CN102167036B - Control method of fuel cell hybrid vehicle - Google Patents

Control method of fuel cell hybrid vehicle Download PDF

Info

Publication number
CN102167036B
CN102167036B CN 201110082662 CN201110082662A CN102167036B CN 102167036 B CN102167036 B CN 102167036B CN 201110082662 CN201110082662 CN 201110082662 CN 201110082662 A CN201110082662 A CN 201110082662A CN 102167036 B CN102167036 B CN 102167036B
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
motor
dc
module
battery
target
Prior art date
Application number
CN 201110082662
Other languages
Chinese (zh)
Other versions
CN102167036A (en )
Inventor
徐梁飞
李建秋
欧阳明高
杨福源
卢兰光
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/84Data processing systems or methods, management, administration

Abstract

本发明涉及一种燃料电池混合动力整车控制方法,步骤如下:1)整车控制器中设置电机状态切换模块、司机命令解释模块、动力电池荷电状态校验模块、路况自适应补偿模块、整车诊断修正模块和等效氢耗优化分配模块;2)整车控制器读入挡位信号、踏板信号和TTCAN总线数据;3)电机状态切换模块切换电机状态;4)司机命令解释模块确定电机目标转矩;5)动力电池荷电状态校验模块对SOC值,TTCAN总线电压、动力电池电流校验;6)路况自适应补偿模块计算整车辅助功率、DC/DC动态补偿时间常数;7)整车诊断修正模块修正电机目标转矩和DC/DC目标电流;8)等效氢耗优化分配模块中,整车目标功率在动力电池和燃料电池之间优化分配;9)修正后的电机目标转矩及DC/DC目标电流发送至电机控制器和DC/DC控制器,实现对电机和燃料电池的输出功率控制。 The present invention relates to a fuel cell hybrid vehicle control method, the following steps: 1) the motor vehicle is provided in the controller state switching module, a driver command interpretation module, battery state of charge check module, traffic adaptive compensation module, vehicle diagnosis and correction module equivalent hydrogen consumption optimization assignment module; 2) the controller reads the vehicle position signal, the pedal signal and TTCAN bus transactions; 3) motor state switching module switches the state of the motor; 4) determines the driver command interpretation module motor target torque; 5) power battery state of charge SOC value checking module, the TTCAN bus voltage, battery current parity; 6) of the adaptive compensation module calculates a road vehicle auxiliary power, DC / DC dynamic compensation time constants; 7) motor vehicle diagnostic corrected target torque correction module and DC / DC target current; 8) is equivalent hydrogen consumption optimization module allocation, the target vehicle optimal power allocation between the battery and the fuel cell; 9) after the modified motor target torque and the DC / DC motor is transmitted to the target current controller and DC / DC controller, to achieve control of the motor and the output power of the fuel cell.

Description

一种燃料电池混合动力整车控制方法 A fuel cell hybrid vehicle control method

技术领域 FIELD

[0001] 本发明涉及一种车辆控制方法,特别是关于一种面向一般城市工况的燃料电池混合动力整车控制方法。 [0001] The present invention relates to a method for controlling a vehicle, a fuel cell hybrid vehicle control method particularly relates generally oriented urban conditions.

背景技术 Background technique

[0002] 石油资源匮乏和环境污染是当今各国政府、科研机构和跨国企业关注的重大问题,许多国家政府和企业投入大量资源研究解决该问题的技术方案。 [0002] scarcity of oil resources and environmental pollution are today's governments, research institutions and major issues of concern to multinational corporations, many governments and businesses to invest significant resources to research technical solutions to solve the problem. 燃料电池(或称为质子交换膜燃料电池)依靠氢和氧的化学反应产生电流,并生成水,噪声低且无污染,因此被认为是解决资源及环境问题的重要技术方案。 The fuel cell (or referred to as a proton exchange membrane fuel cell) depend on the chemical reaction of hydrogen and oxygen to produce a current, and generate water, and low noise pollution, it is considered to solve the environmental problems and resource important aspect.

[0003] 当前燃料电池主要是应用于燃料电池混合动力汽车。 [0003] Current fuel cells is mainly applied to a fuel cell hybrid vehicle. 燃料电池混合动力汽车一般采用燃料电池加动力电池或者超级电容的构型。 Usually the fuel cell hybrid vehicle using a fuel cell battery or a super capacitor added to the configuration. 动力电池(或超级电容)在加载时提供过载功率,避免燃料电池工况突变;制动时,动力电池(或超级电容)吸收部分制动能量,提高系统经济性。 Battery (or supercapacitor) providing overload power when loaded, to avoid the condition of the fuel cell mutation; braking, battery power (or supercapacitor) braking energy absorbing portion, improving the system economy. 燃料电池混合动力系统包括多个动力源(例如燃料电池动力源与动力电池动力源),由整车控制器控制该多个动力源进行工作。 The hybrid fuel cell system includes a plurality of power sources (e.g. a fuel cell power source and the battery power source), the plurality of power sources are controlled by the controller to operate the vehicle.

[0004] 在燃料电池混合动力汽车的混合动力构型方面,现有技术提供了一种“能量型”混合动力系统。 [0004] In the fuel cell hybrid vehicle of the configuration of a hybrid aspect, the prior art provides an "energy type" hybrid system. 如图1所示(图中细实线表示高压连接,粗实线表示机械连接),在这种构型中,燃料电池系统通过直流/直流变换器(Direct Current to Direct Currentconverter, DC/DC)与动力电池并联,而后通过直流/交流逆变器(Direct Current toAlternating Current inverter, DC/AC)转变为交流电驱动三相异步电机。 As shown (thin solid line in FIG said high-voltage connector, the mechanical connection represented by a thick solid line) 1, in this configuration, the fuel cell system via a DC / DC converter (Direct Current to Direct Currentconverter, DC / DC) in parallel with the battery, followed by a DC / AC inverter (Direct current toAlternating current inverter, DC / AC) into AC-driven three-phase asynchronous motors. 现有技术中还提供了多种燃料电池混合动力汽车的整车控制方法,包括基于规则的整车控制方法、瞬时优化、全局优化和制动能量回馈整车控制方法等,但是没有提供面向一般城市工况的整车控制方法。 The prior art also offers a variety of vehicle control method for a fuel cell hybrid vehicle, the vehicle control method comprising a rule-based, transient optimization, and global optimization vehicle braking energy feedback control method, but does not provide for ships urban conditions of vehicle control method.

发明内容 SUMMARY

[0005] 针对上述问题,本发明的目的是提供一种平均速率低、加减速工况所占比例高、制动消耗的能量大,能够解决城市工况的燃料电池混合动力整车控制方法。 [0005] In view of the above problems, an object of the present invention is to provide a low average rate, plus a high proportion of deceleration condition, a large braking energy consumption can be solved urban conditions of the fuel cell hybrid vehicle control method.

[0006] 为实现上述目的,本发明采取以下技术方案:一种燃料电池混合动力整车控制方法,包括以下步骤:1)在整车控制器中设置电机状态切换模块、司机命令解释模块、动力电池荷电状态校验模块、路况自适应补偿模块、整车诊断修正模块和等效氢耗优化分配模块,其中,TTCAN为时间触发式控制器局域网;2)所述整车控制器从数字量、模拟量和TTCAN通讯端口读入司机挡位信号、司机踏板信号和TTCAN总线通讯数据;3)所述电机状态切换模块根据司机挡位信号和司机踏板信号将电机状态在“驱动、怠速、滑行、制动、倒车”之间切换;4)所述司机命令解释模块根据电机状态切换模块设置的电机状态信号,确定电机状态,进而确定电机目标转矩;5)所述动力电池荷电状态校验模块对动力电池管理系统发送的SOC值,以及TTCAN总线电压、动力电池电流进行校验,其中 [0006] To achieve the above object, the present invention adopts the following technical solution: a fuel cell hybrid vehicle control method, comprising the steps of: 1) set the motor vehicle in the state switching module controller, driver command interpretation module, power check the state of charge of the battery module, an adaptive compensation module road conditions, vehicle diagnosis and correction module equivalent hydrogen consumption optimal allocation module, wherein, the TTCAN is a time-triggered controller Area Network; 2) of the vehicle from the digital controller , analog, and communication ports TTCAN read position signal, and the driver pedal signal TTCAN bus communication data driver; 3) of the motor driver state switching module according to the pedal position signal and the driver signal to the motor in the state "driving, idling, coasting switching between braking, reversing "; 4) of the motor driver command interpretation module switching module sets status signal state in accordance with the motor, determining the state of the motor, and to determine the target motor torque; 5) the battery state of charge correction SOC value of the battery module test transmission management system, and a TTCAN bus voltage, battery current check, wherein SOC值为动力电池荷电状态校验值;6)所述路况自适应补偿模块根据接收的部件状态信息,在线计算整车辅助功率P.、DC/DC动态补偿时间常数τ dc,并对动力电池SOC值、燃料电池性能衰退进行补偿和自适应调整;7)所述整车诊断修正模块根据各部件的工作范围的限制,修正电机目标转矩和DC/DC目标电流;8)所述等效氢耗优化分配模块中,整车目标功率在动力电池和燃料电池之间优化分配,使系统等效氢耗最小,并保持SOC值平衡;9)整车控制器将修正后的电机目标转矩及DC/DC目标电流通过TTCAN总线分别发送给电机控制器和DC/DC控制器,实现对电机和燃料电池的输出功率控制。 SOC value of battery state of charge check value; 6) of the adaptive compensation module traffic information, calculates the vehicle auxiliary power line P., DC / DC dynamic compensation time constant τ dc component according to the state of the received power and SOC value of the battery, the fuel cell performance degradation and compensating adaptive adjustment; 7) according to the vehicle diagnostic correction module limits the operating range of each component, the correction target torque motors and DC / DC target current; 8) and the like hydrogen consumption efficiency optimizing allocation module, the vehicle target power optimization between the power distribution batteries and fuel cells, the system is equivalent hydrogen consumption is minimized and the SOC value balance; 9) after the motor vehicle target revolution speed correction controller moments and DC / DC current transmitted through the target TTCAN buses, respectively, to the motor controller and DC / DC controller, to achieve control of the motor and the output power of the fuel cell.

[0007] 所述步骤3)中,所述电机状态切换模块的切换步骤如下:①判断司机挡位信号是否为空挡,如果是,则设置电机状态为怠速,否则进入下一步;②判断挡位信号是否为倒车挡,如果是,则设置电机状态为倒车;否则进入下一步;③判断制动踏板是否大于制动阈值,如果是,则设置电机状态为制动;否则进入下一步;④判断制动踏板是否小于等于制动阈值,且加速踏板大于加速阈值,如果是,则设置电机状态为驱动,否则,设置电机状态为滑行。 [0007] In the step 3), the machine state switching step of switching modules as follows: ① The driver determines whether the neutral position signal, and if so, the motor is set to an idle state, otherwise, the next step; ② Analyzing gear signal is a reverse gear, if so, set the state to reverse the motor; otherwise, proceed to the next step; ③ is determined whether the brake pedal is larger than a brake threshold value, and if so, the status is set to the motor brake; otherwise, proceed to the next step; ④ Analyzing the brake pedal is smaller than the threshold value equal to the brake and the accelerator pedal is greater than the acceleration threshold value, if so, set the state to drive the motor, otherwise it is set to the motor coasting state.

[0008] 所述步骤4)中,所述司机命令解释模块确定电机在怠速、倒车、驱动和滑行状态下时,则电机目标转矩为驱动目标转矩0 =Orrq4max,上式中α为司机踏板位置信号,取值范围O〜I 为电机最大驱动转矩,根据电机在驱动状态下的外特性曲线及目标转矩关系图,得到驱动目标转矩2,的值;所述司机命令解释模块确定电机在制动状态下 [0008] step 4), the motor driver command interpretation module determines when idle, reverse, drive and coast state, the drive motor target torque target torque 0 = Orrq4max, the above formula for the driver α pedal position signal, the range of the maximum drive torque of the motor O~I, in a driving state according to the target torque and the outer characteristic diagram motor driving target torque value obtained 2; said driver command interpretation module determining a braking state of the motor

时,则电机目标转矩为制动目标转矩: Tqh = Τφ^3lxY,上式中Y为制动踏板系数,Tqb niax为最大制动转矩,根据电机在制动状态下的外特性曲线及目标转矩关系图,得到制动目标转矩G的值。 When, the motor target torque is a braking torque target: Tqh = Τφ ^ 3lxY, wherein Y is the coefficient of the brake pedal, Tqb niax to maximum brake torque, the external characteristic curve in the braking state according to the motor and target torque diagram, to obtain the G value of the brake target torque.

[0009] 所述制动踏板系数Y,在采用串联式制动能量回馈策略时,所述制动踏板系数Y通过下式得到:Y = 4(β-β J(P-P2) (β「β2) _2,上式中β为制动踏板位置信号,^^和β 2为制动回馈策略参数,该参数影响车辆制动效果,根据实际情况标定得到。 [0009] Y coefficient of the brake pedal, when using tandem brake energy back policy, the brake pedal Coefficient Y of formula obtained by: Y = 4 (β-β J (P-P2) (β ' β2) _2, wherein the beta] a brake pedal position signal, and β 2 ^^ brake feedback strategy parameter which affect the braking effect of the vehicle, the calibration obtained according to the actual situation.

[0010] 所述步骤5)中,所述动力电池荷电状态校验模块的校验过程如下:①使用最小二乘递推算法在线估算当前动力电池开`路电压和平均充放电内阻,并结合动力电池开路电压一SOC曲线和充放电内阻一SOC曲线反推SOC值;②根据动力电池管理系统发送的SOC值,结合动力电池开路电压一SOC曲线和充放电内阻一SOC曲线,推算出动力电池开路电压和平均充放电内阻;③根据步骤②中推算得到的开路电压、平均充放电内阻、以及动力电池管理系统发送的SOC值,计算相对于步骤①中估算得到的开路电压、平均充放电内阻、以及SOC值的相对误差;④如果三种参数取值的相对误差均小于10%,则动力电池荷电状态校验模块判定动力电池管理系统发送的SOC值可信,否则动力电池荷电状态校验模块采用步骤①中得到的SOC估算值代替动力电池管理系统发送的SOC值。 [0010] step 5), the verification process of the battery state of charge check module as follows: ① using RLS estimated battery current line `open circuit voltage and the average discharge resistance, combined with a battery open circuit voltage and the charge-discharge curves SOC resistance curve a reverse thrust SOC value SOC; ② the SOC value of the battery management system sends, in conjunction with a battery open circuit voltage and the charge-discharge curves SOC SOC a resistance curve, calculate the average open circuit voltage and battery charge and discharge resistance; ③ the open circuit voltage estimating step ② of the obtained average discharge resistance, and the SOC value of the battery management system sends, calculated relative to the estimated open-circuit obtained in step ① voltage, average discharge resistance, and the relative error of the SOC value; ④ If the relative error of three kinds parameter of less than 10%, the battery state of charge SOC value verification module determines battery management system sends a trusted SOC value SOC estimation value of transmitted power instead of the battery management system, battery state of charge or check modules obtained in step ①.

[0011 ] 所述步骤6 )中,在所述路况自适应补偿模块中,所述整车辅助功率Paux根据TTCAN总线数据,采用一阶低通滤波算法进行在线估算: [0011] step 6), the adaptive compensation module in the road, the vehicle auxiliary power Paux The TTCAN bus data, using a first-order low-pass filter algorithm to estimate online:

P + P -P P + P -P

ΓηΠ10-| /.> - dc bat 華 ΓηΠ10- |. /> - dc bat Hua

L0012」 ^aux — , L0012 "^ aux -,

W+1 W + 1

[0013] 上式中Pde为DC/DC输出功率,Pbat为动力电池输出功率,Pnun为电机输入功率,均能从TTCAN总线数据读取,τ aux为滤波常数,s为传递函数的复数变量;所述DC/DC动态补偿时间常数Td。 [0013] In the above formula Pde of DC / DC output power, output power Pbat battery powered, Pnun motor input power, TTCAN bus can read data from, τ aux is the filter constant, s is the complex variable transfer functions; the DC / DC dynamic compensation time constant Td. 按下式计算:Td。 Calculated as follows: Td. = A1A τ dcl+ λ 2 Δ τ dc2+ λ 3 Δ τ de3+τ d。 = A1A τ dcl + λ 2 Δ τ dc2 + λ 3 Δ τ de3 + τ d. . ,上式中W、入3为燃料电池性能衰退加权系数:入1=0.4,λ2=0.4,λ 3=0.2, τ dc0=5s, Δ τ dcl、Δ τ dc2和Δ τ-分别为根据燃料电池系统U-1曲线三参数开路电压Utl,欧姆内阻Rf。 In the above formula W, the performance degradation of the fuel cell 3 is the weighting factor: the 1 = 0.4, λ2 = 0.4, λ 3 = 0.2, τ dc0 = 5s, Δ τ dcl, Δ τ dc2 and fuel are Δ τ- U-1 cell system of the open circuit voltage curve of three parameters Utl, ohmic resistance Rf. 和浓差极化参数b确定的修正值,Λ xdcl> Δ Ttk2和Λ τ&3随燃料电池电堆性能衰退而变化。 Concentration polarization and the correction value determined by the parameter b, Λ xdcl> Δ Ttk2 Λ τ & 3 and decay varies with fuel cell stack performance.

[0014] 所述步骤9)中,修正后的所述电机目标转矩和DC/DC目标电流的计算公式如下: In [0014] step 9), the motor target torque is calculated and the corrected DC / DC current of the target as follows:

[0015] [0015]

Figure CN102167036BD00071

[0016]上式中 <为电机目标转矩,Arq^dffied为电机目标转矩诊断修正值,(为未经修正的DC/DC目标电流,AZ^modtfiedlS考虑动力电池SOC值平衡的DC/DC目标电流修正值, [0016] In the above formula <target motor torque, Arq ^ dffied diagnostic motor target torque correction value (unamended for the DC / DC target current, AZ ^ modtfiedlS battery SOC value considering the balance of the DC / DC target current correction value,

为DC/DC目标电流诊断修正值,为驱动电机目标转矩诊断修正值。 Of DC / DC diagnosis target current correction value, the target drive motor torque correction value diagnosis.

[0017] 本发明由于采取以上技术方案,其具有以下优点:1、本发明考虑了系统经济性、燃料电池耐久性和整车安全性,解决城市工况的能量管理问题。 [0017] The present invention As a result of the above technical solution, it has the following advantages: 1, the present invention contemplates economy system, fuel cell durability and vehicle safety, energy management to solve the problem of urban conditions. 2、本发明提供一种燃料电池混合动力客车综合能量管理方法,整车控制器根据输入的司机挡位信号、司机踏板信号和时间触发式控制器局域网TTCAN总线通讯数据,确定电机目标转矩和DC/DC目标电流,将电机目标转矩和DC/DC目标电流向TTCAN总线。 2, the present invention provides a fuel cell hybrid bus integrated energy management method, according to the vehicle driver controller data input position signal, the driver pedal signal and time-triggered Controller Area Network TTCAN bus communication, to determine the motor torque and the target DC / DC target current, the motor torque and the target DC / DC current to the target TTCAN bus. 3、本发明可以在城市工况下实现系统经济性优化,保证动力电池SOC平衡,尽量延长燃料电池使用寿命,保障整车安全。 3, the present invention can be implemented in urban conditions economic system optimized to ensure battery SOC balance, try to extend the life of the fuel cell to ensure vehicle safety. 使用本发明的燃料电池城市客车已成功进行了奥运示范和北京公交示范运营,达到国内一流、国际先进的水平,因此可以广泛应用于燃料电池混合动力汽车控制应用中。 Use of the invention fuel cell city bus has been successfully carried out and the Beijing Olympic demonstration bus demonstration, domestic first-class, international advanced level, it can be widely used in a fuel cell hybrid vehicle control applications.

附图说明 BRIEF DESCRIPTION

[0018] 图1是现有技术中的控制示意图 [0018] FIG. 1 is a prior art schematic diagram of a control

[0019] 图2是本发明整车控制器组成示意图 [0019] FIG. 2 is a schematic diagram illustrating a vehicle controller according to the present invention

[0020] 图3是本发明整车控制器工作流程图 [0020] FIG. 3 is a flowchart of the vehicle controller of the present invention

[0021] 图4是本发明电机状态切换模块工作流程图 [0021] FIG. 4 is a state machine flow chart of the switching module according to the present invention

[0022] 图5是本发明电机状态切换关系示意图 [0022] FIG. 5 is a schematic diagram of the present invention, the switching state of the relationship between the motor

[0023] 图6是本发明司机命令解释模块工作流程图 [0023] FIG. 6 is a flowchart of a driver command interpretation module of the present invention

[0024] 图7是本发明电机在驱动状态下的外特性曲线及电机制动目标转矩关系图 [0024] FIG. 7 is a characteristic curve of the outer motor and the motor of the present invention in a driving state diagram braking target torque

[0025] 图8是本发明电机在制动状态下的外特性曲线及目标转矩关系图 [0025] FIG. 8 is in a braking state of the outer curve and the relationship between the target torque motor of the present invention FIG.

[0026] 图9是本发明SOC校验模块工作流程图 [0026] FIG. 9 is a flowchart of SOC verification module of the present invention

[0027] 图10是本发明路况自适应补偿模块工作流程图 [0027] FIG. 10 is a flowchart of traffic adaptive compensation module according to the present invention

[0028] 图11是本发明动态补偿时间常数Λ τ dc与三参数的关系图 [0028] FIG. 11 is a graph of the dynamic compensation according to the present invention, the time constant Λ τ dc and three parameters

[0029] 图12是本发明整车诊断修正模块工作流程图 [0029] FIG. 12 is a flowchart of diagnostic correction module of the present invention is the vehicle

[0030] 图13是本发明整车诊断修正算法框图 [0030] FIG. 13 is a block diagram of the vehicle diagnostic correction algorithm of the present invention

[0031] 图14是本发明等效氢耗优化分配模块工作流程图 [0031] FIG. 14 is a flow chart of the present invention is equivalent hydrogen consumption optimized assignment module

[0032] 图15是本发明当动力电池SOC平衡修正系数μ =0.6时,动力电池最优功率与SOC的关系图具体实施方式 [0032] FIG. 15 is the present invention, when the battery SOC balancing correction coefficient μ = 0.6, the optimum power and the battery SOC relationship DETAILED DESCRIPTION FIG.

[0033] 下面结合附图和实施例对本发明进行详细的描述。 Drawings and embodiments of the present invention will be described in detail [0033] below in conjunction.

[0034] 如图2、图3所示,本发明的整车控制器中包括电机状态切换模块、司机命令解释模块、SOC (State of Charge,动力电池荷电状态)校验模块、路况自适应补偿模块、整车诊断修正模块和等效氢耗优化分配模块,还具备数字量端口、模拟量端口和TTCAN通讯端口等接口。 [0034] As shown in FIG 2, FIG. 3, the vehicle controller of the present invention includes a motor state switching module, a driver command interpretation module, SOC (State of Charge, battery state of charge) checking module, adaptive traffic compensation module, and a vehicle diagnostics correction module equivalent hydrogen consumption optimal allocation module further includes an interface digital port, the analog port and communications ports TTCAN. 图示中S0C、总线电压、动力电池电流等信号,由现有设备中的BMS(BatteryManagement System ,动力电池管理系统)测量、计算后,发送到TTCAN (Time TriggeredController Area Network,时间触发式控制器局域网)总线上;电机转速信号由现有设备中的电机控制器测量、计算,发送到TTCAN总线上;部件状态信息由各个部件控制器(电机控制器、DC/DC控制器、动力电池管理系统、燃料电池控制器等)测量、计算后,发送到TTCAN总线上。 S0C illustration, bus voltage, battery current, signal power, by the conventional apparatus BMS (BatteryManagement System, battery management systems) measurements, are calculated and transmitted to the TTCAN (Time TriggeredController Area Network, time-triggered Controller Area Network ) bus; motor speed signal is measured by the controller of the motor in the conventional apparatus, is calculated, it is sent to the TTCAN bus; means the state information by the respective components of the controller (motor controller, DC / DC controller, battery power management system, the fuel cell controller, etc.) measurements, are calculated and sent to the TTCAN bus.

[0035] 本发明整车控制方法包括以下步骤: [0035] The vehicle control method according to the present invention comprises the steps of:

[0036] 1、读入数据 [0036] 1, data is read

[0037] 整车控制器从数字量、模拟量和TTCAN通讯端口读入司机挡位信号、司机踏板信号和TTCAN总线通讯数据。 [0037] The vehicle controller position signal into the driver, the driver and the pedal TTCAN bus communication data signal from the digital, analog, and communication ports TTCAN read. 例如,整车控制器从数字量端口读入司机挡位信号,从模拟量端口读入司机踏板信号,从TTCAN通讯端口读入TTCAN总线通讯数据。 For example, vehicle controller port read from the digital position signal driver, port driver is read from the analog pedal signal, TTCAN bus communication into the communication port read data from the TTCAN. 除此之外,根据不同系统的需要,整车控制器还可以从模拟量端口读入漏电传感器、制动气压传感器等发出的信号,从数字量端口读入包括电机状态切换、高压上电等信号。 In addition, according to the needs of different systems, the vehicle controller may also read from the port of the analog signal emitted leakage sensor, a brake pressure sensor, the digital read out from the port includes a motor switching state, the pressure and other electrical signal.

[0038] 2、电机状态切换 [0038] 2, the switching state of the motor

[0039] 如图4、图5所示,整车控制器的电机状态切换模块根据司机挡位信号和司机踏板信号将电机状态在“驱动、怠速、滑行、制动、倒车”之间切换。 [0039] FIG 4, shown in the state of the motor vehicle controller state switching module switches the motor "driving, idling, coasting, braking, reversing" in accordance with FIG. 5 between the driver and the driver pedal position signal signals.

[0040] 比如:整车控制器首先判断司机挡位信号是否为空挡,如果是,则设置电机状态为怠速;否则,进一步判断挡位信号是否为倒车挡,如果是,则设置电机状态为倒车;否则,进一步判断制动踏板是否大于制动阈值,如果是则设置电机状态为制动;否则,进一步判断制动踏板是否小于等于制动阈值,且加速踏板大于加速阈值,如果是,则设置电机状态为驱动,否则,设置电机状态为滑行。 [0040] For example: vehicle controller first determines whether the driver of the neutral position signal, and if so, the motor is set to an idle state; otherwise, further determining whether the position signal is a reverse gear, if so, set the state to reverse the motor ; otherwise, further determining whether the brake pedal is larger than a brake threshold value, if the motor is set to the braking state; otherwise, further determining whether the brake pedal is smaller than the threshold value equal to the brake and the accelerator pedal is greater than the acceleration threshold value, if so, set motor-driven state, otherwise, set the motor to coast state.

[0041] 3、司机命令解释 [0041] 3, the driver command interpreter

[0042] 如图2、图6所示,司机命令解释模块根据电机状态切换模块设置的电机状态信号,确定电机状态是否为制动状态,如果不是制动状态,则为“怠速”、“倒车”、“驱动”或“滑行”状态,此时电机目标转矩为驱动目标转矩4: [0042] As shown in FIG 2, FIG. 6, the motor driver command interpretation module status signal switching module provided in accordance with the state of the motor, the motor status is to determine a braking state, if other than a braking state, compared to the "idle", "back "," drive "or" coasting "state, when the driving motor target torque to the target torque 4:

[0043] [0043]

Figure CN102167036BD00081

[0044] 式(I)中α为司机踏板位置信号,取值范围O〜I 为电机最大驱动转矩,如图7所示,是驱动状态下最大驱动转矩Tvlmax与电机转速η和电机驱动目标转矩?;的对应 In α [0044] Formula (I) for the driver pedal position signal, the range of the maximum drive torque of the motor O~I shown in Figure 7, is the maximum drive torque Tvlmax η motor speed and a motor driver driven state target torque;? correspondence

关系图,根据式(I)以及图7所示对应关系,可以得到驱动目标转矩K1的值。 Diagram, according to formula (I) and the correspondence relationship shown in FIG 7, the target value of the driving torque can be obtained K1.

[0045] 如图6所示,如果是制动状态,此时电机目标转矩为电机制动目标转矩?^: [0045] As shown in FIG 6, if the brake state, at this time the target motor torque motor braking target torque ^?:

Figure CN102167036BD00091

[0047] 式(2)中Ttfcmax为最大制动转矩,如图8所示,是制动状态下电机最大制动转矩Tqbjmax与电机转速η和电机制动目标转矩H的对应关系图。 [0047] Formula (2) is in Ttfcmax maximum brake torque, shown in Figure 8, the rotational speed and the motor braking η H motor target torque maximum brake torque and motor braking state Tqbjmax correspondence relation of FIG. .

[0048] 式(2)中Y为制动踏板系数,当不米用制动能量回馈策略时,Y=O ;当米用串联式制动能量回馈策略时,Y通过下式得到: [0048] Formula (2) wherein Y is the coefficient of the brake pedal, when not braking energy policy reserved m, Y = O; m when using tandem brake energy feedback strategy, Y obtained by the following formula:

[0049] y = (3) [0049] y = (3)

[0050] 式(3)中β为制动踏板位置信号,^和β 2为制动回馈策略参数。 In [0050] formula (3) β brake pedal position signal, and β 2 ^ braking feedback strategy parameter. 该参数影响车辆制动效果,根据实际情况标定得到。 This parameter affects the braking effect of the vehicle, the calibration obtained according to the actual situation.

[0051] 4、SOC 校验 [0051] 4, SOC calibration

[0052] 如图2、图9所示,SOC校验模块对BMS发送的SOC值,以及TTCAN总线电压、动力电池电流进行校验,校验过程如下: [0052] As shown in FIG 2, FIG, SOC value SOC of BMS transmission check module shown in FIG 9, and TTCAN bus voltage, battery current calibration, calibration process is as follows:

[0053] I)根据动力电池充放电电流、电压信号,使用RLS (Recursive Least SquaresAlgorithm,最小二乘递推算法)在线估算当前动力电池开路电压和平均充放电内阻,并结合动力电池开路电压一SOC曲线和充放电内阻一SOC曲线反推SOC值。 [0053] I) according to the battery charge and discharge current, voltage signal, using RLS (Recursive Least SquaresAlgorithm, RLS) estimate the open circuit voltage and the battery current average discharge line resistance, open circuit voltage and a battery power in combination SOC and charge-discharge curve of a resistance SOC value SOC curve reverse thrust. 其中,平均充放电内阻指一定SOC下动力电池充电内阻和放电内阻的平均值。 Wherein the average traction battery charge and discharge resistance means under certain charge SOC and the internal resistance of the average discharge resistance.

[0054] 2)根据BMS发送的SOC值,结合动力电池开路电压一SOC曲线和充放电内阻一SOC曲线,推算出动力电池开路电压和平均充放电内阻。 [0054] 2) The BMS SOC value is transmitted, in conjunction with a battery open circuit voltage and the charge-discharge curves SOC SOC a resistance curve, calculate the average open circuit voltage and battery charge and discharge resistance.

[0055] 3)根据步骤2)中推算得到的开路电压、平均充放电内阻、以及BMS发送的SOC值,计算相对于步骤I)中估算得到的开路电压、平均充放电内阻、以及SOC值的相对误差。 [0055] 3) according to step 2) to give the estimated open-circuit voltage, the average discharge resistance, and BMS SOC value is transmitted, the open circuit voltage is calculated with respect to step I) is estimated from the average discharge resistance, and SOC the relative error.

[0056] 4)如果计算得到开路电压、平均充放电内阻、以及BMS发送的SOC值三种参数取值的相对误差均小于10%,则SOC校验模块判定BMS发送的SOC值可信,否则SOC校验模块采用步骤I)中得到的SOC估计值代替BMS发送的SOC值;确定的SOC值由SOC校验模块传输至等效氢耗优化分配模块。 [0056] 4) If the calculated open-circuit voltage, average discharge resistance, and the relative error of the SOC value BMS Parameter of three kinds of transmission less than 10%, the SOC value SOC module determines parity BMS transmitted trusted, otherwise, check module SOC employed in step I) obtained in place of the SOC value SOC estimation value transmitted from BMS; SOC value SOC is determined by the transmission check module allocation to the equivalent hydrogen consumption optimization module.

[0057] 5、路况自适应补偿 [0057] 5, traffic adaptive compensation

[0058] 如图10所示,路况自适应补偿模块根据接收的部件状态信息,在线计算整车辅助功率Paux、DC/DC动态补偿时间常数τ dc,并对动力电池SOC值、燃料电池性能衰退进行相应的补偿和自适应调整。 [0058] 10, the adaptive compensation module calculates a road section according to the received state information, online vehicle auxiliary power Paux, DC / DC dynamic compensation time constant τ dc, and the battery SOC value, the fuel cell performance degradation corresponding compensation and adaptive adjustment.

[0059] 其中,整车辅助功率Paux可以根据TTCAN总线数据,采用一阶低通滤波算法进行在线估算: [0059] wherein, according to the vehicle auxiliary power Paux TTCAN bus data, using a first-order low-pass filter algorithm to estimate online:

Figure CN102167036BD00092

[0061] 式(4)中Pde为DC/DC输出功率,Pbat为动力电池输出功率,Pm,in为电机输入功率,均可以从TTCAN总线数据读取,为滤波常数。 [0061] Formula (4) is in Pde DC / DC output power, output power Pbat battery powered, Pm, in the motor input power, TTCAN bus data can be read from as a filter constant. s为传递函数的复数变量。 s is a complex variable transfer functions.

[0062] 之后,从TTCAN总线读取数据,采用最小二乘在线递推算法估算燃料电池U-1曲线三参数Utl (开路电压),Rf。 After [0062], TTCAN bus to read data from the least square line recursive algorithm to estimate the fuel cell U-1 Utl three-parameter curves (open circuit voltage), Rf. (欧姆内阻)和b (浓差极化参数)。 (Ohmic resistance) and b (concentration polarization parameters). 根据图11所示的曲线,计算对应Λ τ dcl> Λ τ dc;2和Λ τ dc3的值。 According to the graph shown in FIG. 11, calculates the corresponding Λ τ dcl> Λ τ dc; 2 and the value of Λ τ dc3. 其中,Δ τ dcl> Λ τ dc;2和Λ τ dc3分别为根据燃料电池U-1曲线三参数U0,Rfc和b而确定的修正值,随燃料电池电堆性能衰退,DC/DC动态补偿时间常数应变大,以使电堆输出功率变化更为缓慢,从而保护燃料电池。 Wherein, Δ τ dcl> Λ τ dc; 2 and Λ τ dc3 respectively, the correction value according to the fuel cell U-1 curve three parameters U0, Rfc and b are determined, with the fuel stack cell performance decay, DC / DC dynamic compensation strain large time constant, so that changes in output power stack more slowly, so as to protect the fuel cell. 因此,Δ Tdcl随Utl递减,Λ TdeJ^Rf。 Therefore, Δ Tdcl with Utl decreasing, Λ TdeJ ^ Rf. 递增,Λ Tde3随b递增。 Increments, Λ Tde3 increases with b. 而后,根据下式计算DC/DC动态补偿时间常数 Then, according to the following formula DC / DC dynamic compensation time constant

τ dc: τ dc:

[0063] τ dc = λ I Λ τ dcl+ λ 2 Λ τ dc2+ λ 3 Λ τ dc3+ τ dc(l, (5) [0063] τ dc = λ I Λ τ dcl + λ 2 Λ τ dc2 + λ 3 Λ τ dc3 + τ dc (l, (5)

[0064] 式(5)中X1、λ2、λ 3为燃料电池性能衰退加权系数:λ 1=0.4,λ 2=0.4,λ 3=0.2。 [0064] Formula (5), X1, λ2, λ 3 for the fuel cell performance degradation weighting factor: λ 1 = 0.4, λ 2 = 0.4, λ 3 = 0.2. τ dc0=5so考虑动力电池SOC平衡的DC/DC目标电流修正值按下式计算: τ dc0 = 5so consider battery SOC balancing a DC / DC target current correction value is calculated as follows:

[0065] [0065]

Figure CN102167036BD00101

[0066] 式(6)中Q为动力电池容量,k为动力电池最优功率-SOC曲线与X轴相交处的斜 [0066] Formula (6) wherein Q is the battery capacity, k is the optimum power ramp battery -SOC curve at the intersection with the X axis

率,Kp为修正系数,取值I〜1.5之间,匕为电机制动功率(取绝对值),nm为电机效率,S Rate, as the correction coefficient Kp of argument between I~1.5, dagger motor braking power (absolute value), the motor efficiency nm, S

为传递函数的复数变量,U.为动力电池端电压。 Is a complex variable transfer function, U. The terminal voltage of the battery-powered. 通过式(6),当整车制动能量通过电机回收至动力电池时,燃料电池输出功率相应减小一部分,从而防止动力电池SOC过高。 By the formula (6), when the regenerative braking to the vehicle battery through the motor, a corresponding reduction in the fuel cell output part, thereby preventing the battery SOC is too high.

[0067] 6、整车诊断修正 [0067] 6, vehicle diagnostics correction

[0068] 如图12所示,整车诊断修正模块根据各部件的工作范围的限制,修正电机目标转矩和DC/DC目标电流,防止出现过压、过流和超温现象。 [0068] As shown, the correction module in accordance with the vehicle diagnostic limit the working range of each component, the correction target torque motor and DC / DC target current, 12 to prevent over-voltage, over-current and over-temperature phenomenon. 如图13所示,是整车诊断修正方法 13, a vehicle diagnostic method of correcting

框图。 block diagram. 该整车诊断修正方法的计算结果为电机目标转矩诊断修正值Agmodifiet^PDCVDC目标 The calculation result vehicle diagnostic method for correcting the motor torque target value correction diagnosis target Agmodifiet ^ PDCVDC

电流诊断修正值A^jllodlfed2,图中各变量意义为: Current diagnosis correction value A ^ jllodlfed2, meaning the variables in the figure:

[0069] λ cL根据漏电程度确定的电机目标转矩修正系数 [0069] λ cL determined according to the extent of the drain motor target torque correction coefficient

[0070] λ fc根据燃料电池诊断信息确定的电机目标转矩修正系数 [0070] λ fc fuel cell according to the target motor torque determining diagnostic information correction coefficient

[0071] λ ^根据氢气泄露程度确定的电机目标转矩修正系数 [0071] λ ^ The extent of leakage of hydrogen gas determined target motor torque correction factor

[0072] λ _根据MCU温度确定的电机目标转矩修正系数 [0072] λ _ The MCU motor target torque correction coefficient determined temperature

[0073] λ m,temp根据电机温度确定的电机目标转矩修正系数 [0073] λ m, temp. The motor temperature determination target motor torque correction factor

[0074] λ Tbat根据动力电池温度确定的电机目标转矩修正系数 [0074] λ Tbat motor according to battery temperature determining a target torque correction coefficient

[0075] λ ^at根据总线电压确定的电机目标转矩修正系数 [0075] λ ^ at bus voltage determined according to the target motor torque correction factor

[0076] μ cL根据漏电程度确定的DC/DC目标功率修正系数 [0076] μ cL determined according to the extent of the drain DC / DC target power factor correction

[0077] μ dcl根据DC/DC输出电流Ide确定的DC/DC目标功率修正系数 [0077] μ dcl determined according to the DC / DC output current of the Ide DC / DC target power factor correction

[0078] μ dc2根据DC/DC工作温度Tde确定的DC/DC目标功率修正系数 [0078] μ dc2 Tde determined according to the DC / DC Operating Temperature DC / DC target power factor correction

[0079] μ dc3根据DC/DC输入电压Ufc确定的DC/DC目标功率修正系数 [0079] μ dc3 input voltage for DC / DC Ufc determining a DC / DC target power factor correction

[0080] μ fc根据燃料电池诊断信息确定的DC/DC目标功率修正系数 [0080] μ fc fuel cell according to the determined diagnostic information DC / DC target power factor correction

[0081] μ ^根据氢气泄露程度确定的DC/DC目标功率修正系数 [0081] μ ^ The hydrogen determining the degree of leakage of DC / DC target power factor correction

[0082] μ Tfc根据燃料电池冷却水温度确定的DC/DC目标功率修正系数 [0082] μ Tfc of the fuel cell cooling water temperature according to the determined DC / DC target power factor correction

[0083] Mlic根据燃料电池冷却水温度确定的DC/DC目标电流修正值(A) [0083] Mlic The fuel cell cooling water temperature determination of the DC / DC target current correction value (A)

[0084] 根据MCU温度确定的电机目标转矩修正值(Nm) [0084] The motor target torque modification value (Nm) MCU temperature determined

[0085] Aitemp根据电机温度确定的电机目标转矩修正值(Nm) [0085] Aitemp the motor based on the target torque correction value determined by the temperature of the motor (Nm)

[0086] 根据动力电池温度确定的电机目标转矩修正值(Nm)[0087] 7、等效氢耗优化分配 [0086] The target torque correction value determined by the motor power to the battery temperature (Nm) [0087] 7, the equivalent hydrogen consumption optimal allocation

[0088] 如图14所示,在等效氢耗优化分配模块中,整车目标功率在动力电池和燃料电池之间优化分配,使系统等效氢耗最小,并保持SOC值平衡,这样可以最大限度地优化燃料电池系统效率,并保证动力电池有足够的电量,从而保证整车的动力性。 [0088] As shown in the equivalent hydrogen consumption optimal allocation module, power optimization target vehicle 14 between the power distribution batteries and fuel cells, the system is equivalent hydrogen consumption is minimized and the SOC value balance, which can optimization of the fuel cell system to maximize efficiency, and to ensure that the battery power has enough power to ensure the power of the vehicle. 等效氢耗优化分配中首先需要计算动力电池最优功率Pbat, _: Optimization of the distribution equivalent hydrogen consumption needs to be calculated first optimal power battery power Pbat, _:

[0089] [0089]

Figure CN102167036BD00111

[0090] 式(7)中Ubu^in为总线电压最小值,Ubus,_为总线电压最大值,Uocv为动力电池端电压,Rdis为放电内阻,Rdlg为充电内阻,>h和Ihg为动力电池平均放电效率和平均充电效率,!(^与X为自定义参数: [0090] Formula (7) in Ubu ^ in the minimum bus voltage, Ubus, _ of the maximum bus voltage, Uocv powered battery terminal voltage, Rdis the discharge resistance, Rdlg charging resistance,> h and was Ihg ! average battery discharge efficiency and the average charging efficiency, (X ^ and custom parameters:

[0091] [0091]

Figure CN102167036BD00112

[0092] 式(8)中κ为修正系数,其定义为: In the [0092] Formula (8) κ is a correction coefficient, which is defined as:

[0093] κ = 1-2 μ (S0C-0.5 (S0CH+S0CL)) (SOCh-SOCl), (9) [0093] κ = 1-2 μ (S0C-0.5 (S0CH + S0CL)) (SOCh-SOCl), (9)

[0094] 式(9)中μ为动力电池SOC平衡修正系数。 The μ [0094] Formula (9) is balanced by the battery SOC correction coefficient. SOCh为SOC的上限值,SOCl为SOC的下限值。 SOCh upper limit of SOC, SOCl lower limit SOC. 根据不同的路况,根据调整动力电池SOC平衡修正系数μ的值,保证SOC处于[S0CL, SOCh]的范围之内。 Depending on the road conditions, the balance correction coefficient μ according to the value of the battery SOC adjustment, to ensure that the range of the SOC is [S0CL, SOCh] of the. 如图15所示,是当动力电池SOC平衡修正系数μ =0.6时,给出的动力电池最优功率与SOC关系的计算结果。 15, when the battery SOC balancing correction coefficient μ = 0.6, the optimum power calculation result given by the battery power and the SOC relationship.

[0095] 根据动力电池最优功率可计算出DC/DC最优目标功率为: [0095] calculate the DC / DC target power according to the optimal power battery optimal power:

[0096] [0096]

Figure CN102167036BD00113

[0097] 式(10)中Pdc;,max为DC/DC最大输出功率,Pdc;min为最小输出功率,Paux为整车辅助功率(在路况自适应补偿模块中计算),nm为电机效率,<为驱动电机目标功率,是电机制 [0097] Formula (10), Pdc;, max is a DC / DC maximum output power, Pdc; min is the minimum output power, auxiliary power Paux for the vehicle (road calculated in the adaptive compensation module), the motor efficiency nm, <target power to the drive motor, an electric mechanism

动目标转矩11与电机实际转速的乘积,Pbat, opt为动力电池最优功率。 The product of the moving target torque and the actual motor speed 11, Pbat, opt is the optimum power battery. DC/DC动态目标电流 DC / DC dynamic target current

4ι为: 4ι as:

[0098] [0098]

Figure CN102167036BD00114

[0099] 式(11)中Ubus为总线电压。 In Ubus [0099] Formula (11) bus voltage. 将DC/DC动态目标电流进行一阶滤波,得到DC/DC目标电流/力:[0100] The DC / DC dynamic target current first-order filter, to give DC / DC target current / force: [0100]

Figure CN102167036BD00121

[0101] 式(12)中τ d。 [0101] Formula (12) τ d. 为DC/DC动态补偿时间常数(在路况自适应补偿模块中计算),fdcl为DC/DC动态目标电流。 Of DC / DC dynamic compensation time constant (calculated traffic adaptive compensation module), fdcl of DC / DC dynamic target current.

[0102] 8、整车控制器将修正后的电机目标转矩及DC/DC目标电流通过TTCAN总线分别发送给电机控制器和DC/DC控制器,实现对电机和燃料电池的输出功率控制。 [0102] 8, the target torque of the motor vehicle after the correction controller and DC / DC current transmitted through the target TTCAN buses, respectively, to the motor controller and DC / DC controller, to achieve control of the motor and the output power of the fuel cell.

[0103] 修正后的电机目标转矩和DC/DC目标电流的计算方法为: [0104] [0103] the target motor torque calculation method of the corrected and DC / DC target current is: [0104]

Figure CN102167036BD00122

[0105] 式(13)中< 为电机目标转矩,其在制动状态时力rh其余状态为;^rqmodified为电机目标转矩诊断修正值。 In [0105] formula (13) <the target motor torque, which force during a braking state rh rest state; ^ rqmodified diagnostic motor target torque correction value. 为未经修正的DC/DC目标电流,Λ/:'—为考虑动力电池SOC值平衡的DC/DC目标电流修正值,M^modified2S DC/DC目标电流诊断修正值,^Kmodrjied为驱动电机目标转矩诊断修正值。 Is the uncorrected DC / DC target current, Λ /: '- battery SOC value in consideration of the balance DC / DC target current correction value, M ^ modified2S DC / DC diagnosis target current correction value, ^ Kmodrjied drive motor target diagnostic torque correction value.

Claims (6)

  1. 1.一种燃料电池混合动力整车控制方法,包括以下步骤: 1)在整车控制器中设置电机状态切换模块、司机命令解释模块、动力电池荷电状态校验模块、路况自适应补偿模块、整车诊断修正模块和等效氢耗优化分配模块; 2)所述整车控制器从数字量、模拟量和TTCAN通讯端口读入司机挡位信号、司机踏板信号和TTCAN总线通讯数据,其中,TTCAN为时间触发式控制器局域网; 3)所述电机状态切换模块根据司机挡位信号和司机踏板信号将电机状态在“驱动、怠速、滑行、制动、倒车”之间切换; 4)所述司机命令解释模块根据电机状态切换模块设置的电机状态信号,确定电机状态,进而确定电机目标转矩; 5)所述动力电池荷电状态校验模块对动力电池管理系统发送的SOC值,以及TTCAN总线电压、动力电池电流进行校验,其中,SOC值为动力电池荷电状态校验值; 其中, 1. A fuel cell hybrid vehicle control method, comprising the steps of: 1) provided the motor controller in the vehicle state switching module, a driver command interpretation module, battery state of charge check module, traffic adaptive compensation module , vehicle diagnosis and correction module equivalent hydrogen consumption optimization assignment module; 2) the driver of the vehicle controller position signal from the digital, analog, and communication ports TTCAN read, TTCAN bus driver pedal signal and communication data, wherein , the TTCAN the time-triggered controller Area Network; 3) of the motor driver state switching module according to the pedal position signal and the driver signal to the motor in the state "driving, idling, coasting, braking, reversing" between switch; 4) said motor driver command interpretation module status signal switching module provided in accordance with the state of the motor, determining the state of the motor, and to determine the target motor torque; 5) value of the battery SOC state of charge of the battery check module transmission management system, and TTCAN bus voltage, battery current check, wherein the SOC value of battery state of charge check value; wherein, 力电池荷电状态校验模块的校验过程如下: ①使用最小二乘递推算法在线估算当前动力电池开路电压和平均充放电内阻,并结合动力电池开路电压一SOC曲线和充放电内阻一SOC曲线反推SOC值; ②根据动力电池管理系统发送的SOC值,结合动力电池开路电压一 SOC曲线和充放电内阻一SOC曲线,推算出动力电池开路电压和平均充放电内阻; ③根据步骤②中推算得到的开路电压、平均充放电内阻、以及动力电池管理系统发送的SOC值,计算相对于步骤①中估算得到的开路电压、平均充放电内阻、以及SOC值的相对误差; ④如果三种参数取值的相对误差均小于10%,则动力电池荷电状态校验模块判定动力电池管理系统发送的SOC值可信,否则动力电池荷电状态校验模块采用步骤①中得到的SOC估算值代替动力电池管理系统发送的SOC值; 6)所述路况自适应补偿模块根据接收 Verification process force checking module battery state of charge as follows: ① using RLS estimated battery open circuit voltage of the current line and the average discharge resistance, and in conjunction with a battery open circuit voltage and the charge-discharge curves SOC resistance a reverse thrust SOC value SOC curve; ② the SOC value of the battery management system sends, in conjunction with a battery open circuit voltage and the charge-discharge curves SOC SOC a resistance curve, calculate the average open circuit voltage and battery charge and discharge resistance; ③ the step of estimating the open circuit voltage obtained in ②, the average discharge resistance, and the SOC value of the battery management system sends, calculated relative to the estimated open-circuit voltage obtained in step ①, the average discharge resistance, and the SOC value of the relative error ; ④ If the relative error of three kinds parameter of less than 10%, the battery state of charge SOC value verification module determines battery management system sends a trusted, otherwise the battery state of charge check modules in step ① SOC value SOC estimation value of transmitted power instead of the battery management system obtained; 6) of the adaptive compensation module according to the received traffic 部件状态信息,在线计算整车辅助功率Paux、DC/DC动态补偿时间常数τ dc,并对动力电池SOC值、燃料电池性能衰退进行补偿和自适应调整; 7)所述整车诊断修正模块根据各部件的工作范围的限制,修正电机目标转矩和DC/DC目标电流; 8)所述等效氢耗优化分配模块中,整车目标功率在动力电池和燃料电池之间优化分配,使系统等效氢耗最小,并保持SOC值平衡; 9 )整车控制器将修正后的电机目标转矩及DC/DC目标电流通过TTCAN总线分别发送给电机控制器和DC/DC控制器,实现对电机和燃料电池的输出功率控制。 Member status information, calculates the vehicle auxiliary power line Paux, DC / DC dynamic compensation time constant τ dc, and the battery SOC value, to compensate for performance degradation of the fuel cell and adaptive adjustment; 7) according to the vehicle diagnostic correction module limit the operating range of each component, the correction target torque motor and DC / DC target current; 8) the equivalent hydrogen consumption optimization module allocation, the target vehicle optimal power allocation between the fuel cell and the battery, the system equivalent hydrogen consumption is minimized and the SOC value balance; 9) after the target torque of the motor vehicle and a correction controller DC / DC target current to a motor controller and DC / DC controller TTCAN buses, respectively, to achieve and the fuel cell output power of the motor control.
  2. 2.如权利要求1所述的一种燃料电池混合动力整车控制方法,其特征在于:所述步骤3)中,所述电机状态切换模块的切换步骤如下: ①判断司机挡位信号是否为空挡,如果是,则设置电机状态为怠速,否则进入下一步; ②判断挡位信号是否为倒车挡,如果是,则设置电机状态为倒车;否则进入下一步; ③判断制动踏板是否大于制动阈值,如果是,则设置电机状态为制动;否则进入下一IK少; ④判断制动踏板是否小于等于制动阈值,且加速踏板大于加速阈值,如果是,则设置电机状态为驱动,否则,设置电机状态为滑行。 2. A fuel cell hybrid vehicle control method according to claim 1, wherein: in the step 3), the machine state switching step of switching modules as follows: ① determination whether the driver position signal neutral, if so, the motor is set to idling state, otherwise go to the next step; ② determines whether the reverse gear position signal, and if so, the status is set to reverse the motor; otherwise, proceed to the next step; determining whether the brake pedal is greater than the braking ③ dynamic threshold, if yes, setting the status of the motor brake; otherwise, proceed to the next less IK; ④ determines whether the brake pedal is smaller than the threshold value equal to the brake and the accelerator pedal is greater than the acceleration threshold value, if so, set the state to drive the motor, otherwise, set the motor to coast state.
  3. 3.如权利要求1所述的一种燃料电池混合动力整车控制方法,其特征在于:所述步骤4)中,所述司机命令解释模块确定电机在怠速、倒车、驱动和滑行状态下时,则电机目标转矩为驱动目标转矩Tqd* When the motor is at idle, reverse, drive and coast state of the step 4), the driver command interpretation module determines: 3. A fuel cell hybrid vehicle control method according to claim 1, characterized in that , the target torque motor drive torque target Tqd *
    Figure CN102167036BC00031
    上式中α为司机踏板位置信号,取值范围O〜1 Jvlmax为电机最大驱动转矩,根据电机在驱动状态下的外特性曲线及目标转矩关系图,得到驱动目标转矩Tqd*的值; 所述司机命令解释模块确定电机在制动状态下时,则电机目标转矩为制动目标转矩Tqb*: In the above formula for the driver pedal position signal α, in the range O~1 Jvlmax maximum drive torque of the motor, in a driving state according to the target torque and the outer characteristic diagram motor is driven target torque value Tqd * ; driver command interpretation module determines that the motor is in a braking state, the motor target torque as the target braking torque Tqb *:
    Figure CN102167036BC00032
    上式中Y为制动踏板系数,Ttfcmax为最大制动转矩,根据电机在制动状态下的外特性曲线及目标转矩关系图,得到制动目标转矩< 的值。 Wherein Y is the coefficient of the brake pedal, Ttfcmax to maximum brake torque, in accordance with the target torque and the outer characteristic diagram of the motor in the braking state, the target braking torque obtained <value.
  4. 4.如权利要求3所述的一种燃料电池混合动力整车控制方法,其特征在于:所述制动踏板系数Y,在采用串联式制动能量回馈策略时,所述制动踏板系数Y通过下式得到: 4. A fuel cell hybrid vehicle control method according to claim 3, wherein: Y coefficient of the brake pedal, when using tandem brake energy back policy, the brake pedal factor Y obtained by the following formula:
    Figure CN102167036BC00033
    上式中β为制动踏板位置信号,^和β2为制动回馈策略参数,该参数影响车辆制动效果,根据实际情况标定得到。 Where β is the brake pedal position signal, brake β2 ^ and feedback strategy parameter which affect the braking effect of the vehicle, the calibration obtained according to the actual situation.
  5. 5.如权利要求1所述的一种燃料电池混合动力整车控制方法,其特征在于:所述步骤6)中,在所述路况自适应补偿模块中,所述整车辅助功率Paux根据TTCAN总线数据,采用一阶低通滤波算法进行在线估算: 5. A fuel cell hybrid vehicle control method according to claim 1, wherein: said step 6), the adaptive compensation module in the road, the vehicle auxiliary power Paux The TTCAN a data bus, first-order low-pass filter algorithm to estimate online:
    Figure CN102167036BC00034
    上式中Pd。 The above formula Pd. 为DC/DC输出功率,Pbat为动力电池输出功率,Pnun为电机输入功率,均能从TTCAN总线数据读取,τ aux为滤波常数,s为传递函数的复数变量; 所述DC/DC动态补偿时间常数τ dc按下式计算: Of DC / DC output power, output power Pbat battery powered, Pnun motor input power, TTCAN bus can read data from, τ aux is the filter constant, s is the complex variable transfer functions; the DC / DC dynamic compensation the time constant τ dc is calculated as follows:
    Figure CN102167036BC00035
    上式中λ P λ2、λ 3为燃料电池性能衰退加权系数:λ 1=0.4,λ =0.4, λ 3=0.2,τ dc0=5s, Δ τ dcl为根据燃料电池系统U_I曲线参数开路电压U0确定的修正值、Δ τ dc2为根据燃料电池系统U-1曲线参数欧姆内阻Rf。 In the above formula λ P λ2, λ 3 for the fuel cell performance degradation weighting factor: λ 1 = 0.4, λ = 0.4, λ 3 = 0.2, τ dc0 = 5s, Δ τ dcl open circuit voltage U0 The fuel cell system U_I curve parameters determining the correction value, Δ τ dc2 fuel cell system U-1 in accordance with the curve parameters ohmic resistance Rf. 确定的修正值、Λ Tde3为根据燃料电池系统U-1曲线参数浓差极化参数b确定的修正值,Λ Tdcl, Δ Ttk2和Λ Ttk3随燃料电池电堆性能衰退而变化。 Determining the correction value, Λ Tde3 U-1 according to the correction value of the curve parameter b determined polarization parameters of the fuel cell system concentration, Λ Tdcl, Δ Ttk2 and Λ Ttk3 with the fuel cell stack performance decline varies.
  6. 6.如权利要求1所述的一种燃料电池混合动力整车控制方法,其特征在于:所述步骤9)中,修正后的所述电机目标转矩和DC/DC目标电流的计算公式如下: 6. A fuel cell hybrid vehicle control method according to claim 1, wherein: in the step 9), the formula for calculating the corrected target torque motor and DC / DC follows the target current :
    Figure CN102167036BC00036
    上式中<为电机目标转矩,Arq:1K)difiedS电机目标转矩诊断修正值,为未经修正的DC/DC目标电流,M^raxtffiedl为考虑动力电池SOC值平衡的DC/DC目标电流修正值,Δ4—为DC/DC目标电流诊断修正值,为驱动电机目标转矩诊断修正值。 The above formula <target motor torque, Arq: 1K) difiedS diagnostic motor target torque correction value for the uncorrected DC / DC target current, M ^ raxtffiedl battery SOC value to account for the balance of DC / DC target current correction value Delta] 4-is a DC / DC diagnosis target current correction value, the target drive motor torque correction value diagnosis.
CN 201110082662 2011-04-01 2011-04-01 Control method of fuel cell hybrid vehicle CN102167036B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110082662 CN102167036B (en) 2011-04-01 2011-04-01 Control method of fuel cell hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110082662 CN102167036B (en) 2011-04-01 2011-04-01 Control method of fuel cell hybrid vehicle

Publications (2)

Publication Number Publication Date
CN102167036A true CN102167036A (en) 2011-08-31
CN102167036B true CN102167036B (en) 2013-08-14

Family

ID=44488411

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110082662 CN102167036B (en) 2011-04-01 2011-04-01 Control method of fuel cell hybrid vehicle

Country Status (1)

Country Link
CN (1) CN102167036B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9555718B2 (en) * 2013-12-06 2017-01-31 Ford Global Technologies, Llc Estimation and compensation of battery measurement and asynchronization biases
CN104210486B (en) * 2014-08-13 2017-01-11 潍柴动力股份有限公司 A hybrid construction machine control method and system of the vehicle power
CN104991189B (en) * 2015-04-13 2017-10-27 中国东方电气集团有限公司 Line calibration method of the state of charge of the battery
CN105501075B (en) * 2015-11-30 2017-12-29 刘淼 Electric vehicle control system
CN105416085B (en) * 2015-12-21 2018-01-05 武汉众宇动力系统科技有限公司 The hybrid system control method and the hybrid
CN106229531A (en) * 2016-09-29 2016-12-14 清华大学 Fault-tolerant control method and device of fuel battery vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5780980A (en) 1995-04-14 1998-07-14 Hitachi, Ltd. Electric car drive system provided with hybrid battery and control method
EP1470943A2 (en) 2003-04-24 2004-10-27 Delphi Technologies, Inc. Method and apparatus for providing hybrid power in vehicle
CN2756489Y (en) 2004-12-17 2006-02-08 清华大学 Fuel cell automobile mixed power device
CN101219664A (en) 2008-01-08 2008-07-16 清华大学 Fuel cell hybrid power energy control method
CN101359036A (en) 2007-07-31 2009-02-04 比亚迪股份有限公司 Method for measuring state of charge of battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3599773B2 (en) * 1994-02-24 2004-12-08 アイシン・エィ・ダブリュ株式会社 Hybrid power supply

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5780980A (en) 1995-04-14 1998-07-14 Hitachi, Ltd. Electric car drive system provided with hybrid battery and control method
EP1470943A2 (en) 2003-04-24 2004-10-27 Delphi Technologies, Inc. Method and apparatus for providing hybrid power in vehicle
CN2756489Y (en) 2004-12-17 2006-02-08 清华大学 Fuel cell automobile mixed power device
CN101359036A (en) 2007-07-31 2009-02-04 比亚迪股份有限公司 Method for measuring state of charge of battery
CN101219664A (en) 2008-01-08 2008-07-16 清华大学 Fuel cell hybrid power energy control method

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
何洪文.燃料电池混合动力汽车控制策略研究.《北京理工大学学报》.2007,第27卷(第3期),第223-226页.
刘蒙等.基于TTCAN的燃料电池系统分布式控制系统设计.《汽车工程》.2006,第28卷(第9期),第792-797页.
徐梁飞等.燃料电池混合动力参数辨识及整车控制策略优化.《机械工程学报》.2009,第45卷(第2期),第56-61页.
徐梁飞等.燃料电池混合动力客车等效氢耗优化策略.《中国公路学报》.2009,第22卷(第1期),第104-108页.
曹桂军等.燃料电池混合动力客车整车控制策略.《机械工程学报》.2008,第44卷(第6期),第114-119页.

Also Published As

Publication number Publication date Type
CN102167036A (en) 2011-08-31 application

Similar Documents

Publication Publication Date Title
Li et al. Optimal fuzzy power control and management of fuel cell/battery hybrid vehicles
US6242873B1 (en) Method and apparatus for adaptive hybrid vehicle control
US20040119441A1 (en) Method for resetting a state of charge fo a battery of a hybrid electric vehicle
Schaltz et al. Influence of battery/ultracapacitor energy-storage sizing on battery lifetime in a fuel cell hybrid electric vehicle
US20090266631A1 (en) Charge/Discharge Control Device and Charge/Discharge Control Method for Power Storage Device, and Electric-Powered Vehicle
Xu et al. Optimal vehicle control strategy of a fuel cell/battery hybrid city bus
US20120261397A1 (en) Method and system for heating a vehicle battery
Xu et al. Adaptive supervisory control strategy of a fuel cell/battery-powered city bus
CN1945345A (en) Detecting device and method for mixed power automobile battery remainder
JP2006020401A (en) Battery managing system of hybrid vehicle
CN100999191A (en) Fuel battery power system of mixed power vehicle
CN102088118A (en) Battery management system, electric vehicle and state-of-charge estimation method
US20110270477A1 (en) Nonaqueous electrolyte type secondary battery system and vehicle
JP2009123435A (en) Device and method of controlling secondary battery
JPH11187577A (en) Charge/discharge controller for secondary battery
Feroldi et al. Design and analysis of fuel-cell hybrid systems oriented to automotive applications
US20100250041A1 (en) Protection method for limited charging/discharging current of hybrid electric vehicle battery and a device and a system thereof
CN102431550A (en) Method for controlling hybrid power vehicle
JP2003219510A (en) Charging and discharging controller for secondary cell
US20040046525A1 (en) Control strategy for an electric motor using real time predictions of motor capability based on thermal modeling and measurements
US20100152936A1 (en) Hybrid vehicle and a method of control for improved power management
US7206687B1 (en) Method for controlling a hybrid electric vehicle
JP2000166105A (en) Charged state controller for battery
CN1903629A (en) Random energy management method of bienergy source power automobile
CN101559769A (en) Safe control method for electric automobile torque

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model