CN102167036A - Control method of fuel cell hybrid vehicle - Google Patents

Control method of fuel cell hybrid vehicle Download PDF

Info

Publication number
CN102167036A
CN102167036A CN 201110082662 CN201110082662A CN102167036A CN 102167036 A CN102167036 A CN 102167036A CN 201110082662 CN201110082662 CN 201110082662 CN 201110082662 A CN201110082662 A CN 201110082662A CN 102167036 A CN102167036 A CN 102167036A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
dc
motor
module
battery
target
Prior art date
Application number
CN 201110082662
Other languages
Chinese (zh)
Other versions
CN102167036B (en )
Inventor
卢兰光
徐梁飞
李建秋
杨福源
欧阳明高
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/84Data processing systems or methods, management, administration

Abstract

The invention relates to a control method of a fuel cell hybrid vehicle, which comprises the following steps: a vehicle controller is internally provided with a motor status switching module, a driver order explaining module, a power cell charged status verifying module, a road condition self-adaption compensating module, a vehicle diagnosis correcting module and an equivalent hydrogen consumption optimal distributing module; the vehicle controller reads a gear signal, a pedal signal and TTCAN (triggered controller area network) bus data; the motor status switching module switches the motor status; the driver order explaining module confirms a motor target torque; the power cell charged status verifying module verifies a SOC (system on chip) value, TTCAN bus voltage and power cell current; the road condition self-adaption compensating module computes the auxiliary power and the DC (direct current) /DC dynamic compensation time constant of the vehicle; the vehicle diagnosis correcting module corrects the motor target torque and the DC/DC target current; the equivalent hydrogen consumption optimal distributing module optimally distributes the vehicle target power between the power cell and the fuel cell; and the modified motor target torque and the DC/DC target current are transmitted to a motor controller and a DC/DC controller so as to control the output power of the motor andthe fuel cell.

Description

一种燃料电池混合动力整车控制方法 A fuel cell hybrid vehicle control method

技术领域 FIELD

[0001] 本发明涉及一种车辆控制方法,特别是关于一种面向一般城市工况的燃料电池混合动力整车控制方法。 [0001] The present invention relates to a method for controlling a vehicle, a fuel cell hybrid vehicle control method particularly relates generally oriented urban conditions.

背景技术 Background technique

[0002] 石油资源匮乏和环境污染是当今各国政府、科研机构和跨国企业关注的重大问题,许多国家政府和企业投入大量资源研究解决该问题的技术方案。 [0002] scarcity of oil resources and environmental pollution are today's governments, research institutions and major issues of concern to multinational corporations, many governments and businesses to invest significant resources to research technical solutions to solve the problem. 燃料电池(或称为质子交换膜燃料电池)依靠氢和氧的化学反应产生电流,并生成水,噪声低且无污染,因此被认为是解决资源及环境问题的重要技术方案。 The fuel cell (or referred to as a proton exchange membrane fuel cell) depend on the chemical reaction of hydrogen and oxygen to produce a current, and generate water, and low noise pollution, it is considered to solve the environmental problems and resource important aspect.

[0003] 当前燃料电池主要是应用于燃料电池混合动力汽车。 [0003] Current fuel cells is mainly applied to a fuel cell hybrid vehicle. 燃料电池混合动力汽车一般采用燃料电池加动力电池或者超级电容的构型。 Usually the fuel cell hybrid vehicle using a fuel cell battery or a super capacitor added to the configuration. 动力电池(或超级电容)在加载时提供过载功率,避免燃料电池工况突变;制动时,动力电池(或超级电容)吸收部分制动能量,提高系统经济性。 Battery (or supercapacitor) providing overload power when loaded, to avoid the condition of the fuel cell mutation; braking, battery power (or supercapacitor) braking energy absorbing portion, improving the system economy. 燃料电池混合动力系统包括多个动力源(例如燃料电池动力源与动力电池动力源),由整车控制器控制该多个动力源进行工作。 The hybrid fuel cell system includes a plurality of power sources (e.g. a fuel cell power source and the battery power source), the plurality of power sources are controlled by the controller to operate the vehicle.

[0004] 在燃料电池混合动力汽车的混合动力构型方面,现有技术提供了一种“能量型” 混合动力系统。 [0004] In the fuel cell hybrid vehicle of the configuration of a hybrid aspect, the prior art provides an "energy type" hybrid system. 如图1所示(图中细实线表示高压连接,粗实线表示机械连接),在这种构型中,燃料电池系统通过直流/直流变换器(Direct Current to Direct Current converter, DC/DC)与动力电池并联,而后通过直流/交流逆变器(Direct Current to Alternating Current inverter,DC/AC)转变为交流电驱动三相异步电机。 As shown (thin solid line in FIG high-voltage connection, thick solid line shows the mechanical connection) 1, in this configuration, the fuel cell system via a DC / DC converter (Direct Current to Direct Current converter, DC / DC ) in parallel with the battery, followed by a DC / AC inverter (Direct current to alternating current inverter, DC / AC) into AC-driven three-phase asynchronous motors. 现有技术中还提供了多种燃料电池混合动力汽车的整车控制方法,包括基于规则的整车控制方法、瞬时优化、全局优化和制动能量回馈整车控制方法等,但是没有提供面向一般城市工况的整车控制方法。 The prior art also offers a variety of vehicle control method for a fuel cell hybrid vehicle, the vehicle control method comprising a rule-based, transient optimization, and global optimization vehicle braking energy feedback control method, but does not provide for ships urban conditions of vehicle control method.

发明内容 SUMMARY

[0005] 针对上述问题,本发明的目的是提供一种平均速率低、加减速工况所占比例高、制动消耗的能量大,能够解决城市工况的燃料电池混合动力整车控制方法。 [0005] In view of the above problems, an object of the present invention is to provide a low average rate, plus a high proportion of deceleration condition, a large braking energy consumption can be solved urban conditions of the fuel cell hybrid vehicle control method.

[0006] 为实现上述目的,本发明采取以下技术方案:一种燃料电池混合动力整车控制方法,包括以下步骤:1)在整车控制器中设置电机状态切换模块、司机命令解释模块、动力电池荷电状态校验模块、路况自适应补偿模块、整车诊断修正模块和等效氢耗优化分配模块, 其中,TTCAN为时间触发式控制器局域网;幻所述整车控制器从数字量、模拟量和TTCAN 通讯端口读入司机挡位信号、司机踏板信号和TTCAN总线通讯数据;幻所述电机状态切换模块根据司机挡位信号和司机踏板信号将电机状态在“驱动、怠速、滑行、制动、倒车”之间切换;4)所述司机命令解释模块根据电机状态切换模块设置的电机状态信号,确定电机状态,进而确定电机目标转矩力)所述动力电池荷电状态校验模块对动力电池管理系统发送的SOC值,以及TTCAN总线电压、动力电池电流进行校验 [0006] To achieve the above object, the present invention adopts the following technical solution: a fuel cell hybrid vehicle control method, comprising the steps of: 1) set the motor vehicle in the state switching module controller, driver command interpretation module, power check the state of charge of the battery module, an adaptive compensation module road conditions, vehicle diagnosis and correction module equivalent hydrogen consumption optimal allocation module, wherein, the TTCAN is a time-triggered controller Area Network; magic from the digital vehicle controller, TTCAN and analog communications port driver reads the position signal, the driver and the pedal signal TTCAN bus communication transactions; magic state switching module according to the motor driver pedal position signal and the driver signal to the motor in the state "driving, idling, coasting, Ltd. moving, switching between a reverse "; 4) of said driver command interpretation module in accordance with the switching state of the motor state signal the motor module is provided to determine the state of the motor, and to determine the target motor torque force) of the battery charge status check module SOC value of the transmission power of a battery management system, and TTCAN bus voltage, battery current check 其中,SOC值为动力电池荷电状态校验值;6)所述路况自适应补偿模块根据接收的部件状态信息,在线计算整车辅助功率Paux、DC/DC动态补偿时间常数τ dc,并对动力电池SOC值、燃料电池性能衰退进行补偿和自适应调整;7)所述整车诊断修正模块根据各部件的工作范围的限制,修正电机目标转矩和DC/DC目标电流;8)所述等效氢耗优化分配模块中,整车目标功率在动力电池和燃料电池之间优化分配,使系统等效氢耗最小,并保持SOC值平衡;9)整车控制器将修正后的电机目标转矩及DC/DC目标电流通过TTCAN总线分别发送给电机控制器和DC/DC控制器,实现对电机和燃料电池的输出功率控制。 Wherein, the SOC value of battery state of charge check value; 6) of the adaptive compensation module calculates a road vehicle auxiliary power Paux, DC / DC dynamic compensation time constant τ dc component according to the received state information, online, and battery SOC value, to compensate for performance degradation of the fuel cell and adaptive adjustment; 7) according to the vehicle diagnostic correction module limits the operating range of each component, the correction target torque motors and DC / DC target current; 8) equivalent hydrogen consumption optimization module allocation, the target vehicle optimal power allocation between the fuel cell and the battery, so that the system is equivalent hydrogen consumption is minimized and the SOC value balance; 9) of the vehicle motor controller corrected target torque and the DC / DC current transmitted through the target TTCAN buses, respectively, to the motor controller and DC / DC controller, to achieve control of the motor and the output power of the fuel cell.

[0007] 所述步骤3)中,所述电机状态切换模块的切换步骤如下:①判断司机档位信号是否为空挡,如果是,则设置电机状态为怠速,否则进入下一步;②判断档位信号是否为倒车档,如果是,则设置电机状态为倒车;否则进入下一步;③判断制动踏板是否大于制动阈值,如果是,则设置电机状态为制动;否则进入下一步;④判断制动踏板是否小于等于制动阈值,且加速踏板大于加速阈值,如果是,则设置电机状态为驱动,否则,设置电机状态为滑行。 In [0007] step 3), the machine state switching step of switching modules as follows: ① determination driver signal is a neutral gear position, and if so, the motor is set to an idle state, otherwise, the next step; ② shift position is determined signal is a reverse gear, if so, set the state to reverse the motor; otherwise, proceed to the next step; ③ is determined whether the brake pedal is larger than a brake threshold value, and if so, the status is set to the motor brake; otherwise, proceed to the next step; ④ Analyzing the brake pedal is smaller than the threshold value equal to the brake and the accelerator pedal is greater than the acceleration threshold value, if so, set the state to drive the motor, otherwise it is set to the motor coasting state.

[0008] 所述步骤4)中,所述司机命令解释模块确定电机在怠速、倒车、驱动和滑行状态下时,则电机目标转矩为驱动目标转矩7; =O^qdmax,上式中α为司机踏板位置信号, 取值范围O〜1 ;T'_为电机最大驱动转矩,根据电机在驱动状态下的外特性曲线及目标转矩关系图,得到驱动目标转矩^1的值;所述司机命令解释模块确定电机在制动状态下时, 则电机目标转矩为制动目标转矩7; J; =Tqtwax/,上式中、为制动踏板系数,T'_为最大制动转矩,根据电机在制动状态下的外特性曲线及目标转矩关系图,得到制动目标转矩《的值。 [0008] step 4), the motor driver command interpretation module determines when idle, reverse, drive and coast state, the target motor torque target torque drive 7; = O ^ qdmax, the above formula α pedal position signal for the driver, in the range O~1; T'_ the maximum drive torque of the motor, in a driving state according to the target torque and the outer characteristic diagram motor is driven target torque value ^ 1 ; driver command interpretation module determines that the motor is in a braking state, the motor target torque to the target torque braking 7; J; = Tqtwax /, the above formula for the coefficient of the brake pedal, T'_ maximum braking torque, in accordance with the target torque and the outer characteristic diagram of the motor in the braking state, to obtain a target braking torque "value.

[0009] 所述制动踏板系数Y,在采用串联式制动能量回馈策略时,所述制动踏板系数Y 通过下式得到:Y :““辣-旦譯厂^)-2,上式中β为制动踏板位置信号,β ^口β 2为制动回馈策略参数,该参数影响车辆制动效果,根据实际情况标定得到。 [0009] Y coefficient of the brake pedal, when using tandem brake energy feedback strategy, the coefficients of the brake pedal Y obtained by equation: Y: "" hot - ^ Once translated Plant) - 2, formula in beta] is a brake pedal position signal, β ^ β 2 as a brake port feedback strategy parameter which affect the braking effect of the vehicle, the calibration obtained according to the actual situation.

[0010] 所述步骤…中,所述动力电池荷电状态校验模块的校验过程如下:①使用最小二乘递推算法在线估算当前动力电池开路电压和平均充放电内阻,并结合动力电池开路电压-SOC曲线和充放电内阻-SOC曲线反推SOC值;②根据动力电池管理系统发送的SOC值, 结合动力电池开路电压-SOC曲线和充放电内阻-SOC曲线,推算出动力电池开路电压和平均充放电内阻;③根据步骤②中推算得到的开路电压、平均充放电内阻、以及动力电池管理系统发送的SOC值,计算相对于步骤①中估算得到的开路电压、平均充放电内阻、以及SOC 值的相对误差;④如果三种参数取值的相对误差均小于10%,则动力电池荷电状态校验模块判定动力电池管理系统发送的SOC值可信,否则动力电池荷电状态校验模块采用步骤① 中得到的SOC估算值代替动力电池管理系统发送的SOC值。 [0010] ... step, the verification process of the battery state of charge check module as follows: ① using RLS estimated battery open circuit voltage of the current line and the average discharge resistance and binding kinetics -SOC battery open circuit voltage and the charge-discharge curve of the internal resistance value SOC -SOC curve of thrust reversers; ② the SOC value of the battery management system sends, in conjunction with battery open circuit voltage and the charge-discharge curves -SOC -SOC resistance curve, calculate the power average open circuit voltage and the battery charge and discharge resistance; ③ the open circuit voltage estimating step ② of the obtained average discharge resistance, and the SOC value of the battery management system sends, calculated relative to the estimated open-circuit voltage obtained in step ①, average discharge resistance, and the relative error of the SOC value; ④ If the relative error of three kinds parameter of less than 10%, the battery state of charge SOC value verification module determines battery management system sends a trusted, otherwise power the battery state of charge SOC value check modules in step ① SOC estimation value obtained in the battery management system in place of the power transmitted.

[0011 ] 所述步骤6)中,在所述路况自适应补偿模块中,所述整车辅助功率Paux根据TTCAN 总线数据,采用一阶低通滤波算法进行在线估算: [0011] step 6), the adaptive compensation module in the road, the vehicle auxiliary power Paux The TTCAN bus data, using a first-order low-pass filter algorithm to estimate online:

--D ^dc + ^bat ^m, in [0012] ^aux =---, --D ^ dc + ^ bat ^ m, in [0012] ^ aux = ---,

^aux5 + 1 ^ Aux5 + 1

[0013] 上式中Pd。 [0013] In the above formula Pd. 为DC/DC输出功率,Pbat为动力电池输出功率,Pm,in为电机输入功率,均能从TTCAN总线数据读取,τ aux为滤波常数,S为传递函数的复数变量;所述DC/DC动态补偿时间常数τ dc 按下式计算:τ dc = λ i Δ τ dcl+ λ 2 Δ τ dc2+ λ 3 Δ τ dc3+ τ dc0,上式中λ ” λ 2、入3为燃料电池性能衰退加权系数:λ i = 0. 4,A2 = 0.4, A3 = 0.2, τ dc0 = 5s, Δ τ dcl、 Δ id。2和Δ τ d。3分别为根据燃料电池系统UI曲线三参数开路电压Utl,欧姆内阻Rf。和浓差极化参数b确定的修正值,Δ xdcl> Δ Td。2和Δ τ d。3随燃料电池电堆性能衰退而变化。 [0014] 所述步骤9)中,修正后的所述电机目标转矩和DC/DC目标电流的计算公式如下: Of DC / DC output power, output power Pbat battery powered, Pm, in the motor input power, TTCAN bus can read data from, τ aux is the filter constant, S is the transfer function of a complex variable; the DC / DC dynamic compensation time constant τ dc is calculated as follows: τ dc = λ i Δ τ dcl + λ 2 Δ τ dc2 + λ 3 Δ τ dc3 + τ dc0, the above formula λ "λ 2, into three fuel cell performance degradation weighting factor: λ i = 0. 4, A2 = 0.4, A3 = 0.2, τ dc0 = 5s, Δ τ dcl, Δ id.2 respectively, and Δ τ d.3 the fuel cell system UI open-circuit voltage curve of three parameters Utl, ohms an Rf value of resistance correction. concentration polarization and the parameter b determined, Δ xdcl> Δ Td.2 and Δ τ d.3 decay varies with fuel cell stack performance. [0014] step 9), the corrected the target torque of the motor and the DC / DC target current is calculated as follows:

[0015] [0015]

Figure CN102167036AD00071
Figure CN102167036AD00072

[0016] [0016]

Figure CN102167036AD00073
Figure CN102167036AD00074
Figure CN102167036AD00075

上式中<为电机目标转矩,Arq,m。 The above formula <target motor torque, Arq, m. dified*电机目标转矩诊断修正值,Δ/:为未经修正的DC/DC目标电流,A4,m。 dified * motor torque target value correction diagnosis, Δ /: is the uncorrected DC / DC target current, A4, m. difiedl为考虑动力电池SOC值平衡的DC/DC目标电流修正值, ^/d\m。 difiedl battery SOC value to account for the balance of DC / DC current correction target value, ^ / d \ m. dlfied2为DC/DC目标电流诊断修正值,ΔΤ;;^^^为驱动电机目标转矩诊断修正值。 dlfied2 of DC / DC diagnosis target current correction value, ΔΤ ;; ^^^ diagnostic drive motor target torque correction value. [0017] 本发明由于采取以上技术方案,其具有以下优点:1、本发明考虑了系统经济性、燃料电池耐久性和整车安全性,解决城市工况的能量管理问题。 [0017] The present invention As a result of the above technical solution, it has the following advantages: 1, the present invention contemplates economy system, fuel cell durability and vehicle safety, energy management to solve the problem of urban conditions. 2、本发明提供一种燃料电池混合动力客车综合能量管理方法,整车控制器根据输入的司机挡位信号、司机踏板信号和时间触发式控制器局域网TTCAN总线通讯数据,确定电机目标转矩和DC/DC目标电流,将电机目标转矩和DC/DC目标电流向TTCAN总线。 2, the present invention provides a fuel cell hybrid bus integrated energy management method, according to the vehicle driver controller data input position signal, the driver pedal signal and time-triggered Controller Area Network TTCAN bus communication, to determine the motor torque and the target DC / DC target current, the motor torque and the target DC / DC current to the target TTCAN bus. 3、本发明可以在城市工况下实现系统经济性优化,保证动力电池SOC平衡,尽量延长燃料电池使用寿命,保障整车安全。 3, the present invention can be implemented in urban conditions economic system optimized to ensure battery SOC balance, try to extend the life of the fuel cell to ensure vehicle safety. 使用本发明的燃料电池城市客车已成功进行了奥运示范和北京公交示范运营,达到国内一流、国际先进的水平,因此可以广泛应用于燃料电池混合动力汽车控制应用中。 Use of the invention fuel cell city bus has been successfully carried out and the Beijing Olympic demonstration bus demonstration, domestic first-class, international advanced level, it can be widely used in a fuel cell hybrid vehicle control applications.

附图说明 BRIEF DESCRIPTION

[0018] 图1是现有技术中的控制示意图 [0018] FIG. 1 is a prior art schematic diagram of a control

[0019] 图2是本发明整车控制器组成示意图 [0019] FIG. 2 is a schematic diagram illustrating a vehicle controller according to the present invention

[0020] 图3是本发明整车控制器工作流程图 [0020] FIG. 3 is a flowchart of the vehicle controller of the present invention

[0021] 图4是本发明电机状态切换模块工作流程图 [0021] FIG. 4 is a state machine flow chart of the switching module according to the present invention

[0022] 图5是本发明电机状态切换关系示意图 [0022] FIG. 5 is a schematic diagram of the present invention, the switching state of the relationship between the motor

[0023] 图6是本发明司机命令解释模块工作流程图 [0023] FIG. 6 is a flowchart of a driver command interpretation module of the present invention

[0024] 图7是本发明电机在驱动状态下的外特性曲线及电机制动目标转矩关系图 [0024] FIG. 7 is a characteristic curve of the outer motor and the motor of the present invention in a driving state diagram braking target torque

[0025] 图8是本发明电机在制动状态下的外特性曲线及目标转矩关系图 [0025] FIG. 8 is in a braking state of the outer curve and the relationship between the target torque motor of the present invention FIG.

[0026] 图9是本发明SOC校验模块工作流程图 [0026] FIG. 9 is a flowchart of SOC verification module of the present invention

[0027] 图10是本发明路况自适应补偿模块工作流程图 [0027] FIG. 10 is a flowchart of traffic adaptive compensation module according to the present invention

[0028] 图11是本发明动态补偿时间常数Δ τ dc与三参数的关系图 [0028] FIG. 11 is a graph of the dynamic compensation according to the present invention, the time constant Δ τ dc and three parameters

[0029] 图12是本发明整车诊断修正模块工作流程图 [0029] FIG. 12 is a flowchart of diagnostic correction module of the present invention is the vehicle

[0030] 图13是本发明整车诊断修正算法框图 [0030] FIG. 13 is a block diagram of the vehicle diagnostic correction algorithm of the present invention

[0031] 图14是本发明等效氢耗优化分配模块工作流程图 [0031] FIG. 14 is a flow chart of the present invention is equivalent hydrogen consumption optimized assignment module

[0032] 图15是本发明当动力电池SOC平衡修正系数μ = 0. 6时,动力电池最优功率与SOC的关系图具体实施方式 [0032] FIG. 15 is the present invention, when the battery SOC balance correction coefficient 0. 6 μ =, battery power and the optimum relationship between the SOC DETAILED DESCRIPTION FIG.

[0033] 下面结合附图和实施例对本发明进行详细的描述。 Drawings and embodiments of the present invention will be described in detail [0033] below in conjunction.

[0034] 如图2、图3所示,本发明的整车控制器中包括电机状态切换模块、司机命令解释模块、SOCGtate of Charge,动力电池荷电状态)校验模块、路况自适应补偿模块、整车诊断修正模块和等效氢耗优化分配模块,还具备数字量端口、模拟量端口和TTCAN通讯端口等接口。 [0034] As shown in FIG 2, FIG. 3, the vehicle controller of the present invention includes a motor state switching module, a driver command interpretation module, SOCGtate of Charge, battery state of charge) checking module, traffic adaptive compensation module , vehicle diagnosis and correction module equivalent hydrogen consumption optimized assignment module further includes a digital interface port, the analog port and communications ports TTCAN. 图示中S0C、总线电压、动力电池电流等信号,由现有设备中的BMS(Battery Management System,动力电池管理系统)测量、计算后,发送到TTCAN(Time Triggered Controller Area Network,时间触发式控制器局域网)总线上;电机转速信号由现有设备中的电机控制器测量、计算,发送到TTCAN总线上;部件状态信息由各个部件控制器(电机控制器、DC/DC控制器、动力电池管理系统、燃料电池控制器等)测量、计算后,发送到TTCAN总线上。 S0C illustration, bus voltage, battery current, signal power, by the conventional apparatus BMS (Battery Management System, the power battery management system) measurement, are calculated and transmitted to the TTCAN (Time Triggered Controller Area Network, time-triggered control the control Local Area Network) bus; motor speed signal is measured by the controller of the motor in the conventional apparatus, calculating, transmitting to the TTCAN bus; means the state information by the respective components of the controller (motor controller, DC / DC controller, battery management system, the fuel cell controller, etc.) measurements, are calculated and sent to the TTCAN bus.

[0035] 本发明整车控制方法包括以下步骤: [0035] The vehicle control method according to the present invention comprises the steps of:

[0036] 1、读入数据 [0036] 1, data is read

[0037] 整车控制器从数字量、模拟量和TTCAN通讯端口读入司机档位信号、司机踏板信号和TTCAN总线通讯数据。 [0037] The vehicle controller from the digital signal into the shift drivers, analog, and communication ports TTCAN read, TTCAN bus driver pedal signal and communication data. 例如,整车控制器从数字量端口读入司机挡位信号,从模拟量端口读入司机踏板信号,从TTCAN通讯端口读入TTCAN总线通讯数据。 For example, vehicle controller port read from the digital position signal driver, port driver is read from the analog pedal signal, TTCAN bus communication into the communication port read data from the TTCAN. 除此之外,根据不同系统的需要,整车控制器还可以从模拟量端口读入漏电传感器、制动气压传感器等发出的信号,从数字量端口读入包括电机状态切换、高压上电等信号。 In addition, according to the needs of different systems, the vehicle controller may also read from the port of the analog signal emitted leakage sensor, a brake pressure sensor, the digital read out from the port includes a motor switching state, the pressure and other electrical signal.

[0038] 2、电机状态切换 [0038] 2, the switching state of the motor

[0039] 如图4、图5所示,整车控制器的电机状态切换模块根据司机挡位信号和司机踏板信号将电机状态在“驱动、怠速、滑行、制动、倒车”之间切换。 [0039] FIG 4, shown in the state of the motor vehicle controller state switching module switches the motor "driving, idling, coasting, braking, reversing" in accordance with FIG. 5 between the driver and the driver pedal position signal signals.

[0040] 比如:整车控制器首先判断司机档位信号是否为空挡,如果是,则设置电机状态为怠速;否则,进一步判断档位信号是否为倒车档,如果是,则设置电机状态为倒车;否则,进一步判断制动踏板是否大于制动阈值,如果是则设置电机状态为制动;否则,进一步判断制动踏板是否小于等于制动阈值,且加速踏板大于加速阈值,如果是,则设置电机状态为驱动,否则,设置电机状态为滑行。 [0040] For example: the vehicle driver controller first determines whether the neutral gear position signal, and if so, the motor is set to an idle state; otherwise, further determining whether the reverse gear shift position signal, if so, set the state to reverse the motor ; otherwise, further determining whether the brake pedal is larger than a brake threshold value, if the motor is set to the braking state; otherwise, further determining whether the brake pedal is smaller than the threshold value equal to the brake and the accelerator pedal is greater than the acceleration threshold value, if so, set motor-driven state, otherwise, set the motor to coast state.

[0041] 3、司机命令解释 [0041] 3, the driver command interpreter

[0042] 如图2、图6所示,司机命令解释模块根据电机状态切换模块设置的电机状态信号,确定电机状态是否为制动状态,如果不是制动状态,则为“怠速”、“倒车”、“驱动”或“滑行”状态,此时电机目标转矩为驱动目标转矩: [0042] As shown in FIG 2, FIG. 6, the motor driver command interpretation module status signal switching module provided in accordance with the state of the motor, the motor status is to determine a braking state, if other than a braking state, compared to the "idle", "back "," drive "or" coasting "state, when the driving motor target torque to the target torque:

[0043] [0043]

Figure CN102167036AD00081

[0044] 式(1)中α为司机踏板位置信号,取值范围0〜1 ;T' _为电机最大驱动转矩, 如图7所示,是驱动状态下最大驱动转矩T' max与电机转速η和电机驱动目标转矩工的对应关系图,根据式(1)以及图7所示对应关系,可以得到驱动目标转矩T^d的值。 [0044] Formula (1) for the driver pedal position signal α, in the range 0~1; T '_ of the maximum drive torque of the motor shown in Figure 7, the driving torque T is the maximum driving state' max and η motor speed and motor driving target torque map of FIG workers, according to the correspondence relationship (1) and formula shown in FIG. 7, the target drive torque can be obtained value of T ^ d.

[0045] 如图6所示,如果是制动状态,此时电机目标转矩为电机制动目标转矩^ : [0045] As shown in FIG 6, if the brake state, at this time the target motor torque target torque motor braking ^:

[0046] [0046]

Figure CN102167036AD00082

[0047] 式(¾中T'_为最大制动转矩,如图8所示,是制动状态下电机最大制动转矩T' _与电机转速η和电机制动目标转矩?;的对应关系图。[0048] 式O)中Y为制动踏板系数,当不采用制动能量回馈策略时,Y = 0 ;当采用串联式制动能量回馈策略时,Y通过下式得到: [0047] Formula (¾ in T'_ to maximum brake torque, as shown in FIG. 8, the maximum brake torque T to the motor braking state '_ η motor speed and motor braking torque target?; . FIG correspondence between [0048] the formula O) wherein Y is a coefficient of the brake pedal, when not using the braking energy back policy, Y = 0; when tandem brake energy feedback strategy, Y obtained by the following formula:

[0049] γ = 4(β-β!) (β-β2) (β「β2Γ2,(3) [0049] γ = 4 (β-β!) (Β-β2) (β "β2Γ2, (3)

[0050] 式(3)中β为制动踏板位置信号,^和β 2为制动回馈策略参数。 In [0050] formula (3) β brake pedal position signal, and β 2 ^ braking feedback strategy parameter. 该参数影响车辆制动效果,根据实际情况标定得到。 This parameter affects the braking effect of the vehicle, the calibration obtained according to the actual situation.

[0051] 4、SOC 校验 [0051] 4, SOC calibration

[0052] 如图2、图9所示,SOC校验模块对BMS发送的SOC值,以及TTCAN总线电压、动力电池电流进行校验,校验过程如下: [0052] As shown in FIG 2, FIG, SOC value SOC of BMS transmission check module shown in FIG 9, and TTCAN bus voltage, battery current calibration, calibration process is as follows:

[0053] 1)根据动力电池充放电电流、电压信号,使用RLS(Recursive Least Squares Algorithm,最小二乘递推算法)在线估算当前动力电池开路电压和平均充放电内阻,并结合动力电池开路电压-SOC曲线和充放电内阻-SOC曲线反推SOC值。 [0053] 1) The power of the battery charge and discharge current, voltage signal, using RLS (Recursive Least Squares Algorithm, recursive least squares algorithm) estimates the current line and the average open circuit voltage of battery charge and discharge resistance, battery open-circuit voltage and the combined -SOC resistance curve and the charge-discharge curve of the thrust reverser SOC -SOC value. 其中,平均充放电内阻指一定SOC下动力电池充电内阻和放电内阻的平均值。 Wherein the average traction battery charge and discharge resistance means under certain charge SOC and the internal resistance of the average discharge resistance.

[0054] 2)根据BMS发送的SOC值,结合动力电池开路电压-SOC曲线和充放电内阻-SOC 曲线,推算出动力电池开路电压和平均充放电内阻。 [0054] 2) The transmission of BMS SOC value, the battery power in conjunction with the open circuit voltage and the charge-discharge curves -SOC -SOC resistance curve, calculate the open-circuit voltage of the battery power and the average discharge resistance.

[0055] 3)根据步骤2)中推算得到的开路电压、平均充放电内阻、以及BMS发送的SOC值, 计算相对于步骤1)中估算得到的开路电压、平均充放电内阻、以及SOC值的相对误差。 [0055] 3) according to step 2) to give the estimated open-circuit voltage, the average discharge resistance, and BMS SOC value is transmitted, the open circuit voltage is calculated with respect to step 1) obtained in the estimated average discharge resistance, and SOC the relative error.

[0056] 4)如果计算得到开路电压、平均充放电内阻、以及BMS发送的SOC值三种参数取值的相对误差均小于10 %,则SOC校验模块判定BMS发送的SOC值可信,否则SOC校验模块采用步骤1)中得到的SOC估计值代替BMS发送的SOC值;确定的SOC值由SOC校验模块传输至等效氢耗优化分配模块。 [0056] 4) If the calculated open-circuit voltage, average discharge resistance, and the relative error of the SOC value BMS Parameter of three kinds of transmission less than 10%, the SOC value SOC module determines parity BMS transmitted trusted, otherwise, check module using SOC step 1) obtained in place of the SOC estimation value transmitted BMS SOC value; SOC value SOC is determined by the transmission check module allocation to the equivalent hydrogen consumption optimization module.

[0057] 5、路况自适应补偿 [0057] 5, traffic adaptive compensation

[0058] 如图10所示,路况自适应补偿模块根据接收的部件状态信息,在线计算整车辅助功率Paux、DC/DC动态补偿时间常数τ dc,并对动力电池SOC值、燃料电池性能衰退进行相应的补偿和自适应调整。 [0058] 10, the adaptive compensation module calculates a road section according to the received state information, online vehicle auxiliary power Paux, DC / DC dynamic compensation time constant τ dc, and the battery SOC value, the fuel cell performance degradation corresponding compensation and adaptive adjustment.

[0059] 其中,整车辅助功率Paux可以根据TTCAN总线数据,采用一阶低通滤波算法进行在线估算: [0059] wherein, according to the vehicle auxiliary power Paux TTCAN bus data, using a first-order low-pass filter algorithm to estimate online:

[0060] [0060]

Figure CN102167036AD00091

[0061] 式⑷中Pde为DC/DC输出功率,Pbat为动力电池输出功率,Pm,in为电机输入功率, 均可以从TTCAN总线数据读取,为滤波常数。 [0061] In the formula ⑷ Pde of DC / DC output power, output power Pbat battery powered, Pm, in the motor input power, TTCAN bus data can be read from as a filter constant. S为传递函数的复数变量。 S is a complex variable transfer functions.

[0062] 之后,从TTCAN总线读取数据,采用最小二乘在线递推算法估算燃料电池UI曲线三参数Utl(开路电压),Rf。 After [0062], TTCAN bus to read data from the least square line recursive algorithm to estimate the parameters of the fuel cell Utl three UI curve (open circuit voltage), Rf. (欧姆内阻)和b(浓差极化参数)。 (Ohmic resistance) and b (concentration polarization parameters). 根据图11所示的曲线,计算对应Δ τ dcl> Δ τ d。 According to the graph shown in FIG. 11, calculates the corresponding Δ τ dcl> Δ τ d. 2和Δ τ dc3的值。 2 and the value of Δ τ dc3. 其中,Δ τ dcl> Δ τ d。 Wherein, Δ τ dcl> Δ τ d. 2和Δ τ dc3分别为根据燃料电池UI曲线三参数Utl,Rfc和b而确定的修正值,随燃料电池电堆性能衰退,DC/DC动态补偿时间常数应变大,以使电堆输出功率变化更为缓慢,从而保护燃料电池。 2 and Δ τ dc3 respectively, according to the fuel cell UI curve of three parameters Utl, Rfc and b are determined in the correction value, with the fuel stack cell performance decay, DC / DC dynamic compensation time constant large strain, so stack output power variation more slowly, so as to protect the fuel cell. 因此,Δ τ-随Utl 递减,Δ ^。 Therefore, Δ τ- with Utl decreasing, Δ ^. 2随&。 2 with &. 递增,Δ xd。 Increments, Δ xd. 3随b递增。 3 with b incrementally. 而后,根据下式计算DC/DC动态补偿时间常数 Then, according to the following formula DC / DC dynamic compensation time constant

[0063] Tdc = X1A Tdcl+X2A τ dc2+λ 3 Δ τ dc3+τ dc0,(5) [0063] Tdc = X1A Tdcl + X2A τ dc2 + λ 3 Δ τ dc3 + τ dc0, (5)

[0064] 式(5)中λ ” λ 2、λ 3为燃料电池性能衰退加权系数:λ工=0. 4,A2 = 0.4, λ 3—0. 2。τ dc0 — 5s。 [0064] Formula (5) λ "λ 2, λ 3 for the fuel cell performance degradation weighting factor: λ workers = 0 4, A2 = 0.4, λ 3-0 2.τ dc0 - 5s...

[0065] 考虑动力电池SOC平衡的DC/DC目标电流修正值A4m。 [0065] Consider battery SOC balancing a DC / DC target current correction value A4m. d!/;edl按下式计算: ! D /; edl calculated as follows:

[0066] [0066]

Figure CN102167036AD00101

[0067] 式(6)中Q为动力电池容量,k为动力电池最优功率-SOC曲线与χ轴相交处的斜率,Kp为修正系数,取值1〜1. 5之间,为电机制动功率(取绝对值),ηω为电机效率,S 为传递函数的复数变量,U。 [0067] Formula (6) wherein Q is the battery capacity, k is the slope of the battery -SOC optimum power curve at the intersection of the axis χ, as the correction coefficient Kp of argument between 1~1. 5, an electrical mechanism dynamic power (absolute value), ηω motor efficiency, S is a complex variable transfer function, U. . v为动力电池端电压。 v is the battery terminal voltage. 通过式(6),当整车制动能量通过电机回收至动力电池时,燃料电池输出功率相应减小一部分,从而防止动力电池SOC过高。 By the formula (6), when the regenerative braking to the vehicle battery through the motor, a corresponding reduction in the fuel cell output part, thereby preventing the battery SOC is too high.

[0068] 6、整车诊断修正 [0068] 6, vehicle diagnostics correction

[0069] 如图12所示,整车诊断修正模块根据各部件的工作范围的限制,修正电机目标转矩和DC/DC目标电流,防止出现过压、过流和超温现象。 [0069] As shown, the correction module in accordance with the vehicle diagnostic limit the working range of each component, the correction target torque motor and DC / DC target current, 12 to prevent over-voltage, over-current and over-temperature phenomenon. 如图13所示,是整车诊断修正方法框图。 As shown in FIG. 13 is a block diagram of the vehicle diagnostic correction method. 该整车诊断修正方法的计算结果为电机目标转矩诊断修正值ΔΓ—和DC/DC目标 The results of the vehicle diagnostic method of correcting the target motor torque correction value ΔΓ- diagnostic and DC / DC target

电流诊断修正值A/d;m。 Current diagnostic correction value A / d; m. dlflsd2,图中各变量意义为: dlflsd2, meaning the variables in the figure:

[0070] λ cL根据漏电程度确定的电机目标转矩修正系数 [0070] λ cL determined according to the extent of the drain motor target torque correction coefficient

[0071 ] λ fc根据燃料电池诊断信息确定的电机目标转矩修正系数 [0071] λ fc fuel cell according to the target motor torque determining diagnostic information correction coefficient

[0072] λ ^根据氢气泄露程度确定的电机目标转矩修正系数 [0072] λ ^ The extent of leakage of hydrogen gas determined target motor torque correction factor

[0073] Amcu根据MCU温度确定的电机目标转矩修正系数 [0073] Amcu The MCU motor target torque correction coefficient determined temperature

[0074] λ m, temp根据电机温度确定的电机目标转矩修正系数 [0074] λ m, temp. The motor temperature determination target motor torque correction factor

[0075] λ Tbat根据动力电池温度确定的电机目标转矩修正系数 [0075] λ Tbat motor according to battery temperature determining a target torque correction coefficient

[0076] Xlftat根据总线电压确定的电机目标转矩修正系数 [0076] Xlftat bus voltage determined according to a target motor torque correction factor

[0077] ycL根据漏电程度确定的DC/DC目标功率修正系数 [0077] ycL determined according to the degree of leakage of DC / DC target power factor correction

[0078] μ dcl根据DC/DC输出电流Ide确定的DC/DC目标功率修正系数 [0078] μ dcl determined according to the DC / DC output current of the Ide DC / DC target power factor correction

[0079] μ dc2根据DC/DC工作温度Tde确定的DC/DC目标功率修正系数 [0079] μ dc2 Tde determined according to the DC / DC Operating Temperature DC / DC target power factor correction

[0080] μ dc3根据DC/DC输入电压Ufc确定的DC/DC目标功率修正系数 [0080] μ dc3 input voltage for DC / DC Ufc determining a DC / DC target power factor correction

[0081] yfc根据燃料电池诊断信息确定的DC/DC目标功率修正系数 [0081] yfc diagnostic information determined according to the fuel cell a DC / DC target power factor correction

[0082] U1il根据氢气泄露程度确定的DC/DC目标功率修正系数 [0082] U1il The hydrogen leak determination of the degree of DC / DC target power factor correction

[0083] yTfc根据燃料电池冷却水温度确定的DC/DC目标功率修正系数 [0083] yTfc The fuel cell cooling water temperature determination of the DC / DC target power factor correction

[0084] Δ4&根据燃料电池冷却水温度确定的DC/DC目标电流修正值(A) [0084] Δ4 & The fuel cell cooling water temperature determination of the DC / DC target current correction value (A)

[0085] ΔΤ:·根据MCU温度确定的电机目标转矩修正值(Nm) [0085] ΔΤ: · The motor target torque modification value (Nm) MCU temperature determined

[0086] AT^temp根据电机温度确定的电机目标转矩修正值(Nm) [0086] AT ^ temp torque modification value (Nm) motor according to the determined target motor temperature

[0087] Δ7;·根据动力电池温度确定的电机目标转矩修正值(Nm) [0087] Δ7; · The motor target torque modification value (Nm) of the battery temperature determination

[0088] 7、等效氢耗优化分配 [0088] 7, the equivalent hydrogen consumption optimal allocation

[0089] 如图14所示,在等效氢耗优化分配模块中,整车目标功率在动力电池和燃料电池之间优化分配,使系统等效氢耗最小,并保持SOC值平衡,这样可以最大限度地优化燃料电池系统效率,并保证动力电池有足够的电量,从而保证整车的动力性。 [0089] As shown in the equivalent hydrogen consumption optimal allocation module, power optimization target vehicle 14 between the power distribution batteries and fuel cells, the system is equivalent hydrogen consumption is minimized and the SOC value balance, which can optimization of the fuel cell system to maximize efficiency, and to ensure that the battery power has enough power to ensure the power of the vehicle. 等效氢耗优化分配中首先需要计算动力电池最优功率Pbat,。 Optimization of the distribution equivalent hydrogen consumption needs to be calculated first optimal power battery power Pbat ,. pt :[0090] pt: [0090]

Figure CN102167036AD00111

[0091] 式(7)中Ubus,min为总线电压最小值,Ubus,max为总线电压最大值,U。 In Ubus [0091] Formula (7), min is the minimum value of the bus voltage, Ubus, max is the maximum bus voltage, U. . v为动力电池端电压,I^dis为放电内阻,Rdlg为充电内阻,&和ϋ为动力电池平均放电效率和平均充电效率,K'工与乂为自定义参数: v is the battery terminal voltage, I ^ dis the discharge resistance, Rdlg charging resistance, and ϋ & powered battery charging average discharge efficiency and average efficiency, K 'and Yi in custom engineering parameters:

[0092] [0092]

Figure CN102167036AD00112

[0093] 式(8)中κ为修正系数,其定义为: In the [0093] Formula (8) κ is a correction coefficient, which is defined as:

[0094] κ = 1-2 μ (S0C-0. 5 (S0CH+S0CL))/(SOCh-SOCl), (9) [0094] κ = 1-2 μ (S0C-0. 5 (S0CH + S0CL)) / (SOCh-SOCl), (9)

[0095] 式(9)中μ为动力电池SOC平衡修正系数。 The μ [0095] Formula (9) is balanced by the battery SOC correction coefficient. SOC0为SOC的上限值,SOCl为SOC 的下限值。 SOC0 upper limit of SOC, SOCl lower limit SOC. 根据不同的路况,根据调整动力电池SOC平衡修正系数μ的值,保证SOC处于[S0CL, SOCh]的范围之内。 Depending on the road conditions, the balance correction coefficient μ according to the value of the battery SOC adjustment, to ensure that the range of the SOC is [S0CL, SOCh] of the. 如图15所示,是当动力电池SOC平衡修正系数μ =0.6时,给出的动力电池最优功率与SOC关系的计算结果。 15, when the battery SOC balancing correction coefficient μ = 0.6, the optimum power calculation result given by the battery power and the SOC relationship.

[0096] 根据动力电池最优功率可计算出DC/DC最优目标功率: [0096] The battery power calculated optimal DC / DC power optimal objective:

[0097] [0097]

Figure CN102167036AD00113

[0098] 式(10)中Pd。 [0098] Formula (10) Pd. ,max为DC/DC最大输出功率,Pdcjfflin为最小输出功率,Paux为整车辅助功率(在路况自适应补偿模块中计算),ηω为电机效率,《为驱动电机目标功率,是电机制动目标转矩$与电机实际转速的乘积,Pbat,。 , Max is a DC / DC maximum output power, Pdcjfflin the minimum output power, auxiliary power Paux for the vehicle (road calculated in the adaptive compensation module), ηω motor efficiency, "a target power to the drive motor, the motor is braking target $ product of torque and the actual motor speed, Pbat ,. pt为动力电池最优功率。 pt optimum power for the battery. DC/DC动态目标电流为: DC / DC current dynamic object:

[0099] [0099]

Figure CN102167036AD00114

[0100] 式(11)中Ubus为总线电压。 In Ubus [0100] Formula (11) bus voltage. 将DC/DC动态目标电流进行一阶滤波,得到DC/DC目标电流/〗。 The DC / DC dynamic target current first-order filter, to give DC / DC target current /〗. 为: for:

[0101] [0101]

Figure CN102167036AD00115

[0102] 式(12)中。 [0102] Formula (12). 为DC/DC动态补偿时间常数(在路况自适应补偿模块中计算), 为DC/DC动态目标电流。 Of DC / DC dynamic compensation time constant (calculated traffic adaptive compensation module) as a DC / DC dynamic target current.

[0103] 8、整车控制器将修正后的电机目标转矩及DC/DC目标电流通过TTCAN总线分别发送给电机控制器和DC/DC控制器,实现对电机和燃料电池的输出功率控制。 [0103] 8, the target torque of the motor vehicle after the correction controller and DC / DC current transmitted through the target TTCAN buses, respectively, to the motor controller and DC / DC controller, to achieve control of the motor and the output power of the fuel cell.

[0104] 修正后的电机目标转矩和DC/DC目标电流的计算方法为:[0105] [0104] the target motor torque calculation method of the corrected and DC / DC target current is: [0105]

Figure CN102167036AD00121

[0106] 式(13)中? In the [0106] formula (13)? :为电机目标转矩,其在制动状态时为7;,其余状态为7;。 : The target motor torque, which is in the braking state ;, 7 rest state 7 ;. Arq:m。 Arq: m. d㈣为电机目标转矩诊断修正值。 d㈣ motor target torque correction diagnostic value. Δ4为未经修正的DC/DC目标电流,A4,m。 Δ4 is ​​unamended DC / DC current target, A4, m. difiedl为考虑动力电池SOC 值平衡的DC/DC目标电流修正值,A4,m。 difiedl battery SOC value to account for the balance of DC / DC current correction target value, A4, m. dlfied2为DC/DC目标电流诊断修正值,Δζ—,为驱动电机目标转矩诊断修正值。 dlfied2 of DC / DC diagnosis target current correction value, Δζ-, as the driving motor target torque correction value diagnosis.

Claims (7)

  1. 1. 一种燃料电池混合动力整车控制方法,包括以下步骤:1)在整车控制器中设置电机状态切换模块、司机命令解释模块、动力电池荷电状态校验模块、路况自适应补偿模块、整车诊断修正模块和等效氢耗优化分配模块;2)所述整车控制器从数字量、模拟量和TTCAN通讯端口读入司机挡位信号、司机踏板信号和TTCAN总线通讯数据,其中,TTCAN为时间触发式控制器局域网;3)所述电机状态切换模块根据司机挡位信号和司机踏板信号将电机状态在“驱动、怠速、滑行、制动、倒车”之间切换;4)所述司机命令解释模块根据电机状态切换模块设置的电机状态信号,确定电机状态,进而确定电机目标转矩;5)所述动力电池荷电状态校验模块对动力电池管理系统发送的SOC值,以及TTCAN总线电压、动力电池电流进行校验,其中,SOC值为动力电池荷电状态校验值;6)所述路 1. A fuel cell hybrid vehicle control method, comprising the steps of: 1) provided the motor controller in the vehicle state switching module, a driver command interpretation module, battery state of charge check module, traffic adaptive compensation module , vehicle diagnosis and correction module equivalent hydrogen consumption optimization assignment module; 2) the driver of the vehicle controller position signal from the digital, analog, and communication ports TTCAN read, TTCAN bus driver pedal signal and communication data, wherein , the TTCAN the time-triggered controller Area Network; 3) of the motor driver state switching module according to the pedal position signal and the driver signal to the motor in the state "driving, idling, coasting, braking, reversing" between switch; 4) said motor driver command interpretation module status signal switching module provided in accordance with the state of the motor, determining the state of the motor, and to determine the target motor torque; 5) value of the battery SOC state of charge of the battery check module transmission management system, and TTCAN bus voltage, battery current check, wherein, the SOC value of battery state of charge check value; 6) of said passage 自适应补偿模块根据接收的部件状态信息,在线计算整车辅助功率Paux、 DC/DC动态补偿时间常数τ dc,并对动力电池SOC值、燃料电池性能衰退进行补偿和自适应调整;7)所述整车诊断修正模块根据各部件的工作范围的限制,修正电机目标转矩和DC/DC 目标电流;8)所述等效氢耗优化分配模块中,整车目标功率在动力电池和燃料电池之间优化分配,使系统等效氢耗最小,并保持SOC值平衡;9)整车控制器将修正后的电机目标转矩及DC/DC目标电流通过TTCAN总线分别发送给电机控制器和DC/DC控制器,实现对电机和燃料电池的输出功率控制。 Adaptive compensation module calculates a vehicle auxiliary power Paux, DC / DC dynamic compensation time constant τ dc component according to state information received, on-line, and the battery SOC value, to compensate for performance degradation of the fuel cell and adaptive adjustment; 7) the vehicle diagnostic said correction module limits the operating range of each component, the correction target torque motors and DC / DC target current; 8) the equivalent hydrogen consumption optimal allocation module, the vehicle and the target power in the fuel cell power battery optimize the distribution between the system equivalent hydrogen consumption is minimized and the SOC value balance; 9) after the target torque of the motor vehicle and a correction controller DC / DC target current to a motor controller and a DC bus by each TTCAN / DC controller, to achieve control of the motor and the output power of the fuel cell.
  2. 2.如权利要求1所述的一种燃料电池混合动力整车控制方法,其特征在于:所述步骤3)中,所述电机状态切换模块的切换步骤如下:①判断司机档位信号是否为空挡,如果是,则设置电机状态为怠速,否则进入下一步;②判断档位信号是否为倒车档,如果是,则设置电机状态为倒车;否则进入下一步;③判断制动踏板是否大于制动阈值,如果是,则设置电机状态为制动;否则进入下一止少;④判断制动踏板是否小于等于制动阈值,且加速踏板大于加速阈值,如果是,则设置电机状态为驱动,否则,设置电机状态为滑行。 2. A fuel cell hybrid vehicle control method according to claim 1, wherein: in the step 3), the machine state switching step of switching modules as follows: ① determination signal is a driver gear neutral, if so, the motor is set to idling state, otherwise go to the next step; ② is determined whether the reverse gear shift position signal, if so, set the state to reverse the motor; otherwise, proceed to the next step; determining whether the brake pedal is greater than the braking ③ dynamic threshold, if yes, setting the status of the motor brake; otherwise, proceed to the next stop less; ④ determines whether the brake pedal is smaller than the threshold value equal to the brake and the accelerator pedal is greater than the acceleration threshold value, if so, set the state to drive the motor, otherwise, set the motor to coast state.
  3. 3.如权利要求1所述的一种燃料电池混合动力整车控制方法,其特征在于:所述步骤4)中,所述司机命令解释模块确定电机在怠速、倒车、驱动和滑行状态下时,则电机目标转矩为驱动目标转矩巧:上式中α为司机踏板位置信号,取值范围0〜1 ;Τ'max为电机最大驱动转矩,根据电机在驱动状态下的外特性曲线及目标转矩关系图,得到驱动目标转矩? When the motor is at idle, reverse, drive and coast state of the step 4), the driver command interpretation module determines: 3. A fuel cell hybrid vehicle control method according to claim 1, characterized in that , the drive motor target torque target torque Qiao: in the above formula for the driver pedal position signal α, in the range 0~1; Τ'max the maximum drive torque of the motor, the motor according to external characteristic curve in the driving condition and the target torque diagram was driven target torque? ;的值;所述司机命令解释模块确定电机在制动状态下时,则电机目标转矩为制动目标转矩T* ·^qb ^qb,max'上式中Y为制动踏板系数,T'_为最大制动转矩,根据电机在制动状态下的外特性曲线及目标转矩关系图,得到制动目标转矩^的值。 ; Value; driver command interpretation module determines that the motor is in a braking state, the motor target torque as the target braking torque T * · ^ qb ^ qb, max 'where Y is a coefficient of a brake pedal, T'_ to maximum brake torque, in accordance with the target torque and the outer characteristic diagram of the motor in the braking state, to obtain the target braking torque value ^.
  4. 4.如权利要求3所述的一种燃料电池混合动力整车控制方法,其特征在于:所述制动踏板系数Y,在采用串联式制动能量回馈策略时,所述制动踏板系数Y通过下式得到:γ = 4(β-β!) (β - β 2) (hu-2,上式中β为制动踏板位置信号,^和β 2为制动回馈策略参数,该参数影响车辆制动效果,根据实际情况标定得到。 4. A fuel cell hybrid vehicle control method according to claim 3, wherein: Y coefficient of the brake pedal, when using tandem brake energy back policy, the brake pedal factor Y obtained by the following formula: γ = 4 (! β-β) (β - β 2) (hu-2, wherein the beta] a brake pedal position signal, and β 2 ^ braking feedback strategy parameter that influence vehicle braking effect, according to the actual calibration obtained.
  5. 5.如权利要求1所述的一种燃料电池混合动力整车控制方法,其特征在于:所述步骤5)中,所述动力电池荷电状态校验模块的校验过程如下:①使用最小二乘递推算法在线估算当前动力电池开路电压和平均充放电内阻,并结合动力电池开路电压-SOC曲线和充放电内阻-SOC曲线反推SOC值;②根据动力电池管理系统发送的SOC值,结合动力电池开路电压-SOC曲线和充放电内阻-SOC曲线,推算出动力电池开路电压和平均充放电内阻;③根据步骤②中推算得到的开路电压、平均充放电内阻、以及动力电池管理系统发送的SOC值,计算相对于步骤①中估算得到的开路电压、平均充放电内阻、以及SOC值的相对误差;④如果三种参数取值的相对误差均小于10%,则动力电池荷电状态校验模块判定动力电池管理系统发送的SOC值可信,否则动力电池荷电状态校验模块采用步骤①中得 5. A fuel cell hybrid vehicle control method according to claim 1, wherein: said step 5), the verification process of the battery state of charge check module as follows: ① minimum squares recursive algorithm to estimate the current line and the average open circuit voltage of battery charge and discharge resistance, battery open circuit voltage and -SOC binding curves and the charge-discharge curve of thrust reversers SOC -SOC resistance value; ② transmission power according to the SOC of the battery management system value, combined battery open circuit voltage and the charge-discharge curves -SOC -SOC resistance curve, calculate the open-circuit voltage of the battery power and the average discharge resistance; ③ the open circuit voltage estimating step ② of the obtained average discharge resistance, and SOC value of battery management system sends, calculated relative to the estimated open-circuit voltage obtained in step ①, the average discharge resistance, and the relative error of the SOC value; ④ If the relative error of three kinds parameter of less than 10%, battery charge status check module determines battery management system sends trusted SOC value, otherwise the battery state of charge using the verification module obtained in step ① 的SOC估算值代替动力电池管理系统发送的SOC值。 The SOC estimation value SOC value of the transmission power instead of a battery management system.
  6. 6.如权利要求1所述的一种燃料电池混合动力整车控制方法,其特征在于:所述步骤6)中,在所述路况自适应补偿模块中,所述整车辅助功率Paux根据TTCAN总线数据,采用一阶低通滤波算法进行在线估算:ρ _ ^dc + ^bat ^m,in aux Λ '^aux5 + 1上式中Pd。 6. A fuel cell hybrid vehicle control method according to claim 1, wherein: said step 6), the adaptive compensation module in the road, the vehicle auxiliary power Paux The TTCAN a data bus, first-order low-pass filter algorithm to estimate online: ρ _ ^ dc + ^ bat ^ m, in aux Λ '^ aux5 + 1 in formula Pd. 为DC/DC输出功率,Pbat为动力电池输出功率,Pm,in为电机输入功率,均能从TTCAN总线数据读取,τ aux为滤波常数,S为传递函数的复数变量; 所述DC/DC动态补偿时间常数τ dc按下式计算:τ dc = λ 1Δ τ del+ λ 2 τ dc2+ λ 3 τ dc3+ T dcO'上式中\ γ、\ 2、、为燃料电池性能衰退加权系数:λ i = 0. 4,λ 2 = 0. 4,λ 3 = 0. 2, τ dc0 = 5s,Δ τ dcl> Δ τ d。 Of DC / DC output power, output power Pbat battery powered, Pm, in the motor input power, TTCAN bus can read data from, τ aux is the filter constant, S is the transfer function of a complex variable; the DC / DC dynamic compensation time constant τ dc is calculated as follows: τ dc = λ 1Δ τ del + λ 2 τ dc2 + λ 3 τ dc3 + T dcO 'above formula \ γ, \ 2 ,, the fuel cell performance degradation weighting factor: λ i = 0. 4, λ 2 = 0. 4, λ 3 = 0. 2, τ dc0 = 5s, Δ τ dcl> Δ τ d. 2和Δ τ d。 2 and Δ τ d. 3分别为根据燃料电池系统U_I曲线三参数开路电压UQ, 欧姆内阻&。 3 are the open circuit voltage of the fuel cell system according to UQ U_I three-parameter curve, & ohmic resistance. 和浓差极化参数b确定的修正值,Δ xdcl>A Td。 Concentration polarization and the correction value determined by the parameter b, Δ xdcl> A Td. 2和Δ τ^随燃料电池电堆性能衰退而变化。 2 and Δ τ ^ varies with fuel cell stack performance decline.
  7. 7.如权利要求1所述的一种燃料电池混合动力整车控制方法,其特征在于:所述步骤9)中,修正后的所述电机目标转矩和DC/DC目标电流的计算公式如下:'f =f- \f -\fdc,modified dc dc,modified 1 dc,modified2<T* — T* — AT* ,q,modified 一q q,modified上式中<为电机目标转矩,AT^mmiifiedS电机目标转矩诊断修正值,Δ/:为未经修正的DC/DC目标电流 7. A fuel cell hybrid vehicle control method according to claim 1, wherein: in the step 9), the formula for calculating the corrected target torque motor and DC / DC follows the target current : 'f = f- \ f - \ fdc, modified dc dc, modified 1 dc, modified2 <T * - T * - AT *, q, modified a qq, modified in the above formula <target motor torque, AT ^ mmiifiedS diagnostic motor target torque correction value, Δ /: is the uncorrected DC / DC target current
    Figure CN102167036AC00041
    为考虑动力电池SOC值平衡的DC/DC目标电流修正值 Battery SOC value to account for the balance of DC / DC current correction target value
    Figure CN102167036AC00042
    为DC/DC目标电流诊断修正值, Diagnosis of the correction value DC / DC target current,
    Figure CN102167036AC00043
    为驱动电机目标转矩诊断修正值。 Diagnostic for the drive motor target torque correction value.
CN 201110082662 2011-04-01 2011-04-01 Control method of fuel cell hybrid vehicle CN102167036B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110082662 CN102167036B (en) 2011-04-01 2011-04-01 Control method of fuel cell hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110082662 CN102167036B (en) 2011-04-01 2011-04-01 Control method of fuel cell hybrid vehicle

Publications (2)

Publication Number Publication Date
CN102167036A true true CN102167036A (en) 2011-08-31
CN102167036B CN102167036B (en) 2013-08-14

Family

ID=44488411

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110082662 CN102167036B (en) 2011-04-01 2011-04-01 Control method of fuel cell hybrid vehicle

Country Status (1)

Country Link
CN (1) CN102167036B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104210486A (en) * 2014-08-13 2014-12-17 潍柴动力股份有限公司 Electric energy control method and electric energy control system for hybrid power engineering machinery vehicle
CN104691539A (en) * 2013-12-06 2015-06-10 福特全球技术公司 An electric vehicle
CN104991189A (en) * 2015-04-13 2015-10-21 中国东方电气集团有限公司 Cell SOC on-line calibration method
CN105416085A (en) * 2015-12-21 2016-03-23 武汉众宇动力系统科技有限公司 Hybrid power control method and hybrid power system
CN105501075A (en) * 2015-11-30 2016-04-20 刘淼 Electric vehicle control system
CN105946856A (en) * 2016-06-16 2016-09-21 吉林大学 Self-adaptive slipping control method of pure electrically driven automobile
CN106229531A (en) * 2016-09-29 2016-12-14 清华大学 Fault-tolerant control method and device of fuel battery vehicle
CN107878445A (en) * 2017-11-06 2018-04-06 吉林大学 Hybrid electric vehicle energy optimization management method considering battery performance degradation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07240212A (en) * 1994-02-24 1995-09-12 Aisin Aw Co Ltd Hybrid electric power source device
US5780980A (en) * 1995-04-14 1998-07-14 Hitachi, Ltd. Electric car drive system provided with hybrid battery and control method
EP1470943A2 (en) * 2003-04-24 2004-10-27 Delphi Technologies, Inc. Method and apparatus for providing hybrid power in vehicle
CN2756489Y (en) * 2004-12-17 2006-02-08 清华大学 Fuel cell automobile mixed power device
CN101219664A (en) * 2008-01-08 2008-07-16 清华大学 Fuel cell hybrid power energy control method
CN101359036A (en) * 2007-07-31 2009-02-04 比亚迪股份有限公司 Method for measuring state of charge of battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07240212A (en) * 1994-02-24 1995-09-12 Aisin Aw Co Ltd Hybrid electric power source device
US5780980A (en) * 1995-04-14 1998-07-14 Hitachi, Ltd. Electric car drive system provided with hybrid battery and control method
EP1470943A2 (en) * 2003-04-24 2004-10-27 Delphi Technologies, Inc. Method and apparatus for providing hybrid power in vehicle
CN2756489Y (en) * 2004-12-17 2006-02-08 清华大学 Fuel cell automobile mixed power device
CN101359036A (en) * 2007-07-31 2009-02-04 比亚迪股份有限公司 Method for measuring state of charge of battery
CN101219664A (en) * 2008-01-08 2008-07-16 清华大学 Fuel cell hybrid power energy control method

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
何洪文: "燃料电池混合动力汽车控制策略研究", 《北京理工大学学报》, vol. 27, no. 3, 31 March 2007 (2007-03-31), pages 223 - 226 *
刘蒙等: "基于TTCAN的燃料电池系统分布式控制系统设计", 《汽车工程》, vol. 28, no. 9, 30 September 2006 (2006-09-30), pages 792 - 797 *
徐梁飞等: "燃料电池混合动力参数辨识及整车控制策略优化", 《机械工程学报》, vol. 45, no. 2, 28 February 2009 (2009-02-28), pages 56 - 61 *
徐梁飞等: "燃料电池混合动力客车等效氢耗优化策略", 《中国公路学报》, vol. 22, no. 1, 31 January 2009 (2009-01-31), pages 104 - 108 *
曹桂军等: "燃料电池混合动力客车整车控制策略", 《机械工程学报》, vol. 44, no. 6, 30 June 2008 (2008-06-30), pages 114 - 119 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104691539B (en) * 2013-12-06 2018-11-27 福特全球技术公司 vehicle
CN104691539A (en) * 2013-12-06 2015-06-10 福特全球技术公司 An electric vehicle
US10124696B2 (en) 2013-12-06 2018-11-13 Ford Global Technologies, Llc Estimation and compensation of battery measurement and asynchronization biases
CN104210486B (en) * 2014-08-13 2017-01-11 潍柴动力股份有限公司 A hybrid construction machine control method and system of the vehicle power
CN104210486A (en) * 2014-08-13 2014-12-17 潍柴动力股份有限公司 Electric energy control method and electric energy control system for hybrid power engineering machinery vehicle
CN104991189A (en) * 2015-04-13 2015-10-21 中国东方电气集团有限公司 Cell SOC on-line calibration method
CN104991189B (en) * 2015-04-13 2017-10-27 中国东方电气集团有限公司 Line calibration method of the state of charge of the battery
CN105501075A (en) * 2015-11-30 2016-04-20 刘淼 Electric vehicle control system
CN105501075B (en) * 2015-11-30 2017-12-29 刘淼 Electric vehicle control system
CN105416085B (en) * 2015-12-21 2018-01-05 武汉众宇动力系统科技有限公司 The hybrid system control method and the hybrid
CN105416085A (en) * 2015-12-21 2016-03-23 武汉众宇动力系统科技有限公司 Hybrid power control method and hybrid power system
CN105946856A (en) * 2016-06-16 2016-09-21 吉林大学 Self-adaptive slipping control method of pure electrically driven automobile
CN106229531A (en) * 2016-09-29 2016-12-14 清华大学 Fault-tolerant control method and device of fuel battery vehicle
CN107878445A (en) * 2017-11-06 2018-04-06 吉林大学 Hybrid electric vehicle energy optimization management method considering battery performance degradation

Also Published As

Publication number Publication date Type
CN102167036B (en) 2013-08-14 grant

Similar Documents

Publication Publication Date Title
Schaltz et al. Influence of battery/ultracapacitor energy-storage sizing on battery lifetime in a fuel cell hybrid electric vehicle
Wang et al. Optimal design and real-time control for energy management in electric vehicles
Li et al. Optimal fuzzy power control and management of fuel cell/battery hybrid vehicles
US20060021809A1 (en) System and method for battery protection strategy for hybrid electric vehicles
Xu et al. Optimal vehicle control strategy of a fuel cell/battery hybrid city bus
JPH11187577A (en) Charge/discharge controller for secondary battery
US20100250041A1 (en) Protection method for limited charging/discharging current of hybrid electric vehicle battery and a device and a system thereof
CN101879866A (en) Remaining mileage calculation method of electric vehicle
JP2003219510A (en) Charging and discharging controller for secondary cell
US20040046525A1 (en) Control strategy for an electric motor using real time predictions of motor capability based on thermal modeling and measurements
US20130006455A1 (en) Nonlinear observer for battery state of charge estimation
US20050164826A1 (en) Method of compensating torque at cylinder switching on a DOD engine with electric parallel hybrid
CN102658817A (en) Control method for realizing purely-electric function of hybrid vehicle
Xu et al. Application of Pontryagin's Minimal Principle to the energy management strategy of plugin fuel cell electric vehicles
CN102582460A (en) Method for setting target torque of motor applicable to pure electric vehicle
Ouyang et al. Performance comparison of two fuel cell hybrid buses with different powertrain and energy management strategies
CN1903629A (en) Random energy management method of bienergy source power automobile
CN102975702A (en) Tandem regenerative brake control method
CN101559769A (en) Safe control method for electric automobile torque
JP2000166105A (en) Charged state controller for battery
US20100013490A1 (en) Fuel cell system
CN101546352A (en) Type selection method for auxiliary power units of series-type hybrid vehicles
JP2009011138A (en) Power supply system and vehicle with the same, method of controlling power supply system, and computer readable recording medium recorded with program for making computer perform the control method
CN1539673A (en) Method for distributing power for hybrid power system of fuel cell
JP2003032805A (en) Controlling device and power outputting device, hybrid vehicle provided therewith, controlling device controlling method, and power outputting device controlling method

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model