JP3485818B2 - Method for stabilizing the weight of green compact in powder molding process of sintered parts - Google Patents

Method for stabilizing the weight of green compact in powder molding process of sintered parts

Info

Publication number
JP3485818B2
JP3485818B2 JP35948598A JP35948598A JP3485818B2 JP 3485818 B2 JP3485818 B2 JP 3485818B2 JP 35948598 A JP35948598 A JP 35948598A JP 35948598 A JP35948598 A JP 35948598A JP 3485818 B2 JP3485818 B2 JP 3485818B2
Authority
JP
Japan
Prior art keywords
green compact
powder
temperature
weight
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35948598A
Other languages
Japanese (ja)
Other versions
JP2000178603A (en
Inventor
雅樹 谷中
毅 田野
寛 池ノ上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Powdered Metals Co Ltd
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP35948598A priority Critical patent/JP3485818B2/en
Publication of JP2000178603A publication Critical patent/JP2000178603A/en
Application granted granted Critical
Publication of JP3485818B2 publication Critical patent/JP3485818B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/30Feeding material to presses
    • B30B15/302Feeding material in particulate or plastic state to moulding presses
    • B30B15/304Feeding material in particulate or plastic state to moulding presses by using feed frames or shoes with relative movement with regard to the mould or moulds

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、焼結部品を量産
する過程における粉末の成形工程に関するものであり、
詳しくは連続成形開始後の初期段階に生じる圧粉体の重
量変動を解消し、当初から重量の安定した圧粉体を量産
する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a powder forming process in the process of mass producing sintered parts,
More specifically, the present invention relates to a method for eliminating the weight fluctuation of the green compact in the initial stage after the start of continuous molding and mass-producing the green compact having a stable weight from the beginning.

【0002】[0002]

【従来の技術】粉末冶金,セラミックスなどの分野で用
いられる粉末成形プレスは通常、図1に示すようにダイ
プレート11に取り付けられたダイ10,このダイに嵌
合する下パンチ20,およびこれを貫通するコアロッド
40が形成するダイキャビティ内に給粉装置から原料粉
を充填し、ダイ内の粉末を上・下のパンチ間に圧縮成形
するものであり、給粉装置は高架されて原料粉を貯える
ホッパー60と底のない箱状のフィーダー70をフレキ
シブルホース61で連結した構成になっている。このフ
ィーダーは、その待機位置からダイに向かって(図では
左方に)前進し、ダイ10の上に至って原料粉を流し込
み、次いでダイ内に堆積した粉末の上面をフィーダーの
下縁で平らに擦り切りつつ待機位置まで後退して充填の
1サイクルを終了する訳である。図の71は油圧シリン
ダーなどの駆動装置(図示せず)に連結してフィーダー
を進退させる駆動ロッドである。
2. Description of the Related Art A powder molding press used in the fields of powder metallurgy, ceramics, etc. usually has a die 10 mounted on a die plate 11 as shown in FIG. The die cavity formed by the penetrating core rod 40 is filled with the raw material powder from the powder feeding device, and the powder in the die is compression-molded between the upper and lower punches. The powder feeding device is elevated to feed the raw material powder. The hopper 60 for storing and the box-shaped feeder 70 without a bottom are connected by a flexible hose 61. The feeder advances from its standby position toward the die (to the left in the figure), pours the raw material powder onto the die 10, and then flattens the upper surface of the powder deposited in the die at the lower edge of the feeder. That is, while scraping off, it retreats to the standby position and completes one filling cycle. Reference numeral 71 in the figure denotes a drive rod that is connected to a drive device (not shown) such as a hydraulic cylinder to move the feeder forward and backward.

【0003】図2は上記の金型を含むダイセットの構成
を例示したもので、下パンチ20はグランドプレート2
1を介してプレスの基台に固定されている。一方ダイ1
0はダイプレート11に,コアロッド40はプレスの下
ラム50に取り付けられたコラムプレート13にそれぞ
れ固定され、ダイプレートとコラムプレートとはグラン
ドプレートを貫通するコラム12で連結されている。そ
こで、ダイ10とコアロッド40は下ラム50の昇降に
従って、同時に上下する訳である。図の左側はキャビテ
ィの深さ(充填深さ)が所定の深さになるようにダイ1
0を位置させて粉末を充填した状態を、図の右側は上パ
ンチ30を下降させて、ダイ内の粉末を下パンチ20と
の間で圧縮成形した状態を示している。なお、ダイが上
下動するストロークの上死点および上パンチのストロー
クの下死点はそれぞれ任意に調節可能になっているが、
既知のことなので、ここではその説明は省略する。
FIG. 2 exemplifies the structure of a die set including the above-mentioned die, and the lower punch 20 is a ground plate 2
It is fixed to the base of the press through 1. While die 1
0 is fixed to the die plate 11, the core rod 40 is fixed to the column plate 13 attached to the lower ram 50 of the press, and the die plate and the column plate are connected by the column 12 penetrating the ground plate. Therefore, the die 10 and the core rod 40 move up and down at the same time as the lower ram 50 moves up and down. The left side of the figure shows the die 1 so that the cavity depth (filling depth) will be the specified depth.
The state where 0 is positioned and the powder is filled is shown, and the right side of the figure shows the state where the upper punch 30 is lowered and the powder in the die is compression-molded with the lower punch 20. The top dead center of the stroke in which the die moves up and down and the bottom dead center of the stroke of the upper punch can be adjusted arbitrarily.
Since this is a known matter, its explanation is omitted here.

【0004】圧粉体の寸法は、圧粉体を金型から押し出
した際に生じるスプリングバック,圧粉体の焼結に伴う
寸法変化,焼結後のサイジングの要否などを考慮して、
焼結製品の仕様・寸法から逆算して設計される。この様
にして圧粉体の高さが定まると、粉末の充填深さは圧粉
体の高さに粉末の圧縮比を乗じて算出される。ここに圧
縮比=圧粉体の密度(圧粉密度)/粉末の見掛け密度
である。ただし、この算出値でそのまま量産成形が行な
われる訳ではない。実際の成形工程では、充填深さを一
応この値にプレスや金型を設定して試し打ちを行ない、
得られる圧粉体の重量,高さなどの実測値に応じて必要
な調整をしてから量産が開始される。
The size of the green compact is determined in consideration of spring back generated when the green compact is extruded from the mold, dimensional change due to sintering of the green compact, necessity of sizing after sintering, and the like.
It is designed by calculating back from the specifications and dimensions of the sintered product. When the height of the green compact is determined in this way, the filling depth of the powder is calculated by multiplying the height of the green compact by the compression ratio of the powder. Here, compression ratio = density of green compact (green density) / apparent density of green powder
Is. However, mass production molding is not performed as it is with this calculated value. In the actual molding process, the filling depth is set to this value and the press and mold are set and trial punching is performed.
Mass production is started after making necessary adjustments according to the measured values such as the weight and height of the obtained green compact.

【0005】[0005]

【発明が解決しようとする課題】この様な調整を経てい
るので、圧粉体の重量などの諸元は、本来は量産成形を
開始した当初から所定の値を示す筈であるが、実際はそ
うならないことに問題がある。その一例として、鉄粉に
1.5%の銅粉と0.8%の黒鉛粉、および粉末潤滑剤
としてステアリン酸亜鉛1%(いずれも重量%)を混合
して原料粉とし、この原料粉を用いて内径30mm,外
径45mm,高さ20mmの中空円筒状で圧粉密度6.
7g/cm3 の圧粉体を毎分10個の成形速度で連続し
て成形し、得られた圧粉体個々の重量を測定した結果を
従来例として図3のグラフに示す。なお成形には定格1
00屯の機械式粉末プレスを用い、圧粉体の重量測定は
直示天秤によっている。
Since such adjustments have been made, the specifications such as the weight of the green compact should originally have given values from the beginning of mass production molding, but in reality There is a problem in not becoming. As an example, iron powder is mixed with 1.5% copper powder and 0.8% graphite powder, and 1% zinc stearate as a powder lubricant (all are% by weight) to obtain a raw material powder. 5. The inner diameter is 30 mm, the outer diameter is 45 mm, and the height is 20 mm.
A green compact of 7 g / cm 3 was continuously molded at a molding speed of 10 pieces per minute, and the weight of each of the resulting green compacts was measured. The results are shown in the graph of FIG. 3 as a conventional example. The rating is 1 for molding
A mechanical powder press of 00 tons is used, and the weight of the green compact is measured by a direct balance.

【0006】このグラフは、圧粉体の重量データを成形
順に10個ずつの区域に区切って各区域内のデータの平
均値を求め、1番目の圧粉体の重量を横軸の目盛1の所
に、以下順次1〜10番目の圧粉体の平均値を目盛1
0、11〜20番目の圧粉体の平均値を目盛20の所に
示したものである。グラフの横軸には成形数を目盛って
あるが、前述した成形速度との関係から経過時間をも意
味し、成形数100個は時間にして10分間に相当す
る。
In this graph, the weight data of the green compact is divided into 10 zones in the order of molding, the average value of the data in each zone is calculated, and the weight of the first green compact is measured on the scale 1 on the horizontal axis. Here, the average value of the first to tenth compacts is graduated 1
The average value of the 0, 11th to 20th green compacts is shown on the scale 20. Although the number of moldings is scaled on the horizontal axis of the graph, it also means elapsed time from the relationship with the above-mentioned molding speed, and 100 moldings corresponds to 10 minutes in time.

【0007】このグラフが示すように、圧粉体の重量は
成形開始の直後は調整通りの所定の値(118.38
g)になっているが、4分後には118.64g,8分
後には119.12g…と、時間の経過につれて次第に
大きくなってゆく。そしてこの増加は成形個数にして約
100個,時間にして10分前後で収まり、それ以後は
ほぼ安定した状態(平均119.45g)で推移してい
る。なお重量のバラツキ具合については、重量の変動区
間(横軸目盛10〜100)では各区域内におけるバラ
ツキの範囲(データ10個の最大値と最小値の差)の平
均値が0.25,重量の安定区間(横軸目盛120〜3
10)における範囲の平均値は0.26であった。
As shown in this graph, the weight of the green compact is a predetermined value (118.38) as adjusted immediately after the start of molding.
g), but after 4 minutes 118.64 g, after 8 minutes 119.12 g ... It gradually increases with the passage of time. And this increase was settled in about 100 pieces in the number of moldings and about 10 minutes in time, and after that, it remained in a substantially stable state (119.45 g on average). Regarding the weight variation, in the weight variation section (horizontal axis scale 10 to 100), the average value of the variation range (difference between the maximum value and the minimum value of 10 data) in each area is 0.25, weight. Stable section (horizontal axis scale 120 to 3
The average value of the range in 10) was 0.26.

【0008】従ってこの場合、バラツキ自体は終始一定
のまま、圧粉体は正規の重量よりも平均1.07g,即
ち約0.9%重い方に偏った状態で量産されることにな
る。そしてこの傾向は成形速度や原料粉の種類を変えた
場合でも、個々の値は異なるものの、同一のパターンが
得られている。
Therefore, in this case, the variation itself remains constant from beginning to end, and the green compact is mass-produced in a state of being biased toward the average 1.07 g, that is, about 0.9% heavier than the normal weight. The tendency is that even if the molding speed or the type of raw material powder is changed, the same pattern is obtained although the individual values are different.

【0009】この様な重量の変動を生じるのは成形の開
始後通常数分〜十数分間のことで、この間を当初の設定
のまま放置した場合には、規格を外れた重量不良の圧粉
体が量産される懸念がある。ちなみに重量が変化しても
圧粉体の高さを一定に揃えて成形することは可能である
が、その場合は圧粉密度が変化する。圧粉密度が変化す
ると焼結密度が変化し、製品の強度その他の機械的性質
が影響を受ける。そのため重量が変動する間は終始、重
量の変化に応じて充填量の(即ち充填深さの)調整を繰
り返す必要があり、効率およびコストを損う一因となっ
ていた。
Such a variation in weight is usually caused for several minutes to several tens of minutes after the start of molding. There is a concern that the body will be mass-produced. By the way, even if the weight changes, it is possible to make the height of the green compact uniform, but in that case, the green density changes. When the green compact density changes, the sintered density changes, which affects the strength and other mechanical properties of the product. Therefore, it is necessary to repeat the adjustment of the filling amount (that is, the filling depth) according to the change of the weight throughout the change of the weight, which is one of the causes of impairing the efficiency and the cost.

【0010】[0010]

【課題を解決するための手段】圧粉体の重量の変動は即
ち、ダイキャビティに充填された原料粉末の量の変動で
ある。これには金型の作動不良によるダイキャビティ充
填深さの変動など装置側の要因と、粉末の流動性や見掛
け密度の変動などの粉末側の要因が考えられるが、前記
の成形過程を通じて充填深さは一定していたところか
ら、成形の初期とその後とで、何かの原因で原料粉の粉
末特性に変動が生じたものと推定される。そこでこの原
因を解明するべく成形過程を通じて圧粉体や金型各部の
温度を測定した結果、ダイを主とする金型の温度と圧粉
体の重量との間に、以下に説明するような一種の相関関
係が見出だされた。
The variation of the weight of the green compact is the variation of the amount of the raw material powder filled in the die cavity. This may be due to equipment-side factors such as variations in die cavity filling depth due to defective mold operation, and powder-side factors such as fluidity and apparent density variations of the powder. Since it was constant, it is presumed that the powder characteristics of the raw material powder fluctuated for some reason between the initial stage and the subsequent stage of molding. Therefore, as a result of measuring the temperature of each part of the green compact and the mold through the molding process in order to elucidate the cause, between the temperature of the die mainly including the die and the weight of the green compact, as described below. A kind of correlation was found.

【0011】図4は、ダイから押し出された直後の圧粉
体の温度を表面温度計で、1番目,10番目,20番目
…と10個毎に抜き取り測定した結果を示すグラフであ
り、圧粉体の温度は40番目辺りまでは急激に以後やや
緩やかに上昇し、100番目以降はほぼ一定の温度を保
っている。図の主な箇所のデータは1番目…43.3
℃,10番目…49.6℃,40番目…55.2℃,1
00番目…58.8℃であり、温度が安定している12
0番〜310番の区間の平均温度は59.3℃である。
FIG. 4 is a graph showing the results of sampling the temperature of the green compact immediately after being extruded from the die by the surface thermometer, every 10th, 10th, 20th ... The temperature of the powder rises sharply up to the 40th point and then moderately thereafter, and remains almost constant after the 100th point. The data at the main points in the figure are the first ... 43.3
° C, 10th ... 49.6 ° C, 40th ... 55.2 ° C, 1
00th ... 58.8 ° C, temperature is stable 12
The average temperature in the section from No. 0 to No. 310 is 59.3 ° C.

【0012】また成形前後における金型の温度を表面温
度計で測定した結果は、成形開始の直前の温度はダイ…
27.3℃,上パンチ…26.7℃であり、成形終了直
後の温度はダイ…42.8℃,上パンチ…42.0℃で
あった。従って成形の過程で金型の温度はダイが15.
5℃,上パンチは15.3℃の上昇を示し、圧粉体は当
初に比べて、平衡状態では平均16℃上昇している訳で
ある。この様な圧粉体および金型の温度変化について
は、次のように考えられる。即ち圧粉体は粉末が圧縮成
形される際の粉末相互の摩擦,および圧縮成形された圧
粉体を型から押し出す際の金型との摩擦抵抗により発熱
し、原料粉よりも当然高温になる。一方、金型も稼働中
の粉末との摩擦,特に圧粉体を型から押し出す際の摩擦
抵抗により発熱する。そして成形の反復につれて蓄積さ
れるこの摩擦熱のため金型の温度は次第に高まるが、や
がて、周囲への放熱と釣り合って平衡状態に達する。
Further, the temperature of the mold before and after molding was measured with a surface thermometer.
The temperature was 27.3 ° C., upper punch ... 26.7 ° C., and the temperature immediately after the completion of molding was die ... 42.8 ° C., upper punch ... 42.0 ° C. Therefore, the temperature of the mold is 15.
The upper punch shows an increase of 15.3 ° C. at 5 ° C., which means that the green compact has an average increase of 16 ° C. in the equilibrium state. Such temperature changes of the green compact and the mold are considered as follows. That is, the green compact heats up due to friction between the powders when the powders are compression-molded and frictional resistance with the die when the compression-molded green compacts are extruded from the mold, and naturally becomes hotter than the raw powders. . On the other hand, the die also generates heat due to friction with the powder during operation, particularly frictional resistance when the green compact is pushed out of the die. The temperature of the mold gradually rises due to this frictional heat accumulated as the molding is repeated, but eventually, the equilibrium state is reached in balance with the heat radiation to the surroundings.

【0013】この様にして金型が昇温すると、圧粉体は
自己の摩擦熱に金型から受ける熱が加わるため、成形時
点での金型の温度が高まるにつれて圧粉体の温度も上昇
し、金型温度が平衡状態になった時点で圧粉体の温度も
一定するものと考えられる。ちなみに圧粉体とダイとの
温度差は、前述のデータによれば成形開始の時点では1
6℃,終了時点でも平均16.5℃なので、両者の温度
差は経過時間に拘らず終始ほぼ一定していると見ること
ができる。このことは、図4のグラフは直接には圧粉体
の温度の経時変化を示しているが間接的には金型の温度
を暗示するもので、即ち稼働中の金型温度を測定する代
わりに、この曲線を縦軸目盛で約16℃下方に移して得
られるグラフを金型温度の経時変化を示すものと見做し
ても差支えないことを意味している。
When the temperature of the die rises in this manner, the friction heat of the die is added to its own frictional heat, so that the temperature of the die rises as the temperature of the die at the time of molding rises. However, it is considered that the temperature of the green compact also becomes constant when the mold temperature reaches an equilibrium state. By the way, the temperature difference between the green compact and the die is 1 at the start of molding according to the above data.
At 6 ° C, the average at the end is 16.5 ° C, so it can be seen that the temperature difference between the two is almost constant regardless of the elapsed time. This means that the graph of FIG. 4 directly shows the time-dependent change in the temperature of the green compact, but indirectly implies the temperature of the mold, that is, instead of measuring the mold temperature during operation. In addition, it means that it does not matter if the graph obtained by moving this curve downward by about 16 ° C. on the ordinate scale is regarded as showing the time-dependent change of the mold temperature.

【0014】さて、この図4と図3のグラフを対照する
と、連続成形の進行に伴う圧粉体の重量の変化と温度の
変化との間には密接な関係のあることが分る。即ち圧粉
体の重量,温度ともに連続成形の開始から或る時点まで
は顕著に上昇し、以後は平衡状態を続けること,その平
衡状態に達する時期がほぼ一致していることの2点の共
通性が際立っている。そしてこの事実は、圧粉体の温度
と金型温度との関係について前述したところにより、金
型温度が上昇する間は圧粉体の重量も増加し、金型温度
が平衡状態に達すれば圧粉体の重量も同じく平衡状態に
入ることを意味している。
By comparing the graphs of FIGS. 4 and 3, it can be seen that there is a close relationship between the change in the weight of the green compact and the change in the temperature with the progress of continuous molding. That is, both the weight and temperature of the green compact are remarkably increased from the start of continuous molding to a certain point, and the equilibrium state is maintained thereafter, and the time to reach the equilibrium state is almost the same. The sex is outstanding. And this fact is that the weight of the green compact also increases while the mold temperature rises, and the pressure increases when the mold temperature reaches an equilibrium state, as described above regarding the relationship between the temperature of the green compact and the mold temperature. The weight of the powder also means entering equilibrium.

【0015】圧粉体の重量と金型温度がこの様に相関す
る理由については、次のように考えられる。即ちダイキ
ャビティ内に充填される原料粉は流入中,堆積後とも周
囲の金型から熱を受けるので、金型の温度が高い場合ほ
ど原料粉の温度も高くなり、添加されている粉末潤滑剤
の軟化を助長する。そして粉末の流動性や見掛け密度の
変化,堆積した粉末の沈下などの総合効果として、金型
の温度が高くなるほど原料粉の充填量が,従って圧粉体
の重量が増加するものであろう。してみれば、金型の温
度を予想される平衡温度まで予め昇温させておき、その
状態で原料粉の充填量を所定の値に調整して成形を開始
すれば金型には既に昇温の余地がなく、従って圧粉体の
重量も変化せず、許容誤差の範囲内で当初の設定値が維
持される筈である。
The reason why the weight of the green compact and the mold temperature correlate in this way is considered as follows. That is, since the raw material powder filled in the die cavity receives heat from the surrounding molds both during the inflow and after the deposition, the higher the mold temperature, the higher the temperature of the raw material powder, and the powder lubricant added. Promotes softening of. Then, as a total effect such as change in powder fluidity and apparent density, and settling of accumulated powder, the higher the temperature of the mold, the more the amount of raw material powder filled, and hence the weight of the green compact. Therefore, if the temperature of the mold is raised to the expected equilibrium temperature in advance and the filling amount of the raw material powder is adjusted to a predetermined value in that state and molding is started, the temperature has already risen to the mold. There is no room for temperature, so the weight of the green compact should not change, and the initial set value should be maintained within the allowable error range.

【0016】この発明はこの様な知見に基づいてなされ
たものであって、即ちこの発明は、成形の反復によって
発熱昇温する金型の温度が到達する平衡温度を経験則ま
たは予備試験により求めてその平衡温度まで金型を予熱
し、その状態で原料粉の充填量を所定の値に調整して成
形を始めることを骨子とするものである。この場合、予
熱の対象はダイキャビティの形成に与かるダイ,コアロ
ッド,下パンチなどであって、原料粉の充填量に関与し
ない上パンチについては、その予熱は必須ではない。圧
粉体の形状によっては、コアロッドが無いこともある。
The present invention has been made on the basis of such knowledge, that is, the present invention obtains the equilibrium temperature reached by the temperature of the mold, which heats up due to repeated molding, by empirical rules or preliminary tests. The main idea is to preheat the mold to its equilibrium temperature, adjust the filling amount of the raw material powder to a predetermined value in that state, and start molding. In this case, the target of preheating is the die, core rod, lower punch, etc. involved in the formation of the die cavity, and preheating is not essential for the upper punch that does not contribute to the filling amount of the raw material powder. There may be no core rod depending on the shape of the green compact.

【0017】稼働中の金型の平衡温度は粉末の種類,圧
粉体の形状・寸法,成形圧力や成形速度,金型の材質・
面粗さなどの諸条件に影響されるが、殆どの場合、成形
開始前の金型温度に10〜30℃を加えた範囲に収まっ
ている。予熱する手段は任意であるが、費用や手間の面
では電気加熱による温風の吹き付けが好ましい。なおフ
ィーダーの温度もダイプレートとの摺動摩擦やダイから
の伝熱により若干上昇するが、金型ほどではない。フィ
ーダーの温度が高くなり過ぎると粉末特性への影響が懸
念されるので、金型のついでにフィーダーも予熱する場
合は、控え目にするほうがよい。
The equilibrium temperature of the mold during operation depends on the type of powder, the shape and size of the green compact, the molding pressure and speed, the material of the mold,
Although it is affected by various conditions such as surface roughness, in most cases, it is within the range of 10 to 30 ° C. added to the mold temperature before the start of molding. The preheating means is optional, but in terms of cost and labor, it is preferable to blow hot air by electric heating. The temperature of the feeder also rises slightly due to sliding friction with the die plate and heat transfer from the die, but it is not as high as that of the mold. If the temperature of the feeder becomes too high, it may affect the powder properties, so it is better to be conservative when preheating the feeder after the mold.

【0018】[0018]

【発明の実施の形態】以下の実施例は、比較の便のため
原料粉、金型および粉末成形プレスは図3の従来例の場
合と同一にしてある。成形開始前のダイの温度が27℃
なので、従来例でのダイの上昇温度を考慮して金型を+
16℃加温することとし、温風を吹き付けてダイ,コア
ロッドなどの金型を43℃に予熱した。そしてこの状態
で粉末充填量を圧粉体の所定の重量(118.38g)
に調整し、そのまま連続成形に移行した。
BEST MODE FOR CARRYING OUT THE INVENTION In the following examples, the raw material powder, the mold and the powder molding press are the same as those in the conventional example of FIG. 3 for the sake of comparison. The die temperature before molding is 27 ℃
Therefore, considering the rise temperature of the die in the conventional example, +
It was decided to heat at 16 ° C, and hot air was blown to preheat the dies such as the die and core rod to 43 ° C. Then, in this state, the powder filling amount is set to a predetermined weight of the green compact (118.38 g).
Was adjusted to, and the continuous molding was performed.

【0019】(実施例) 成形速度を従来例の場合と同
じく毎分10個に設定して圧粉密度6.7g/cm3
圧粉体を連続して成形し、得られた圧粉体の重量を全数
測定した。次にこのデータを成形順に10個ずつに区切
ってそれぞれのデータの平均値を求め、その結果を図5
のグラフに示した。グラフの要領は図3と同じなのでそ
の説明は省略し、何点かの数値を示すと2分(目盛2
0)…118.42g,10分…118.39g,16
分…118.43g,24分…118.37g,31分
…118.37gなどである。このグラフから一見明ら
かなように従来の方式における初期段階での重量増加は
無く、従来例では温度の上昇を示した目盛10〜110
の10分間の平均値,および120〜310の20分間
の平均値は何れも118.38gであり、当初から終始
安定した重量を維持している。
(Example) A compact was obtained by continuously compacting a compact having a compact density of 6.7 g / cm 3 with the compacting speed set to 10 pieces per minute as in the case of the conventional example. Were weighed 100%. Next, this data is divided into 10 pieces in the order of molding, and the average value of each data is obtained, and the result is shown in FIG.
Is shown in the graph. Since the procedure of the graph is the same as that of Fig. 3, its explanation is omitted, and some numerical values are shown in 2 minutes (scale 2
0) ... 118.42 g, 10 minutes ... 118.39 g, 16
Minutes ... 118.43 g, 24 minutes ... 118.37 g, 31 minutes ... 118.37 g. As is apparent from this graph, there is no increase in weight in the initial stage in the conventional method, and in the conventional example, the scales 10 to 110 showing the temperature increase.
The average value for 10 minutes and the average value for 20 minutes of 120 to 310 are 118.38 g, and a stable weight is maintained from the beginning.

【0020】[0020]

【発明の効果】従来は量産成形を開始しても暫くの間は
得られる圧粉体の重量その他の特性が設定値から外れて
成形不良になり勝ちで、その監視と調整に多くの手間と
費用を要していたが、この発明によりその様な監視や調
整作業が不要となった。従ってこの発明の実施によって
得られる効果は成形不良の防止,成形工程の効率向上,
製品の品質安定および生産コストの低減など、極めて大
きいものがある。
[Effects of the Invention] Conventionally, even if mass-production molding is started, for a while, the weight and other characteristics of the green compact obtained deviate from the set values and molding defects tend to occur, which requires a lot of time and effort for monitoring and adjustment. Although expensive, this invention obviates the need for such monitoring and adjustment work. Therefore, the effects obtained by implementing the present invention are to prevent molding defects, improve the efficiency of the molding process,
There are extremely large items such as stable product quality and reduced production costs.

【図面の簡単な説明】[Brief description of drawings]

【図1】粉末成形金型への原料粉の一般的な充填方式を
説明する図面である。
FIG. 1 is a diagram illustrating a general method of filling raw material powder into a powder molding die.

【図2】粉末成形金型を含むダイセットの構成を例示す
る図面である。
FIG. 2 is a diagram illustrating the configuration of a die set including a powder molding die.

【図3】連続成形時における圧粉体の重量の変動状況を
示すグラフである。
FIG. 3 is a graph showing changes in the weight of the green compact during continuous molding.

【図4】連続成形時における圧粉体の温度の変動状況を
示すグラフである。
FIG. 4 is a graph showing how the temperature of a green compact changes during continuous molding.

【図5】この発明の実施例において圧粉体重量が安定し
た状況を示すグラフである。
FIG. 5 is a graph showing a state where the weight of the green compact is stable in the example of the present invention.

【符号の説明】[Explanation of symbols]

10…ダイ, 20…下パンチ, 30…上パンチ,
40…コアロッド,11…ダイプレート, 70…フィ
ーダー。
10 ... Die, 20 ... Lower punch, 30 ... Upper punch,
40 ... Core rod, 11 ... Die plate, 70 ... Feeder.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平9−272901(JP,A) 特開 平8−143904(JP,A) 特開 平9−253896(JP,A) (58)調査した分野(Int.Cl.7,DB名) B22F 3/02 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-9-272901 (JP, A) JP-A-8-143904 (JP, A) JP-A-9-253896 (JP, A) (58) Field (Int.Cl. 7 , DB name) B22F 3/02

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 粉末潤滑剤を添加した原料粉をダイキャ
ビティ内に充填して上下のパンチ間に圧縮成形し、得ら
れた圧粉体を下パンチでダイから押し出す粉末成形方法
において、ダイキャビティの形成に与かる金型を加熱し
て当該金型が稼働中に昇温して到達する平衡温度まで予
熱し、その状態で原料粉の充填量を所定の値に調整して
連続成形を始めることを特徴とする、焼結部品の粉末成
形工程における圧粉体重量の安定化方法。
1. A powder molding method in which a raw material powder to which a powder lubricant is added is filled in a die cavity and compression-molded between upper and lower punches, and the resulting green compact is extruded from a die by a lower punch. Is heated to preheat to the equilibrium temperature that the mold reaches during operation, and in that state, the filling amount of the raw material powder is adjusted to a predetermined value and continuous molding is started. A method for stabilizing the weight of a green compact in a powder molding process for a sintered part, comprising:
【請求項2】 ダイキャビティの形成に与かる金型を、
連続成形の開始前における当該金型の温度より10〜3
0℃高い温度に予熱する、請求項1に記載の焼結部品の
粉末成形工程における圧粉体重量の安定化方法。
2. A mold for forming a die cavity,
10 to 3 from the temperature of the mold before the start of continuous molding
The method for stabilizing the weight of a green compact in the powder molding step for a sintered component according to claim 1, wherein the method is preheating to a temperature higher by 0 ° C.
JP35948598A 1998-12-17 1998-12-17 Method for stabilizing the weight of green compact in powder molding process of sintered parts Expired - Fee Related JP3485818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35948598A JP3485818B2 (en) 1998-12-17 1998-12-17 Method for stabilizing the weight of green compact in powder molding process of sintered parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35948598A JP3485818B2 (en) 1998-12-17 1998-12-17 Method for stabilizing the weight of green compact in powder molding process of sintered parts

Publications (2)

Publication Number Publication Date
JP2000178603A JP2000178603A (en) 2000-06-27
JP3485818B2 true JP3485818B2 (en) 2004-01-13

Family

ID=18464751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35948598A Expired - Fee Related JP3485818B2 (en) 1998-12-17 1998-12-17 Method for stabilizing the weight of green compact in powder molding process of sintered parts

Country Status (1)

Country Link
JP (1) JP3485818B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1328036C (en) * 2005-05-09 2007-07-25 上海爱普生磁性器件有限公司 Integral mould for powder molding
US8075710B2 (en) 2005-06-15 2011-12-13 Höganäs Ab Soft magnetic composite materials
JP4725722B2 (en) * 2005-08-04 2011-07-13 トヨタ自動車株式会社 Powder input method

Also Published As

Publication number Publication date
JP2000178603A (en) 2000-06-27

Similar Documents

Publication Publication Date Title
CN106312016B (en) A kind of aluminum alloy forge piece vibration casting forging combined shaping method
KR20130100366A (en) Method for manufacturing high-strength sinter-molded compact, and device for manufacturing same
JP3485818B2 (en) Method for stabilizing the weight of green compact in powder molding process of sintered parts
CN102847943A (en) Method for manufacturing magnetron molybdenum end cap through die forming
JP2001252793A (en) Green compact forming method
CN1067615C (en) Method for producing high-gravity alloy manufactured product
US3521326A (en) Powder metallurgy press apparatus
US20090291012A1 (en) Production method for sintered part
CN213410318U (en) Powder forming die with powder feeding function
JP3462378B2 (en) Powder molding method in powder metallurgy
JP2005034851A (en) Forging method for semi-solidified metal molded body and forging device therefor
JPS639562B2 (en)
RU137215U1 (en) DEVICE FOR MANUFACTURE OF TWO-LAYER Billets from NON-FORMING POWDERS OF CARBIDE MATERIALS IN THE COMPLEX SHAPED CASING
JP2005028367A (en) Powder compacting device and powder compacting method
JP3788559B2 (en) Method for manufacturing sintered parts
JPH05179309A (en) Method and die for extrusion
JPS62151502A (en) Production of sintered bearing material
RU2764451C1 (en) Installation for forming blanks for cutting plates
RU2744917C1 (en) Device for obtaining articles from high-temperature polymers by selective laser sintering
SU1509181A2 (en) Mould for compacting articles from powder materials
US5911925A (en) Apparatus and method for positive molding brake friction pads with adjustable die cavity depth
JPH0344880B2 (en)
KR100336020B1 (en) Control method of partial density from parts sintered forming
JPH08143904A (en) Method for pressing hard powder
JP3023287B2 (en) Manufacturing method of molded material composed of rapidly solidified material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees