記キースイッチがオフでかつ前記充電量が前記所定値よ
りも大きいとき前記昇圧回路をオフし前記充電を停止さ
せ、さらには前記キースイッチがオフでかつ前記車両用
補助バッテリーの充電量が所定値以下のとき前記DC−
DCコンバータを制御して前記エネルギーバッテリーか
ら前記車両用補助バッテリーへの充電を行わせる充電制
御手段とを備え、前記バッテリー電流・電圧制御手段
は、前記キースイッチがオンでかつ前記車両が、制動エ
ネルギーを前記パワーバッテリーに回収する回生モード
にあるとき前記昇圧回路の動作をオフとし、前記エネル
ギーバッテリーから前記パワーバッテリーへの充電を停
止させることを特徴とする電気自動車の駆動装置。
2. A three-phase AC motor for driving a vehicle, an inverter for converting DC power into AC power and supplying the converted AC power to the three-phase AC motor, and a power source for the three-phase AC motor. A power battery consisting of a secondary battery and connected to the three-phase AC motor via the main contactor and the inverter, a fuel cell that constantly generates a constant output, and a power battery via a booster circuit to the power battery. A DC power source composed of an energy battery connected in parallel and a vehicle auxiliary battery connected to the energy battery via a DC-DC converter and a power source of a fuel supply reaction product discharge pump of the energy battery. And a current sensor and a speed sensor for detecting the current and rotation speed of the three-phase AC motor. An AC current command generating means for generating a three-phase AC current command based on the accelerator opening and the output of the speed sensor; and a control signal for the inverter based on the three-phase AC current command and the output of the current sensor. The PWM signal generating means for generating, a key switch, the power battery, the energy battery, the three-phase AC electric motor, or to control the booster circuit based on the current or voltage of any of the input current of the inverter, Battery current / voltage control means for maintaining the voltage of the DC power supply in a predetermined range, and when the key switch is off and the charge amount of the power battery is a predetermined value or less, the booster circuit is turned on to switch the energy battery from the energy battery. The power battery is charged and the key switch is turned off and the charging Amount stopped off and the charging of the booster circuit is greater than said predetermined value, further when charging amount of the key switch is turned off at and auxiliary battery for the vehicle is below a predetermined value the DC-
Charging control means for controlling a DC converter to charge the vehicle auxiliary battery from the energy battery, wherein the battery current / voltage control means is characterized in that the key switch is turned on and the vehicle has a braking energy. A drive device for an electric vehicle, characterized in that the operation of the booster circuit is turned off and the charging from the energy battery to the power battery is stopped when in a regenerative mode in which the power battery is recovered.
【請求項3】請求項1乃至2のいずれかに記載された電
気自動車の駆動装置において、前記昇圧回路は、前記エ
ネルギーバッテリーを短絡するスィッチング用トランジ
スタと、リアクタ及び逆流阻止ダイオードから構成され
ていることを特徴とする電気自動車の駆動装置。
3. The drive device for an electric vehicle according to claim 1, wherein the booster circuit includes a switching transistor that short-circuits the energy battery, a reactor and a reverse current blocking diode. A drive device for an electric vehicle characterized by the above.
【請求項4】請求項1乃至2のいずれかに記載された電
気自動車の駆動装置において、前記車両は、エアコン用
電動機,パワーステアリング用電動機及びバキューム用
電動機を含む補機類を備えると共に、これら補機類は、
前記エネルギーバッテリーを電源として駆動されること
を特徴とする電気自動車の駆動装置。
4. A drive system for an electric vehicle according to any one of claims 1 and 2, wherein the vehicle is equipped with auxiliary machinery including an air conditioner electric motor, a power steering electric motor, and a vacuum electric motor. Auxiliary equipment is
A driving device for an electric vehicle, which is driven by using the energy battery as a power source.
【請求項5】二次電池からなるパワーバッテリー、及び
燃料電池からなると共に昇圧回路を介して前記パワーバ
ッテリーに並列に接続されたエネルギーバッテリー及び
前記エネルギーバッテリーにDC−DCコンバータを介
して接続されると共に前記エネルギーバッテリーの燃料
供給反応生成物排出用ポンプの電源である車両用補助バ
ッテリーによって構成された直流電源の直流電力を交流
電力に変換し、これを電動機に供給して該電動機を駆動
し、車両を駆動させる電気自動車の駆動制御方法であっ
て、 前記パワーバッテリー、前記エネルギーバッテリー又は
前記電動機のいずれかの電流若しくは電圧に基づいて前
記昇圧回路を制御して前記直流電源の電圧を所定の範囲
に維持し、 前記キースイッチがオフでかつ前記パワーバッテリーの
充電量が所定値以下のとき、前記昇圧回路をオンし、前
記エネルギーバッテリーから前記パワーバッテリーへの
充電を行わせ、 前記キースイッチがオフでかつ前記充電量が前記所定値
よりも大きいとき、前記昇圧回路をオフし、前記充電を
停止させ、 記キースイッチがオフでかつ前記車両用補助バッテリ
ーの充電量が所定値以下のとき、前記DC−DCコンバ
ータを制御して前記エネルギーバッテリーから前記車両
用補助バッテリーへの充電を行わせ、 前記キースイッチがオンでかつ前記車両が、制動エネル
ギーを前記パワーバッテリーに回収する回生モードにあ
るとき前記昇圧回路の動作をオフとし、前記エネルギー
バッテリーから前記パワーバッテリーへの充電を停止さ
る、ことを特徴とする電気自動車の駆動制御方法。
5. A power battery formed of a secondary battery, and the energy battery through a booster circuit connected in parallel to the power battery with consisting fuel cells and
Via the DC-DC converter to the energy battery
Connected with the fuel of the energy battery
Auxiliary battery for vehicle that is the power source of the pump for discharging the supplied reaction products
Converts the DC power of the DC power supply configured by the battery into AC power, and supplies this to the motor to drive the motor.
A drive control method of an electric vehicle for driving a vehicle, wherein the booster circuit is controlled based on a current or a voltage of any one of the power battery, the energy battery, and the electric motor to set a voltage of the DC power supply to a predetermined value. maintained in the range of, when said key switch is the amount of charge off a and the power battery is below a predetermined value, and turns on the step-up circuit, to perform the charging of the power battery from the energy battery, said key switch There can off a and the charge amount is larger than the predetermined value, turns off the booster circuit, the charging is stopped, the charge amount before Symbol key switch is off and the auxiliary battery for the vehicle below a predetermined value -out Noto, charging from the DC-DC converter control to the energy battery to the vehicle auxiliary battery When the key switch is on and the vehicle is in the regenerative mode for collecting braking energy to the power battery, the operation of the booster circuit is turned off to stop charging the energy battery from the energy battery. br /> allowed Ru, drive control method for an electric vehicle, characterized in that.
【請求項6】請求項5に記載された電気自動車の駆動制
御方法において、前記キースイッチオフ後も前記車両用
補助バッテリーの電圧が所定値になるまで前記エネルギ
ーバッテリーからの充電を継続することを特徴とする電
気自動車の駆動制御方法。
6. The drive control method for an electric vehicle according to claim 5, wherein the energy battery is charged until the voltage of the vehicle auxiliary battery reaches a predetermined value even after the key switch is turned off. A drive control method for an electric vehicle, characterized by continuing.
JP08943595A 1995-04-14 1995-04-14 Drive device and drive control method for electric vehicle Expired - Lifetime JP3487952B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP08943595A JP3487952B2 (en) 1995-04-14 1995-04-14 Drive device and drive control method for electric vehicle
US08/630,080 US5780980A (en) 1995-04-14 1996-04-09 Electric car drive system provided with hybrid battery and control method
JP2001103869A JP2001339872A (en) 1995-04-14 2001-04-02 Drive apparatus and control method for electric car with hybrid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08943595A JP3487952B2 (en) 1995-04-14 1995-04-14 Drive device and drive control method for electric vehicle

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001103869A Division JP2001339872A (en) 1995-04-14 2001-04-02 Drive apparatus and control method for electric car with hybrid battery

Publications (2)

Publication Number Publication Date
JPH08289410A JPH08289410A (en) 1996-11-01
JP3487952B2 true JP3487952B2 (en) 2004-01-19

Family

ID=13970602

Family Applications (2)

Application Number Title Priority Date Filing Date
JP08943595A Expired - Lifetime JP3487952B2 (en) 1995-04-14 1995-04-14 Drive device and drive control method for electric vehicle
JP2001103869A Pending JP2001339872A (en) 1995-04-14 2001-04-02 Drive apparatus and control method for electric car with hybrid battery

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2001103869A Pending JP2001339872A (en) 1995-04-14 2001-04-02 Drive apparatus and control method for electric car with hybrid battery

Country Status (2)

Country Link
US (1) US5780980A (en)
JP (2) JP3487952B2 (en)

Families Citing this family (191)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0787602A (en) * 1993-09-17 1995-03-31 Matsushita Electric Ind Co Ltd Protective unit for electric automobile
JP3328509B2 (en) * 1996-05-29 2002-09-24 株式会社日立製作所 Drive system for electric vehicles
US8198900B2 (en) 1996-07-29 2012-06-12 Midtronics, Inc. Automotive battery charging system tester
US7706991B2 (en) 1996-07-29 2010-04-27 Midtronics, Inc. Alternator tester
US8872517B2 (en) 1996-07-29 2014-10-28 Midtronics, Inc. Electronic battery tester with battery age input
US6331762B1 (en) * 1997-11-03 2001-12-18 Midtronics, Inc. Energy management system for automotive vehicle
US6566883B1 (en) 1999-11-01 2003-05-20 Midtronics, Inc. Electronic battery tester
US6850037B2 (en) 1997-11-03 2005-02-01 Midtronics, Inc. In-vehicle battery monitor
US6246197B1 (en) * 1997-09-05 2001-06-12 Mitsubishi Denki Kabushiki Kaisha Electric power steering controller
JPH11113283A (en) * 1997-09-30 1999-04-23 Toshiba Corp Motor driver
US7705602B2 (en) 1997-11-03 2010-04-27 Midtronics, Inc. Automotive vehicle electrical system diagnostic device
US7688074B2 (en) 1997-11-03 2010-03-30 Midtronics, Inc. Energy management system for automotive vehicle
US8958998B2 (en) 1997-11-03 2015-02-17 Midtronics, Inc. Electronic battery tester with network communication
US7774151B2 (en) 1997-11-03 2010-08-10 Midtronics, Inc. Wireless battery monitor
JP3334587B2 (en) * 1997-12-16 2002-10-15 日産自動車株式会社 Hybrid electric vehicle
DE59912204D1 (en) 1998-04-17 2005-07-28 Siemens Ag METHOD FOR STARTING A FUEL CELL PLANT AND FUEL CELL PLANT
JP4244399B2 (en) 1998-05-14 2009-03-25 トヨタ自動車株式会社 FUEL CELL SYSTEM, ELECTRIC VEHICLE HAVING THE SAME AND FUEL CELL SYSTEM START-UP CONTROL METHOD
JP4464474B2 (en) 1998-06-25 2010-05-19 トヨタ自動車株式会社 FUEL CELL SYSTEM, FUEL CELL VEHICLE, AND FUEL CELL CONTROL METHOD
US6331365B1 (en) * 1998-11-12 2001-12-18 General Electric Company Traction motor drive system
WO2000062049A1 (en) 1999-04-08 2000-10-19 Midtronics, Inc. Electronic battery tester
US6892840B2 (en) * 1999-05-05 2005-05-17 Daniel J. Meaney, Jr. Hybrid electric vehicle having alternate power sources
US6536547B1 (en) 1999-05-05 2003-03-25 Daniel J. Meaney, Jr. Hybrid electric vehicle having alternate power sources
DE19932781C2 (en) * 1999-07-14 2003-07-24 Daimler Chrysler Ag Method and circuit arrangement for supplying an on-board network of a motor vehicle with electrical energy
EP1132251A4 (en) 1999-08-27 2011-08-31 Yamaha Motor Co Ltd Hybrid drive system
US6737831B2 (en) * 1999-09-01 2004-05-18 Keith S. Champlin Method and apparatus using a circuit model to evaluate cell/battery parameters
US6271637B1 (en) * 1999-09-17 2001-08-07 Delphi Technologies, Inc. Diagnostic system for electric motor
EP1235323A4 (en) * 1999-11-17 2008-08-06 Fujitec Kk Power supply for ac elevator
JP3849749B2 (en) * 2000-03-01 2006-11-22 日産自動車株式会社 Fuel cell system
JP2001231108A (en) * 2000-02-14 2001-08-24 Yamaha Motor Co Ltd Charging device for motor-driven vehicle
US8513949B2 (en) 2000-03-27 2013-08-20 Midtronics, Inc. Electronic battery tester or charger with databus connection
US7446536B2 (en) 2000-03-27 2008-11-04 Midtronics, Inc. Scan tool for electronic battery tester
US7398176B2 (en) 2000-03-27 2008-07-08 Midtronics, Inc. Battery testers with secondary functionality
US6686079B2 (en) * 2000-05-17 2004-02-03 Schlumberger Technology Corporation Fuel cell for downhole power systems
JP3875458B2 (en) 2000-06-30 2007-01-31 株式会社東芝 Transmitter / receiver integrated high-frequency device
JP4731664B2 (en) * 2000-08-14 2011-07-27 株式会社エクォス・リサーチ Fuel cell circuit
JP4517500B2 (en) * 2000-08-14 2010-08-04 株式会社エクォス・リサーチ Fuel cell device
US6388419B1 (en) * 2000-09-01 2002-05-14 Ford Global Technologies, Inc. Motor control system
DE10054058A1 (en) * 2000-10-31 2002-05-08 Siemens Ag Fuel cell system for consumers connected to a rechargeable battery
DE10056429A1 (en) * 2000-11-14 2002-06-13 Daimler Chrysler Ag Fuel cell system and method for operating the fuel cell system
US6580977B2 (en) * 2001-01-16 2003-06-17 Ford Global Technologies, Llc High efficiency fuel cell and battery for a hybrid powertrain
JP3598975B2 (en) * 2001-01-19 2004-12-08 日産自動車株式会社 Control device for fuel cell vehicle
US20020136939A1 (en) * 2001-02-15 2002-09-26 Grieve M. James Fuel cell and battery voltage controlling method and system
US20030070850A1 (en) * 2001-02-16 2003-04-17 Cellex Power Products, Inc. Hybrid power supply apparatus for battery replacement applications
JP2002289209A (en) * 2001-03-26 2002-10-04 Denso Corp Fuel cell system for mobile body
EP1377477B1 (en) * 2001-04-05 2006-12-27 Electrovaya Inc. Energy storage device for loads having variable power rates
CA2343489C (en) * 2001-04-05 2007-05-22 Electrofuel, Inc. Energy storage device for loads having variable power rates
US20040201365A1 (en) * 2001-04-05 2004-10-14 Electrovaya Inc. Energy storage device for loads having variable power rates
US6649290B2 (en) 2001-05-11 2003-11-18 Cellex Power Products, Inc. Fuel cell thermal management system and method
US6559621B2 (en) 2001-05-21 2003-05-06 Cellex Power Products, Inc. Hybrid energy storage device charge equalization system and method
US6534950B2 (en) 2001-05-25 2003-03-18 Cellex Power Products, Inc. Hybrid power supply control system and method
JP3745309B2 (en) * 2001-06-12 2006-02-15 本田技研工業株式会社 Control device for fuel cell vehicle
JP3705166B2 (en) 2001-07-10 2005-10-12 三菱電機株式会社 Steering control device
KR100428347B1 (en) * 2001-10-11 2004-04-28 현대자동차주식회사 Method controlling battery charging of a hybrid fuel cell vehicle
WO2003052860A2 (en) * 2001-12-14 2003-06-26 Ballard Power Systems Inc. Regulation of a hybrid fuel cell system
US7144646B2 (en) * 2001-12-14 2006-12-05 Ballard Power Systems Inc. Method and apparatus for multiple mode control of voltage from a fuel cell system
US6841275B2 (en) 2001-12-14 2005-01-11 Ballard Power Systems Inc. Method and apparatus for controlling voltage from a fuel cell system
JP4023171B2 (en) * 2002-02-05 2007-12-19 トヨタ自動車株式会社 LOAD DRIVE DEVICE, CHARGE CONTROL METHOD FOR POWER STORAGE DEVICE IN LOAD DRIVE DEVICE, AND COMPUTER-READABLE RECORDING MEDIUM CONTAINING PROGRAM FOR CAUSING COMPUTER TO EXECUTE CHARGE CONTROL
AU2003229446A1 (en) * 2002-05-16 2003-12-02 Ballard Power Systems Inc. Electric power plant with adjustable array of fuel cell systems
DE10223117B4 (en) * 2002-05-24 2014-04-30 Nucellsys Gmbh Method and arrangement for controlling the power supply of an electric drive with a hybrid power supply system in a vehicle
KR20040006666A (en) * 2002-07-13 2004-01-24 엘지전자 주식회사 Emergency operating apparatus of fuel cell
AU2003246492A1 (en) * 2002-07-19 2004-02-09 Ballard Power Systems Corporation Apparatus and method employing bi-directional converter for charging and/or supplying power
JP3715608B2 (en) * 2002-09-30 2005-11-09 株式会社東芝 Electronic device system and battery unit
JP3832417B2 (en) * 2002-10-22 2006-10-11 日産自動車株式会社 Fuel cell system
JP3863092B2 (en) * 2002-11-20 2006-12-27 本田技研工業株式会社 In-vehicle motor regeneration control device
JP3704123B2 (en) * 2002-12-27 2005-10-05 株式会社東芝 Electronic equipment and battery unit
JP3720024B2 (en) * 2003-01-10 2005-11-24 株式会社東芝 Electronic device system and operation control method
JP3764426B2 (en) * 2003-01-21 2006-04-05 株式会社東芝 Electronic device and operation control method
JP2004227139A (en) * 2003-01-21 2004-08-12 Toshiba Corp Electronic equipment and its operation control method
JP3764429B2 (en) * 2003-02-28 2006-04-05 株式会社東芝 Electronic device and power supply switching control method for electronic device
JP3842744B2 (en) * 2003-02-28 2006-11-08 株式会社東芝 Electronic device and power supply status display method for the same
JP3713496B2 (en) * 2003-03-25 2005-11-09 株式会社東芝 Electronic device and power control method for electronic device
JP3713495B2 (en) * 2003-03-25 2005-11-09 株式会社東芝 Electronic device, fuel cell unit, and operation control method of electronic device
US7632583B2 (en) * 2003-05-06 2009-12-15 Ballard Power Systems Inc. Apparatus for improving the performance of a fuel cell electric power system
US7419734B2 (en) * 2003-05-16 2008-09-02 Ballard Power Systems, Inc. Method and apparatus for fuel cell systems
US6838923B2 (en) * 2003-05-16 2005-01-04 Ballard Power Systems Inc. Power supply and ultracapacitor based battery simulator
JP4703104B2 (en) * 2003-06-06 2011-06-15 株式会社東芝 Communication terminal device
JP4381038B2 (en) * 2003-06-06 2009-12-09 株式会社東芝 Transmission / reception device and cable modem module device
US8164343B2 (en) 2003-09-05 2012-04-24 Midtronics, Inc. Method and apparatus for measuring a parameter of a vehicle electrical system
US9255955B2 (en) 2003-09-05 2016-02-09 Midtronics, Inc. Method and apparatus for measuring a parameter of a vehicle electrical system
US9018958B2 (en) 2003-09-05 2015-04-28 Midtronics, Inc. Method and apparatus for measuring a parameter of a vehicle electrical system
US7154276B2 (en) 2003-09-05 2006-12-26 Midtronics, Inc. Method and apparatus for measuring a parameter of a vehicle electrical system
US6991864B2 (en) * 2003-09-23 2006-01-31 Utc Fuel Cells, Llc Storage of fuel cell energy during startup and shutdown
US7977914B2 (en) 2003-10-08 2011-07-12 Midtronics, Inc. Battery maintenance tool with probe light
US8057929B2 (en) * 2003-10-20 2011-11-15 GM Global Technology Operations LLC Regenerative compressor motor control for a fuel cell power system
US7087329B2 (en) * 2003-11-19 2006-08-08 Utc Fuel Cells, Llc Electric storage augmentation of fuel cell system transient response
CN100358214C (en) * 2003-11-20 2007-12-26 松下电器产业株式会社 Power supply for vehicle
US7489093B2 (en) * 2003-11-25 2009-02-10 General Electric Company Method and apparatus for producing tractive effort
DE10360892A1 (en) * 2003-12-19 2005-07-21 Robert Bosch Gmbh Method and device for wear detection in control units
JP2005224005A (en) * 2004-02-05 2005-08-18 Power System:Kk Motor drive system
US7777612B2 (en) 2004-04-13 2010-08-17 Midtronics, Inc. Theft prevention device for automotive vehicle service centers
US7521138B2 (en) * 2004-05-07 2009-04-21 Ballard Power Systems Inc. Apparatus and method for hybrid power module systems
US7531916B2 (en) * 2004-05-26 2009-05-12 Altergy Systems, Inc. Protection circuits for hybrid power systems
JP4593973B2 (en) * 2004-05-26 2010-12-08 トヨタ自動車株式会社 Motor drive device
CA2567944A1 (en) * 2004-07-12 2006-01-19 Hydrogenics Corporation Adaptive current controller for a fuel-cell system
US7772850B2 (en) 2004-07-12 2010-08-10 Midtronics, Inc. Wireless battery tester with information encryption means
US8442877B2 (en) 2004-08-20 2013-05-14 Midtronics, Inc. Simplification of inventory management
US8436619B2 (en) 2004-08-20 2013-05-07 Midtronics, Inc. Integrated tag reader and environment sensor
US8344685B2 (en) 2004-08-20 2013-01-01 Midtronics, Inc. System for automatically gathering battery information
US9496720B2 (en) 2004-08-20 2016-11-15 Midtronics, Inc. System for automatically gathering battery information
JP2006101675A (en) * 2004-09-30 2006-04-13 Mitsubishi Electric Corp Motor drive
US7710119B2 (en) 2004-12-09 2010-05-04 Midtronics, Inc. Battery tester that calculates its own reference values
US7834578B2 (en) * 2005-03-09 2010-11-16 Toyota Jidosha Kabushiki Kaisha Load driving apparatus, vehicle, and abnormality processing method at load driving apparatus
JP4765700B2 (en) * 2005-06-01 2011-09-07 日産自動車株式会社 Power converter
US7554276B2 (en) * 2005-09-21 2009-06-30 International Rectifier Corporation Protection circuit for permanent magnet synchronous motor in field weakening operation
JP2007137299A (en) * 2005-11-21 2007-06-07 Toyota Motor Corp Power supply control device
US7595597B2 (en) * 2006-01-18 2009-09-29 General Electric Comapany Vehicle propulsion system
KR100746367B1 (en) * 2006-03-15 2007-08-03 주식회사 프로파워 The hybrid power system consisted of fuel cell and rechargeable battery, and the controlling method of the same
CA2642262C (en) * 2006-05-15 2012-01-10 Mitsubishi Denki Kabushiki Kaisha Control apparatus for electric train
US8206861B2 (en) 2006-06-03 2012-06-26 Daimler Ag Intermediate circuit with a first switch for switching a fuel cell stack and second switch for short-circuting the fuel stack, fuel cell system with an intermediate circuit, and method for controlling the intermediate circuit
JP4228237B2 (en) * 2006-06-06 2009-02-25 トヨタ自動車株式会社 Electric power steering device
JP4356708B2 (en) 2006-06-23 2009-11-04 トヨタ自動車株式会社 Power supply system and vehicle equipped with the same
US7733039B2 (en) * 2006-10-19 2010-06-08 Ut-Battelle, Llc Electric vehicle system for charging and supplying electrical power
KR100805591B1 (en) 2006-11-16 2008-02-20 삼성에스디아이 주식회사 Fuel cell system and operating method of it
US7791348B2 (en) 2007-02-27 2010-09-07 Midtronics, Inc. Battery tester with promotion feature to promote use of the battery tester by providing the user with codes having redeemable value
US7808375B2 (en) 2007-04-16 2010-10-05 Midtronics, Inc. Battery run down indicator
DE112008001881B4 (en) 2007-07-17 2024-04-11 Midtronics, Inc. Battery tester for electric vehicles
US9274157B2 (en) 2007-07-17 2016-03-01 Midtronics, Inc. Battery tester for electric vehicle
DE102007035217B4 (en) * 2007-07-25 2011-05-26 Futuree Fuel Cell Solutions Gmbh Energy supply system and method for its operation
WO2009029534A1 (en) * 2007-08-24 2009-03-05 Oemtek, Inc. Dc source
US8324868B2 (en) * 2007-08-24 2012-12-04 Valence Technology, Inc. Power source with temperature sensing
US7825615B2 (en) 2007-10-16 2010-11-02 Glj, Llc Intelligent motorized appliances with multiple power sources
JP4883313B2 (en) * 2007-11-28 2012-02-22 トヨタ自動車株式会社 Power control device
CN101515023A (en) 2007-12-06 2009-08-26 密特电子公司 Accumulator and accumulator tester
CN101911362B (en) * 2007-12-28 2014-09-17 丰田自动车株式会社 Fuel cell system
TW200933965A (en) * 2008-01-31 2009-08-01 Nan Ya Printed Circuit Board Fuel-cell structure
AU2009257199A1 (en) * 2008-06-13 2009-12-17 Ceramic Fuel Cells Limited Fuel cell stabilisation system and method
US8013548B2 (en) * 2008-10-14 2011-09-06 General Electric Company System, vehicle and related method
EP2343210B1 (en) * 2008-10-31 2018-04-04 Toyota Jidosha Kabushiki Kaisha Power supply system for electric vehicle and control method for the same
WO2010050046A1 (en) * 2008-10-31 2010-05-06 トヨタ自動車株式会社 Electrically driven vehicle and electrically driven vehicle control method
JP5304277B2 (en) * 2009-01-29 2013-10-02 株式会社エクォス・リサーチ Battery hybrid system and method of using the same
JP2010287426A (en) * 2009-06-11 2010-12-24 Clearedge Power Inc Reformer for fixed type power generation plant, fuel cell, and battery managing system
JP2011015547A (en) * 2009-07-02 2011-01-20 Toshiba Corp Power device and method for driving the same
DE102009028972A1 (en) * 2009-08-28 2011-03-03 Robert Bosch Gmbh Parallel connection of accumulator strings
JP4783454B2 (en) 2009-11-30 2011-09-28 株式会社東芝 Power supply device, system, and charge / discharge control method
US9588185B2 (en) 2010-02-25 2017-03-07 Keith S. Champlin Method and apparatus for detecting cell deterioration in an electrochemical cell or battery
JP5575506B2 (en) * 2010-02-26 2014-08-20 三洋電機株式会社 Vehicle power supply device and vehicle equipped with the power supply device
CN102804478B (en) 2010-03-03 2015-12-16 密特电子公司 For the watch-dog of front terminals battery
ES2638299T3 (en) 2010-03-29 2017-10-19 Florian Gardes Autonomous drive system
US9229062B2 (en) 2010-05-27 2016-01-05 Midtronics, Inc. Electronic storage battery diagnostic system
US10046649B2 (en) 2012-06-28 2018-08-14 Midtronics, Inc. Hybrid and electric vehicle battery pack maintenance device
US8738309B2 (en) 2010-09-30 2014-05-27 Midtronics, Inc. Battery pack maintenance for electric vehicles
US11740294B2 (en) 2010-06-03 2023-08-29 Midtronics, Inc. High use battery pack maintenance
KR20130030766A (en) 2010-06-03 2013-03-27 미드트로닉스, 인크. Battery pack maintenance for electric vehicles
CN103038541B (en) 2010-06-08 2016-04-27 时间功率有限公司 Flywheel energy system
US9419311B2 (en) 2010-06-18 2016-08-16 Midtronics, Inc. Battery maintenance device with thermal buffer
US9201120B2 (en) 2010-08-12 2015-12-01 Midtronics, Inc. Electronic battery tester for testing storage battery
KR101172331B1 (en) * 2010-12-07 2012-08-09 현대자동차주식회사 System for controlling motor of vehicle
DE102011012164A1 (en) * 2011-02-23 2012-08-23 Bombardier Transportation Gmbh Arrangement and method for supplying electrical traction motors in a rail vehicle, in particular in a train, with electrical energy
US8761978B2 (en) * 2011-03-23 2014-06-24 General Electric Company System for supplying propulsion energy from an auxiliary drive and method of making same
US9595859B2 (en) * 2012-03-29 2017-03-14 Rakesh K. Dhawan Multi-phase multi-pole electric machine
CN102167036B (en) * 2011-04-01 2013-08-14 清华大学 Control method of fuel cell hybrid vehicle
JP5605320B2 (en) * 2011-06-28 2014-10-15 株式会社オートネットワーク技術研究所 Vehicle power supply
JP5865013B2 (en) * 2011-10-27 2016-02-17 三洋電機株式会社 Power supply device for vehicle and vehicle provided with this power supply device
JP2013102590A (en) * 2011-11-08 2013-05-23 Mitsubishi Electric Corp Power supply device for vehicles
WO2013070850A2 (en) 2011-11-10 2013-05-16 Midtronics, Inc. Battery pack tester
CN104350662B (en) * 2011-12-15 2018-10-12 A123系统公司 Hybrid battery system
US8803363B2 (en) 2012-04-16 2014-08-12 Temporal Power Ltd. Method and system for regulating power of an electricity grid system
US9851411B2 (en) 2012-06-28 2017-12-26 Keith S. Champlin Suppressing HF cable oscillations during dynamic measurements of cells and batteries
US11325479B2 (en) 2012-06-28 2022-05-10 Midtronics, Inc. Hybrid and electric vehicle battery maintenance device
US10508710B2 (en) 2012-11-05 2019-12-17 Bc New Energy (Tianjin) Co., Ltd. Cooled flywheel apparatus having a stationary cooling member to cool a flywheel annular drive shaft
US9244100B2 (en) 2013-03-15 2016-01-26 Midtronics, Inc. Current clamp with jaw closure detection
US9425729B2 (en) * 2013-03-15 2016-08-23 Honda Motor Co., Ltd. Motor control devices and methods
US9312575B2 (en) 2013-05-16 2016-04-12 Midtronics, Inc. Battery testing system and method
EP3053236B1 (en) * 2013-10-01 2020-04-01 Valeo Systèmes De Contrôle Moteur Method of discharging at least one electrical energy storage unit, in particular a capacitor, of an electrical circuit
JP5850017B2 (en) * 2013-10-15 2016-02-03 株式会社デンソー Battery monitoring device
US9140759B2 (en) * 2013-11-12 2015-09-22 Ford Global Technologies, Llc Electric vehicle battery pack voltage monitoring
US9146281B2 (en) * 2013-11-12 2015-09-29 Ford Global Technologies, Llc Electric vehicle battery contactor switch monitoring
JP6183182B2 (en) * 2013-11-29 2017-08-23 日産自動車株式会社 Power converter and output energy calculation method
US10843574B2 (en) 2013-12-12 2020-11-24 Midtronics, Inc. Calibration and programming of in-vehicle battery sensors
US9083207B1 (en) 2014-01-10 2015-07-14 Temporal Power Ltd. High-voltage flywheel energy storage system
EP2897229A1 (en) 2014-01-16 2015-07-22 Midtronics, Inc. Battery clamp with endoskeleton design
US10473555B2 (en) 2014-07-14 2019-11-12 Midtronics, Inc. Automotive maintenance system
US10222397B2 (en) 2014-09-26 2019-03-05 Midtronics, Inc. Cable connector for electronic battery tester
US10320202B2 (en) * 2014-09-30 2019-06-11 Johnson Controls Technology Company Battery system bi-stable relay control
CN104385935A (en) * 2014-11-24 2015-03-04 中投仙能科技(苏州)有限公司 Low-power-consumption control system of battery manager
US10317468B2 (en) 2015-01-26 2019-06-11 Midtronics, Inc. Alternator tester
US9966676B2 (en) 2015-09-28 2018-05-08 Midtronics, Inc. Kelvin connector adapter for storage battery
CN105253139B (en) * 2015-10-08 2017-08-25 上海电力学院 Fuel cell and battery hybrid drive system control method
US10608353B2 (en) 2016-06-28 2020-03-31 Midtronics, Inc. Battery clamp
US11054480B2 (en) 2016-10-25 2021-07-06 Midtronics, Inc. Electrical load for electronic battery tester and electronic battery tester including such electrical load
CN110997397A (en) 2017-08-14 2020-04-10 日产自动车株式会社 Fuel cell vehicle
US11364811B1 (en) * 2017-11-15 2022-06-21 Motiv Power Systems, Inc. Powering electric vehicle accessory devices from back EMF generated by an electric motor
CN108622187B (en) * 2018-05-09 2019-10-01 江苏大学 The energy dynamics control system and method for composite power source EPS
US11513160B2 (en) 2018-11-29 2022-11-29 Midtronics, Inc. Vehicle battery maintenance device
US11566972B2 (en) 2019-07-31 2023-01-31 Midtronics, Inc. Tire tread gauge using visual indicator
US11545839B2 (en) 2019-11-05 2023-01-03 Midtronics, Inc. System for charging a series of connected batteries
US11668779B2 (en) 2019-11-11 2023-06-06 Midtronics, Inc. Hybrid and electric vehicle battery pack maintenance device
US11474153B2 (en) 2019-11-12 2022-10-18 Midtronics, Inc. Battery pack maintenance system
US11973202B2 (en) 2019-12-31 2024-04-30 Midtronics, Inc. Intelligent module interface for battery maintenance device
US11486930B2 (en) 2020-01-23 2022-11-01 Midtronics, Inc. Electronic battery tester with battery clamp storage holsters
CN112776671B (en) * 2020-05-15 2022-09-16 长城汽车股份有限公司 Fuel cell automobile energy management method and system and vehicle

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3686549A (en) * 1971-02-01 1972-08-22 Gen Motors Corp Power control system
US4056764A (en) * 1974-06-03 1977-11-01 Nissan Motor Company, Limited Power supply system having two different types of batteries and current-limiting circuit for lower output battery
JPS50158014A (en) * 1974-06-10 1975-12-20
JPS5344386B2 (en) * 1974-06-10 1978-11-28
JPS5132926A (en) * 1974-09-14 1976-03-19 Kogyo Gijutsuin Fukusudenchi no haiburitsudoseigyohoshiki
BR7804194A (en) * 1977-07-01 1979-04-03 Lucas Industries Ltd BATTERY CHARGE STATUS INDICATOR INSTALLATION AND DEVICE
US4237410A (en) * 1978-10-23 1980-12-02 Erickson Alfred C Regenerative electric motor
US4348628A (en) * 1980-06-20 1982-09-07 Loucks Carl C Electric motor alternating power supply for vehicles
US4413698A (en) * 1981-01-21 1983-11-08 Conrad Walter W Battery operated hydraulic vehicle
US4962462A (en) * 1983-09-29 1990-10-09 Engelhard Corporation Fuel cell/battery hybrid system
US4689531A (en) * 1985-07-01 1987-08-25 Ewers, And Willis Electric regeneration apparatus and method for driving a load
US5290641A (en) * 1989-10-06 1994-03-01 Fuji Electric Co., Ltd. Method of controlling operation of fuel cell power supply
US5248566A (en) * 1991-11-25 1993-09-28 The United States Of America As Represented By The United States Department Of Energy Fuel cell system for transportation applications
DE4138943C1 (en) * 1991-11-27 1993-05-27 Robert Bosch Gmbh, 7000 Stuttgart, De
US5488283A (en) * 1993-09-28 1996-01-30 Globe-Union, Inc. Vehicle battery system providing battery back-up and opportunity charging
US5413878A (en) * 1993-10-28 1995-05-09 The United States Of America As Represented By The Department Of Energy System and method for networking electrochemical devices
JP3432892B2 (en) * 1994-06-08 2003-08-04 日本碍子株式会社 Method for removing CO from reformed gas
US5500579A (en) * 1995-01-03 1996-03-19 Motorola, Inc. Electric motor control with integral battery charger

Also Published As

Publication number Publication date
JP2001339872A (en) 2001-12-07
JPH08289410A (en) 1996-11-01
US5780980A (en) 1998-07-14

Similar Documents

Publication Publication Date Title
JP3487952B2 (en) Drive device and drive control method for electric vehicle
JP3515619B2 (en) Electric vehicle driving device and driving control method
EP1445144B1 (en) Control apparatus for fuel cell vehicle
CN101624020B (en) Idle stop and start control method of fuel cell hybrid vehicle
US6484075B2 (en) Idle control device for fuel cell vehicle
US7966121B2 (en) Fuel efficiency display device for fuel cell vehicle, and fuel efficiency displaying method for fuel cell vehicle
JP4218202B2 (en) DC power supply with fuel cell
US9236736B2 (en) Power supply system and method for controlling the same
CN103430438B (en) Fuel cell system
CN104859468B (en) Electric vehicle and its control method
CN102648108B (en) The starting method of supply unit
CN102204001B (en) Fuel battery system
WO2007066795A1 (en) Fuel battery system
CN101612939A (en) Be used for controlling the method for output of the fuel cell of fuel cell hybrid electric vehicle
US7380621B2 (en) Hybrid system
US6973393B2 (en) Control apparatus for a fuel cell vehicle
CN107097647A (en) Method of supplying power to and electric power system
JP2003230269A (en) Load drive device, discharge control method, and computer-readable recording medium in which program for making computer run discharge control is recorded
CN104159780B (en) Electric power system
JP3389324B2 (en) Hybrid power supply for electric vehicles
JP3888074B2 (en) Power generator
JP4192658B2 (en) Vehicle control apparatus and control method
JP2007335151A (en) Power control apparatus of fuel-cell vehicle
JP2022112710A (en) vehicle
JP2004187332A (en) Controller for fuel cell vehicle

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101031

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101031

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101031

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 10

EXPY Cancellation because of completion of term